/*************************************************************************** * Copyright (C) 2006 by Magnus Lundin * * lundin@mlu.mine.nu * * * * Copyright (C) 2008 by Spencer Oliver * * spen@spen-soft.co.uk * * * * Copyright (C) 2009-2010 by Oyvind Harboe * * oyvind.harboe@zylin.com * * * * Copyright (C) 2009-2010 by David Brownell * * * * Copyright (C) 2013 by Andreas Fritiofson * * andreas.fritiofson@gmail.com * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program. If not, see . * ***************************************************************************/ /** * @file * This file implements support for the ARM Debug Interface version 5 (ADIv5) * debugging architecture. Compared with previous versions, this includes * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message * transport, and focusses on memory mapped resources as defined by the * CoreSight architecture. * * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two * basic components: a Debug Port (DP) transporting messages to and from a * debugger, and an Access Port (AP) accessing resources. Three types of DP * are defined. One uses only JTAG for communication, and is called JTAG-DP. * One uses only SWD for communication, and is called SW-DP. The third can * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP * is used to access memory mapped resources and is called a MEM-AP. Also a * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon. * * This programming interface allows DAP pipelined operations through a * transaction queue. This primarily affects AP operations (such as using * a MEM-AP to access memory or registers). If the current transaction has * not finished by the time the next one must begin, and the ORUNDETECT bit * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and * further AP operations will fail. There are two basic methods to avoid * such overrun errors. One involves polling for status instead of using * transaction piplining. The other involves adding delays to ensure the * AP has enough time to complete one operation before starting the next * one. (For JTAG these delays are controlled by memaccess_tck.) */ /* * Relevant specifications from ARM include: * * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B * * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D * Cortex-M3(tm) TRM, ARM DDI 0337G */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "jtag/interface.h" #include "arm.h" #include "arm_adi_v5.h" #include #include #include #include /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */ /* uint32_t tar_block_size(uint32_t address) Return the largest block starting at address that does not cross a tar block size alignment boundary */ static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address) { return tar_autoincr_block - ((tar_autoincr_block - 1) & address); } /*************************************************************************** * * * DP and MEM-AP register access through APACC and DPACC * * * ***************************************************************************/ static int mem_ap_setup_csw(struct adiv5_ap *ap, uint32_t csw) { csw |= ap->csw_default; if (csw != ap->csw_value) { /* LOG_DEBUG("DAP: Set CSW %x",csw); */ int retval = dap_queue_ap_write(ap, MEM_AP_REG_CSW, csw); if (retval != ERROR_OK) { ap->csw_value = 0; return retval; } ap->csw_value = csw; } return ERROR_OK; } static int mem_ap_setup_tar(struct adiv5_ap *ap, uint32_t tar) { if (!ap->tar_valid || tar != ap->tar_value) { /* LOG_DEBUG("DAP: Set TAR %x",tar); */ int retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR, tar); if (retval != ERROR_OK) { ap->tar_valid = false; return retval; } ap->tar_value = tar; ap->tar_valid = true; } return ERROR_OK; } static int mem_ap_read_tar(struct adiv5_ap *ap, uint32_t *tar) { int retval = dap_queue_ap_read(ap, MEM_AP_REG_TAR, tar); if (retval != ERROR_OK) { ap->tar_valid = false; return retval; } retval = dap_run(ap->dap); if (retval != ERROR_OK) { ap->tar_valid = false; return retval; } ap->tar_value = *tar; ap->tar_valid = true; return ERROR_OK; } static uint32_t mem_ap_get_tar_increment(struct adiv5_ap *ap) { switch (ap->csw_value & CSW_ADDRINC_MASK) { case CSW_ADDRINC_SINGLE: switch (ap->csw_value & CSW_SIZE_MASK) { case CSW_8BIT: return 1; case CSW_16BIT: return 2; case CSW_32BIT: return 4; default: return 0; } case CSW_ADDRINC_PACKED: return 4; } return 0; } /* mem_ap_update_tar_cache is called after an access to MEM_AP_REG_DRW */ static void mem_ap_update_tar_cache(struct adiv5_ap *ap) { if (!ap->tar_valid) return; uint32_t inc = mem_ap_get_tar_increment(ap); if (inc >= max_tar_block_size(ap->tar_autoincr_block, ap->tar_value)) ap->tar_valid = false; else ap->tar_value += inc; } /** * Queue transactions setting up transfer parameters for the * currently selected MEM-AP. * * Subsequent transfers using registers like MEM_AP_REG_DRW or MEM_AP_REG_BD2 * initiate data reads or writes using memory or peripheral addresses. * If the CSW is configured for it, the TAR may be automatically * incremented after each transfer. * * @param ap The MEM-AP. * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this * matches the cached value, the register is not changed. * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this * matches the cached address, the register is not changed. * * @return ERROR_OK if the transaction was properly queued, else a fault code. */ static int mem_ap_setup_transfer(struct adiv5_ap *ap, uint32_t csw, uint32_t tar) { int retval; retval = mem_ap_setup_csw(ap, csw); if (retval != ERROR_OK) return retval; retval = mem_ap_setup_tar(ap, tar); if (retval != ERROR_OK) return retval; return ERROR_OK; } /** * Asynchronous (queued) read of a word from memory or a system register. * * @param ap The MEM-AP to access. * @param address Address of the 32-bit word to read; it must be * readable by the currently selected MEM-AP. * @param value points to where the word will be stored when the * transaction queue is flushed (assuming no errors). * * @return ERROR_OK for success. Otherwise a fault code. */ int mem_ap_read_u32(struct adiv5_ap *ap, uint32_t address, uint32_t *value) { int retval; /* Use banked addressing (REG_BDx) to avoid some link traffic * (updating TAR) when reading several consecutive addresses. */ retval = mem_ap_setup_transfer(ap, CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK), address & 0xFFFFFFF0); if (retval != ERROR_OK) return retval; return dap_queue_ap_read(ap, MEM_AP_REG_BD0 | (address & 0xC), value); } /** * Synchronous