/*************************************************************************** * Copyright (C) 2006 by Magnus Lundin * * lundin@mlu.mine.nu * * * * Copyright (C) 2008 by Spencer Oliver * * spen@spen-soft.co.uk * * * * Copyright (C) 2009-2010 by Oyvind Harboe * * oyvind.harboe@zylin.com * * * * Copyright (C) 2009-2010 by David Brownell * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ /** * @file * This file implements support for the ARM Debug Interface version 5 (ADIv5) * debugging architecture. Compared with previous versions, this includes * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message * transport, and focusses on memory mapped resources as defined by the * CoreSight architecture. * * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two * basic components: a Debug Port (DP) transporting messages to and from a * debugger, and an Access Port (AP) accessing resources. Three types of DP * are defined. One uses only JTAG for communication, and is called JTAG-DP. * One uses only SWD for communication, and is called SW-DP. The third can * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP * is used to access memory mapped resources and is called a MEM-AP. Also a * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon. * * This programming interface allows DAP pipelined operations through a * transaction queue. This primarily affects AP operations (such as using * a MEM-AP to access memory or registers). If the current transaction has * not finished by the time the next one must begin, and the ORUNDETECT bit * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and * further AP operations will fail. There are two basic methods to avoid * such overrun errors. One involves polling for status instead of using * transaction piplining. The other involves adding delays to ensure the * AP has enough time to complete one operation before starting the next * one. (For JTAG these delays are controlled by memaccess_tck.) */ /* * Relevant specifications from ARM include: * * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B * * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D * Cortex-M3(tm) TRM, ARM DDI 0337G */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "jtag/interface.h" #include "arm.h" #include "arm_adi_v5.h" #include /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */ /* uint32_t tar_block_size(uint32_t address) Return the largest block starting at address that does not cross a tar block size alignment boundary */ static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address) { return (tar_autoincr_block - ((tar_autoincr_block - 1) & address)) >> 2; } /*************************************************************************** * * * DP and MEM-AP register access through APACC and DPACC * * * ***************************************************************************/ /** * Select one of the APs connected to the specified DAP. The * selection is implicitly used with future AP transactions. * This is a NOP if the specified AP is already selected. * * @param dap The DAP * @param apsel Number of the AP to (implicitly) use with further * transactions. This normally identifies a MEM-AP. */ void dap_ap_select(struct adiv5_dap *dap, uint8_t ap) { uint32_t new_ap = (ap << 24) & 0xFF000000; if (new_ap != dap->ap_current) { dap->ap_current = new_ap; /* Switching AP invalidates cached values. * Values MUST BE UPDATED BEFORE AP ACCESS. */ dap->ap_bank_value = -1; dap->ap_csw_value = -1; dap->ap_tar_value = -1; } } /** * Queue transactions setting up transfer parameters for the * currently selected MEM-AP. * * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2 * initiate data reads or writes using memory or peripheral addresses. * If the CSW is configured for it, the TAR may be automatically * incremented after each transfer. * * @todo Rename to reflect it being specifically a MEM-AP function. * * @param dap The DAP connected to the MEM-AP. * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this * matches the cached value, the register is not changed. * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this * matches the cached address, the register is not changed. * * @return ERROR_OK if the transaction was properly queued, else a fault code. */ int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar) { int retval; csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT; if (csw != dap->ap_csw_value) { /* LOG_DEBUG("DAP: Set CSW %x",csw); */ retval = dap_queue_ap_write(dap, AP_REG_CSW, csw); if (retval != ERROR_OK) return retval; dap->ap_csw_value = csw; } if (tar != dap->ap_tar_value) { /* LOG_DEBUG("DAP: Set TAR %x",tar); */ retval = dap_queue_ap_write(dap, AP_REG_TAR, tar); if (retval != ERROR_OK) return retval; dap->ap_tar_value = tar; } /* Disable TAR cache when autoincrementing */ if (csw & CSW_ADDRINC_MASK) dap->ap_tar_value = -1; return ERROR_OK; } /** * Asynchronous (queued) read of a word from memory or a system register. * * @param dap The DAP connected to the MEM-AP performing the read. * @param address Address of the 32-bit word to read; it must be * readable by the currently selected MEM-AP. * @param value points to where the word will be stored when the * transaction queue is flushed (assuming no errors). * * @return ERROR_OK for success. Otherwise a fault code. */ int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address, uint32_t *value) { int retval; /* Use banked addressing (REG_BDx) to avoid some link traffic * (updating TAR) when reading several consecutive addresses. */ retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF, address & 0xFFFFFFF0); if (retval != ERROR_OK) return retval; return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value); } /** * Synchronous read of a word from memory or a system register. * As a side effect, this flushes any queued transactions. * * @param dap The DAP connected to the MEM-AP performing the read. * @param address Address of the 32-bit word to read; it must be * readable by the currently selected MEM-AP. * @param value points to where the result will be stored. * * @return ERROR_OK for success; *value holds the result. * Otherwise a fault code. */ int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address, uint32_t *value) { int retval; retval = mem_ap_read_u32(dap, address, value); if (retval != ERROR_OK) return retval; return dap_run(dap); } /** * Asynchronous (queued) write of a word to memory or a system register. * * @param dap The DAP connected to the MEM-AP. * @param address Address to be written; it must be writable by * the currently selected MEM-AP. * @param value Word that will be written to the address when transaction * queue is flushed (assuming no errors). * * @return ERROR_OK for success. Otherwise a fault code. */ int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address, uint32_t value) { int retval; /* Use banked addressing (REG_BDx) to avoid some link traffic * (updating TAR) when writing several consecutive addresses. */ retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF, address & 0xFFFFFFF0); if (retval != ERROR_OK) return retval; return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC), value); } /** * Synchronous write of a word to memory or a system register. * As a side effect, this flushes any queued transactions. * * @param dap The DAP connected to the MEM-AP. * @param address Address to be written; it must be writable by * the currently selected MEM-AP. * @param value Word that will be written. * * @return ERROR_OK for success; the data was written. Otherwise a fault code. */ int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address, uint32_t value) { int retval = mem_ap_write_u32(dap, address, value); if (retval != ERROR_OK) return retval; return dap_run(dap); } /***************************************************************************** * * * mem_ap_write_buf(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address) * * * * Write a buffer in target order (little endian) * * * *****************************************************************************/ int mem_ap_write_buf_u32(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address) { int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK; uint32_t adr = address; const uint8_t *pBuffer = buffer; count >>= 2; wcount = count; /* if we have an unaligned access - reorder data */ if (adr & 0x3u) { for (writecount = 0; writecount < count; writecount++) { int i; uint32_t outvalue; memcpy(&outvalue, pBuffer, sizeof(uint32_t)); for (i = 0; i < 4; i++) { *((uint8_t *)pBuffer + (adr & 0x3)) = outvalue; outvalue >>= 8; adr++; } pBuffer += sizeof(uint32_t); } } while (wcount > 0) { /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/ blocksize = max_tar_block_size(dap->tar_autoincr_block, address); if (wcount < blocksize) blocksize = wcount; /* handle unaligned data at 4k boundary */ if (blocksize == 0) blocksize = 1; retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE, address); if (retval != ERROR_OK) return retval; for (writecount = 0; writecount < blocksize; writecount++) { retval = dap_queue_ap_write(dap, AP_REG_DRW, *(uint32_t *) ((void *) (buffer + 4 * writecount))); if (retval != ERROR_OK) break; } retval = dap_run(dap); if (retval == ERROR_OK) { wcount = wcount - blocksize; address = address + 4 * blocksize; buffer = buffer + 4 * blocksize; } else errorcount++; if (errorcount > 1) { LOG_WARNING("Block write error address 0x%" PRIx32 ", wcount 0x%x", address, wcount); return retval; } } return retval; } static int mem_ap_write_buf_packed_u16(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address) { int retval = ERROR_OK; int wcount, blocksize, writecount, i; wcount = count >> 1; while (wcount > 0) { int nbytes; /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/ blocksize = max_tar_block_size(dap->tar_autoincr_block, address); if (wcount < blocksize) blocksize = wcount; /* handle unaligned data at 4k boundary */ if (blocksize == 0) blocksize = 1; retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address); if (retval != ERROR_OK) return retval; writecount = blocksize; do { nbytes = MIN((writecount << 1), 4); if (nbytes < 4) { retval = mem_ap_write_buf_u16(dap, buffer, nbytes, address); if (retval != ERROR_OK) { LOG_WARNING("Block write error address " "0x%" PRIx32 ", count 0x%x", address, count); return retval; } address += nbytes >> 1; } else { uint32_t outvalue; memcpy(&outvalue, buffer, sizeof(uint32_t)); for (i = 0; i < nbytes; i++) { *((uint8_t *)buffer + (address & 0x3)) = outvalue; outvalue >>= 8; address++; } memcpy(&outvalue, buffer, sizeof(uint32_t)); retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue); if (retval != ERROR_OK) break; retval = dap_run(dap); if (retval != ERROR_OK) { LOG_WARNING("Block write error address " "0x%" PRIx32 ", count 0x%x", address, count); return retval; } } buffer += nbytes >> 1; writecount -= nbytes >> 1; } while (writecount); wcount -= blocksize; } return retval; } int mem_ap_write_buf_u16(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address) { int retval = ERROR_OK; if (count >= 4) return mem_ap_write_buf_packed_u16(dap, buffer, count, address); while (count > 0) { retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address); if (retval != ERROR_OK) return retval; uint16_t svalue; memcpy(&svalue, buffer, sizeof(uint16_t)); uint32_t outvalue = (uint32_t)svalue << 8 * (address & 0x3); retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue); if (retval != ERROR_OK) break; retval = dap_run(dap); if (retval != ERROR_OK) break; count -= 2; address += 2; buffer += 2; } return retval; } static int mem_ap_write_buf_packed_u8(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address) { int retval = ERROR_OK; int wcount, blocksize, writecount, i; wcount = count; while (wcount > 0) { int nbytes; /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/ blocksize = max_tar_block_size(dap->tar_autoincr_block, address); if (wcount < blocksize) blocksize = wcount; retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address); if (retval != ERROR_OK) return retval; writecount = blocksize; do { nbytes = MIN(writecount, 4); if (nbytes < 4) { retval = mem_ap_write_buf_u8(dap, buffer, nbytes, address); if (retval != ERROR_OK) { LOG_WARNING("Block write error address " "0x%" PRIx32 ", count 0x%x", address, count); return retval; } address += nbytes; } else { uint32_t outvalue; memcpy(&outvalue, buffer, sizeof(uint32_t)); for (i = 0; i < nbytes; i++) { *((uint8_t *)buffer + (address & 0x3)) = outvalue; outvalue >>= 8; address++; } memcpy(&outvalue, buffer, sizeof(uint32_t)); retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue); if (retval != ERROR_OK) break; retval = dap_run(dap); if (retval != ERROR_OK) { LOG_WARNING("Block write error address " "0x%" PRIx32 ", count 0x%x", address, count); return retval; } } buffer += nbytes; writecount -= nbytes; } while (writecount); wcount -= blocksize; } return retval; } int mem_ap_write_buf_u8(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address) { int retval = ERROR_OK; if (count >= 4) return mem_ap_write_buf_packed_u8(dap, buffer, count, address); while (count > 0) { retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address); if (retval != ERROR_OK) return retval; uint32_t outvalue = (uint32_t)*buffer << 8 * (address & 0x3); retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue); if (retval != ERROR_OK) break; retval = dap_run(dap); if (retval != ERROR_OK) break; count--; address++; buffer++; } return retval; } /* FIXME don't import ... this is a temporary workaround for the * mem_ap_read_buf_u32() mess, until it's no longer JTAG-specific. */ extern int adi_jtag_dp_scan(struct adiv5_dap *dap, uint8_t instr, uint8_t reg_addr, uint8_t RnW, uint8_t *outvalue, uint8_t *invalue, uint8_t *ack); /** * Synchronously read a block of 32-bit words into a buffer * @param dap The DAP connected to the MEM-AP. * @param buffer where the words will be stored (in host byte order). * @param count How many words to read. * @param address Memory address from which to read words; all the * words must be readable by the currently selected MEM-AP. */ int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address) { int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK; uint32_t adr = address; uint8_t *pBuffer = buffer; count >>= 2; wcount = count; while (wcount > 0) { /* Adjust to read blocks within boundaries aligned to the * TAR autoincrement size (at least 2^10). Autoincrement * mode avoids an extra per-word roundtrip to update TAR. */ blocksize = max_tar_block_size(dap->tar_autoincr_block, address); if (wcount < blocksize) blocksize = wcount; /* handle unaligned data at 4k boundary */ if (blocksize == 0) blocksize = 1; retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE, address); if (retval != ERROR_OK) return retval; /* FIXME remove these three calls to adi_jtag_dp_scan(), * so this routine becomes transport-neutral. Be careful * not to cause performance problems with JTAG; would it * suffice to loop over dap_queue_ap_read(), or would that * be slower when JTAG is the chosen transport? */ /* Scan out first read */ retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW, DPAP_READ, 0, NULL, NULL); if (retval != ERROR_OK) return retval; for (readcount = 0; readcount < blocksize - 1; readcount++) { /* Scan out next read; scan in posted value for the * previous one. Assumes read is acked "OK/FAULT", * and CTRL_STAT says that meant "OK". */ retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW, DPAP_READ, 0, buffer + 4 * readcount, &dap->ack); if (retval != ERROR_OK) return retval; } /* Scan in last posted value; RDBUFF has no other effect, * assuming ack is OK/FAULT and CTRL_STAT says "OK". */ retval = adi_jtag_dp_scan(dap, JTAG_DP_DPACC, DP_RDBUFF, DPAP_READ, 0, buffer + 4 * readcount, &dap->ack); if (retval != ERROR_OK) return retval; retval = dap_run(dap); if (retval != ERROR_OK) { errorcount++; if (errorcount <= 1) { /* try again */ continue; } LOG_WARNING("Block read error address 0x%" PRIx32, address); return retval; } wcount = wcount - blocksize; address += 4 * blocksize; buffer += 4 * blocksize; } /* if we have an unaligned access - reorder data */ if (adr & 0x3u) { for (readcount = 0; readcount < count; readcount++) { int i; uint32_t data; memcpy(&data, pBuffer, sizeof(uint32_t)); for (i = 0; i < 4; i++) { *((uint8_t *)pBuffer) = (data >> 8 * (adr & 0x3)); pBuffer++; adr++; } } } return retval; } static int mem_ap_read_buf_packed_u16(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address) { uint32_t invalue; int retval = ERROR_OK; int wcount, blocksize, readcount, i; wcount = count >> 1; while (wcount > 0) { int nbytes; /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/ blocksize = max_tar_block_size(dap->tar_autoincr_block, address); if (wcount < blocksize) blocksize = wcount; retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address); if (retval != ERROR_OK) return retval; /* handle unaligned data at 4k boundary */ if (blocksize == 0) blocksize = 1; readcount = blocksize; do { retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue); if (retval != ERROR_OK) return retval; retval = dap_run(dap); if (retval != ERROR_OK) { LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count); return retval; } nbytes = MIN((readcount << 1), 4); for (i = 0; i < nbytes; i++) { *((uint8_t *)buffer) = (invalue >> 8 * (address & 0x3)); buffer++; address++; } readcount -= (nbytes >> 1); } while (readcount); wcount -= blocksize; } return retval; } /** * Synchronously read a block of 16-bit halfwords into a buffer * @param dap The DAP connected to the MEM-AP. * @param buffer where the halfwords will be stored (in host byte order). * @param count How many halfwords to read. * @param address Memory address from which to read words; all the * words must be readable by the currently selected MEM-AP. */ int mem_ap_read_buf_u16(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address) { uint32_t invalue, i; int retval = ERROR_OK; if (count >= 4) return mem_ap_read_buf_packed_u16(dap, buffer, count, address); while (count > 0) { retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address); if (retval != ERROR_OK) return retval; retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue); if (retval != ERROR_OK) break; retval = dap_run(dap); if (retval != ERROR_OK) break; if (address & 0x1) { for (i = 0; i < 2; i++) { *((uint8_t *)buffer) = (invalue >> 8 * (address & 0x3)); buffer++; address++; } } else { uint16_t svalue = (invalue >> 8 * (address & 0x3)); memcpy(buffer, &svalue, sizeof(uint16_t)); address += 2; buffer += 2; } count -= 2; } return retval; } /* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many * roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s? * * The solution is to arrange for a large out/in scan in this loop and * and convert data afterwards. */ static int mem_ap_read_buf_packed_u8(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address) { uint32_t invalue; int retval = ERROR_OK; int wcount, blocksize, readcount, i; wcount = count; while (wcount > 0) { int nbytes; /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/ blocksize = max_tar_block_size(dap->tar_autoincr_block, address); if (wcount < blocksize) blocksize = wcount; retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address); if (retval != ERROR_OK) return retval; readcount = blocksize; do { retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue); if (retval != ERROR_OK) return retval; retval = dap_run(dap); if (retval != ERROR_OK) { LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count); return retval; } nbytes = MIN(readcount, 4); for (i = 0; i < nbytes; i++) { *((uint8_t *)buffer) = (invalue >> 8 * (address & 0x3)); buffer++; address++; } readcount -= nbytes; } while (readcount); wcount -= blocksize; } return retval; } /** * Synchronously read a block of bytes into a buffer * @param dap The DAP connected to the MEM-AP. * @param buffer where the bytes will be stored. * @param count How many bytes to read. * @param address Memory address from which to read data; all the * data must be readable by the currently selected MEM-AP. */ int mem_ap_read_buf_u8(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address) { uint32_t invalue; int retval = ERROR_OK; if (count >= 4) return mem_ap_read_buf_packed_u8(dap, buffer, count, address); while (count > 0) { retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address); if (retval != ERROR_OK) return retval; retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue); if (retval != ERROR_OK) return retval; retval = dap_run(dap); if (retval != ERROR_OK) break; *((uint8_t *)buffer) = (invalue >> 8 * (address & 0x3)); count--; address++; buffer++; } return retval; } /*--------------------------------------------------------------------*/ /* Wrapping function with selection of AP */ /*--------------------------------------------------------------------*/ int mem_ap_sel_read_u32(struct adiv5_dap *swjdp, uint8_t ap, uint32_t address, uint32_t *value) { dap_ap_select(swjdp, ap); return mem_ap_read_u32(swjdp, address, value); } int mem_ap_sel_write_u32(struct adiv5_dap *swjdp, uint8_t ap, uint32_t address, uint32_t value) { dap_ap_select(swjdp, ap); return mem_ap_write_u32(swjdp, address, value); } int mem_ap_sel_read_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap, uint32_t address, uint32_t *value) { dap_ap_select(swjdp, ap); return mem_ap_read_atomic_u32(swjdp, address, value); } int mem_ap_sel_write_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap, uint32_t address, uint32_t value) { dap_ap_select(swjdp, ap); return mem_ap_write_atomic_u32(swjdp, address, value); } int mem_ap_sel_read_buf_u8(struct adiv5_dap *swjdp, uint8_t ap, uint8_t *buffer, int count, uint32_t address) { dap_ap_select(swjdp, ap); return mem_ap_read_buf_u8(swjdp, buffer, count, address); } int mem_ap_sel_read_buf_u16(struct adiv5_dap *swjdp, uint8_t ap, uint8_t *buffer, int count, uint32_t address) { dap_ap_select(swjdp, ap); return mem_ap_read_buf_u16(swjdp, buffer, count, address); } int mem_ap_sel_read_buf_u32(struct adiv5_dap *swjdp, uint8_t ap, uint8_t *buffer, int count, uint32_t address) { dap_ap_select(swjdp, ap); return mem_ap_read_buf_u32(swjdp, buffer, count, address); } int