/*************************************************************************** * Copyright (C) 2006 by Dominic Rath * * Dominic.Rath@gmx.de * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "target.h" #include "armv4_5.h" #include "arm_disassembler.h" #include "arm_simulator.h" #include "log.h" #include "binarybuffer.h" #include u32 arm_shift(u8 shift, u32 Rm, u32 shift_amount, u8 *carry) { u32 return_value = 0; shift_amount &= 0xff; if (shift == 0x0) /* LSL */ { if ((shift_amount > 0) && (shift_amount <= 32)) { return_value = Rm << shift_amount; *carry = Rm >> (32 - shift_amount); } else if (shift_amount > 32) { return_value = 0x0; *carry = 0x0; } else /* (shift_amount == 0) */ { return_value = Rm; } } else if (shift == 0x1) /* LSR */ { if ((shift_amount > 0) && (shift_amount <= 32)) { return_value = Rm >> shift_amount; *carry = (Rm >> (shift_amount - 1)) & 1; } else if (shift_amount > 32) { return_value = 0x0; *carry = 0x0; } else /* (shift_amount == 0) */ { return_value = Rm; } } else if (shift == 0x2) /* ASR */ { if ((shift_amount > 0) && (shift_amount <= 32)) { /* right shifts of unsigned values are guaranteed to be logical (shift in zeroes) * simulate an arithmetic shift (shift in signed-bit) by adding the signed-bit manually */ return_value = Rm >> shift_amount; if (Rm & 0x80000000) return_value |= 0xffffffff << (32 - shift_amount); } else if (shift_amount > 32) { if (Rm & 0x80000000) { return_value = 0xffffffff; *carry = 0x1; } else { return_value = 0x0; *carry = 0x0; } } else /* (shift_amount == 0) */ { return_value = Rm; } } else if (shift == 0x3) /* ROR */ { if (shift_amount == 0) { return_value = Rm; } else { shift_amount = shift_amount % 32; return_value = (Rm >> shift_amount) | (Rm << (32 - shift_amount)); *carry = (return_value >> 31) & 0x1; } } else if (shift == 0x4) /* RRX */ { return_value = Rm >> 1; if (*carry) Rm |= 0x80000000; *carry = Rm & 0x1; } return return_value; } u32 arm_shifter_operand(armv4_5_common_t *armv4_5, int variant, union arm_shifter_operand shifter_operand, u8 *shifter_carry_out) { u32 return_value; int instruction_size; if (armv4_5->core_state == ARMV4_5_STATE_ARM) instruction_size = 4; else instruction_size = 2; *shifter_carry_out = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 29, 1); if (variant == 0) /* 32-bit immediate */ { return_value = shifter_operand.immediate.immediate; } else if (variant == 1) /* immediate shift */ { u32 Rm = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, shifter_operand.immediate_shift.Rm).value, 0, 32); /* adjust RM in case the PC is being read */ if (shifter_operand.immediate_shift.Rm == 15) Rm += 2 * instruction_size; return_value = arm_shift(shifter_operand.immediate_shift.shift, Rm, shifter_operand.immediate_shift.shift_imm, shifter_carry_out); } else if (variant == 2) /* register shift */ { u32 Rm = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, shifter_operand.register_shift.Rm).value, 0, 32); u32 Rs = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, shifter_operand.register_shift.Rs).value, 0, 32); /* adjust RM in case the PC is being read */ if (shifter_operand.register_shift.Rm == 15) Rm += 2 * instruction_size; return_value = arm_shift(shifter_operand.immediate_shift.shift, Rm, Rs, shifter_carry_out); } else { LOG_ERROR("BUG: shifter_operand.variant not 0, 1 or 2"); return_value = 0xffffffff; } return return_value; } int pass_condition(u32 cpsr, u32 opcode) { switch ((opcode & 0xf0000000) >> 28) { case 0x0: /* EQ */ if (cpsr & 0x40000000) return 1; else return 0; case 0x1: /* NE */ if (!(cpsr & 0x40000000)) return 1; else return 0; case 0x2: /* CS */ if (cpsr & 0x20000000) return 1; else return 0; case 0x3: /* CC */ if (!(cpsr & 0x20000000)) return 1; else return 0; case 0x4: /* MI */ if (cpsr & 0x80000000) return 1; else return 0; case 0x5: /* PL */ if (!(cpsr & 0x80000000)) return 1; else return 0; case 0x6: /* VS */ if (cpsr & 0x10000000) return 1; else return 0; case 0x7: /* VC */ if (!