read of a word from memory or a system register. * As a side effect, this flushes any queued transactions. * * @param ap The MEM-AP to access. * @param address Address of the 32-bit word to read; it must be * readable by the currently selected MEM-AP. * @param value points to where the result will be stored. * * @return ERROR_OK for success; *value holds the result. * Otherwise a fault code. */ int mem_ap_read_atomic_u32(struct adiv5_ap *ap, uint32_t address, uint32_t *value) { int retval; retval = mem_ap_read_u32(ap, address, value); if (retval != ERROR_OK) return retval; return dap_run(ap->dap); } /** * Asynchronous (queued) write of a word to memory or a system register. * * @param ap The MEM-AP to access. * @param address Address to be written; it must be writable by * the currently selected MEM-AP. * @param value Word that will be written to the address when transaction * queue is flushed (assuming no errors). * * @return ERROR_OK for success. Otherwise a fault code. */ int mem_ap_write_u32(struct adiv5_ap *ap, uint32_t address, uint32_t value) { int retval; /* Use banked addressing (REG_BDx) to avoid some link traffic * (updating TAR) when writing several consecutive addresses. */ retval = mem_ap_setup_transfer(ap, CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK), address & 0xFFFFFFF0); if (retval != ERROR_OK) return retval; return dap_queue_ap_write(ap, MEM_AP_REG_BD0 | (address & 0xC), value); } /** * Synchronous write of a word to memory or a system register. * As a side effect, this flushes any queued transactions. * * @param ap The MEM-AP to access. * @param address Address to be written; it must be writable by * the currently selected MEM-AP. * @param value Word that will be written. * * @return ERROR_OK for success; the data was written. Otherwise a fault code. */ int mem_ap_write_atomic_u32(struct adiv5_ap *ap, uint32_t address, uint32_t value) { int retval = mem_ap_write_u32(ap, address, value); if (retval != ERROR_OK) return retval; return dap_run(ap->dap); } /** * Synchronous write of a block of memory, using a specific access size. * * @param ap The MEM-AP to access. * @param buffer The data buffer to write. No particular alignment is assumed. * @param size Which access size to use, in bytes. 1, 2 or 4. * @param count The number of writes to do (in size units, not bytes). * @param address Address to be written; it must be writable by the currently selected MEM-AP. * @param addrinc Whether the target address should be increased for each write or not. This * should normally be true, except when writing to e.g. a FIFO. * @return ERROR_OK on success, otherwise an error code. */ static int mem_ap_write(struct adiv5_ap *ap, const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address, bool addrinc) { struct adiv5_dap *dap = ap->dap; size_t nbytes = size * count; const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF; uint32_t csw_size; uint32_t addr_xor; int retval = ERROR_OK; /* TI BE-32 Quirks mode: * Writes on big-endian TMS570 behave very strangely. Observed behavior: * size write address bytes written in order * 4 TAR ^ 0 (val >> 24), (val >> 16), (val >> 8), (val) * 2 TAR ^ 2 (val >> 8), (val) * 1 TAR ^ 3 (val) * For example, if you attempt to write a single byte to address 0, the processor * will actually write a byte to address 3. * * To make writes of size < 4 work as expected, we xor a value with the address before * setting the TAP, and we set the TAP after every transfer rather then relying on * address increment. */ if (size == 4) { csw_size = CSW_32BIT; addr_xor = 0; } else if (size == 2) { csw_size = CSW_16BIT; addr_xor = dap->ti_be_32_quirks ? 2 : 0; } else if (size == 1) { csw_size = CSW_8BIT; addr_xor = dap->ti_be_32_quirks ? 3 : 0; } else { return ERROR_TARGET_UNALIGNED_ACCESS; } if (ap->unaligned_access_bad && (address % size != 0)) return ERROR_TARGET_UNALIGNED_ACCESS; while (nbytes > 0) { uint32_t this_size = size; /* Select packed transfer if possible */ if (addrinc && ap->packed_transfers && nbytes >= 4 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) { this_size = 4; retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED); } else { retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr); } if (retval != ERROR_OK) break; retval = mem_ap_setup_tar(ap, address ^ addr_xor); if (retval != ERROR_OK) return retval; /* How many source bytes each transfer will consume, and their location in the DRW, * depends on the type of transfer and alignment. See ARM document IHI0031C. */ uint32_t outvalue = 0; uint32_t drw_byte_idx = address; if (dap->ti_be_32_quirks) { switch (this_size) { case 4: outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor); outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor); outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor); outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx & 3) ^ addr_xor); break; case 2: outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx++ & 3) ^ addr_xor); outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx & 3) ^ addr_xor); break; case 1: outvalue |= (uint32_t)*buffer++ << 8 * (0 ^ (drw_byte_idx & 3) ^ addr_xor); break; } } else { switch (this_size) { case 4: outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3); outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3); /* fallthrough */ case 2: outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3); /* fallthrough */ case 1: outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx & 3); } } nbytes -= this_size; retval = dap_queue_ap_write(ap, MEM_AP_REG_DRW, outvalue); if (retval != ERROR_OK) break; mem_ap_update_tar_cache(ap); if (addrinc) address += this_size; } /* REVISIT: Might want to have a queued version of this function that does not run. */ if (retval == ERROR_OK) retval = dap_run(dap); if (retval != ERROR_OK) { uint32_t tar; if (mem_ap_read_tar(ap, &tar) == ERROR_OK) LOG_ERROR("Failed to write memory at 0x%08"PRIx32, tar); else LOG_ERROR("Failed to write memory and, additionally, failed to find out where"); } return retval; } /** * Synchronous read of a block of memory, using a specific access size. * * @param ap The MEM-AP to access. * @param buffer The data buffer to receive the data. No particular alignment is assumed. * @param size Which access size to use, in bytes. 