/*************************************************************************** * Copyright (C) 2006 by Magnus Lundin * * lundin@mlu.mine.nu * * * * Copyright (C) 2008 by Spencer Oliver * * spen@spen-soft.co.uk * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * ***************************************************************************/ #ifndef ARM_ADI_V5_H #define ARM_ADI_V5_H /** * @file * This defines formats and data structures used to talk to ADIv5 entities. * Those include a DAP, different types of Debug Port (DP), and memory mapped * resources accessed through a MEM-AP. */ #include "arm_jtag.h" /* FIXME remove these JTAG-specific decls when mem_ap_read_buf_u32() * is no longer JTAG-specific */ #define JTAG_DP_DPACC 0xA #define JTAG_DP_APACC 0xB /* three-bit ACK values for SWD access (sent LSB first) */ #define SWD_ACK_OK 0x1 #define SWD_ACK_WAIT 0x2 #define SWD_ACK_FAULT 0x4 #define DPAP_WRITE 0 #define DPAP_READ 1 #define BANK_REG(bank, reg) (((bank) << 4) | (reg)) /* A[3:0] for DP registers; A[1:0] are always zero. * - JTAG accesses all of these via JTAG_DP_DPACC, except for * IDCODE (JTAG_DP_IDCODE) and ABORT (JTAG_DP_ABORT). * - SWD accesses these directly, sometimes needing SELECT.CTRLSEL */ #define DP_IDCODE BANK_REG(0x0, 0x0) /* SWD: read */ #define DP_ABORT BANK_REG(0x0, 0x0) /* SWD: write */ #define DP_CTRL_STAT BANK_REG(0x0, 0x4) /* r/w */ #define DP_RESEND BANK_REG(0x0, 0x8) /* SWD: read */ #define DP_SELECT BANK_REG(0x0, 0x8) /* JTAG: r/w; SWD: write */ #define DP_RDBUFF BANK_REG(0x0, 0xC) /* read-only */ #define DP_WCR BANK_REG(0x1, 0x4) /* SWD: r/w */ #define WCR_TO_TRN(wcr) ((uint32_t)(1 + (3 & ((wcr)) >> 8))) /* 1..4 clocks */ #define WCR_TO_PRESCALE(wcr) ((uint32_t)(7 & ((wcr)))) /* impl defined */ /* Fields of the DP's AP ABORT register */ #define DAPABORT (1UL << 0) #define STKCMPCLR (1UL << 1) /* SWD-only */ #define STKERRCLR (1UL << 2) /* SWD-only */ #define WDERRCLR (1UL << 3) /* SWD-only */ #define ORUNERRCLR (1UL << 4) /* SWD-only */ /* Fields of the DP's CTRL/STAT register */ #define CORUNDETECT (1UL << 0) #define SSTICKYORUN (1UL << 1) /* 3:2 - transaction mode (e.g. pushed compare) */ #define SSTICKYCMP (1UL << 4) #define SSTICKYERR (1UL << 5) #define READOK (1UL << 6) /* SWD-only */ #define WDATAERR (1UL << 7) /* SWD-only */ /* 11:8 - mask lanes for pushed compare or verify ops */ /* 21:12 - transaction counter */ #define CDBGRSTREQ (1UL << 26) #define CDBGRSTACK (1UL << 27) #define CDBGPWRUPREQ (1UL << 28) #define CDBGPWRUPACK (1UL << 29) #define CSYSPWRUPREQ (1UL << 30) #define CSYSPWRUPACK (1UL << 31) /* MEM-AP register addresses */ /* TODO: rename as MEM_AP_REG_* */ #define AP_REG_CSW 0x00 #define AP_REG_TAR 0x04 #define AP_REG_DRW 0x0C #define AP_REG_BD0 0x10 #define AP_REG_BD1 0x14 #define AP_REG_BD2 0x18 #define AP_REG_BD3 0x1C #define AP_REG_CFG 0xF4 /* big endian? */ #define AP_REG_BASE 0xF8 /* Generic AP register address */ #define AP_REG_IDR 0xFC /* Fields of the MEM-AP's CSW register */ #define CSW_8BIT 0 #define CSW_16BIT 1 #define CSW_32BIT 2 #define CSW_ADDRINC_MASK (3UL << 4) #define CSW_ADDRINC_OFF 0UL #define CSW_ADDRINC_SINGLE (1UL << 4) #define CSW_ADDRINC_PACKED (2UL << 4) #define CSW_DEVICE_EN (1UL << 6) #define CSW_TRIN_PROG (1UL << 7) #define CSW_SPIDEN (1UL << 23) /* 30:24 - implementation-defined! */ #define CSW_HPROT (1UL << 25) /* ? */ #define CSW_MASTER_DEBUG (1UL << 29) /* ? */ #define CSW_SPROT (1UL << 30) #define CSW_DBGSWENABLE (1UL << 31) /** * This represents an ARM Debug Interface (v5) Debug Access Port (DAP). * A DAP has two types of component: one Debug Port (DP), which is a * transport agent; and at least one Access Port (AP), controlling * resource