/*************************************************************************** * Copyright (C) 2006 by Magnus Lundin * * lundin@mlu.mine.nu * * * * Copyright (C) 2008 by Spencer Oliver * * spen@spen-soft.co.uk * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program. If not, see . * ***************************************************************************/ #ifndef OPENOCD_TARGET_ARM_ADI_V5_H #define OPENOCD_TARGET_ARM_ADI_V5_H /** * @file * This defines formats and data structures used to talk to ADIv5 entities. * Those include a DAP, different types of Debug Port (DP), and memory mapped * resources accessed through a MEM-AP. */ #include #include "arm_jtag.h" /* three-bit ACK values for SWD access (sent LSB first) */ #define SWD_ACK_OK 0x1 #define SWD_ACK_WAIT 0x2 #define SWD_ACK_FAULT 0x4 #define DPAP_WRITE 0 #define DPAP_READ 1 #define BANK_REG(bank, reg) (((bank) << 4) | (reg)) /* A[3:0] for DP registers; A[1:0] are always zero. * - JTAG accesses all of these via JTAG_DP_DPACC, except for * IDCODE (JTAG_DP_IDCODE) and ABORT (JTAG_DP_ABORT). * - SWD accesses these directly, sometimes needing SELECT.DPBANKSEL */ #define DP_DPIDR BANK_REG(0x0, 0x0) /* DPv1+: ro */ #define DP_ABORT BANK_REG(0x0, 0x0) /* DPv1+: SWD: wo */ #define DP_CTRL_STAT BANK_REG(0x0, 0x4) /* DPv0+: rw */ #define DP_DLCR BANK_REG(0x1, 0x4) /* DPv1+: SWD: rw */ #define DP_TARGETID BANK_REG(0x2, 0x4) /* DPv2: ro */ #define DP_DLPIDR BANK_REG(0x3, 0x4) /* DPv2: ro */ #define DP_EVENTSTAT BANK_REG(0x4, 0x4) /* DPv2: ro */ #define DP_RESEND BANK_REG(0x0, 0x8) /* DPv1+: SWD: ro */ #define DP_SELECT BANK_REG(0x0, 0x8) /* DPv0+: JTAG: rw; SWD: wo */ #define DP_RDBUFF BANK_REG(0x0, 0xC) /* DPv0+: ro */ #define DP_TARGETSEL BANK_REG(0x0, 0xC) /* DPv2: SWD: wo */ #define DLCR_TO_TRN(dlcr) ((uint32_t)(1 + ((3 & (dlcr)) >> 8))) /* 1..4 clocks */ /* Fields of the DP's AP ABORT register */ #define DAPABORT (1UL << 0) #define STKCMPCLR (1UL << 1) /* SWD-only */ #define STKERRCLR (1UL << 2) /* SWD-only */ #define WDERRCLR (1UL << 3) /* SWD-only */ #define ORUNERRCLR (1UL << 4) /* SWD-only */ /* Fields of the DP's CTRL/STAT register */ #define CORUNDETECT (1UL << 0) #define SSTICKYORUN (1UL << 1) /* 3:2 - transaction mode (e.g. pushed compare) */ #define SSTICKYCMP (1UL << 4) #define SSTICKYERR (1UL << 5) #define READOK (1UL << 6) /* SWD-only */ #define WDATAERR (1UL << 7) /* SWD-only */ /* 11:8 - mask lanes for pushed compare or verify ops */ /* 21:12 - transaction counter */ #define CDBGRSTREQ (1UL << 26) #define CDBGRSTACK (1UL << 27) #define CDBGPWRUPREQ (1UL << 28) #define CDBGPWRUPACK (1UL << 29) #define CSYSPWRUPREQ (1UL << 30) #define CSYSPWRUPACK (1UL << 31) /* MEM-AP register addresses */ #define MEM_AP_REG_CSW 0x00 #define MEM_AP_REG_TAR 0x04 #define MEM_AP_REG_TAR64 0x08 /* RW: Large Physical Address Extension */ #define MEM_AP_REG_DRW 0x0C /* RW: Data Read/Write register */ #define MEM_AP_REG_BD0 0x10 /* RW: Banked Data register 0-3 */ #define MEM_AP_REG_BD1 0x14 #define MEM_AP_REG_BD2 0x18 #define MEM_AP_REG_BD3 0x1C #define MEM_AP_REG_MBT 0x20 /* --: Memory Barrier Transfer register */ #define MEM_AP_REG_BASE64 0xF0 /* RO: Debug Base Address (LA) register */ #define MEM_AP_REG_CFG 0xF4 /* RO: Configuration register */ #define MEM_AP_REG_BASE 0xF8 /* RO: Debug Base Address register */ /* Generic AP register address */ #define AP_REG_IDR 0xFC /* RO: Identification Register */ /* Fields of the MEM-AP's CSW register */ #define CSW_8BIT 0 #define CSW_16BIT 1 #define CSW_32BIT 2 #define CSW_ADDRINC_MASK (3UL << 4) #define CSW_ADDRINC_OFF 0UL #define CSW_ADDRINC_SINGLE (1UL << 4) #define CSW_ADDRINC_PACKED (2UL << 4) #define CSW_DEVICE_EN (1UL << 6) #define CSW_TRIN_PROG (1UL << 7) #define CSW_SPIDEN (1UL << 23) /* 30:24 - implementation-defined! */ #define CSW_HPROT (1UL << 25) /* ? */ #define CSW_MASTER_DEBUG (1UL << 29) /* ? */ #define CSW_SPROT (1UL << 30) #define CSW_DBGSWENABLE (1UL << 31) /* Fields of the MEM-AP's IDR register */ #define IDR_REV (0xFUL << 28) #define IDR_JEP106 (0x7FFUL << 17) #define IDR_CLASS (0xFUL << 13) #define IDR_VARIANT (0xFUL << 4) #define IDR_TYPE (0xFUL << 0) #define IDR_JEP106_ARM 0x04760000 #define DP_SELECT_APSEL 0xFF000000 #define DP_SELECT_APBANK 0x000000F0 #define DP_SELECT_DPBANK 0x0000000F #define DP_SELECT_INVALID 0x00FFFF00 /* Reserved bits one */ /** * This represents an ARM Debug Interface (v5) Access Port (AP). * Most common is a MEM-AP, for memory access. */ struct adiv5_ap { /** * DAP this AP belongs to. */ struct adiv5_dap *dap; /** * Number of this AP. */ uint8_t ap_num; /** * Default value for (MEM-AP) AP_REG_CSW register. */ uint32_t csw_default; /** * Cache for (MEM-AP) AP_REG_CSW register value. This is written to * configure an access mode, such as autoincrementing AP_REG_TAR during * word access. "-1" indicates no cached value. */ uint32_t csw_value; /** * Cache for (MEM-AP) AP_REG_TAR register value This is written to * configure the address being read or written * "-1" indicates no cached value. */ uint32_t tar_value; /** * Configures how many extra tck clocks are added after starting a * MEM-AP access before we try to read its status (and/or result). */ uint32_t memaccess_tck; /* Size of TAR autoincrement block, ARM ADI Specification requires at least 10 bits */ uint32_t tar_autoincr_block; /* true if packed transfers are supported by the MEM-AP */ bool packed_transfers; /* true if unaligned memory access is not supported by the MEM-AP */ bool unaligned_access_bad; }; /** * This represents an ARM Debug Interface (v5) Debug Access Port (DAP). * A DAP has two types of component: one Debug Port (DP), which is a * transport agent; and at least one Access Port (AP), controlling * resource access. * * There are two basic DP transports: JTAG, and ARM's low pin-count SWD. * Accordingly, this interface is responsible for hiding the transport * differences so upper layer code can largely ignore them. * * When the chip is implemented with JTAG-DP or SW-DP, the transport is * fixed as JTAG or SWD, respectively. Chips incorporating SWJ-DP permit * a choice made at board design time (by only using the SWD pins), or * as part of setting up a debug session (if all the dual-role JTAG/SWD * signals are available). */ struct adiv5_dap { const struct dap_ops *ops; /* dap transaction list for WAIT support */ struct list_head cmd_journal; struct jtag_tap *tap; /* Control config */ uint32_t dp_ctrl_stat; struct adiv5_ap ap[256]; /* The current manually selected AP by the "dap apsel" command */ uint32_t apsel; /** * Cache for DP_SELECT register. A value of DP_SELECT_INVALID * indicates no cached value and forces rewrite of the register. */ uint32_t select; /* information about current pending SWjDP-AHBAP transaction */ uint8_t ack; /** * Holds the pointer to the destination word for the last queued read, * for use with posted AP read sequence optimization. */ uint32_t *last_read; /* The TI TMS470 and TMS570 series processors use a BE-32 memory ordering * despite lack of support in the ARMv7 architecture. Memory access through * the AHB-AP has strange byte ordering these processors, and we need to * swizzle appropriately. */ bool ti_be_32_quirks; /** * Signals that an attempt to reestablish communication afresh * should be performed before the next access. */ bool do_reconnect; }; /** * Transport-neutral representation of queued DAP transactions, supporting * both JTAG and SWD transports. All submitted transactions are logically * queued, until the queue is executed by run(). Some implementations might * execute transactions as soon as they're submitted, but no status is made * available until run(). */ struct dap_ops { /** DP register read. */ int (*queue_dp_read)(struct adiv5_dap *dap, unsigned reg, uint32_t *data); /** DP register write. */ int (*queue_dp_write)(struct adiv5_dap *dap, unsigned reg, uint32_t data); /** AP register read. */ int (*queue_ap_read)(struct adiv5_ap *ap, unsigned reg, uint32_t *data); /** AP register write. */ int (*queue_ap_write)(struct adiv5_ap *ap, unsigned reg, uint32_t data); /** AP operation abort. */ int (*queue_ap_abort)(struct adiv5_dap *dap, uint8_t *ack); /** Executes all queued DAP operations. */ int (*run)(struct adiv5_dap *dap); /** Executes all queued DAP operations but doesn't check * sticky error conditions */ int (*sync)(struct adiv5_dap *dap); }; /* * Access Port classes */ enum ap_class { AP_CLASS_NONE = 0x00000, /* No class defined */ AP_CLASS_MEM_AP = 0x10000, /* MEM-AP */ }; /* * Access Port types */ enum ap_type { AP_TYPE_JTAG_AP = 0x0, /* JTAG-AP - JTAG master for controlling other JTAG devices */ AP_TYPE_AHB_AP = 0x1, /* AHB Memory-AP */ AP_TYPE_APB_AP = 0x2, /* APB Memory-AP */ AP_TYPE_AXI_AP = 0x4, /* AXI Memory-AP */ }; /** * Queue a DP register read. * Note that not all DP registers are readable; also, that JTAG and SWD * have slight differences in DP register support. * * @param dap The DAP used for reading. * @param reg The two-bit number of the DP register being read. * @param data Pointer saying where to store the register's value * (in host endianness). * * @return ERROR_OK for success, else a fault code. */ static inline int dap_queue_dp_read(struct adiv5_dap *dap, unsigned reg, uint32_t *data) { assert(dap->ops != NULL); return dap->ops->queue_dp_read(dap, reg, data); } /** * Queue a DP register write. * Note that not all DP registers are writable; also, that JTAG and SWD * have slight differences in DP register support. * * @param dap The DAP used for writing. * @param reg The two-bit number of the DP register being written. * @param data Value being written (host endianness) * * @return ERROR_OK for success, else a fault code. */ static inline int dap_queue_dp_write(struct adiv5_dap *dap, unsigned reg, uint32_t data) { assert(dap->ops != NULL); return dap->ops->queue_dp_write(dap, reg, data); } /** * Queue an AP register read. * * @param ap The AP used for reading. * @param reg The number of the AP register being read. * @param data Pointer saying where to store the register's value * (in host endianness). * * @return ERROR_OK for success, else a fault code. */ static inline int dap_queue_ap_read(struct adiv5_ap *ap, unsigned reg, uint32_t *data) { assert(ap->dap->ops != NULL); return ap->dap->ops->queue_ap_read(ap, reg, data); } /** * Queue an AP register write. * * @param ap The AP used for writing. * @param reg The number of the AP register being written. * @param data Value being written (host endianness) * * @return ERROR_OK for success, else a fault code. */ static inline int dap_queue_ap_write(struct adiv5_ap *ap, unsigned reg, uint32_t data) { assert(ap->dap->ops != NULL); return ap->dap->ops->queue_ap_write(ap, reg, data); } /** * Queue an AP abort operation. The current AP transaction is aborted, * including any update of the transaction counter. The AP is left in * an unknown state (so it must be re-initialized). For use only after * the AP has reported WAIT status for an extended period. * * @param dap The DAP used for writing. * @param ack Pointer to where transaction status will be stored. * * @return