/*************************************************************************** * Copyright (C) 2005 by Dominic Rath * * Dominic.Rath@gmx.de * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "arm920t.h" #include "jtag.h" #include "log.h" #include #include #if 0 #define _DEBUG_INSTRUCTION_EXECUTION_ #endif /* cli handling */ int arm920t_register_commands(struct command_context_s *cmd_ctx); int arm920t_handle_cp15_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int arm920t_handle_cp15i_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int arm920t_handle_virt2phys_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int arm920t_handle_cache_info_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int arm920t_handle_md_phys_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int arm920t_handle_mw_phys_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); /* forward declarations */ int arm920t_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, struct target_s *target); int arm920t_init_target(struct command_context_s *cmd_ctx, struct target_s *target); int arm920t_quit(); int arm920t_arch_state(struct target_s *target, char *buf, int buf_size); int arm920t_read_memory(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer); int arm920t_write_memory(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer); int arm920t_soft_reset_halt(struct target_s *target); target_type_t arm920t_target = { .name = "arm920t", .poll = arm7_9_poll, .arch_state = arm920t_arch_state, .halt = arm7_9_halt, .resume = arm7_9_resume, .step = arm7_9_step, .assert_reset = arm7_9_assert_reset, .deassert_reset = arm7_9_deassert_reset, .soft_reset_halt = arm920t_soft_reset_halt, .get_gdb_reg_list = armv4_5_get_gdb_reg_list, .read_memory = arm920t_read_memory, .write_memory = arm920t_write_memory, .bulk_write_memory = arm7_9_bulk_write_memory, .run_algorithm = armv4_5_run_algorithm, .add_breakpoint = arm7_9_add_breakpoint, .remove_breakpoint = arm7_9_remove_breakpoint, .add_watchpoint = arm7_9_add_watchpoint, .remove_watchpoint = arm7_9_remove_watchpoint, .register_commands = arm920t_register_commands, .target_command = arm920t_target_command, .init_target = arm920t_init_target, .quit = arm920t_quit }; int arm920t_read_cp15_physical(target_t *target, int reg_addr, u32 *value) { armv4_5_common_t *armv4_5 = target->arch_info; arm7_9_common_t *arm7_9 = armv4_5->arch_info; arm_jtag_t *jtag_info = &arm7_9->jtag_info; scan_field_t fields[4]; u8 access_type_buf = 1; u8 reg_addr_buf = reg_addr & 0x3f; u8 nr_w_buf = 0; jtag_add_end_state(TAP_RTI); arm_jtag_scann(jtag_info, 0xf); arm_jtag_set_instr(jtag_info, jtag_info->intest_instr); fields[0].device = jtag_info->chain_pos; fields[0].num_bits = 1; fields[0].out_value = &access_type_buf; fields[0].out_mask = NULL; fields[0].in_value = NULL; fields[0].in_check_value = NULL; fields[0].in_check_mask = NULL; fields[0].in_handler = NULL; fields[0].in_handler_priv = NULL; fields[1].device = jtag_info->chain_pos; fields[1].num_bits = 32; fields[1].out_value = NULL; fields[1].out_mask = NULL; fields[1].in_value = NULL; fields[1].in_check_value = NULL; fields[1].in_check_mask = NULL; fields[1].in_handler = NULL; fields[1].in_handler_priv = NULL; fields[2].device = jtag_info->chain_pos; fields[2].num_bits = 6; fields[2].out_value = ®_addr_buf; fields[2].out_mask = NULL; fields[2].in_value = NULL; fields[2].in_check_value = NULL; fields[2].in_check_mask = NULL; fields[2].in_handler = NULL; fields[2].in_handler_priv = NULL; fields[3].device = jtag_info->chain_pos; fields[3].num_bits = 1; fields[3].out_value = &nr_w_buf; fields[3].out_mask = NULL; fields[3].in_value = NULL; fields[3].in_check_value = NULL; fields[3].in_check_mask = NULL; fields[3].in_handler = NULL; fields[3].in_handler_priv = NULL; jtag_add_dr_scan(4, fields, -1); fields[1].in_value = (u8*)value; jtag_add_dr_scan(4, fields, -1); return ERROR_OK; } int arm920t_write_cp15_physical(target_t *target, int reg_addr, u32 value) { armv4_5_common_t *armv4_5 = target->arch_info; arm7_9_common_t *arm7_9 = armv4_5->arch_info; arm_jtag_t *jtag_info = &arm7_9->jtag_info; scan_field_t fields[4]; u8 access_type_buf = 1; u8 reg_addr_buf = reg_addr & 0x3f; u8 nr_w_buf = 1; jtag_add_end_state(TAP_RTI); arm_jtag_scann(jtag_info, 0xf); arm_jtag_set_instr(jtag_info, jtag_info->intest_instr); fields[0].device = jtag_info->chain_pos; fields[0].num_bits = 1; fields[0].out_value = &access_type_buf; fields[0].out_mask = NULL; fields[0].in_value = NULL; fields[0].in_check_value = NULL; fields[0].in_check_mask = NULL; fields[0].in_handler = NULL; fields[0].in_handler_priv = NULL; fields[1].device = jtag_info->chain_pos; fields[1].num_bits = 32; fields[1].out_value = (u8*)&value; fields[1].out_mask = NULL; fields[1].in_value = NULL; fields[1].in_check_value = NULL; fields[1].in_check_mask = NULL; fields[1].in_handler = NULL; fields[1].in_handler_priv = NULL; fields[2].device = jtag_info->chain_pos; fields[2].num_bits = 6; fields[2].out_value = ®_addr_buf; fields[2].out_mask = NULL; fields[2].in_value = NULL; fields[2].in_check_value = NULL; fields[2].in_check_mask = NULL; fields[2].in_handler = NULL; fields[2].in_handler_priv = NULL; fields[3].device = jtag_info->chain_pos; fields[3].num_bits = 1; fields[3].out_value = &nr_w_buf; fields[3].out_mask = NULL; fields[3].in_value = NULL; fields[3].in_check_value = NULL; fields[3].in_check_mask = NULL; fields[3].in_handler = NULL; fields[3].in_handler_priv = NULL; jtag_add_dr_scan(4, fields, -1); return ERROR_OK; } int arm920t_read_cp15_interpreted(target_t *target, u32 opcode, u32 *value) { u32 cp15c15 = 0x0; scan_field_t fields[4]; u8 access_type_buf = 0; /* interpreted access */ u8 reg_addr_buf = 0x0; u8 nr_w_buf = 0; armv4_5_common_t *armv4_5 = target->arch_info; arm7_9_common_t *arm7_9 = armv4_5->arch_info; arm_jtag_t *jtag_info = &arm7_9->jtag_info; u32* context_p[1]; /* read-modify-write CP15 test state register * to enable interpreted access mode */ arm920t_read_cp15_physical(target, 0x1e, &cp15c15); jtag_execute_queue(); cp15c15 |= 1; /* set interpret mode */ arm920t_write_cp15_physical(target, 0x1e, cp15c15); jtag_add_end_state(TAP_RTI); arm_jtag_scann(jtag_info, 0xf); arm_jtag_set_instr(jtag_info, jtag_info->intest_instr); fields[0].device = jtag_info->chain_pos; fields[0].num_bits = 1; fields[0].out_value = &access_type_buf; fields[0].out_mask = NULL; fields[0].in_value = NULL; fields[0].in_check_value = NULL; fields[0].in_check_mask = NULL; fields[0].in_handler = NULL; fields[0].in_handler_priv = NULL; fields[1].device = jtag_info->chain_pos; fields[1].num_bits = 32; fields[1].out_value = (u8*)&opcode; fields[1].out_mask = NULL; fields[1].in_value = NULL; fields[1].in_check_value = NULL; fields[1].in_check_mask = NULL; fields[1].in_handler = NULL; fields[1].in_handler_priv = NULL; fields[2].device = jtag_info->chain_pos; fields[2].num_bits = 6; fields[2].out_value = ®_addr_buf; fields[2].out_mask = NULL; fields[2].in_value = NULL; fields[2].in_check_value = NULL; fields[2].in_check_mask = NULL; fields[2].in_handler = NULL; fields[2].in_handler_priv = NULL; fields[3].device = jtag_info->chain_pos; fields[3].num_bits = 1; fields[3].out_value = &nr_w_buf; fields[3].out_mask = NULL; fields[3].in_value = NULL; fields[3].in_check_value = NULL; fields[3].in_check_mask = NULL; fields[3].in_handler = NULL; fields[3].in_handler_priv = NULL; jtag_add_dr_scan(4, fields, -1); arm9tdmi_clock_out(jtag_info, ARMV4_5_LDR(0, 15), 0, NULL, 0); arm9tdmi_clock_out(jtag_info, ARMV4_5_NOP, 0, NULL, 1); arm7_9_execute_sys_speed(target); jtag_execute_queue(); /* read-modify-write CP15 test state register * to disable interpreted access mode */ arm920t_read_cp15_physical(target, 0x1e, &cp15c15); jtag_execute_queue(); cp15c15 &= ~1U; /* clear interpret mode */ arm920t_write_cp15_physical(target, 0x1e, cp15c15); context_p[0] = value; arm9tdmi_read_core_regs(target, 0x1, context_p); jtag_execute_queue(); DEBUG("opcode: %8.8x, value: %8.8x", opcode, *value); ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).dirty = 1; ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).dirty = 1; return ERROR_OK; } int arm920t_write_cp15_interpreted(target_t *target, u32 opcode, u32 value, u32 address) { u32 cp15c15 = 0x0; scan_field_t fields[4]; u8 access_type_buf = 0; /* interpreted access */ u8 reg_addr_buf = 0x0; u8 nr_w_buf = 0; armv4_5_common_t *armv4_5 = target->arch_info; arm7_9_common_t *arm7_9 = armv4_5->arch_info; arm_jtag_t *jtag_info = &arm7_9->jtag_info; u32 regs[2]; regs[0] = value; regs[1] = address; arm9tdmi_write_core_regs(target, 0x3, regs); /* read-modify-write CP15 test state register * to enable interpreted access mode */ arm920t_read_cp15_physical(target, 0x1e, &cp15c15); jtag_execute_queue(); cp15c15 |= 1; /* set interpret mode */ arm920t_write_cp15_physical(target, 0x1e, cp15c15); jtag_add_end_state(TAP_RTI); arm_jtag_scann(jtag_info, 0xf); arm_jtag_set_instr(jtag_info, jtag_info->intest_instr); fields[0].device = jtag_info->chain_pos; fields[0].num_bits = 1; fields[0].out_value = &access_type_buf; fields[0].out_mask = NULL; fields[0].in_value = NULL; fields[0].in_check_value = NULL; fields[0].in_check_mask = NULL; fields[0].in_handler = NULL; fields[0].in_handler_priv = NULL; fields[1].device = jtag_info->chain_pos; fields[1].num_bits = 32; fields[1].out_value = (u8*)&opcode; fields[1].out_mask = NULL; fields[1].in_value = NULL; fields[1].in_check_value = NULL; fields[1].in_check_mask = NULL; fields[1].in_handler = NULL; fields[1].in_handler_priv = NULL; fields[2].device = jtag_info->chain_pos; fields[2].num_bits = 6; fields[2].out_value = ®_addr_buf; fields[2].out_mask = NULL; fields[2].in_value = NULL; fields[2].in_check_value = NULL; fields[2].in_check_mask = NULL; fields[2].in_handler = NULL; fields[2].in_handler_priv = NULL; fields[3].device = jtag_info->chain_pos; fields[3].num_bits = 1; fields[3].out_value = &nr_w_buf; fields[3].out_mask = NULL; fields[3].in_value = NULL; fields[3].in_check_value = NULL; fields[3].in_check_mask = NULL; fields[3].in_handler = NULL; fields[3].in_handler_priv = NULL; jtag_add_dr_scan(4, fields, -1); arm9tdmi_clock_out(jtag_info, ARMV4_5_STR(0, 1), 0, NULL, 