1, 2 or 4. * @param count The number of reads to do (in size units, not bytes). * @param address Address to be read; it must be readable by the currently selected MEM-AP. * @param addrinc Whether the target address should be increased after each read or not. This * should normally be true, except when reading from e.g. a FIFO. * @return ERROR_OK on success, otherwise an error code. */ static int mem_ap_read(struct adiv5_ap *ap, uint8_t *buffer, uint32_t size, uint32_t count, uint32_t adr, bool addrinc) { struct adiv5_dap *dap = ap->dap; size_t nbytes = size * count; const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF; uint32_t csw_size; uint32_t address = adr; int retval = ERROR_OK; /* TI BE-32 Quirks mode: * Reads on big-endian TMS570 behave strangely differently than writes. * They read from the physical address requested, but with DRW byte-reversed. * For example, a byte read from address 0 will place the result in the high bytes of DRW. * Also, packed 8-bit and 16-bit transfers seem to sometimes return garbage in some bytes, * so avoid them. */ if (size == 4) csw_size = CSW_32BIT; else if (size == 2) csw_size = CSW_16BIT; else if (size == 1) csw_size = CSW_8BIT; else return ERROR_TARGET_UNALIGNED_ACCESS; if (ap->unaligned_access_bad && (adr % size != 0)) return ERROR_TARGET_UNALIGNED_ACCESS; /* Allocate buffer to hold the sequence of DRW reads that will be made. This is a significant * over-allocation if packed transfers are going to be used, but determining the real need at * this point would be messy. */ uint32_t *read_buf = calloc(count, sizeof(uint32_t)); /* Multiplication count * sizeof(uint32_t) may overflow, calloc() is safe */ uint32_t *read_ptr = read_buf; if (read_buf == NULL) { LOG_ERROR("Failed to allocate read buffer"); return ERROR_FAIL; } /* Queue up all reads. Each read will store the entire DRW word in the read buffer. How many * useful bytes it contains, and their location in the word, depends on the type of transfer * and alignment. */ while (nbytes > 0) { uint32_t this_size = size; /* Select packed transfer if possible */ if (addrinc && ap->packed_transfers && nbytes >= 4 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) { this_size = 4; retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED); } else { retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr); } if (retval != ERROR_OK) break; retval = mem_ap_setup_tar(ap, address); if (retval != ERROR_OK) break; retval = dap_queue_ap_read(ap, MEM_AP_REG_DRW, read_ptr++); if (retval != ERROR_OK) break; nbytes -= this_size; if (addrinc) address += this_size; mem_ap_update_tar_cache(ap); } if (retval == ERROR_OK) retval = dap_run(dap); /* Restore state */ address = adr; nbytes = size * count; read_ptr = read_buf; /* If something failed, read TAR to find out how much data was successfully read, so we can * at least give the caller what we have. */ if (retval != ERROR_OK) { uint32_t tar; if (mem_ap_read_tar(ap, &tar) == ERROR_OK) { /* TAR is incremented after failed transfer on some devices (eg Cortex-M4) */ LOG_ERROR("Failed to read memory at 0x%08"PRIx32, tar); if (nbytes > tar - address) nbytes = tar - address; } else { LOG_ERROR("Failed to read memory and, additionally, failed to find out where"); nbytes = 0; } } /* Replay loop to populate caller's buffer from the correct word and byte lane */ while (nbytes > 0) { uint32_t this_size = size; if (addrinc && ap->packed_transfers && nbytes >= 4 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) { this_size = 4; } if (dap->ti_be_32_quirks) { switch (this_size) { case 4: *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3)); *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3)); /* fallthrough */ case 2: *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3)); /* fallthrough */ case 1: *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3)); } } else { switch (this_size) { case 4: *buffer++ = *read_ptr >> 8 * (address++ & 3); *buffer++ = *read_ptr >> 8 * (address++ & 3); /* fallthrough */ case 2: *buffer++ = *read_ptr >> 8 * (address++ & 3); /* fallthrough */ case 1: *buffer++ = *read_ptr >> 8 * (address++ & 3); } } read_ptr++; nbytes -= this_size; } free(read_buf); return retval; } int mem_ap_read_buf(struct adiv5_ap *ap, uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address) { return mem_ap_read(ap, buffer, size, count, address, true); } int mem_ap_write_buf(struct adiv5_ap *ap, const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address) { return mem_ap_write(ap, buffer, size, count, address, true); } int mem_ap_read_buf_noincr(struct adiv5_ap *ap, uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address) { return mem_ap_read(ap, buffer, size, count, address, false); } int mem_ap_write_buf_noincr(struct adiv5_ap *ap, const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address) { return mem_ap_write(ap, buffer, size, count, address, false); } /*--------------------------------------------------------------------------*/ #define DAP_POWER_DOMAIN_TIMEOUT (10) /*--------------------------------------------------------------------------*/ /** * Invalidate cached DP select and cached TAR and CSW of all APs */ void dap_invalidate_cache(struct adiv5_dap *dap) { dap->select = DP_SELECT_INVALID; dap->last_read = NULL; int i; for (i = 0; i <= 255; i++) { /* force csw and tar write on the next mem-ap access */ dap->ap[i].tar_valid = false; dap->ap[i].csw_value = 0; } } /** * Initialize a DAP. This sets up the power domains, prepares the DP * for further use and activates overrun checking. * * @param dap The DAP being initialized. */ int dap_dp_init(struct adiv5_dap *dap) { int retval; LOG_DEBUG("%s", adiv5_dap_name(dap)); dap_invalidate_cache(dap); /* * Early initialize dap->dp_ctrl_stat. * In jtag mode only, if the following atomic reads fail and set the * sticky error, it will trigger the clearing of the sticky. Without this * initialization system and debug power would be disabled while clearing * the sticky error bit. */ dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ; for (size_t i = 0; i < 30; i++) { /* DP initialization */ retval = dap_dp_read_atomic(dap, DP_CTRL_STAT, NULL); if (retval == ERROR_OK) break; } /* * This write operation clears the sticky error bit in jtag mode only and * is ignored in swd mode. It also powers-up system and debug domains in * both jtag and swd modes, if not done before. * Actually we do not need to clear the sticky error here because it has * been already cleared (if it was set) in the previous atomic read. This * write could be removed, but this initial part of dap_dp_init() is the * result of years of fine tuning and there are strong concerns about any * unnecessary code change. It doesn't harm, so