access. Most common is a MEM-AP, for memory access. * * There are two basic DP transports: JTAG, and ARM's low pin-count SWD. * Accordingly, this interface is responsible for hiding the transport * differences so upper layer code can largely ignore them. * * When the chip is implemented with JTAG-DP or SW-DP, the transport is * fixed as JTAG or SWD, respectively. Chips incorporating SWJ-DP permit * a choice made at board design time (by only using the SWD pins), or * as part of setting up a debug session (if all the dual-role JTAG/SWD * signals are available). */ struct adiv5_dap { const struct dap_ops *ops; struct arm_jtag *jtag_info; /* Control config */ uint32_t dp_ctrl_stat; uint32_t apcsw[256]; uint32_t apsel; /** * Cache for DP_SELECT bits identifying the current AP. A DAP may * connect to multiple APs, such as one MEM-AP for general access, * another reserved for accessing debug modules, and a JTAG-DP. * "-1" indicates no cached value. */ uint32_t ap_current; /** * Cache for DP_SELECT bits identifying the current four-word AP * register bank. This caches AP register addresss bits 7:4; JTAG * and SWD access primitves pass address bits 3:2; bits 1:0 are zero. * "-1" indicates no cached value. */ uint32_t ap_bank_value; /** * Cache for DP_SELECT bits identifying the current four-word DP * register bank. This caches DP register addresss bits 7:4; JTAG * and SWD access primitves pass address bits 3:2; bits 1:0 are zero. */ uint32_t dp_bank_value; /** * Cache for (MEM-AP) AP_REG_CSW register value. This is written to * configure an access mode, such as autoincrementing AP_REG_TAR during * word access. "-1" indicates no cached value. */ uint32_t ap_csw_value; /** * Cache for (MEM-AP) AP_REG_TAR register value This is written to * configure the address being read or written * "-1" indicates no cached value. */ uint32_t ap_tar_value; /* information about current pending SWjDP-AHBAP transaction */ uint8_t ack; /** * Holds the pointer to the destination word for the last queued read, * for use with posted AP read sequence optimization. */ uint32_t *last_read; /** * Configures how many extra tck clocks are added after starting a * MEM-AP access before we try to read its status (and/or result). */ uint32_t memaccess_tck; /* Size of TAR autoincrement block, ARM ADI Specification requires at least 10 bits */ uint32_t tar_autoincr_block; /* true if packed transfers are supported by the MEM-AP */ bool packed_transfers; /* true if unaligned memory access is not supported by the MEM-AP */ bool unaligned_access_bad; /* The TI TMS470 and TMS570 series processors use a BE-32 memory ordering * despite lack of support in the ARMv7 architecture. Memory access through * the AHB-AP has strange byte ordering these processors, and we need to * swizzle appropriately. */ bool ti_be_32_quirks; }; /** * Transport-neutral representation of queued DAP transactions, supporting * both JTAG and SWD transports. All submitted transactions are logically * queued, until the queue is executed by run(). Some implementations might * execute transactions as soon as they're submitted, but no status is made * available until run(). */ struct dap_ops { /** If the DAP transport isn't SWD, it must be JTAG. Upper level * code may need to care about the difference in some cases. */ bool is_swd; /** DP register read. */ int (*queue_dp_read)(struct adiv5_dap *dap, unsigned reg, uint32_t *data); /** DP register write. */ int (*queue_dp_write)(struct adiv5_dap *dap, unsigned reg, uint32_t data); /** AP register read. */ int (*queue_ap_read)(struct adiv5_dap *dap, unsigned reg, uint32_t *data); /** AP register write. */ int (*queue_ap_write)(struct adiv5_dap *dap, unsigned reg, uint32_t data); /** AP operation abort. */ int (*queue_ap_abort)(struct adiv5_dap *dap, uint8_t *ack); /** Executes all queued DAP operations. */ int (*run)(struct adiv5_dap *dap); }; /* * Access Port types */ enum ap_type { AP_TYPE_AHB_AP = 0x01, /* AHB Memory-AP */ AP_TYPE_APB_AP = 0x02, /* APB Memory-AP */ AP_TYPE_JTAG_AP = 0x10 /* JTAG-AP - JTAG master for controlling other JTAG devices */ }; /** * Queue a DP register read. * Note that not all DP registers are readable; also, that JTAG and SWD * have slight differences in DP register support. * * @param dap The DAP used for reading. * @param reg The two-bit number of the DP register being read. * @param data Pointer saying where to store the register's value * (in host endianness). * * @return ERROR_OK for success, else a fault code. */ static inline int dap_queue_dp_read(struct adiv5_dap *dap, unsigned reg, uint32_t *data) { assert(dap->ops != NULL); return dap->ops->queue_dp_read(dap, reg, data); } /** * Queue a DP register write. * Note that not all DP registers are writable; also, that JTAG and SWD * have slight differences in DP register support. * * @param dap The DAP used for writing. * @param reg The two-bit number of the DP register being written. * @param data Value being written (host endianness) * * @return ERROR_OK for success, else a fault code. */ static inline int dap_queue_dp_write(struct adiv5_dap *dap, unsigned reg, uint32_t data) { assert(dap->ops != NULL); return dap->ops->queue_dp_write(dap, reg, data); } /** * Queue an AP register read. * * @param dap The DAP used for reading. * @param reg The number of the AP register being read. * @param data Pointer saying where to store the register's value * (in host endianness). * * @return ERROR_OK for success, else a fault code. */ static inline int dap_queue_ap_read(struct adiv5_dap *dap, unsigned reg, uint32_t *data) { assert(dap->ops != NULL); return dap->ops->queue_ap_read(dap, reg, data); } /** * Queue an AP register write. * * @param dap The DAP used for writing. * @param reg The number of the AP register being written. * @param data Value being written (host endianness) * * @return ERROR_OK for success, else a fault code. */ static inline int dap_queue_ap_write(struct adiv5_dap *dap, unsigned reg, uint32_t data) { assert(dap->ops != NULL); return dap->ops->queue_ap_write(dap, reg, data); } /** * Queue an AP abort operation. The current AP transaction is aborted, * including any update of the transaction counter. The AP is left in * an unknown state (so it must be re-initialized). For use only after * the AP has reported WAIT status for an extended period. * * @param dap The DAP used for writing. * @param ack Pointer to where transaction status will be stored. * * @return ERROR_OK for success, else a fault code. */ static inline int dap_queue_ap_abort(struct adiv5_dap *dap, uint8_t *ack) { assert(dap->ops != NULL); return dap->ops->queue_ap_abort(dap, ack); } /** * Perform all queued DAP operations, and clear any errors posted in the * CTRL_STAT register when they are done. Note that if more than one AP * operation will be queued, one of the first operations in the queue * should probably enable CORUNDETECT in the CTRL/STAT register. * * @param dap The DAP used. * * @return ERROR_OK for success, else a fault code. */ static inline int dap_run(struct adiv5_dap *dap) { assert(dap->ops != NULL); return dap->ops->run(dap); } static inline int dap_dp_read_atomic(struct adiv5_dap *dap, unsigned reg, uint32_t *value) { int retval; retval = dap_queue_dp_read(dap, reg, value); if (retval != ERROR_OK) return retval; return dap_run(dap); } static inline int dap_dp_poll_register(struct adiv5_dap *dap, unsigned reg, uint32_t mask, uint32_t value, int timeout) { assert(timeout > 0); assert((value & mask) == value); int ret; uint32_t regval; LOG_DEBUG("DAP: poll %x, mask 0x08%" PRIx32 ", value 0x%08" PRIx32, reg, mask, value); do { ret = dap_dp_read_atomic(dap, reg, ®val); if (ret != ERROR_OK) return ret; if ((regval & mask) == value) break; alive_sleep(10); } while (--timeout); if (!timeout) { LOG_DEBUG("DAP: poll %x timeout", reg); return ERROR_FAIL; } else { return ERROR_OK; } } /** Accessor for currently selected DAP-AP number (0..255) */ static inline uint8_t dap_ap_get_select(struct adiv5_dap *swjdp) { return (uint8_t)(swjdp->ap_current >> 24); } /* AP selection applies to future AP transactions */ void dap_ap_select(struct adiv5_dap *dap, uint8_t ap); /* Queued AP transactions */ int dap_setup_accessport(struct adiv5_dap *swjdp, uint32_t csw, uint32_t tar); /* Queued MEM-AP memory mapped single word transfers */ int mem_ap_read_u32(struct adiv5_dap *swjdp, uint32_t address, uint32_t *value); int mem_ap_write_u32(struct adiv5_dap *swjdp, uint32_t address, uint32_t value); /* Synchronous MEM-AP memory mapped single word transfers */ int mem_ap_read_atomic_u32(struct adiv5_dap *swjdp, uint32_t address, uint32_t *value); int mem_ap_write_atomic_u32(struct adiv5_dap *swjdp, uint32_t address, uint32_t value); /* Queued MEM-AP memory mapped single word transfers with selection of ap */ int mem_ap_sel_read_u32(struct adiv5_dap *swjdp, uint8_t ap, uint32_t address, uint32_t *value); int mem_ap_sel_write_u32(struct adiv5_dap *swjdp, uint8_t ap, uint32_t address, uint32_t value); /* Synchronous MEM-AP memory mapped single word transfers with selection of ap */ int mem_ap_sel_read_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap, uint32_t address, uint32_t *value); int mem_ap_sel_write_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap, uint32_t address, uint32_t value); /* Synchronous MEM-AP memory mapped bus block transfers */ int mem_ap_read(struct adiv5_dap *dap, uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address, bool addrinc); int mem_ap_write(struct adiv5_dap *dap, const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address, bool addrinc); /* Synchronous MEM-AP memory mapped bus block transfers with selection of ap */ int mem_ap_sel_read_buf(struct adiv5_dap *swjdp, uint8_t ap, uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address); int mem_ap_sel_write_buf(struct adiv5_dap *swjdp, uint8_t ap, const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address); /* Synchronous, non-incrementing buffer functions for accessing fifos, with * selection of ap */ int mem_ap_sel_read_buf_noincr(struct adiv5_dap *swjdp, uint8_t ap, uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address); int mem_ap_sel_write_buf_noincr(struct adiv5_dap *swjdp, uint8_t ap, const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address); /* Initialisation of the debug system, power domains and registers */ int ahbap_debugport_init(struct adiv5_dap *swjdp); /* Probe the AP for ROM Table location */ int dap_get_debugbase(struct adiv5_dap *dap, int ap, uint32_t *dbgbase, uint32_t *apid); /* Probe Access Ports to find a particular type */ int dap_find_ap(struct adiv5_dap *dap, enum ap_type type_to_find, uint8_t *ap_num_out); /* Lookup CoreSight component */ int dap_lookup_cs_component(struct adiv5_dap *dap, int ap, uint32_t dbgbase, uint8_t type, uint32_t *addr); struct target; /* Put debug link into SWD mode */ int dap_to_swd(struct target *target); /* Put debug link into JTAG mode */ int dap_to_jtag(struct target *target); extern const struct command_registration dap_command_handlers[]; #endif