0); arm9tdmi_clock_out(jtag_info, ARMV4_5_NOP, 0, NULL, 1); arm7_9_execute_sys_speed(target); jtag_execute_queue(); /* read-modify-write CP15 test state register * to disable interpreted access mode */ arm920t_read_cp15_physical(target, 0x1e, &cp15c15); jtag_execute_queue(); cp15c15 &= ~1U; /* set interpret mode */ arm920t_write_cp15_physical(target, 0x1e, cp15c15); DEBUG("opcode: %8.8x, value: %8.8x, address: %8.8x", opcode, value, address); ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).dirty = 1; ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 1).dirty = 1; return ERROR_OK; } u32 arm920t_get_ttb(target_t *target) { int retval; u32 ttb = 0x0; if ((retval = arm920t_read_cp15_interpreted(target, 0xeebf0f51, &ttb)) != ERROR_OK) return retval; return ttb; } void arm920t_disable_mmu_caches(target_t *target, int mmu, int d_u_cache, int i_cache) { u32 cp15_control; /* read cp15 control register */ arm920t_read_cp15_physical(target, 0x2, &cp15_control); jtag_execute_queue(); if (mmu) cp15_control &= ~0x1U; if (d_u_cache) cp15_control &= ~0x4U; if (i_cache) cp15_control &= ~0x1000U; arm920t_write_cp15_physical(target, 0x2, cp15_control); } void arm920t_enable_mmu_caches(target_t *target, int mmu, int d_u_cache, int i_cache) { u32 cp15_control; /* read cp15 control register */ arm920t_read_cp15_physical(target, 0x2, &cp15_control); jtag_execute_queue(); if (mmu) cp15_control |= 0x1U; if (d_u_cache) cp15_control |= 0x4U; if (i_cache) cp15_control |= 0x1000U; arm920t_write_cp15_physical(target, 0x2, cp15_control); } void arm920t_post_debug_entry(target_t *target) { u32 cp15c15; armv4_5_common_t *armv4_5 = target->arch_info; arm7_9_common_t *arm7_9 = armv4_5->arch_info; arm9tdmi_common_t *arm9tdmi = arm7_9->arch_info; arm920t_common_t *arm920t = arm9tdmi->arch_info; /* examine cp15 control reg */ arm920t_read_cp15_physical(target, 0x2, &arm920t->cp15_control_reg); jtag_execute_queue(); DEBUG("cp15_control_reg: %8.8x", arm920t->cp15_control_reg); if (arm920t->armv4_5_mmu.armv4_5_cache.ctype == -1) { u32 cache_type_reg; /* identify caches */ arm920t_read_cp15_physical(target, 0x1, &cache_type_reg); jtag_execute_queue(); armv4_5_identify_cache(cache_type_reg, &arm920t->armv4_5_mmu.armv4_5_cache); } arm920t->armv4_5_mmu.mmu_enabled = (arm920t->cp15_control_reg & 0x1U) ? 1 : 0; arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled = (arm920t->cp15_control_reg & 0x4U) ? 1 : 0; arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled = (arm920t->cp15_control_reg & 0x1000U) ? 1 : 0; /* save i/d fault status and address register */ arm920t_read_cp15_interpreted(target, 0xee150f10, &arm920t->d_fsr); arm920t_read_cp15_interpreted(target, 0xee150f30, &arm920t->i_fsr); arm920t_read_cp15_interpreted(target, 0xee160f10, &arm920t->d_far); arm920t_read_cp15_interpreted(target, 0xee160f30, &arm920t->i_far); /* read-modify-write CP15 test state register * to disable I/D-cache linefills */ arm920t_read_cp15_physical(target, 0x1e, &cp15c15); jtag_execute_queue(); cp15c15 |= 0x600; arm920t_write_cp15_physical(target, 0x1e, cp15c15); } void arm920t_pre_restore_context(target_t *target) { u32 cp15c15; armv4_5_common_t *armv4_5 = target->arch_info; arm7_9_common_t *arm7_9 = armv4_5->arch_info; arm9tdmi_common_t *arm9tdmi = arm7_9->arch_info; arm920t_common_t *arm920t = arm9tdmi->arch_info; /* restore i/d fault status and address register */ arm920t_write_cp15_interpreted(target, 