let's keep it here and * preserve the historical sequence of read/write operations! */ retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat | SSTICKYERR); if (retval != ERROR_OK) return retval; retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL); if (retval != ERROR_OK) return retval; retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat); if (retval != ERROR_OK) return retval; /* Check that we have debug power domains activated */ LOG_DEBUG("DAP: wait CDBGPWRUPACK"); retval = dap_dp_poll_register(dap, DP_CTRL_STAT, CDBGPWRUPACK, CDBGPWRUPACK, DAP_POWER_DOMAIN_TIMEOUT); if (retval != ERROR_OK) return retval; if (!dap->ignore_syspwrupack) { LOG_DEBUG("DAP: wait CSYSPWRUPACK"); retval = dap_dp_poll_register(dap, DP_CTRL_STAT, CSYSPWRUPACK, CSYSPWRUPACK, DAP_POWER_DOMAIN_TIMEOUT); if (retval != ERROR_OK) return retval; } retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL); if (retval != ERROR_OK) return retval; /* With debug power on we can activate OVERRUN checking */ dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT; retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat); if (retval != ERROR_OK) return retval; retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL); if (retval != ERROR_OK) return retval; retval = dap_run(dap); if (retval != ERROR_OK) return retval; return retval; } /** * Initialize a DAP. This sets up the power domains, prepares the DP * for further use, and arranges to use AP #0 for all AP operations * until dap_ap-select() changes that policy. * * @param ap The MEM-AP being initialized. */ int mem_ap_init(struct adiv5_ap *ap) { /* check that we support packed transfers */ uint32_t csw, cfg; int retval; struct adiv5_dap *dap = ap->dap; ap->tar_valid = false; ap->csw_value = 0; /* force csw and tar write */ retval = mem_ap_setup_transfer(ap, CSW_8BIT | CSW_ADDRINC_PACKED, 0); if (retval != ERROR_OK) return retval; retval = dap_queue_ap_read(ap, MEM_AP_REG_CSW, &csw); if (retval != ERROR_OK) return retval; retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &cfg); if (retval != ERROR_OK) return retval; retval = dap_run(dap); if (retval != ERROR_OK) return retval; if (csw & CSW_ADDRINC_PACKED) ap->packed_transfers = true; else ap->packed_transfers = false; /* Packed transfers on TI BE-32 processors do not work correctly in * many cases. */ if (dap->ti_be_32_quirks) ap->packed_transfers = false; LOG_DEBUG("MEM_AP Packed Transfers: %s", ap->packed_transfers ? "enabled" : "disabled"); /* The ARM ADI spec leaves implementation-defined whether unaligned * memory accesses work, only work partially, or cause a sticky error. * On TI BE-32 processors, reads seem to return garbage in some bytes * and unaligned writes seem to cause a sticky error. * TODO: it would be nice to have a way to detect whether unaligned * operations are supported on other processors. */ ap->unaligned_access_bad = dap->ti_be_32_quirks; LOG_DEBUG("MEM_AP CFG: large data %d, long address %d, big-endian %d", !!(cfg & 0x04), !!(cfg & 0x02), !!(cfg & 0x01)); return ERROR_OK; } /* CID interpretation -- see ARM IHI 0029B section 3 * and ARM IHI 0031A table 13-3. */ static const char *class_description[16] = { "Reserved", "ROM table", "Reserved", "Reserved", "Reserved", "Reserved", "Reserved", "Reserved", "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block", "Reserved", "OptimoDE DESS", "Generic IP component", "PrimeCell or System component" }; static bool is_dap_cid_ok(uint32_t cid) { return (cid & 0xffff0fff) == 0xb105000d; } /* * This function checks the ID for each access port to find the requested Access Port type */ int dap_find_ap(struct adiv5_dap *dap, enum ap_type type_to_find, struct adiv5_ap **ap_out) { int ap_num; /* Maximum AP number is 255 since the SELECT register is 8 bits */ for (ap_num = 0; ap_num <= DP_APSEL_MAX; ap_num++) { /* read the IDR register of the Access Port */ uint32_t id_val = 0; int retval = dap_queue_ap_read(dap_ap(dap, ap_num), AP_REG_IDR, &id_val); if (retval != ERROR_OK) return retval; retval = dap_run(dap); /* IDR bits: * 31-28 : Revision * 27-24 : JEDEC bank (0x4 for ARM) * 23-17 : JEDEC code (0x3B for ARM) * 16-13 : Class (0b1000=Mem-AP) * 12-8 : Reserved * 7-4 : AP Variant (non-zero for JTAG-AP) * 3-0 : AP Type (0=JTAG-AP 1=AHB-AP 2=APB-AP 4=AXI-AP) */ /* Reading register for a non-existant AP should not cause an error, * but just to be sure, try to continue searching if an error does happen. */ if ((retval == ERROR_OK) && /* Register read success */ ((id_val & IDR_JEP106) == IDR_JEP106_ARM) && /* Jedec codes match */ ((id_val & IDR_TYPE) == type_to_find)) { /* type matches*/ LOG_DEBUG("Found %s at AP index: %d (IDR=0x%08" PRIX32 ")", (type_to_find == AP_TYPE_AHB_AP) ? "AHB-AP" : (type_to_find == AP_TYPE_APB_AP) ? "APB-AP" : (type_to_find == AP_TYPE_AXI_AP) ? "AXI-AP" : (type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown", ap_num, id_val); *ap_out = &dap->ap[ap_num]; return ERROR_OK; } } LOG_DEBUG("No %s found", (type_to_find == AP_TYPE_AHB_AP) ? "AHB-AP" : (type_to_find == AP_TYPE_APB_AP) ? "APB-AP" : (type_to_find == AP_TYPE_AXI_AP) ? "AXI-AP" : (type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown"); return ERROR_FAIL; } int dap_get_debugbase(struct adiv5_ap *ap, uint32_t *dbgbase, uint32_t *apid) { struct adiv5_dap *dap = ap->dap; int retval; retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE, dbgbase); if (retval != ERROR_OK) return retval; retval = dap_queue_ap_read(ap, AP_REG_IDR, apid); if (retval != ERROR_OK) return retval; retval = dap_run(dap); if (retval != ERROR_OK) return retval; return ERROR_OK; } int dap_lookup_cs_component(struct adiv5_ap *ap, uint32_t dbgbase, uint8_t type, uint32_t *addr, int32_t *idx) { uint32_t romentry, entry_offset = 0, component_base, devtype; int retval; *addr = 0; do { retval = mem_ap_read_atomic_u32(ap, (dbgbase&0xFFFFF000) | entry_offset, &romentry); if (retval != ERROR_OK) return retval; component_base = (dbgbase & 0xFFFFF000) + (romentry & 0xFFFFF000); if (romentry & 0x1) { uint32_t c_cid1; retval = mem_ap_read_atomic_u32(ap, component_base | 0xff4, &c_cid1); if (retval != ERROR_OK) { LOG_ERROR("Can't read component with base address 0x%" PRIx32 ", the corresponding core might be turned off", component_base); return retval; } if (((c_cid1 >> 4) & 0x0f) == 1) { retval = dap_lookup_cs_component(ap, component_base, type, addr, idx); if (retval == ERROR_OK) break; if (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE) return retval; } retval = mem_ap_read_atomic_u32(ap, (component_base & 0xfffff000) | 0xfcc, &devtype); if (retval != ERROR_OK) return retval; if ((devtype & 0xff) == type) { if (!