(cpsr & 0x10000000)) return 1; else return 0; case 0x8: /* HI */ if ((cpsr & 0x20000000) && !(cpsr & 0x40000000)) return 1; else return 0; case 0x9: /* LS */ if (!(cpsr & 0x20000000) || (cpsr & 0x40000000)) return 1; else return 0; case 0xa: /* GE */ if (((cpsr & 0x80000000) && (cpsr & 0x10000000)) || (!(cpsr & 0x80000000) && !(cpsr & 0x10000000))) return 1; else return 0; case 0xb: /* LT */ if (((cpsr & 0x80000000) && !(cpsr & 0x10000000)) || (!(cpsr & 0x80000000) && (cpsr & 0x10000000))) return 1; else return 0; case 0xc: /* GT */ if (!(cpsr & 0x40000000) && (((cpsr & 0x80000000) && (cpsr & 0x10000000)) || (!(cpsr & 0x80000000) && !(cpsr & 0x10000000)))) return 1; else return 0; case 0xd: /* LE */ if ((cpsr & 0x40000000) && (((cpsr & 0x80000000) && !(cpsr & 0x10000000)) || (!(cpsr & 0x80000000) && (cpsr & 0x10000000)))) return 1; else return 0; case 0xe: case 0xf: return 1; } LOG_ERROR("BUG: should never get here"); return 0; } int thumb_pass_branch_condition(u32 cpsr, u16 opcode) { return pass_condition(cpsr, (opcode & 0x0f00) << 20); } /* simulate a single step (if possible) * if the dry_run_pc argument is provided, no state is changed, * but the new pc is stored in the variable pointed at by the argument */ int arm_simulate_step(target_t *target, u32 *dry_run_pc) { armv4_5_common_t *armv4_5 = target->arch_info; u32 current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32); arm_instruction_t instruction; int instruction_size; if (armv4_5->core_state == ARMV4_5_STATE_ARM) { u32 opcode; /* get current instruction, and identify it */ target_read_u32(target, current_pc, &opcode); arm_evaluate_opcode(opcode, current_pc, &instruction); instruction_size = 4; /* check condition code (for all instructions) */ if (!pass_condition(buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32), opcode)) { if (dry_run_pc) { *dry_run_pc = current_pc + instruction_size; } else { buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, current_pc + instruction_size); } return ERROR_OK; } } else { u16 opcode; target_read_u16(target, current_pc, &opcode); thumb_evaluate_opcode(opcode, current_pc, &instruction); instruction_size = 2; /* check condition code (only for branch instructions) */ if ((!thumb_pass_branch_condition(buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32), opcode)) && (instruction.type == ARM_B)) { if (dry_run_pc) { *dry_run_pc = current_pc + instruction_size; } else { buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, current_pc + instruction_size); } return ERROR_OK; } } /* examine instruction type */ /* branch instructions */ if ((instruction.type >= ARM_B) && (instruction.type <= ARM_BLX)) { u32 target; if (instruction.info.b_bl_bx_blx.reg_operand == -1) { target = instruction.info.b_bl_bx_blx.target_address; } else { target = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, instruction.info.b_bl_bx_blx.reg_operand).value, 0, 32); } if (dry_run_pc) { *dry_run_pc = target; return ERROR_OK; } else { if (instruction.type == ARM_B) { buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, target); } else if (instruction.type == ARM_BL) { u32 old_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32); buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 14).value, 0, 32, old_pc + 4); buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, target); } else if (instruction.type == ARM_BX) { if (target & 0x1) { armv4_5->core_state = ARMV4_5_STATE_THUMB; } else { armv4_5->core_state = ARMV4_5_STATE_ARM; } buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, target & 0xfffffffe); } else if (instruction.type == ARM_BLX) { u32 old_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32); buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 14).value, 0, 32, old_pc + 4); if (target & 0x1) { armv4_5->core_state = ARMV4_5_STATE_THUMB; } else { armv4_5->core_state = ARMV4_5_STATE_ARM; } buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, target & 0xfffffffe); } return ERROR_OK; } } /* data processing