0xee050f10, arm920t->d_fsr, 0x0); arm920t_write_cp15_interpreted(target, 0xee050f30, arm920t->i_fsr, 0x0); arm920t_write_cp15_interpreted(target, 0xee060f10, arm920t->d_far, 0x0); arm920t_write_cp15_interpreted(target, 0xee060f30, arm920t->i_far, 0x0); /* read-modify-write CP15 test state register * to reenable I/D-cache linefills */ arm920t_read_cp15_physical(target, 0x1e, &cp15c15); jtag_execute_queue(); cp15c15 &= ~0x600U; arm920t_write_cp15_physical(target, 0x1e, cp15c15); } int arm920t_get_arch_pointers(target_t *target, armv4_5_common_t **armv4_5_p, arm7_9_common_t **arm7_9_p, arm9tdmi_common_t **arm9tdmi_p, arm920t_common_t **arm920t_p) { armv4_5_common_t *armv4_5 = target->arch_info; arm7_9_common_t *arm7_9; arm9tdmi_common_t *arm9tdmi; arm920t_common_t *arm920t; if (armv4_5->common_magic != ARMV4_5_COMMON_MAGIC) { return -1; } arm7_9 = armv4_5->arch_info; if (arm7_9->common_magic != ARM7_9_COMMON_MAGIC) { return -1; } arm9tdmi = arm7_9->arch_info; if (arm9tdmi->common_magic != ARM9TDMI_COMMON_MAGIC) { return -1; } arm920t = arm9tdmi->arch_info; if (arm920t->common_magic != ARM920T_COMMON_MAGIC) { return -1; } *armv4_5_p = armv4_5; *arm7_9_p = arm7_9; *arm9tdmi_p = arm9tdmi; *arm920t_p = arm920t; return ERROR_OK; } int arm920t_arch_state(struct target_s *target, char *buf, int buf_size) { armv4_5_common_t *armv4_5 = target->arch_info; arm7_9_common_t *arm7_9 = armv4_5->arch_info; arm9tdmi_common_t *arm9tdmi = arm7_9->arch_info; arm920t_common_t *arm920t = arm9tdmi->arch_info; char *state[] = { "disabled", "enabled" }; if (armv4_5->common_magic != ARMV4_5_COMMON_MAGIC) { ERROR("BUG: called for a non-ARMv4/5 target"); exit(-1); } snprintf(buf, buf_size, "target halted in %s state due to %s, current mode: %s\n" "cpsr: 0x%8.8x pc: 0x%8.8x\n" "MMU: %s, D-Cache: %s, I-Cache: %s", armv4_5_state_strings[armv4_5->core_state], target_debug_reason_strings[target->debug_reason], armv4_5_mode_strings[armv4_5_mode_to_number(armv4_5->core_mode)], buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32), buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32), state[arm920t->armv4_5_mmu.mmu_enabled], state[arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled], state[arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled]); return ERROR_OK; } int arm920t_read_memory(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer) { int retval; retval = arm7_9_read_memory(target, address, size, count, buffer); return retval; } int arm920t_write_memory(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer) { int retval; armv4_5_common_t *armv4_5 = target->arch_info; arm7_9_common_t *arm7_9 = armv4_5->arch_info; arm9tdmi_common_t *arm9tdmi = arm7_9->arch_info; arm920t_common_t *arm920t = arm9tdmi->arch_info; if ((retval = arm7_9_write_memory(target, address, size, count, buffer)) != ERROR_OK) return retval; if (((size == 4) || (size == 2)) && (count == 1)) { if (arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled) { DEBUG("D-Cache enabled, writing through to main memory"); u32 pa, cb, ap; int type, domain; pa = armv4_5_mmu_translate_va(target, &arm920t->armv4_5_mmu, address, &type, &cb, &domain, &ap); if (type == -1) return ERROR_OK; /* cacheable & bufferable means write-back region */ if (cb == 3) armv4_5_mmu_write_physical(target, &arm920t->armv4_5_mmu, pa, size, count, buffer); } if (arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled) { DEBUG("I-Cache enabled, invalidating affected I-Cache line"); arm920t_write_cp15_interpreted(target, 0xee070f35, 0x0, address); } } return retval; } int arm920t_soft_reset_halt(struct target_s *target) { armv4_5_common_t *armv4_5 = target->arch_info; arm7_9_common_t *arm7_9 = armv4_5->arch_info; arm9tdmi_common_t *arm9tdmi = arm7_9->arch_info; arm920t_common_t *arm920t = arm9tdmi->arch_info; reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT]; if (target->state == TARGET_RUNNING) { target->type->halt(target); } while (buf_get_u32(dbg_stat->value, EICE_DBG_CONTROL_DBGACK, 1) == 0) { embeddedice_read_reg(dbg_stat); jtag_execute_queue(); } target->state = TARGET_HALTED; /* SVC, ARM state, IRQ and FIQ disabled */ buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8, 0xd3); armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 1; armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1; /* start fetching from 0x0 */ buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, 0x0); armv4_5->core_cache->reg_list[15].dirty = 1; armv4_5->core_cache->reg_list[15].valid = 1; armv4_5->core_mode = ARMV4_5_MODE_SVC; armv4_5->core_state = ARMV4_5_STATE_ARM; arm920t_disable_mmu_caches(target, 1, 1, 1); arm920t->armv4_5_mmu.mmu_enabled = 0; arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled = 0; arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled = 0; target_call_event_callbacks(target, TARGET_EVENT_HALTED); return ERROR_OK; } int arm920t_init_target(struct command_context_s *cmd_ctx, struct target_s *target) { arm9tdmi_init_target(cmd_ctx, target); return ERROR_OK; } int arm920t_quit() { return ERROR_OK; } int arm920t_init_arch_info(target_t *target, arm920t_common_t *arm920t, int chain_pos, char *variant) { arm9tdmi_common_t *arm9tdmi = &arm920t->arm9tdmi_common; arm7_9_common_t *arm7_9 = &arm9tdmi->arm7_9_common; arm9tdmi_init_arch_info(target, arm9tdmi, chain_pos, variant); arm9tdmi->arch_info = arm920t; arm920t->common_magic = ARM920T_COMMON_MAGIC; arm7_9->post_debug_entry = arm920t_post_debug_entry; arm7_9->pre_restore_context = arm920t_pre_restore_context; arm920t->armv4_5_mmu.armv4_5_cache.ctype = -1; arm920t->armv4_5_mmu.get_ttb = arm920t_get_ttb; arm920t->armv4_5_mmu.read_memory = arm7_9_read_memory; arm920t->armv4_5_mmu.write_memory = arm7_9_write_memory; arm920t->armv4_5_mmu.disable_mmu_caches = arm920t_disable_mmu_caches; arm920t->armv4_5_mmu.enable_mmu_caches = arm920t_enable_mmu_caches; arm920t->armv4_5_mmu.has_tiny_pages = 1; arm920t->armv4_5_mmu.mmu_enabled = 0; arm9tdmi->has_single_step = 1; return ERROR_OK; } int arm920t_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, struct target_s *target) { int chain_pos; char *variant = NULL; arm920t_common_t *arm920t = malloc(sizeof(arm920t_common_t)); if (argc < 4) { ERROR("'target arm920t' requires at least one additional argument"); exit(-1); } chain_pos = strtoul(args[3], NULL, 0); if (argc >= 5) variant = args[4]; DEBUG("chain_pos: %i, variant: %s", chain_pos, variant); arm920t_init_arch_info(target, arm920t, chain_pos, variant); return ERROR_OK; } int arm920t_register_commands(struct command_context_s *cmd_ctx) { int retval; command_t *arm920t_cmd; retval = arm9tdmi_register_commands(cmd_ctx); arm920t_cmd = register_command(cmd_ctx, NULL, "arm920t", NULL, COMMAND_ANY, "arm920t specific