*idx) { *addr = component_base; break; } else (*idx)--; } } entry_offset += 4; } while (romentry > 0); if (!*addr) return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; return ERROR_OK; } static int dap_read_part_id(struct adiv5_ap *ap, uint32_t component_base, uint32_t *cid, uint64_t *pid) { assert((component_base & 0xFFF) == 0); assert(ap != NULL && cid != NULL && pid != NULL); uint32_t cid0, cid1, cid2, cid3; uint32_t pid0, pid1, pid2, pid3, pid4; int retval; /* IDs are in last 4K section */ retval = mem_ap_read_u32(ap, component_base + 0xFE0, &pid0); if (retval != ERROR_OK) return retval; retval = mem_ap_read_u32(ap, component_base + 0xFE4, &pid1); if (retval != ERROR_OK) return retval; retval = mem_ap_read_u32(ap, component_base + 0xFE8, &pid2); if (retval != ERROR_OK) return retval; retval = mem_ap_read_u32(ap, component_base + 0xFEC, &pid3); if (retval != ERROR_OK) return retval; retval = mem_ap_read_u32(ap, component_base + 0xFD0, &pid4); if (retval != ERROR_OK) return retval; retval = mem_ap_read_u32(ap, component_base + 0xFF0, &cid0); if (retval != ERROR_OK) return retval; retval = mem_ap_read_u32(ap, component_base + 0xFF4, &cid1); if (retval != ERROR_OK) return retval; retval = mem_ap_read_u32(ap, component_base + 0xFF8, &cid2); if (retval != ERROR_OK) return retval; retval = mem_ap_read_u32(ap, component_base + 0xFFC, &cid3); if (retval != ERROR_OK) return retval; retval = dap_run(ap->dap); if (retval != ERROR_OK) return retval; *cid = (cid3 & 0xff) << 24 | (cid2 & 0xff) << 16 | (cid1 & 0xff) << 8 | (cid0 & 0xff); *pid = (uint64_t)(pid4 & 0xff) << 32 | (pid3 & 0xff) << 24 | (pid2 & 0xff) << 16 | (pid1 & 0xff) << 8 | (pid0 & 0xff); return ERROR_OK; } /* The designer identity code is encoded as: * bits 11:8 : JEP106 Bank (number of continuation codes), only valid when bit 7 is 1. * bit 7 : Set when bits 6:0 represent a JEP106 ID and cleared when bits 6:0 represent * a legacy ASCII Identity Code. * bits 6:0 : JEP106 Identity Code (without parity) or legacy ASCII code according to bit 7. * JEP106 is a standard available from jedec.org */ /* Part number interpretations are from Cortex * core specs, the CoreSight components TRM * (ARM DDI 0314H), CoreSight System Design * Guide (ARM DGI 0012D) and ETM specs; also * from chip observation (e.g. TI SDTI). */ /* The legacy code only used the part number field to identify CoreSight peripherals. * This meant that the same part number from two different manufacturers looked the same. * It is desirable for all future additions to identify with both part number and JEP106. * "ANY_ID" is a wildcard (any JEP106) only to preserve legacy behavior for legacy entries. */ #define ANY_ID 0x1000 #define ARM_ID 0x4BB static const struct { uint16_t designer_id; uint16_t part_num; const char *type; const char *full; } dap_partnums[] = { { ARM_ID, 0x000, "Cortex-M3 SCS", "(System Control Space)", }, { ARM_ID, 0x001, "Cortex-M3 ITM", "(Instrumentation Trace Module)", }, { ARM_ID, 0x002, "Cortex-M3 DWT", "(Data Watchpoint and Trace)", }, { ARM_ID, 0x003, "Cortex-M3 FPB", "(Flash Patch and Breakpoint)", }, { ARM_ID, 0x008, "Cortex-M0 SCS", "(System Control Space)", }, { ARM_ID, 0x00a, "Cortex-M0 DWT", "(Data Watchpoint and Trace)", }, { ARM_ID, 0x00b, "Cortex-M0 BPU", "(Breakpoint Unit)", }, { ARM_ID, 0x00c, "Cortex-M4 SCS", "(System Control Space)", }, { ARM_ID, 0x00d, "CoreSight ETM11", "(Embedded Trace)", }, { ARM_ID, 0x00e, "Cortex-M7 FPB", "(Flash Patch and Breakpoint)", }, { ARM_ID, 0x490, "Cortex-A15 GIC", "(Generic Interrupt Controller)", }, { ARM_ID, 0x4a1, "Cortex-A53 ROM", "(v8 Memory Map ROM Table)", }, { ARM_ID, 0x4a2, "Cortex-A57 ROM", "(ROM Table)", }, { ARM_ID, 0x4a3, "Cortex-A53 ROM", "(v7 Memory Map ROM Table)", }, { ARM_ID, 0x4a4, "Cortex-A72 ROM", "(ROM Table)", }, { ARM_ID, 0x4a9, "Cortex-A9 ROM", "(ROM Table)", }, { ARM_ID, 0x4af, "Cortex-A15 ROM", "(ROM Table)", }, { ARM_ID, 0x4c0, "Cortex-M0+ ROM", "(ROM Table)", }, { ARM_ID, 0x4c3, "Cortex-M3 ROM", "(ROM Table)", }, { ARM_ID, 0x4c4, "Cortex-M4 ROM", "(ROM Table)", }, { ARM_ID, 0x4c7, "Cortex-M7 PPB ROM", "(Private Peripheral Bus ROM Table)", }, { ARM_ID, 0x4c8, "Cortex-M7 ROM", "(ROM Table)", }, { ARM_ID, 0x4b5, "Cortex-R5 ROM", "(ROM Table)", }, { ARM_ID, 0x470, "Cortex-M1 ROM", "(ROM Table)", }, { ARM_ID, 0x471, "Cortex-M0 ROM", "(ROM Table)", }, { ARM_ID, 0x906, "CoreSight CTI", "(Cross Trigger)", }, { ARM_ID, 0x907, "CoreSight ETB", "(Trace Buffer)", }, { ARM_ID, 0x908, "CoreSight CSTF", "(Trace Funnel)", }, { ARM_ID, 0x909, "CoreSight ATBR", "(Advanced Trace Bus Replicator)", }, { ARM_ID, 0x910, "CoreSight ETM9", "(Embedded Trace)", }, { ARM_ID, 0x912, "CoreSight TPIU", "(Trace Port Interface Unit)", }, { ARM_ID, 0x913, "CoreSight ITM", "(Instrumentation Trace Macrocell)", }, { ARM_ID, 0x914, "CoreSight SWO", "(Single Wire Output)", }, { ARM_ID, 0x917, "CoreSight HTM", "(AHB Trace Macrocell)", }, { ARM_ID, 0x920, "CoreSight ETM11", "(Embedded Trace)", }, { ARM_ID, 0x921, "Cortex-A8 ETM", "(Embedded Trace)", }, { ARM_ID, 0x922, "Cortex-A8 CTI", "(Cross Trigger)", }, { ARM_ID, 0x923, "Cortex-M3 TPIU", "(Trace Port Interface Unit)", }, { ARM_ID, 0x924, "Cortex-M3 ETM", "(Embedded Trace)", }, { ARM_ID, 0x925, "Cortex-M4 ETM", "(Embedded Trace)", }, { ARM_ID, 0x930, "Cortex-R4 ETM", "(Embedded Trace)", }, { ARM_ID, 0x931, "Cortex-R5 ETM", "(Embedded Trace)", }, { ARM_ID, 0x932, "CoreSight MTB-M0+", "(Micro Trace Buffer)", }, { ARM_ID, 0x941, "CoreSight TPIU-Lite", "(Trace Port Interface Unit)", }, { ARM_ID, 0x950, "Cortex-A9 PTM", "(Program Trace Macrocell)", }, { ARM_ID, 0x955, "Cortex-A5 ETM", "(Embedded Trace)", }, { ARM_ID, 0x95a, "Cortex-A72 ETM", "(Embedded Trace)", }, { ARM_ID, 0x95b, "Cortex-A17 PTM", "(Program Trace Macrocell)", }, { ARM_ID, 0x95d, "Cortex-A53 ETM", "(Embedded Trace)", }, { ARM_ID, 0x95e, "Cortex-A57 ETM", "(Embedded Trace)", }, { ARM_ID, 0x95f, "Cortex-A15 PTM", "(Program Trace Macrocell)", }, { ARM_ID, 0x961, "CoreSight TMC", "(Trace Memory Controller)", }, { ARM_ID, 0x962, "CoreSight STM", "(System Trace Macrocell)", }, { ARM_ID, 0x975, "Cortex-M7 ETM", "(Embedded Trace)", }, { ARM_ID, 0x9a0, "CoreSight PMU", "(Performance Monitoring Unit)", }, { ARM_ID, 0x9a1, "Cortex-M4 TPIU", "(Trace Port Interface Unit)", }, { ARM_ID, 0x9a4, "CoreSight GPR", "(Granular Power Requester)", }, { ARM_ID, 0x9a5, "Cortex-A5 PMU", "(Performance Monitor