instructions, except compare instructions (CMP, CMN, TST, TEQ) */ else if (((instruction.type >= ARM_AND) && (instruction.type <= ARM_RSC)) || ((instruction.type >= ARM_ORR) && (instruction.type <= ARM_MVN))) { u32 Rd, Rn, shifter_operand; u8 C = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 29, 1); u8 carry_out; Rd = 0x0; Rn = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, instruction.info.data_proc.Rn).value, 0, 32); shifter_operand = arm_shifter_operand(armv4_5, instruction.info.data_proc.variant, instruction.info.data_proc.shifter_operand, &carry_out); /* adjust Rn in case the PC is being read */ if (instruction.info.data_proc.Rn == 15) Rn += 2 * instruction_size; if (instruction.type == ARM_AND) Rd = Rn & shifter_operand; else if (instruction.type == ARM_EOR) Rd = Rn ^ shifter_operand; else if (instruction.type == ARM_SUB) Rd = Rn - shifter_operand; else if (instruction.type == ARM_RSB) Rd = shifter_operand - Rn; else if (instruction.type == ARM_ADD) Rd = Rn + shifter_operand; else if (instruction.type == ARM_ADC) Rd = Rn + shifter_operand + (C & 1); else if (instruction.type == ARM_SBC) Rd = Rn - shifter_operand - (C & 1) ? 0 : 1; else if (instruction.type == ARM_RSC) Rd = shifter_operand - Rn - (C & 1) ? 0 : 1; else if (instruction.type == ARM_ORR) Rd = Rn | shifter_operand; else if (instruction.type == ARM_BIC) Rd = Rn & ~(shifter_operand); else if (instruction.type == ARM_MOV) Rd = shifter_operand; else if (instruction.type == ARM_MVN) Rd = ~shifter_operand; if (dry_run_pc) { if (instruction.info.data_proc.Rd == 15) { *dry_run_pc = Rd; return ERROR_OK; } else { *dry_run_pc = current_pc + instruction_size; } return ERROR_OK; } else { buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, instruction.info.data_proc.Rd).value, 0, 32, Rd); LOG_WARNING("no updating of flags yet"); if (instruction.info.data_proc.Rd == 15) return ERROR_OK; } } /* compare instructions (CMP, CMN, TST, TEQ) */ else if ((instruction.type >= ARM_TST) && (instruction.type <= ARM_CMN)) { if (dry_run_pc) { *dry_run_pc = current_pc + instruction_size; return ERROR_OK; } else { LOG_WARNING("no updating of flags yet"); } } /* load register instructions */ else if ((instruction.type >= ARM_LDR) && (instruction.type <= ARM_LDRSH)) { u32 load_address = 0, modified_address = 0, load_value; u32 Rn = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, instruction.info.load_store.Rn).value, 0, 32); /* adjust Rn in case the PC is being read */ if (instruction.info.load_store.Rn == 15) Rn += 2 * instruction_size; if (instruction.info.load_store.offset_mode == 0) { if (instruction.info.load_store.U) modified_address = Rn + instruction.info.load_store.offset.offset; else modified_address = Rn - instruction.info.load_store.offset.offset; } else if (instruction.info.load_store.offset_mode == 1) { u32 offset; u32 Rm = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, instruction.info.load_store.offset.reg.Rm).value, 0, 32); u8 shift = instruction.info.load_store.offset.reg.shift; u8 shift_imm = instruction.info.load_store.offset.reg.shift_imm; u8 carry = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 29, 1); offset = arm_shift(shift, Rm, shift_imm, &carry); if (instruction.info.load_store.U) modified_address = Rn + offset; else modified_address = Rn - offset; } else { LOG_ERROR("BUG: offset_mode neither 0 (offset) nor 1 (scaled register)"); } if (instruction.info.load_store.index_mode == 0) { /* offset mode * we load from the modified address, but don't change the base address register */ load_address = modified_address; modified_address = Rn; } else if (instruction.info.load_store.index_mode == 1) { /* pre-indexed mode * we load from the modified address, and write it back to the base address register */ load_address = modified_address; } else if (instruction.info.load_store.index_mode == 2) { /* post-indexed mode * we load from the unmodified address, and write the modified address back */ load_address = Rn; } target_read_u32(target, load_address, &load_value); if (dry_run_pc) { if (instruction.info.load_store.Rd == 15) { *dry_run_pc = load_value; return ERROR_OK; } else { *dry_run_pc = current_pc + instruction_size; } return ERROR_OK; } else { if ((instruction.info.load_store.index_mode == 1) || (instruction.info.load_store.index_mode == 2)) { buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, instruction.info.load_store.Rn).value, 0, 32, modified_address); } buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, instruction.info.load_store.Rd).value, 0, 32, load_value); if (instruction.info.load_store.Rd == 15) return ERROR_OK; } } /* load multiple instruction */ else if (instruction.type == ARM_LDM) { int i; u32 Rn = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, instruction.info.load_store_multiple.Rn).value, 0, 32); u32 load_values[16]; int bits_set = 0; for (i = 0; i < 16; i++) { if (instruction.info.load_store_multiple.register_list & (1 << i)) bits_set++; } switch (instruction.info.load_store_multiple.addressing_mode) { case 0: /* Increment after */ Rn = Rn; break; case 1: /* Increment before */ Rn = Rn + 4; break; case 2: /* Decrement after */ Rn = Rn - (bits_set * 4) + 4; break; case 3: /* Decrement before */ Rn = Rn - (bits_set * 4); break; } for (i = 0; i < 16; i++) { if (instruction.info.load_store_multiple.register_list & (1 << i)) { target_read_u32(target, Rn, &load_values[i]); Rn += 4; } } if (dry_run_pc) { if (instruction.info.load_store_multiple.register_list & 0x8000) { *dry_run_pc = load_values[15]; return ERROR_OK; } } else { enum armv4_5_mode mode = armv4_5->core_mode; int update_cpsr = 0; if (instruction.info.load_store_multiple.S) { if (instruction.info.load_store_multiple.register_list & 0x8000) update_cpsr = 1; else mode = ARMV4_5_MODE_USR; } for (i = 0; i < 16; i++) { if (instruction.info.load_store_multiple.register_list & (1 << i)) { buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, i).value, 0, 32, load_values[i]); } } if (update_cpsr) { u32 spsr = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).value, 0, 32); buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32, spsr); } /* base register writeback */ if (instruction.info.load_store_multiple.W) buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, instruction.info.load_store_multiple.Rn).value, 0, 32, Rn); if (instruction.info.load_store_multiple.register_list & 0x8000) return ERROR_OK; } } /* store multiple instruction */ else if (instruction.type == ARM_STM) { int i; if (dry_run_pc) { /* STM wont affect PC (advance by instruction size */ } else { u32 Rn = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, instruction.info.load_store_multiple.Rn).value, 0, 32); int bits_set = 0; enum armv4_5_mode mode = armv4_5->core_mode; for (i = 0; i < 16; i++) { if (instruction.info.load_store_multiple.register_list & (1 << i)) bits_set++; } if (instruction.info.load_store_multiple.S) { mode = ARMV4_5_MODE_USR; } switch (instruction.info.load_store_multiple.addressing_mode) { case 0: /* Increment after */ Rn = Rn; break; case 1: /* Increment before */ Rn = Rn + 4; break; case 2: /* Decrement after */ Rn = Rn - (bits_set * 4) + 4; break; case 3: /* Decrement before */ Rn = Rn - (bits_set * 4); break; } for (i = 0; i < 16; i++) { if (instruction.info.load_store_multiple.register_list & (1 << i)) { target_write_u32(target, Rn, buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32)); Rn += 4; } } /* base register writeback */ if (instruction.info.load_store_multiple.W) buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, instruction.info.load_store_multiple.Rn).value, 0, 32, Rn); } } else if (!dry_run_pc) { /* the instruction wasn't handled, but we're supposed to simulate it */ return ERROR_ARM_SIMULATOR_NOT_IMPLEMENTED; } if (dry_run_pc) { *dry_run_pc = current_pc + instruction_size; return ERROR_OK; } else { buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, current_pc + instruction_size); return ERROR_OK; } }