mem_ap_sel_write_buf_u8(struct adiv5_dap *swjdp, uint8_t ap, const uint8_t *buffer, int count, uint32_t address) { dap_ap_select(swjdp, ap); return mem_ap_write_buf_u8(swjdp, buffer, count, address); } int mem_ap_sel_write_buf_u16(struct adiv5_dap *swjdp, uint8_t ap, const uint8_t *buffer, int count, uint32_t address) { dap_ap_select(swjdp, ap); return mem_ap_write_buf_u16(swjdp, buffer, count, address); } int mem_ap_sel_write_buf_u32(struct adiv5_dap *swjdp, uint8_t ap, const uint8_t *buffer, int count, uint32_t address) { dap_ap_select(swjdp, ap); return mem_ap_write_buf_u32(swjdp, buffer, count, address); } #define MDM_REG_STAT 0x00 #define MDM_REG_CTRL 0x04 #define MDM_REG_ID 0xfc #define MDM_STAT_FMEACK (1<<0) #define MDM_STAT_FREADY (1<<1) #define MDM_STAT_SYSSEC (1<<2) #define MDM_STAT_SYSRES (1<<3) #define MDM_STAT_FMEEN (1<<5) #define MDM_STAT_BACKDOOREN (1<<6) #define MDM_STAT_LPEN (1<<7) #define MDM_STAT_VLPEN (1<<8) #define MDM_STAT_LLSMODEXIT (1<<9) #define MDM_STAT_VLLSXMODEXIT (1<<10) #define MDM_STAT_CORE_HALTED (1<<16) #define MDM_STAT_CORE_SLEEPDEEP (1<<17) #define MDM_STAT_CORESLEEPING (1<<18) #define MEM_CTRL_FMEIP (1<<0) #define MEM_CTRL_DBG_DIS (1<<1) #define MEM_CTRL_DBG_REQ (1<<2) #define MEM_CTRL_SYS_RES_REQ (1<<3) #define MEM_CTRL_CORE_HOLD_RES (1<<4) #define MEM_CTRL_VLLSX_DBG_REQ (1<<5) #define MEM_CTRL_VLLSX_DBG_ACK (1<<6) #define MEM_CTRL_VLLSX_STAT_ACK (1<<7) /** * */ int dap_syssec_kinetis_mdmap(struct adiv5_dap *dap) { uint32_t val; int retval; enum reset_types jtag_reset_config = jtag_get_reset_config(); dap_ap_select(dap, 1); /* first check mdm-ap id register */ retval = dap_queue_ap_read(dap, MDM_REG_ID, &val); if (retval != ERROR_OK) return retval; dap_run(dap); if (val != 0x001C0000) { LOG_DEBUG("id doesn't match %08X != 0x001C0000", val); dap_ap_select(dap, 0); return ERROR_FAIL; } /* read and parse status register * it's important that the device is out of * reset here */ retval = dap_queue_ap_read(dap, MDM_REG_STAT, &val); if (retval != ERROR_OK) return retval; dap_run(dap); LOG_DEBUG("MDM_REG_STAT %08X", val); if ((val & (MDM_STAT_SYSSEC|MDM_STAT_FREADY)) != (MDM_STAT_FREADY)) { LOG_DEBUG("MDMAP: system is secured, masserase needed"); if (!(val & MDM_STAT_FMEEN)) LOG_DEBUG("MDMAP: masserase is disabled"); else { /* we need to assert reset */ if (jtag_reset_config & RESET_HAS_SRST) { /* default to asserting srst */ adapter_assert_reset(); } else { LOG_DEBUG("SRST not configured"); dap_ap_select(dap, 0); return ERROR_FAIL; } while (1) { retval = dap_queue_ap_write(dap, MDM_REG_CTRL, MEM_CTRL_FMEIP); if (retval != ERROR_OK) return retval; dap_run(dap); /* read status register and wait for ready */ retval = dap_queue_ap_read(dap, MDM_REG_STAT, &val); if (retval != ERROR_OK) return retval; dap_run(dap); LOG_DEBUG("MDM_REG_STAT %08X", val); if ((val & 1)) break; } while (1) { retval = dap_queue_ap_write(dap, MDM_REG_CTRL, 0); if (retval != ERROR_OK) return retval; dap_run(dap); /* read status register */ retval = dap_queue_ap_read(dap, MDM_REG_STAT, &val); if (retval != ERROR_OK) return retval; dap_run(dap); LOG_DEBUG("MDM_REG_STAT %08X", val); /* read control register and wait for ready */ retval = dap_queue_ap_read(dap, MDM_REG_CTRL, &val); if (retval != ERROR_OK) return retval; dap_run(dap); LOG_DEBUG("MDM_REG_CTRL %08X", val); if (val == 0x00) break; } } } dap_ap_select(dap, 0); return ERROR_OK; } /** */ struct dap_syssec_filter { /** */ uint32_t idcode; /** */ int (*dap_init)(struct adiv5_dap *dap); }; /** */ static struct dap_syssec_filter dap_syssec_filter_data[] = { { 0x4BA00477, dap_syssec_kinetis_mdmap } }; /** * */ int dap_syssec(struct adiv5_dap *dap) { unsigned int i; struct jtag_tap *tap; for (i = 0; i < sizeof(dap_syssec_filter_data); i++) { tap = dap->jtag_info->tap; while (tap != NULL) { if (tap->hasidcode && (dap_syssec_filter_data[i].idcode == tap->idcode)) { LOG_DEBUG("DAP: mdmap_init for idcode: %08x", tap->idcode); dap_syssec_filter_data[i].dap_init(dap); } tap = tap->next_tap; } } return ERROR_OK; } /*--------------------------------------------------------------------------*/ /* FIXME don't import ... just initialize as * part of DAP transport setup */ extern const struct dap_ops jtag_dp_ops; /*--------------------------------------------------------------------------*/ /** * Initialize a DAP. This sets up the power domains, prepares the DP * for further use, and arranges to use AP #0 for all AP operations * until dap_ap-select() changes that policy. * * @param dap The DAP being initialized. * * @todo Rename this. We also need an initialization scheme which account * for SWD transports not just JTAG; that will need to address differences * in layering. (JTAG is useful without any debug target; but not SWD.) * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP. */ int ahbap_debugport_init(struct adiv5_dap *dap) { uint32_t ctrlstat; int cnt = 0; int retval; LOG_DEBUG(" "); /* JTAG-DP or SWJ-DP, in JTAG mode * ... for SWD mode this is patched as part * of link switchover */ if (!dap->ops) dap->ops = &jtag_dp_ops; /* Default MEM-AP setup. * * REVISIT AP #0 may be an inappropriate default for this. * Should we probe, or take a hint from the caller? * Presumably we can ignore the possibility of multiple APs. */ dap->ap_current = !0; dap_ap_select(dap, 0); /* DP initialization */ retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL); if (retval != ERROR_OK) return retval; retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR); if (retval != ERROR_OK) return retval; retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL); if (retval != ERROR_OK) return retval; dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ; retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat); if (retval != ERROR_OK) return retval; retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat); if (retval != ERROR_OK) return retval; retval = dap_run(dap); if (retval != ERROR_OK) return retval; /* Check that we have debug power domains activated */ while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10)) { LOG_DEBUG("DAP: wait CDBGPWRUPACK"); retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat); if (retval != ERROR_OK) return retval; retval = dap_run(dap); if (retval != ERROR_OK) return retval; alive_sleep(10); } while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10)) { LOG_DEBUG("DAP: wait CSYSPWRUPACK"); retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat); if (retval != ERROR_OK) return retval; retval = dap_run(dap); if (retval != ERROR_OK) return retval; alive_sleep(10); } retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL); if (retval != ERROR_OK) return retval; /* With debug power on we can activate OVERRUN checking */ dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT; retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat); if (retval != ERROR_OK) return retval; retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL); if (retval != ERROR_OK) return retval; dap_syssec(dap); return ERROR_OK; } /* CID interpretation -- see ARM IHI 0029B section 3 * and ARM IHI 0031A table 13-3. */ static const char *class_description[16] = { "Reserved", "ROM table", "Reserved", "Reserved", "Reserved", "Reserved", "Reserved", "Reserved", "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block", "Reserved", "OptimoDE DESS", "Generic IP component", "PrimeCell or System component" }; static bool is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0) { return cid3 == 0xb1 && cid2 == 0x05 && ((cid1 & 0x0f) == 0) && cid0 == 0x0d; } int dap_get_debugbase(struct adiv5_dap *dap, int ap, uint32_t *out_dbgbase, uint32_t *out_apid) { uint32_t ap_old; int retval; uint32_t dbgbase, apid; /* AP address is in bits 31:24 of DP_SELECT */ if (ap >= 256) return ERROR_COMMAND_SYNTAX_ERROR; ap_old = dap->ap_current; dap_ap_select(dap, ap); retval = dap_queue_ap_read(dap, AP_REG_BASE, &dbgbase); if (retval != ERROR_OK) return retval; retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid); if (retval != ERROR_OK) return retval; retval = dap_run(dap); if (retval != ERROR_OK) return retval; /* Excavate the device ID code */ struct jtag_tap *tap = dap->jtag_info->tap; while (tap != NULL) { if (tap->hasidcode) break; tap = tap->next_tap; } if (tap == NULL || !tap->hasidcode) return ERROR_OK; dap_ap_select(dap, ap_old); /* The asignment happens only here to prevent modification of these * values before they are certain. */ *out_dbgbase = dbgbase; *out_apid = apid; return ERROR_OK; } int dap_lookup_cs_component(struct adiv5_dap *dap, int ap, uint32_t dbgbase, uint8_t type, uint32_t *addr) { uint32_t ap_old; uint32_t romentry, entry_offset = 0, component_base, devtype; int retval = ERROR_FAIL; if (ap >= 256) return ERROR_COMMAND_SYNTAX_ERROR; ap_old = dap->ap_current; dap_ap_select(dap, ap); do { retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry); if (retval != ERROR_OK) return retval; component_base = (dbgbase & 0xFFFFF000) + (romentry & 0xFFFFF000); if (romentry & 0x1) { retval = mem_ap_read_atomic_u32(dap, (component_base & 0xfffff000) | 0xfcc, &devtype); if ((devtype & 0xff) == type) { *addr = component_base; retval = ERROR_OK; break; } } entry_offset += 4; } while (romentry > 0); dap_ap_select(dap, ap_old); return retval; } static int dap_info_command(struct command_context *cmd_ctx, struct adiv5_dap *dap, int ap) { int retval; uint32_t dbgbase = 0, apid = 0; /* Silence gcc by initializing */ int romtable_present = 0; uint8_t mem_ap; uint32_t ap_old; retval = dap_get_debugbase(dap, ap, &dbgbase, &apid); if (retval != ERROR_OK) return retval; ap_old = dap->ap_current; dap_ap_select(dap, ap); /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */ mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0)); command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid); if (apid) { switch (apid&0x0F) { case 0: command_print(cmd_ctx, "\tType is JTAG-AP"); break; case 1: command_print(cmd_ctx, "\tType is MEM-AP AHB"); break; case 2: command_print(cmd_ctx, "\tType is MEM-AP APB"); break; default: command_print(cmd_ctx, "\tUnknown AP type"); break; } /* NOTE: a MEM-AP may have a single CoreSight component that's * not a ROM table ... or have no such components at all. */ if (mem_ap) command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32, dbgbase); } else command_print(cmd_ctx, "No AP found at this ap 0x%x", ap); romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF)); if (romtable_present) { uint32_t cid0, cid1, cid2, cid3, memtype, romentry; uint16_t entry_offset; /* bit 16 of apid indicates a memory access port */ if (dbgbase & 0x02) command_print(cmd_ctx, "\tValid ROM table present"); else command_print(cmd_ctx, "\tROM table in legacy format"); /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */ retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0); if (retval != ERROR_OK) return retval; retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1); if (retval != ERROR_OK) return retval; retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2); if (retval != ERROR_OK) return retval; retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3); if (retval != ERROR_OK) return