Unit)", }, { ARM_ID, 0x9a7, "Cortex-A7 PMU", "(Performance Monitor Unit)", }, { ARM_ID, 0x9a8, "Cortex-A53 CTI", "(Cross Trigger)", }, { ARM_ID, 0x9a9, "Cortex-M7 TPIU", "(Trace Port Interface Unit)", }, { ARM_ID, 0x9ae, "Cortex-A17 PMU", "(Performance Monitor Unit)", }, { ARM_ID, 0x9af, "Cortex-A15 PMU", "(Performance Monitor Unit)", }, { ARM_ID, 0x9b7, "Cortex-R7 PMU", "(Performance Monitor Unit)", }, { ARM_ID, 0x9d3, "Cortex-A53 PMU", "(Performance Monitor Unit)", }, { ARM_ID, 0x9d7, "Cortex-A57 PMU", "(Performance Monitor Unit)", }, { ARM_ID, 0x9d8, "Cortex-A72 PMU", "(Performance Monitor Unit)", }, { ARM_ID, 0xc05, "Cortex-A5 Debug", "(Debug Unit)", }, { ARM_ID, 0xc07, "Cortex-A7 Debug", "(Debug Unit)", }, { ARM_ID, 0xc08, "Cortex-A8 Debug", "(Debug Unit)", }, { ARM_ID, 0xc09, "Cortex-A9 Debug", "(Debug Unit)", }, { ARM_ID, 0xc0e, "Cortex-A17 Debug", "(Debug Unit)", }, { ARM_ID, 0xc0f, "Cortex-A15 Debug", "(Debug Unit)", }, { ARM_ID, 0xc14, "Cortex-R4 Debug", "(Debug Unit)", }, { ARM_ID, 0xc15, "Cortex-R5 Debug", "(Debug Unit)", }, { ARM_ID, 0xc17, "Cortex-R7 Debug", "(Debug Unit)", }, { ARM_ID, 0xd03, "Cortex-A53 Debug", "(Debug Unit)", }, { ARM_ID, 0xd07, "Cortex-A57 Debug", "(Debug Unit)", }, { ARM_ID, 0xd08, "Cortex-A72 Debug", "(Debug Unit)", }, { 0x097, 0x9af, "MSP432 ROM", "(ROM Table)" }, { 0x09f, 0xcd0, "Atmel CPU with DSU", "(CPU)" }, { 0x0c1, 0x1db, "XMC4500 ROM", "(ROM Table)" }, { 0x0c1, 0x1df, "XMC4700/4800 ROM", "(ROM Table)" }, { 0x0c1, 0x1ed, "XMC1000 ROM", "(ROM Table)" }, { 0x0E5, 0x000, "SHARC+/Blackfin+", "", }, { 0x0F0, 0x440, "Qualcomm QDSS Component v1", "(Qualcomm Designed CoreSight Component v1)", }, { 0x3eb, 0x181, "Tegra 186 ROM", "(ROM Table)", }, { 0x3eb, 0x211, "Tegra 210 ROM", "(ROM Table)", }, { 0x3eb, 0x202, "Denver ETM", "(Denver Embedded Trace)", }, { 0x3eb, 0x302, "Denver Debug", "(Debug Unit)", }, { 0x3eb, 0x402, "Denver PMU", "(Performance Monitor Unit)", }, /* legacy comment: 0x113: what? */ { ANY_ID, 0x120, "TI SDTI", "(System Debug Trace Interface)", }, /* from OMAP3 memmap */ { ANY_ID, 0x343, "TI DAPCTL", "", }, /* from OMAP3 memmap */ }; static int dap_rom_display(struct command_context *cmd_ctx, struct adiv5_ap *ap, uint32_t dbgbase, int depth) { int retval; uint64_t pid; uint32_t cid; char tabs[16] = ""; if (depth > 16) { command_print(cmd_ctx, "\tTables too deep"); return ERROR_FAIL; } if (depth) snprintf(tabs, sizeof(tabs), "[L%02d] ", depth); uint32_t base_addr = dbgbase & 0xFFFFF000; command_print(cmd_ctx, "\t\tComponent base address 0x%08" PRIx32, base_addr); retval = dap_read_part_id(ap, base_addr, &cid, &pid); if (retval != ERROR_OK) { command_print(cmd_ctx, "\t\tCan't read component, the corresponding core might be turned off"); return ERROR_OK; /* Don't abort recursion */ } if (!is_dap_cid_ok(cid)) { command_print(cmd_ctx, "\t\tInvalid CID 0x%08" PRIx32, cid); return ERROR_OK; /* Don't abort recursion */ } /* component may take multiple 4K pages */ uint32_t size = (pid >> 36) & 0xf; if (size > 0) command_print(cmd_ctx, "\t\tStart address 0x%08" PRIx32, (uint32_t)(base_addr - 0x1000 * size)); command_print(cmd_ctx, "\t\tPeripheral ID 0x%010" PRIx64, pid); uint8_t class = (cid >> 12) & 0xf; uint16_t part_num = pid & 0xfff; uint16_t designer_id = ((pid >> 32) & 0xf) << 8 | ((pid >> 12) & 0xff); if (designer_id & 0x80) { /* JEP106 code */ command_print(cmd_ctx, "\t\tDesigner is 0x%03" PRIx16 ", %s", designer_id, jep106_manufacturer(designer_id >> 8, designer_id & 0x7f)); } else { /* Legacy ASCII ID, clear invalid bits */ designer_id &= 0x7f; command_print(cmd_ctx, "\t\tDesigner ASCII code 0x%02" PRIx16 ", %s", designer_id, designer_id == 0x41 ? "ARM" : ""); } /* default values to be overwritten upon finding a match */ const char *type = "Unrecognized"; const char *full = ""; /* search dap_partnums[] array for a match */ for (unsigned entry = 0; entry < ARRAY_SIZE(dap_partnums); entry++) { if ((dap_partnums[entry].designer_id != designer_id) && (dap_partnums[entry].designer_id != ANY_ID)) continue; if (dap_partnums[entry].part_num != part_num) continue; type = dap_partnums[entry].type; full = dap_partnums[entry].full; break; } command_print(cmd_ctx, "\t\tPart is 0x%" PRIx16", %s %s", part_num, type, full); command_print(cmd_ctx, "\t\tComponent class is 0x%" PRIx8 ", %s", class, class_description[class]); if (class == 1) { /* ROM Table */ uint32_t memtype; retval = mem_ap_read_atomic_u32(ap, base_addr | 0xFCC, &memtype); if (retval != ERROR_OK) return retval; if (memtype & 0x01) command_print(cmd_ctx, "\t\tMEMTYPE system memory present on bus"); else command_print(cmd_ctx, "\t\tMEMTYPE system memory not present: dedicated debug bus"); /* Read ROM table entries from base address until we get 0x00000000 or reach the reserved area */ for (uint16_t entry_offset = 0; entry_offset < 0xF00; entry_offset += 4) { uint32_t romentry; retval = mem_ap_read_atomic_u32(ap, base_addr | entry_offset, &romentry); if (retval != ERROR_OK) return retval; command_print(cmd_ctx, "\t%sROMTABLE[0x%x] = 0x%" PRIx32 "", tabs, entry_offset, romentry); if (romentry & 0x01) { /* Recurse */ retval = dap_rom_display(cmd_ctx, ap, base_addr + (romentry & 0xFFFFF000), depth + 1); if (retval != ERROR_OK) return retval; } else if (romentry != 0) { command_print(cmd_ctx, "\t\tComponent not present"); } else { command_print(cmd_ctx, "\t%s\tEnd of ROM table", tabs); break; } } } else if (class == 9) { /* CoreSight component */ const char *major = "Reserved", *subtype = "Reserved"; uint32_t devtype; retval = mem_ap_read_atomic_u32(ap, base_addr | 0xFCC, &devtype); if (retval != ERROR_OK) return retval; unsigned minor = (devtype >> 4) & 0x0f; switch (devtype & 0x0f) { case 0: major = "Miscellaneous"; switch (minor) { case 0: subtype = "other"; break; case 4: subtype = "Validation component"; break; } break; case 1: major = "Trace Sink"; switch (minor) { case 0: subtype = "other"; break; case 1: subtype = "Port"; break; case 2: subtype = "Buffer"; break; case 3: subtype = "Router"; break; } break; case 2: major = "Trace Link"; switch (minor) { case 0: subtype = "other"; break; case 1: subtype = "Funnel, router"; break; case 2: subtype = "Filter"; break; case 3: subtype = "FIFO, buffer"; break; } break; case 3: major = "Trace Source"; switch (minor) { case 0: subtype = "other"; break; case 1: subtype = "Processor"; break; case 2: subtype = "DSP"; break; case 3: subtype = "Engine/Coprocessor"; break; case 4: subtype = "Bus"; break; case 6: subtype = "Software"; break; } break; case 4: major = "Debug