commands"); register_command(cmd_ctx, arm920t_cmd, "cp15", arm920t_handle_cp15_command, COMMAND_EXEC, "display/modify cp15 register [value]"); register_command(cmd_ctx, arm920t_cmd, "cp15i", arm920t_handle_cp15i_command, COMMAND_EXEC, "display/modify cp15 (interpreted access) [value] [address]"); register_command(cmd_ctx, arm920t_cmd, "cache_info", arm920t_handle_cache_info_command, COMMAND_EXEC, "display information about target caches"); register_command(cmd_ctx, arm920t_cmd, "virt2phys", arm920t_handle_virt2phys_command, COMMAND_EXEC, "translate va to pa "); register_command(cmd_ctx, arm920t_cmd, "mdw_phys", arm920t_handle_md_phys_command, COMMAND_EXEC, "display memory words [count]"); register_command(cmd_ctx, arm920t_cmd, "mdh_phys", arm920t_handle_md_phys_command, COMMAND_EXEC, "display memory half-words [count]"); register_command(cmd_ctx, arm920t_cmd, "mdb_phys", arm920t_handle_md_phys_command, COMMAND_EXEC, "display memory bytes [count]"); register_command(cmd_ctx, arm920t_cmd, "mww_phys", arm920t_handle_mw_phys_command, COMMAND_EXEC, "write memory word "); register_command(cmd_ctx, arm920t_cmd, "mwh_phys", arm920t_handle_mw_phys_command, COMMAND_EXEC, "write memory half-word "); register_command(cmd_ctx, arm920t_cmd, "mwb_phys", arm920t_handle_mw_phys_command, COMMAND_EXEC, "write memory byte "); return ERROR_OK; } int arm920t_handle_cp15_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { int retval; target_t *target = get_current_target(cmd_ctx); armv4_5_common_t *armv4_5; arm7_9_common_t *arm7_9; arm9tdmi_common_t *arm9tdmi; arm920t_common_t *arm920t; arm_jtag_t *jtag_info; if (arm920t_get_arch_pointers(target, &armv4_5, &arm7_9, &arm9tdmi, &arm920t) != ERROR_OK) { command_print(cmd_ctx, "current target isn't an ARM920t target"); return ERROR_OK; } jtag_info = &arm7_9->jtag_info; if (target->state != TARGET_HALTED) { command_print(cmd_ctx, "target must be stopped for \"%s\" command", cmd); return ERROR_OK; } /* one or more argument, access a single register (write if second argument is given */ if (argc >= 1) { int address = strtoul(args[0], NULL, 0); if (argc == 1) { u32 value; if ((retval = arm920t_read_cp15_physical(target, address, &value)) != ERROR_OK) { command_print(cmd_ctx, "couldn't access reg %i", address); return ERROR_OK; } jtag_execute_queue(); command_print(cmd_ctx, "%i: %8.8x", address, value); } else if (argc == 2) { u32 value = strtoul(args[1], NULL, 0); if ((retval = arm920t_write_cp15_physical(target, address, value)) != ERROR_OK) { command_print(cmd_ctx, "couldn't access reg %i", address); return ERROR_OK; } command_print(cmd_ctx, "%i: %8.8x", address, value); } } return ERROR_OK; } int arm920t_handle_cp15i_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { int retval; target_t *target = get_current_target(cmd_ctx); armv4_5_common_t *armv4_5; arm7_9_common_t *arm7_9; arm9tdmi_common_t *arm9tdmi; arm920t_common_t *arm920t; arm_jtag_t *jtag_info; if (arm920t_get_arch_pointers(target, &armv4_5, &arm7_9, &arm9tdmi, &arm920t) != ERROR_OK) { command_print(cmd_ctx, "current target isn't an ARM920t target"); return ERROR_OK; } jtag_info = &arm7_9->jtag_info; if (target->state != TARGET_HALTED) { command_print(cmd_ctx, "target must be stopped for \"%s\" command", cmd); return ERROR_OK; } /* one or more argument, access a single register (write if second argument is given */ if (argc >= 1) { u32 opcode = strtoul(args[0], NULL, 0); if (argc == 1) { u32 