retval; retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype); if (retval != ERROR_OK) return retval; retval = dap_run(dap); if (retval != ERROR_OK) return retval; if (!is_dap_cid_ok(cid3, cid2, cid1, cid0)) command_print(cmd_ctx, "\tCID3 0x%2.2x" ", CID2 0x%2.2x" ", CID1 0x%2.2x" ", CID0 0x%2.2x", (unsigned) cid3, (unsigned)cid2, (unsigned) cid1, (unsigned) cid0); if (memtype & 0x01) command_print(cmd_ctx, "\tMEMTYPE system memory present on bus"); else command_print(cmd_ctx, "\tMEMTYPE System memory not present. " "Dedicated debug bus."); /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */ entry_offset = 0; do { retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry); if (retval != ERROR_OK) return retval; command_print(cmd_ctx, "\tROMTABLE[0x%x] = 0x%" PRIx32 "", entry_offset, romentry); if (romentry & 0x01) { uint32_t c_cid0, c_cid1, c_cid2, c_cid3; uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4; uint32_t component_base; unsigned part_num; char *type, *full; component_base = (dbgbase & 0xFFFFF000) + (romentry & 0xFFFFF000); /* IDs are in last 4K section */ retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE0, &c_pid0); if (retval != ERROR_OK) return retval; c_pid0 &= 0xff; retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE4, &c_pid1); if (retval != ERROR_OK) return retval; c_pid1 &= 0xff; retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE8, &c_pid2); if (retval != ERROR_OK) return retval; c_pid2 &= 0xff; retval = mem_ap_read_atomic_u32(dap, component_base + 0xFEC, &c_pid3); if (retval != ERROR_OK) return retval; c_pid3 &= 0xff; retval = mem_ap_read_atomic_u32(dap, component_base + 0xFD0, &c_pid4); if (retval != ERROR_OK) return retval; c_pid4 &= 0xff; retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF0, &c_cid0); if (retval != ERROR_OK) return retval; c_cid0 &= 0xff; retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF4, &c_cid1); if (retval != ERROR_OK) return retval; c_cid1 &= 0xff; retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF8, &c_cid2); if (retval != ERROR_OK) return retval; c_cid2 &= 0xff; retval = mem_ap_read_atomic_u32(dap, component_base + 0xFFC, &c_cid3); if (retval != ERROR_OK) return retval; c_cid3 &= 0xff; command_print(cmd_ctx, "\t\tComponent base address 0x%" PRIx32 "," "start address 0x%" PRIx32, component_base, /* component may take multiple 4K pages */ component_base - 0x1000*(c_pid4 >> 4)); command_print(cmd_ctx, "\t\tComponent class is 0x%x, %s", (int) (c_cid1 >> 4) & 0xf, /* See ARM IHI 0029B Table 3-3 */ class_description[(c_cid1 >> 4) & 0xf]); /* CoreSight component? */ if (((c_cid1 >> 4) & 0x0f) == 9) { uint32_t devtype; unsigned minor; char *major = "Reserved", *subtype = "Reserved"; retval = mem_ap_read_atomic_u32(dap, (component_base & 0xfffff000) | 0xfcc, &devtype); if (retval != ERROR_OK) return retval; minor = (devtype >> 4) & 0x0f; switch (devtype & 0x0f) { case 0: major = "Miscellaneous"; switch (minor) { case 0: subtype = "other"; break; case 4: subtype = "Validation component"; break; } break; case 1: major = "Trace Sink"; switch (minor) { case 0: subtype = "other"; break; case 1: subtype = "Port"; break; case 2: subtype = "Buffer"; break; } break; case 2: major = "Trace Link"; switch (minor) { case 0: subtype = "other"; break; case 1: subtype = "Funnel, router"; break; case 2: subtype = "Filter"; break; case 3: subtype = "FIFO, buffer"; break; } break; case 3: major = "Trace Source"; switch (minor) { case 0: subtype = "other"; break; case 1: subtype = "Processor"; break; case 2: subtype = "DSP"; break; case 3: subtype = "Engine/Coprocessor"; break; case 4: subtype = "Bus"; break; } break; case 4: major = "Debug Control"; switch (minor) { case 0: subtype = "other"; break; case 1: subtype = "Trigger Matrix"; break; case 2: subtype = "Debug Auth"; break; } break; case 5: major = "Debug Logic"; switch (minor) { case 0: subtype = "other"; break; case 1: subtype = "Processor"; break; case 2: subtype = "DSP"; break; case 3: subtype = "Engine/Coprocessor"; break; } break; } command_print(cmd_ctx, "\t\tType is 0x%2.2x, %s, %s", (unsigned) (devtype & 0xff), major, subtype); /* REVISIT also show 0xfc8 DevId */ } if (!is_dap_cid_ok(cid3, cid2, cid1, cid0)) command_print(cmd_ctx, "\t\tCID3 0%2.2x" ", CID2 0%2.2x" ", CID1 0%2.2x" ", CID0 0%2.2x", (int) c_cid3, (int) c_cid2, (int)c_cid1, (int)c_cid0); command_print(cmd_ctx, "\t\tPeripheral ID[4..0] = hex " "%2.2x %2.2x %2.2x %2.2x %2.2x", (int) c_pid4, (int) c_pid3, (int) c_pid2, (int) c_pid1, (int) c_pid0); /* Part number interpretations are from Cortex * core specs, the CoreSight components TRM * (ARM DDI 0314H), CoreSight System Design * Guide (ARM DGI 0012D) and ETM specs; also * from chip observation (e.g. TI SDTI). */ part_num = (c_pid0 & 0xff); part_num |= (c_pid1 & 0x0f) << 8; switch (part_num) { case 0x000: type = "Cortex-M3 NVIC"; full = "(Interrupt Controller)"; break; case 0x001: type = "Cortex-M3 ITM"; full = "(Instrumentation Trace Module)"; break; case 0x002: type = "Cortex-M3 DWT"; full = "(Data Watchpoint and Trace)"; break; case 0x003: type = "Cortex-M3 FBP"; full = "(Flash Patch and Breakpoint)"; break; case 0x00d: type = "CoreSight ETM11"; full = "(Embedded Trace)"; break; /* case 0x113: what? */ case 0x120: /* from OMAP3 memmap */ type = "TI SDTI"; full = "(System Debug Trace Interface)"; break; case 0x343: /* from OMAP3 memmap */ type = "TI DAPCTL"; full = ""; break; case 0x906: type = "Coresight CTI"; full = "(Cross Trigger)"; break; case 0x907: type = "Coresight ETB"; full = "(Trace Buffer)"; break; case 0x908: type = "Coresight CSTF"; full = "(Trace Funnel)"; break; case 0x910: type = "CoreSight ETM9"; full = "(Embedded Trace)"; break; case 0x912: type = "Coresight TPIU"; full = "(Trace Port Interface Unit)"; break; case 0x921: type = "Cortex-A8 ETM"; full = "(Embedded Trace)"; break; case 0x922: type = "Cortex-A8 CTI"; full = "(Cross Trigger)"; break; case 0x923: type = "Cortex-M3 TPIU"; full = "(Trace Port Interface Unit)"; break; case 0x924: type = "Cortex-M3 ETM"; full = "(Embedded Trace)"; break; case 0x930: type = "Cortex-R4 ETM"; full = "(Embedded Trace)"; break; case 0xc08: type = "Cortex-A8 Debug"; full = "(Debug Unit)"; break; default: type = "-*- unrecognized -*-"; full = ""; break; } command_print(cmd_ctx, "\t\tPart is %s %s", type, full); } else { if (romentry) command_print(cmd_ctx, "\t\tComponent not present"); else command_print(cmd_ctx, "\t\tEnd of ROM table"); } entry_offset += 4; } while (romentry > 0); } else command_print(cmd_ctx, "\tNo ROM table present"); dap_ap_select(dap, ap_old); return ERROR_OK; } COMMAND_HANDLER(handle_dap_info_command) { struct target *target = get_current_target(CMD_CTX); struct arm *arm = target_to_arm(target); struct adiv5_dap *dap = arm->dap; uint32_t apsel; switch (CMD_ARGC) { case 0: apsel = dap->apsel; break; case 1: COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel); break; default: return ERROR_COMMAND_SYNTAX_ERROR; } return dap_info_command(CMD_CTX, dap, apsel); } COMMAND_HANDLER(dap_baseaddr_command) { struct target *target = get_current_target(CMD_CTX); struct arm *arm = target_to_arm(target); struct adiv5_dap *dap = arm->dap; uint32_t apsel, baseaddr; int retval; switch (CMD_ARGC) { case 0: apsel = dap->apsel; break; case 1: COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel); /* AP address is in bits 31:24 of DP_SELECT */ if (apsel >= 256) return ERROR_COMMAND_SYNTAX_ERROR; break; default: return ERROR_COMMAND_SYNTAX_ERROR; } dap_ap_select(dap, apsel); /* NOTE: assumes we're talking to a MEM-AP, which * has a base address. There are other kinds of AP, * though they're not common for now. This should * use the ID register to verify it's a MEM-AP. */ retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr); if (retval != ERROR_OK) return retval; retval = dap_run(dap); if (retval != ERROR_OK) return retval; command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr); return retval; } COMMAND_HANDLER(dap_memaccess_command) { struct target *target = get_current_target(CMD_CTX); struct arm *arm = target_to_arm(target); struct adiv5_dap *dap = arm->dap; uint32_t memaccess_tck; switch (CMD_ARGC) { case 0: memaccess_tck = dap->memaccess_tck; break; case 1: COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck); break; default: return ERROR_COMMAND_SYNTAX_ERROR; } dap->memaccess_tck = memaccess_tck; command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck", dap->memaccess_tck); return ERROR_OK; } COMMAND_HANDLER(dap_apsel_command) { struct target *target = get_current_target(CMD_CTX); struct arm *arm = target_to_arm(target); struct adiv5_dap *dap = arm->dap; uint32_t apsel, apid; int retval; switch (CMD_ARGC) { case 0: apsel = 0; break; case 1: COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel); /* AP address is in bits 31:24 of DP_SELECT */ if (apsel >= 256) return ERROR_COMMAND_SYNTAX_ERROR; break; default: return ERROR_COMMAND_SYNTAX_ERROR; } dap->apsel = apsel; dap_ap_select(dap, apsel); retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid); if (retval != ERROR_OK) return retval; retval = dap_run(dap); if (retval != ERROR_OK) return retval; command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32, apsel, apid); return retval; } COMMAND_HANDLER(dap_apid_command) { struct target *target = get_current_target(CMD_CTX); struct arm *arm = target_to_arm(target); struct adiv5_dap *dap = arm->dap; uint32_t apsel, apid; int retval; switch (CMD_ARGC) { case 0: apsel = dap->apsel; break; case 1: COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel); /* AP address is in bits 31:24 of DP_SELECT */ if (apsel >= 256) return ERROR_COMMAND_SYNTAX_ERROR; break; default: return ERROR_COMMAND_SYNTAX_ERROR; } dap_ap_select(dap, apsel); retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid); if (retval != ERROR_OK) return retval; retval = dap_run(dap); if (retval != ERROR_OK) return retval; command_print(CMD_CTX, "0x%8.8" PRIx32, apid); return retval; } static const struct command_registration dap_commands[] = { { .name = "info", .handler = handle_dap_info_command, .mode = COMMAND_EXEC, .help = "display ROM table for MEM-AP " "(default currently selected AP)", .usage = "[ap_num]", }, { .name = "apsel", .handler = dap_apsel_command, .mode = COMMAND_EXEC, .help = "Set the currently selected AP (default 0) " "and display the result", .usage = "[ap_num]", }, { .name = "apid", .handler = dap_apid_command, .mode = COMMAND_EXEC, .help = "return ID register from AP " "(default currently selected AP)", .usage = "[ap_num]", }, { .name = "baseaddr", .handler = dap_baseaddr_command, .mode = COMMAND_EXEC, .help = "return debug base address from MEM-AP " "(default currently selected AP)", .usage = "[ap_num]", }, { .name = "memaccess", .handler = dap_memaccess_command, .mode = COMMAND_EXEC, .help = "set/get number of extra tck for MEM-AP memory " "bus access [0-255]", .usage = "[cycles]", }, COMMAND_REGISTRATION_DONE }; const struct command_registration dap_command_handlers[] = { { .name = "dap", .mode = COMMAND_EXEC, .help = "DAP command group", .usage = "", .chain = dap_commands, }, COMMAND_REGISTRATION_DONE };