Control"; switch (minor) { case 0: subtype = "other"; break; case 1: subtype = "Trigger Matrix"; break; case 2: subtype = "Debug Auth"; break; case 3: subtype = "Power Requestor"; break; } break; case 5: major = "Debug Logic"; switch (minor) { case 0: subtype = "other"; break; case 1: subtype = "Processor"; break; case 2: subtype = "DSP"; break; case 3: subtype = "Engine/Coprocessor"; break; case 4: subtype = "Bus"; break; case 5: subtype = "Memory"; break; } break; case 6: major = "Perfomance Monitor"; switch (minor) { case 0: subtype = "other"; break; case 1: subtype = "Processor"; break; case 2: subtype = "DSP"; break; case 3: subtype = "Engine/Coprocessor"; break; case 4: subtype = "Bus"; break; case 5: subtype = "Memory"; break; } break; } command_print(cmd_ctx, "\t\tType is 0x%02" PRIx8 ", %s, %s", (uint8_t)(devtype & 0xff), major, subtype); /* REVISIT also show 0xfc8 DevId */ } return ERROR_OK; } int dap_info_command(struct command_context *cmd_ctx, struct adiv5_ap *ap) { int retval; uint32_t dbgbase, apid; uint8_t mem_ap; /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */ retval = dap_get_debugbase(ap, &dbgbase, &apid); if (retval != ERROR_OK) return retval; command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid); if (apid == 0) { command_print(cmd_ctx, "No AP found at this ap 0x%x", ap->ap_num); return ERROR_FAIL; } switch (apid & (IDR_JEP106 | IDR_TYPE)) { case IDR_JEP106_ARM | AP_TYPE_JTAG_AP: command_print(cmd_ctx, "\tType is JTAG-AP"); break; case IDR_JEP106_ARM | AP_TYPE_AHB_AP: command_print(cmd_ctx, "\tType is MEM-AP AHB"); break; case IDR_JEP106_ARM | AP_TYPE_APB_AP: command_print(cmd_ctx, "\tType is MEM-AP APB"); break; case IDR_JEP106_ARM | AP_TYPE_AXI_AP: command_print(cmd_ctx, "\tType is MEM-AP AXI"); break; default: command_print(cmd_ctx, "\tUnknown AP type"); break; } /* NOTE: a MEM-AP may have a single CoreSight component that's * not a ROM table ... or have no such components at all. */ mem_ap = (apid & IDR_CLASS) == AP_CLASS_MEM_AP; if (mem_ap) { command_print(cmd_ctx, "MEM-AP BASE 0x%8.8" PRIx32, dbgbase); if (dbgbase == 0xFFFFFFFF || (dbgbase & 0x3) == 0x2) { command_print(cmd_ctx, "\tNo ROM table present"); } else { if (dbgbase & 0x01) command_print(cmd_ctx, "\tValid ROM table present"); else command_print(cmd_ctx, "\tROM table in legacy format"); dap_rom_display(cmd_ctx, ap, dbgbase & 0xFFFFF000, 0); } } return ERROR_OK; } enum adiv5_cfg_param { CFG_DAP, CFG_AP_NUM }; static const Jim_Nvp nvp_config_opts[] = { { .name = "-dap", .value = CFG_DAP }, { .name = "-ap-num", .value = CFG_AP_NUM }, { .name = NULL, .value = -1 } }; int adiv5_jim_configure(struct target *target, Jim_GetOptInfo *goi) { struct adiv5_private_config *pc; int e; pc = (struct adiv5_private_config *)target->private_config; if (pc == NULL) { pc = calloc(1, sizeof(struct adiv5_private_config)); pc->ap_num = DP_APSEL_INVALID; target->private_config = pc; } target->has_dap = true; if (goi->argc > 0) { Jim_Nvp *n; Jim_SetEmptyResult(goi->interp); /* check first if topmost item is for us */ e = Jim_Nvp_name2value_obj(goi->interp, nvp_config_opts, goi->argv[0], &n); if (e != JIM_OK) return JIM_CONTINUE; e = Jim_GetOpt_Obj(goi, NULL); if (e != JIM_OK) return e; switch (n->value) { case CFG_DAP: if (goi->isconfigure) { Jim_Obj *o_t; struct adiv5_dap *dap; e = Jim_GetOpt_Obj(goi, &o_t); if (e != JIM_OK) return e; dap = dap_instance_by_jim_obj(goi->interp, o_t); if (dap == NULL) { Jim_SetResultString(goi->interp, "DAP name invalid!", -1); return JIM_ERR; } if (pc->dap != NULL && pc->dap != dap) { Jim_SetResultString(goi->interp, "DAP assignment cannot be changed after target was created!", -1); return JIM_ERR; } if (target->tap_configured) { Jim_SetResultString(goi->interp, "-chain-position and -dap configparams are mutually exclusive!", -1); return JIM_ERR; } pc->dap = dap; target->tap = dap->tap; target->dap_configured = true; } else { if (goi->argc != 0) { Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "NO PARAMS"); return JIM_ERR; } if (pc->dap == NULL) { Jim_SetResultString(goi->interp, "DAP not configured", -1); return JIM_ERR; } Jim_SetResultString(goi->interp, adiv5_dap_name(pc->dap), -1); } break; case CFG_AP_NUM: if (goi->isconfigure) { jim_wide ap_num; e = Jim_GetOpt_Wide(goi, &ap_num); if (e != JIM_OK) return e; if (ap_num < 0 || ap_num > DP_APSEL_MAX) { Jim_SetResultString(goi->interp, "Invalid AP number!", -1); return JIM_ERR; } pc->ap_num = ap_num; } else { if (goi->argc != 0) { Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "NO PARAMS"); return JIM_ERR; } if (pc->ap_num == DP_APSEL_INVALID) { Jim_SetResultString(goi->interp, "AP number not configured", -1); return JIM_ERR; } Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, pc->ap_num)); } break; } } return JIM_OK; } int adiv5_verify_config(struct adiv5_private_config *pc) { if (pc == NULL) return ERROR_FAIL; if (pc->dap == NULL) return ERROR_FAIL; return ERROR_OK; } COMMAND_HANDLER(handle_dap_info_command) { struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA); uint32_t apsel; switch (CMD_ARGC) { case 0: apsel = dap->apsel; break; case 1: COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel); if (apsel > DP_APSEL_MAX) return ERROR_COMMAND_SYNTAX_ERROR; break; default: return ERROR_COMMAND_SYNTAX_ERROR; } return dap_info_command(CMD_CTX, &dap->ap[apsel]); } COMMAND_HANDLER(dap_baseaddr_command) { struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA); uint32_t apsel, baseaddr; int retval; switch (CMD_ARGC) { case 0: apsel = dap->apsel; break; case 1: COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel); /* AP address is in bits 31:24 of DP_SELECT */ if (apsel > DP_APSEL_MAX) return ERROR_COMMAND_SYNTAX_ERROR; break; default: return ERROR_COMMAND_SYNTAX_ERROR; } /* NOTE: assumes we're talking to a MEM-AP, which * has a base address. There are other kinds of AP, * though they're not common for now. This should * use the ID register to verify it's a MEM-AP. */ retval = dap_queue_ap_read(dap_ap(dap, apsel), MEM_AP_REG_BASE, &baseaddr); if (retval != ERROR_OK) return retval; retval = dap_run(dap); if (retval != ERROR_OK) return retval; command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr); return retval; } COMMAND_HANDLER(dap_memaccess_command) { struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA); uint32_t memaccess_tck; switch (CMD_ARGC) { case 0: memaccess_tck = dap->ap[dap->apsel].memaccess_tck; break; case 1: COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck); break; default: return ERROR_COMMAND_SYNTAX_ERROR; } dap->ap[dap->apsel].memaccess_tck = memaccess_tck; command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck", dap->ap[dap->apsel].memaccess_tck); return ERROR_OK; } COMMAND_HANDLER(dap_apsel_command) { struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA); uint32_t apsel; switch (CMD_ARGC) { case 0: command_print(CMD_CTX, "%" PRIi32, dap->apsel); return ERROR_OK; case 1: COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel); /* AP address is in bits 31:24 of DP_SELECT */ if (apsel > DP_APSEL_MAX) return ERROR_COMMAND_SYNTAX_ERROR; break; default: return ERROR_COMMAND_SYNTAX_ERROR; } dap->apsel = apsel; return ERROR_OK; } COMMAND_HANDLER(dap_apcsw_command) { struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA); uint32_t apcsw = dap->ap[dap->apsel].csw_default; uint32_t csw_val, csw_mask; switch (CMD_ARGC) { case 0: command_print(CMD_CTX, "ap %" PRIi32 " selected, csw 0x%8.8" PRIx32, dap->apsel, apcsw); return ERROR_OK; case 1: if (strcmp(CMD_ARGV[0], "default") == 0) csw_val = CSW_DEFAULT; else COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], csw_val); if (csw_val & (CSW_SIZE_MASK | CSW_ADDRINC_MASK)) { LOG_ERROR("CSW value cannot include 'Size' and 'AddrInc' bit-fields"); return ERROR_COMMAND_SYNTAX_ERROR; } apcsw = csw_val; break; case 2: COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], csw_val); COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], csw_mask); if (csw_mask & (CSW_SIZE_MASK | CSW_ADDRINC_MASK)) { LOG_ERROR("CSW mask cannot include 'Size' and 'AddrInc' bit-fields"); return ERROR_COMMAND_SYNTAX_ERROR; } apcsw = (apcsw & ~csw_mask) | (csw_val & csw_mask); break; default: return ERROR_COMMAND_SYNTAX_ERROR; } dap->ap[dap->apsel].csw_default = apcsw; return 0; } COMMAND_HANDLER(dap_apid_command) { struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA); uint32_t apsel, apid; int retval; switch (CMD_ARGC) { case 0: apsel = dap->apsel; break; case 1: COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel); /* AP address is in bits 31:24 of DP_SELECT */ if (apsel > DP_APSEL_MAX) return ERROR_COMMAND_SYNTAX_ERROR; break; default: return ERROR_COMMAND_SYNTAX_ERROR; } retval = dap_queue_ap_read(dap_ap(dap, apsel), AP_REG_IDR, &apid); if (retval != ERROR_OK) return retval; retval = dap_run(dap); if (retval != ERROR_OK) return retval; command_print(CMD_CTX, "0x%8.8" PRIx32, apid); return retval; } COMMAND_HANDLER(dap_apreg_command) { struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA); uint32_t apsel, reg, value; struct adiv5_ap *ap; int retval; if (CMD_ARGC < 2 || CMD_ARGC > 3) return ERROR_COMMAND_SYNTAX_ERROR; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel); /* AP address is in bits 31:24 of DP_SELECT */ if (apsel > DP_APSEL_MAX) return ERROR_COMMAND_SYNTAX_ERROR; ap = dap_ap(dap, apsel); COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg); if (reg >= 256 || (reg & 3)) return ERROR_COMMAND_SYNTAX_ERROR; if (CMD_ARGC == 3) { COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value); switch (reg) { case MEM_AP_REG_CSW: ap->csw_value = 0; /* invalid, in case write fails */ retval = dap_queue_ap_write(ap, reg, value); if (retval == ERROR_OK) ap->csw_value = value; break; case MEM_AP_REG_TAR: ap->tar_valid = false; /* invalid, force write */ retval = mem_ap_setup_tar(ap, value); break; default: retval = dap_queue_ap_write(ap, reg, value); break; } } else { retval = dap_queue_ap_read(ap, reg, &value); } if (retval == ERROR_OK) retval = dap_run(dap); if (retval != ERROR_OK) return retval; if (CMD_ARGC == 2) command_print(CMD_CTX, "0x%08" PRIx32, value); return retval; } COMMAND_HANDLER(dap_dpreg_command) { struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA); uint32_t reg, value; int retval; if (CMD_ARGC < 1 || CMD_ARGC > 2) return ERROR_COMMAND_SYNTAX_ERROR; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], reg); if (reg >= 256 || (reg & 3)) return ERROR_COMMAND_SYNTAX_ERROR; if (CMD_ARGC == 2) { COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value); retval = dap_queue_dp_write(dap, reg, value); } else { retval = dap_queue_dp_read(dap, reg, &value); } if (retval == ERROR_OK) retval = dap_run(dap); if (retval != ERROR_OK) return retval; if (CMD_ARGC == 1) command_print(CMD_CTX, "0x%08" PRIx32, value); return retval; } COMMAND_HANDLER(dap_ti_be_32_quirks_command) { struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA); uint32_t enable = dap->ti_be_32_quirks; switch (CMD_ARGC) { case 0: break; case 1: COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], enable); if (enable > 1) return ERROR_COMMAND_SYNTAX_ERROR; break; default: return ERROR_COMMAND_SYNTAX_ERROR; } dap->ti_be_32_quirks = enable; command_print(CMD_CTX, "TI BE-32 quirks mode %s", enable ? "enabled" : "disabled"); return 0; } const struct command_registration dap_instance_commands[] = { { .name = "info", .handler = handle_dap_info_command, .mode = COMMAND_EXEC, .help = "display ROM table for MEM-AP " "(default currently selected AP)", .usage = "[ap_num]", }, { .name = "apsel", .handler = dap_apsel_command, .mode = COMMAND_ANY, .help = "Set the currently selected AP (default 0) " "and display the result", .usage = "[ap_num]", }, { .name = "apcsw", .handler = dap_apcsw_command, .mode = COMMAND_ANY, .help = "Set CSW default bits", .usage = "[value [mask]]", }, { .name = "apid", .handler = dap_apid_command, .mode = COMMAND_EXEC, .help = "return ID register from AP " "(default currently selected AP)", .usage = "[ap_num]", }, { .name = "apreg", .handler = dap_apreg_command, .mode = COMMAND_EXEC, .help = "read/write a register from AP " "(reg is byte address of a word register, like 0 4 8...)", .usage = "ap_num reg [value]", }, { .name = "dpreg", .handler = dap_dpreg_command, .mode = COMMAND_EXEC, .help = "read/write a register from DP " "(reg is byte address (bank << 4 | reg) of a word register, like 0 4 8...)", .usage = "reg [value]", }, { .name = "baseaddr", .handler = dap_baseaddr_command, .mode = COMMAND_EXEC, .help = "return debug base address from MEM-AP " "(default currently selected AP)", .usage = "[ap_num]", }, { .name = "memaccess", .handler = dap_memaccess_command, .mode = COMMAND_EXEC, .help = "set/get number of extra tck for MEM-AP memory " "bus access [0-255]", .usage = "[cycles]", }, { .name = "ti_be_32_quirks", .handler = dap_ti_be_32_quirks_command, .mode = COMMAND_CONFIG, .help = "set/get quirks mode for TI TMS450/TMS570 processors", .usage = "[enable]", }, COMMAND_REGISTRATION_DONE };