value; if ((retval = arm920t_read_cp15_interpreted(target, opcode, &value)) != ERROR_OK) { command_print(cmd_ctx, "couldn't execute %8.8x", opcode); return ERROR_OK; } command_print(cmd_ctx, "%8.8x: %8.8x", opcode, value); } else if (argc == 2) { u32 value = strtoul(args[1], NULL, 0); if ((retval = arm920t_write_cp15_interpreted(target, opcode, value, 0)) != ERROR_OK) { command_print(cmd_ctx, "couldn't execute %8.8x", opcode); return ERROR_OK; } command_print(cmd_ctx, "%8.8x: %8.8x", opcode, value); } else if (argc == 3) { u32 value = strtoul(args[1], NULL, 0); u32 address = strtoul(args[2], NULL, 0); if ((retval = arm920t_write_cp15_interpreted(target, opcode, value, address)) != ERROR_OK) { command_print(cmd_ctx, "couldn't execute %8.8x", opcode); return ERROR_OK; } command_print(cmd_ctx, "%8.8x: %8.8x %8.8x", opcode, value, address); } } return ERROR_OK; } int arm920t_handle_cache_info_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = get_current_target(cmd_ctx); armv4_5_common_t *armv4_5; arm7_9_common_t *arm7_9; arm9tdmi_common_t *arm9tdmi; arm920t_common_t *arm920t; if (arm920t_get_arch_pointers(target, &armv4_5, &arm7_9, &arm9tdmi, &arm920t) != ERROR_OK) { command_print(cmd_ctx, "current target isn't an ARM920t target"); return ERROR_OK; } return armv4_5_handle_cache_info_command(cmd_ctx, &arm920t->armv4_5_mmu.armv4_5_cache); } int arm920t_handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = get_current_target(cmd_ctx); armv4_5_common_t *armv4_5; arm7_9_common_t *arm7_9; arm9tdmi_common_t *arm9tdmi; arm920t_common_t *arm920t; arm_jtag_t *jtag_info; if (arm920t_get_arch_pointers(target, &armv4_5, &arm7_9, &arm9tdmi, &arm920t) != ERROR_OK) { command_print(cmd_ctx, "current target isn't an ARM920t target"); return ERROR_OK; } jtag_info = &arm7_9->jtag_info; if (target->state != TARGET_HALTED) { command_print(cmd_ctx, "target must be stopped for \"%s\" command", cmd); return ERROR_OK; } return armv4_5_mmu_handle_virt2phys_command(cmd_ctx, cmd, args, argc, target, &arm920t->armv4_5_mmu); } int arm920t_handle_md_phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = get_current_target(cmd_ctx); armv4_5_common_t *armv4_5; arm7_9_common_t *arm7_9; arm9tdmi_common_t *arm9tdmi; arm920t_common_t *arm920t; arm_jtag_t *jtag_info; if (arm920t_get_arch_pointers(target, &armv4_5, &arm7_9, &arm9tdmi, &arm920t) != ERROR_OK) { command_print(cmd_ctx, "current target isn't an ARM920t target"); return ERROR_OK; } jtag_info = &arm7_9->jtag_info; if (target->state != TARGET_HALTED) { command_print(cmd_ctx, "target must be stopped for \"%s\" command", cmd); return ERROR_OK; } return armv4_5_mmu_handle_md_phys_command(cmd_ctx, cmd, args, argc, target, &arm920t->armv4_5_mmu); } int arm920t_handle_mw_phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = get_current_target(cmd_ctx); armv4_5_common_t *armv4_5; arm7_9_common_t *arm7_9; arm9tdmi_common_t *arm9tdmi; arm920t_common_t *arm920t; arm_jtag_t *jtag_info; if (arm920t_get_arch_pointers(target, &armv4_5, &arm7_9, &arm9tdmi, &arm920t) != ERROR_OK) { command_print(cmd_ctx, "current target isn't an ARM920t target"); return ERROR_OK; } jtag_info = &arm7_9->jtag_info; if (target->state != TARGET_HALTED) { command_print(cmd_ctx, "target must be stopped for \"%s\" command", cmd); return ERROR_OK; } return armv4_5_mmu_handle_mw_phys_command(cmd_ctx, cmd, args, argc, target, &arm920t->armv4_5_mmu); }