ERROR_OK for success, else a fault code. */ static inline int dap_queue_ap_abort(struct adiv5_dap *dap, uint8_t *ack) { assert(dap->ops != NULL); return dap->ops->queue_ap_abort(dap, ack); } /** * Perform all queued DAP operations, and clear any errors posted in the * CTRL_STAT register when they are done. Note that if more than one AP * operation will be queued, one of the first operations in the queue * should probably enable CORUNDETECT in the CTRL/STAT register. * * @param dap The DAP used. * * @return ERROR_OK for success, else a fault code. */ static inline int dap_run(struct adiv5_dap *dap) { assert(dap->ops != NULL); return dap->ops->run(dap); } static inline int dap_sync(struct adiv5_dap *dap) { assert(dap->ops != NULL); if (dap->ops->sync) return dap->ops->sync(dap); return ERROR_OK; } static inline int dap_dp_read_atomic(struct adiv5_dap *dap, unsigned reg, uint32_t *value) { int retval; retval = dap_queue_dp_read(dap, reg, value); if (retval != ERROR_OK) return retval; return dap_run(dap); } static inline int dap_dp_poll_register(struct adiv5_dap *dap, unsigned reg, uint32_t mask, uint32_t value, int timeout) { assert(timeout > 0); assert((value & mask) == value); int ret; uint32_t regval; LOG_DEBUG("DAP: poll %x, mask 0x%08" PRIx32 ", value 0x%08" PRIx32, reg, mask, value); do { ret = dap_dp_read_atomic(dap, reg, ®val); if (ret != ERROR_OK) return ret; if ((regval & mask) == value) break; alive_sleep(10); } while (--timeout); if (!timeout) { LOG_DEBUG("DAP: poll %x timeout", reg); return ERROR_WAIT; } else { return ERROR_OK; } } /* Queued MEM-AP memory mapped single word transfers. */ int mem_ap_read_u32(struct adiv5_ap *ap, uint32_t address, uint32_t *value); int mem_ap_write_u32(struct adiv5_ap *ap, uint32_t address, uint32_t value); /* Synchronous MEM-AP memory mapped single word transfers. */ int mem_ap_read_atomic_u32(struct adiv5_ap *ap, uint32_t address, uint32_t *value); int mem_ap_write_atomic_u32(struct adiv5_ap *ap, uint32_t address, uint32_t value); /* Synchronous MEM-AP memory mapped bus block transfers. */ int mem_ap_read_buf(struct adiv5_ap *ap, uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address); int mem_ap_write_buf(struct adiv5_ap *ap, const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address); /* Synchronous, non-incrementing buffer functions for accessing fifos. */ int mem_ap_read_buf_noincr(struct adiv5_ap *ap, uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address); int mem_ap_write_buf_noincr(struct adiv5_ap *ap, const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address); /* Create DAP struct */ struct adiv5_dap *dap_init(void); /* Initialisation of the debug system, power domains and registers */ int dap_dp_init(struct adiv5_dap *dap); int mem_ap_init(struct adiv5_ap *ap); /* Probe the AP for ROM Table location */ int dap_get_debugbase(struct adiv5_ap *ap, uint32_t *dbgbase, uint32_t *apid); /* Probe Access Ports to find a particular type */ int dap_find_ap(struct adiv5_dap *dap, enum ap_type type_to_find, struct adiv5_ap **ap_out); static inline struct adiv5_ap *dap_ap(struct adiv5_dap *dap, uint8_t ap_num) { return &dap->ap[ap_num]; } /* Lookup CoreSight component */ int dap_lookup_cs_component(struct adiv5_ap *ap, uint32_t dbgbase, uint8_t type, uint32_t *addr, int32_t *idx); struct target; /* Put debug link into SWD mode */ int dap_to_swd(struct target *target); /* Put debug link into JTAG mode */ int dap_to_jtag(struct target *target); extern const struct command_registration dap_command_handlers[]; struct adiv5_private_config { int ap_num; }; extern int adiv5_jim_configure(struct target *target, Jim_GetOptInfo *goi); #endif /* OPENOCD_TARGET_ARM_ADI_V5_H */