// SPDX-License-Identifier: GPL-2.0-or-later /*************************************************************************** * Copyright (C) 2005 by Dominic Rath * * Dominic.Rath@gmx.de * * * * Copyright (C) 2008 by Spencer Oliver * * spen@spen-soft.co.uk * * * * Copyright (C) 2008 by Oyvind Harboe * * oyvind.harboe@zylin.com * * * * Copyright (C) 2018 by Liviu Ionescu * * * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "arm.h" #include "armv4_5.h" #include "arm_jtag.h" #include "breakpoints.h" #include "arm_disassembler.h" #include #include "algorithm.h" #include "register.h" #include "semihosting_common.h" /* offsets into armv4_5 core register cache */ enum { /* ARMV4_5_CPSR = 31, */ ARMV4_5_SPSR_FIQ = 32, ARMV4_5_SPSR_IRQ = 33, ARMV4_5_SPSR_SVC = 34, ARMV4_5_SPSR_ABT = 35, ARMV4_5_SPSR_UND = 36, ARM_SPSR_MON = 41, ARM_SPSR_HYP = 43, }; static const uint8_t arm_usr_indices[17] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ARMV4_5_CPSR, }; static const uint8_t arm_fiq_indices[8] = { 16, 17, 18, 19, 20, 21, 22, ARMV4_5_SPSR_FIQ, }; static const uint8_t arm_irq_indices[3] = { 23, 24, ARMV4_5_SPSR_IRQ, }; static const uint8_t arm_svc_indices[3] = { 25, 26, ARMV4_5_SPSR_SVC, }; static const uint8_t arm_abt_indices[3] = { 27, 28, ARMV4_5_SPSR_ABT, }; static const uint8_t arm_und_indices[3] = { 29, 30, ARMV4_5_SPSR_UND, }; static const uint8_t arm_mon_indices[3] = { 39, 40, ARM_SPSR_MON, }; static const uint8_t arm_hyp_indices[2] = { 42, ARM_SPSR_HYP, }; static const struct { const char *name; unsigned short psr; /* For user and system modes, these list indices for all registers. * otherwise they're just indices for the shadow registers and SPSR. */ unsigned short n_indices; const uint8_t *indices; } arm_mode_data[] = { /* Seven modes are standard from ARM7 on. "System" and "User" share * the same registers; other modes shadow from 3 to 8 registers. */ { .name = "User", .psr = ARM_MODE_USR, .n_indices = ARRAY_SIZE(arm_usr_indices), .indices = arm_usr_indices, }, { .name = "FIQ", .psr = ARM_MODE_FIQ, .n_indices = ARRAY_SIZE(arm_fiq_indices), .indices = arm_fiq_indices, }, { .name = "Supervisor", .psr = ARM_MODE_SVC, .n_indices = ARRAY_SIZE(arm_svc_indices), .indices = arm_svc_indices, }, { .name = "Abort", .psr = ARM_MODE_ABT, .n_indices = ARRAY_SIZE(arm_abt_indices), .indices = arm_abt_indices, }, { .name = "IRQ", .psr = ARM_MODE_IRQ, .n_indices = ARRAY_SIZE(arm_irq_indices), .indices = arm_irq_indices, }, { .name = "Undefined instruction", .psr = ARM_MODE_UND, .n_indices = ARRAY_SIZE(arm_und_indices), .indices = arm_und_indices, }, { .name = "System", .psr = ARM_MODE_SYS, .n_indices = ARRAY_SIZE(arm_usr_indices), .indices = arm_usr_indices, }, /* TrustZone "Security Extensions" add a secure monitor mode. * This is distinct from a "debug monitor" which can support * non-halting debug, in conjunction with some debuggers. */ { .name = "Secure Monitor", .psr = ARM_MODE_MON, .n_indices = ARRAY_SIZE(arm_mon_indices), .indices = arm_mon_indices, }, { .name = "Secure Monitor ARM1176JZF-S", .psr = ARM_MODE_1176_MON, .n_indices = ARRAY_SIZE(arm_mon_indices), .indices = arm_mon_indices, }, /* These special modes are currently only supported * by ARMv6M and ARMv7M profiles */ { .name = "Thread", .psr = ARM_MODE_THREAD, }, { .name = "Thread (User)", .psr = ARM_MODE_USER_THREAD, }, { .name = "Handler", .psr = ARM_MODE_HANDLER, }, /* armv7-a with virtualization extension */ { .name = "Hypervisor", .psr = ARM_MODE_HYP, .n_indices = ARRAY_SIZE(arm_hyp_indices), .indices = arm_hyp_indices, }, }; /** Map PSR mode bits to the name of an ARM processor operating mode. */ const char *arm_mode_name(unsigned psr_mode) { for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) { if (arm_mode_data[i].psr == psr_mode) return arm_mode_data[i].name; } LOG_ERROR("unrecognized psr mode: %#02x", psr_mode); return "UNRECOGNIZED"; } /** Return true iff the parameter denotes a valid ARM processor mode. */ bool is_arm_mode(unsigned psr_mode) { for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) { if (arm_mode_data[i].psr == psr_mode) return true; } return false; } /** Map PSR mode bits to linear number indexing armv4_5_core_reg_map */ int arm_mode_to_number(enum arm_mode mode) { switch (mode) { case ARM_MODE_ANY: /* map MODE_ANY to user mode */ case ARM_MODE_USR: return 0; case ARM_MODE_FIQ: return 1; case ARM_MODE_IRQ: return 2; case ARM_MODE_SVC: return 3; case ARM_MODE_ABT: return 4; case ARM_MODE_UND: return 5; case ARM_MODE_SYS: return 6; case ARM_MODE_MON: case ARM_MODE_1176_MON: return 7; case ARM_MODE_HYP: return 8; default: LOG_ERROR("invalid mode value encountered %d", mode); return -1; } } /** Map linear number indexing armv4_5_core_reg_map to PSR mode bits. */ enum arm_mode armv4_5_number_to_mode(int number) { switch (number) { case 0: return ARM_MODE_USR; case 1: return ARM_MODE_FIQ; case 2: return ARM_MODE_IRQ; case 3: return ARM_MODE_SVC; case 4: return ARM_MODE_ABT; case 5: return ARM_MODE_UND; case 6: return ARM_MODE_SYS; case 7: return ARM_MODE_MON; case 8: return ARM_MODE_HYP; default: LOG_ERROR("mode index out of bounds %d", number); return ARM_MODE_ANY; } } static const char *arm_state_strings[] = { "ARM", "Thumb", "Jazelle", "ThumbEE", }; /* Templates for ARM core registers. * * NOTE: offsets in this table are coupled to the arm_mode_data * table above, the armv4_5_core_reg_map array below, and also to * the ARMV4_5_CPSR symbol (which should vanish after ARM11 updates). */ static const struct { /* The name is used for e.g. the "regs" command. */ const char *name; /* The {cookie, mode} tuple uniquely identifies one register. * In a given mode, cookies 0..15 map to registers R0..R15, * with R13..R15 usually called SP, LR, PC. * * MODE_ANY is used as *input* to the mapping, and indicates * various special cases (sigh) and errors. * * Cookie 16 is (currently) confusing, since it indicates * CPSR -or- SPSR depending on whether 'mode' is MODE_ANY. * (Exception modes have both CPSR and SPSR registers ...) */ unsigned cookie; unsigned gdb_index; enum arm_mode mode; } arm_core_regs[] = { /* IMPORTANT: we guarantee that the first eight cached registers * correspond to r0..r7, and the fifteenth to PC, so that callers * don't need to map them. */ [0] = { .name = "r0", .cookie = 0, .mode = ARM_MODE_ANY, .gdb_index = 0, }, [1] = { .name = "r1", .cookie = 1, .mode = ARM_MODE_ANY, .gdb_index = 1, }, [2] = { .name = "r2", .cookie = 2, .mode = ARM_MODE_ANY, .gdb_index = 2, }, [3] = { .name = "r3", .cookie = 3, .mode = ARM_MODE_ANY, .gdb_index = 3, }, [4] = { .name = "r4", .cookie = 4, .mode = ARM_MODE_ANY, .gdb_index = 4, }, [5] = { .name = "r5", .cookie = 5, .mode = ARM_MODE_ANY, .gdb_index = 5, }, [6] = { .name = "r6", .cookie = 6, .mode = ARM_MODE_ANY, .gdb_index = 6, }, [7] = { .name = "r7", .cookie = 7, .mode = ARM_MODE_ANY, .gdb_index = 7, }, /* NOTE: regs 8..12 might be shadowed by FIQ ... flagging * them as MODE_ANY creates special cases. (ANY means * "not mapped" elsewhere; here it's "everything but FIQ".) */ [8] = { .name = "r8", .cookie = 8, .mode = ARM_MODE_ANY, .gdb_index = 8, }, [9] = { .name = "r9", .cookie = 9, .mode = ARM_MODE_ANY, .gdb_index = 9, }, [10] = { .name = "r10", .cookie = 10, .mode = ARM_MODE_ANY, .gdb_index = 10, }, [11] = { .name = "r11", .cookie = 11, .mode = ARM_MODE_ANY, .gdb_index = 11, }, [12] = { .name = "r12", .cookie = 12, .mode = ARM_MODE_ANY, .gdb_index = 12, }, /* Historical GDB mapping of indices: * - 13-14 are sp and lr, but banked counterparts are used * - 16-24 are left for deprecated 8 FPA + 1 FPS * - 25 is the cpsr */ /* NOTE all MODE_USR registers are equivalent to MODE_SYS ones */ [13] = { .name = "sp_usr", .cookie = 13, .mode = ARM_MODE_USR, .gdb_index = 26, }, [14] = { .name = "lr_usr", .cookie = 14, .mode = ARM_MODE_USR, .gdb_index = 27, }, /* guaranteed to be at index 15 */ [15] = { .name = "pc", .cookie = 15, .mode = ARM_MODE_ANY, .gdb_index = 15, }, [16] = { .name = "r8_fiq", .cookie = 8, .mode = ARM_MODE_FIQ, .gdb_index = 28, }, [17] = { .name = "r9_fiq", .cookie = 9, .mode = ARM_MODE_FIQ, .gdb_index = 29, }, [18] = { .name = "r10_fiq", .cookie = 10, .mode = ARM_MODE_FIQ, .gdb_index = 30, }, [19] = { .name = "r11_fiq", .cookie = 11, .mode = ARM_MODE_FIQ, .gdb_index = 31, }, [20] = { .name = "r12_fiq", .cookie = 12, .mode = ARM_MODE_FIQ, .gdb_index = 32, }, [21] = { .name = "sp_fiq", .cookie = 13, .mode = ARM_MODE_FIQ, .gdb_index = 33, }, [22] = { .name = "lr_fiq", .cookie = 14, .mode = ARM_MODE_FIQ, .gdb_index = 34, }, [23] = { .name = "sp_irq", .cookie = 13, .mode = ARM_MODE_IRQ, .gdb_index = 35, }, [24] = { .name = "lr_irq", .cookie = 14, .mode = ARM_MODE_IRQ, .gdb_index = 36, }, [25] = { .name = "sp_svc", .cookie = 13, .mode = ARM_MODE_SVC, .gdb_index = 37, }, [26] = { .name = "lr_svc", .cookie = 14, .mode = ARM_MODE_SVC, .gdb_index = 38, }, [27] = { .name = "sp_abt", .cookie = 13, .mode = ARM_MODE_ABT, .gdb_index = 39, }, [28] = { .name = "lr_abt", .cookie = 14, .mode = ARM_MODE_ABT, .gdb_index = 40, }, [29] = { .name = "sp_und", .cookie = 13, .mode = ARM_MODE_UND, .gdb_index = 41, }, [30] = { .name = "lr_und", .cookie = 14, .mode = ARM_MODE_UND, .gdb_index = 42, }, [31] = { .name = "cpsr", .cookie = 16, .mode = ARM_MODE_ANY, .gdb_index = 25, }, [32] = { .name = "spsr_fiq", .cookie = 16, .mode = ARM_MODE_FIQ, .gdb_index = 43, }, [33] = { .name = "spsr_irq", .cookie = 16, .mode = ARM_MODE_IRQ, .gdb_index = 44, }, [34] = { .name = "spsr_svc", .cookie = 16, .mode = ARM_MODE_SVC, .gdb_index = 45, }, [35] = { .name = "spsr_abt", .cookie = 16, .mode = ARM_MODE_ABT, .gdb_index = 46, }, [36] = { .name = "spsr_und", .cookie = 16, .mode = ARM_MODE_UND, .gdb_index = 47, }, /* These are only used for GDB target description, banked registers are accessed instead */ [37] = { .name = "sp", .cookie = 13, .mode = ARM_MODE_ANY, .gdb_index = 13, }, [38] = { .name = "lr", .cookie = 14, .mode = ARM_MODE_ANY, .gdb_index = 14, }, /* These exist only when the Security Extension (TrustZone) is present */ [39] = { .name = "sp_mon", .cookie = 13, .mode = ARM_MODE_MON, .gdb_index = 48, }, [40] = { .name = "lr_mon", .cookie = 14, .mode = ARM_MODE_MON, .gdb_index = 49, }, [41] = { .name = "spsr_mon", .cookie = 16, .mode = ARM_MODE_MON, .gdb_index = 50, }, /* These exist only when the Virtualization Extensions is present */ [42] = { .name = "sp_hyp", .cookie = 13, .mode = ARM_MODE_HYP, .gdb_index = 51, }, [43] = { .name = "spsr_hyp", .cookie = 16, .mode = ARM_MODE_HYP, .gdb_index = 52, }, }; static const struct { unsigned int id; const char *name; uint32_t bits; enum arm_mode mode; enum reg_type type; const char *group; const char *feature; } arm_vfp_v3_regs[] = { { ARM_VFP_V3_D0, "d0", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"}, { ARM_VFP_V3_D1, "d1", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"}, { ARM_VFP_V3_D2, "d2", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"}, { ARM_VFP_V3_D3, "d3", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"}, { ARM_VFP_V3_D4, "d4", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"}, { ARM_VFP_V3_D5, "d5", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"}, { ARM_VFP_V3_D6, "d6", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"}, { ARM_VFP_V3_D7, "d7", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"}, { ARM_VFP_V3_D8, "d8", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"}, { ARM_VFP_V3_D9, "d9", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"}, { ARM_VFP_V3_D10, "d10", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"}, { ARM_VFP_V3_D11, "d11", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"}, { ARM_VFP_V3_D12, "d12", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"}, { ARM_VFP_V3_D13, "d13", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"}, { ARM_VFP_V3_D14, "d14", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"}, { ARM_VFP_V3_D15, "d15", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"}, { ARM_VFP_V3_D16, "d16", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"}, { ARM_VFP_V3_D17, "d17", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"}, { ARM_VFP_V3_D18, "d18", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"}, { ARM_VFP_V3_D19, "d19", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"}, { ARM_VFP_V3_D20, "d20", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"}, { ARM_VFP_V3_D21, "d21", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"}, { ARM_VFP_V3_D22, "d22", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"}, { ARM_VFP_V3_D23, "d23", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"}, { ARM_VFP_V3_D24, "d24", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"}, { ARM_VFP_V3_D25, "d25", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"}, { ARM_VFP_V3_D26, "d26", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"}, { ARM_VFP_V3_D27, "d27", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"}, { ARM_VFP_V3_D28, "d28", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"}, { ARM_VFP_V3_D29, "d29", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"}, { ARM_VFP_V3_D30, "d30", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"}, { ARM_VFP_V3_D31, "d31", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"}, { ARM_VFP_V3_FPSCR, "fpscr", 32, ARM_MODE_ANY, REG_TYPE_INT, "float", "org.gnu.gdb.arm.vfp"}, }; /* map core mode (USR, FIQ, ...) and register number to * indices into the register cache */ const int armv4_5_core_reg_map[9][17] = { { /* USR */ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31 }, { /* FIQ (8 shadows of USR, vs normal 3) */ 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 15, 32 }, { /* IRQ */ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23, 24, 15, 33 }, { /* SVC */ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 25, 26, 15, 34 }, { /* ABT */ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 27, 28, 15, 35 }, { /* UND */ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 29, 30, 15, 36 }, { /* SYS (same registers as USR) */ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31 }, { /* MON */ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 39, 40, 15, 41, }, { /* HYP */ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 42, 14, 15, 43, } }; /** * Configures host-side ARM records to reflect the specified CPSR. * Later, code can use arm_reg_current() to map register numbers * according to how they are exposed by this mode. */ void arm_set_cpsr(struct arm *arm, uint32_t cpsr) { enum arm_mode mode = cpsr & 0x1f; int num; /* NOTE: this may be called very early, before the register * cache is set up. We can't defend against many errors, in * particular against CPSRs that aren't valid *here* ... */ if (arm->cpsr) { buf_set_u32(arm->cpsr->value, 0, 32, cpsr); arm->cpsr->valid = true; arm->cpsr->dirty = false; } arm->core_mode = mode; /* mode_to_number() warned; set up a somewhat-sane mapping */ num = arm_mode_to_number(mode); if (num < 0) { mode = ARM_MODE_USR; num = 0; } arm->map = &armv4_5_core_reg_map[num][0]; arm->spsr = (mode == ARM_MODE_USR || mode == ARM_MODE_SYS) ? NULL : arm->core_cache->reg_list + arm->map[16]; /* Older ARMs won't have the J bit */ enum arm_state state; if (cpsr & (1 << 5)) { /* T */ if (cpsr & (1 << 24)) { /* J */ LOG_WARNING("ThumbEE -- incomplete support"); state = ARM_STATE_THUMB_EE; } else state = ARM_STATE_THUMB; } else { if (cpsr & (1 << 24)) { /* J */ LOG_ERROR("Jazelle state handling is BROKEN!"); state = ARM_STATE_JAZELLE; } else state = ARM_STATE_ARM; } arm->core_state = state; LOG_DEBUG("set CPSR %#8.8x: %s mode, %s state", (unsigned) cpsr, arm_mode_name(mode), arm_state_strings[arm->core_state]); } /** * Returns handle to the register currently mapped to a given number. * Someone must have called arm_set_cpsr() before. * * \param arm This core's state and registers are used. * \param regnum From 0..15 corresponding to R0..R14 and PC. * Note that R0..R7 don't require mapping; you may access those * as the first eight entries in the register cache. Likewise * R15 (PC) doesn't need mapping; you may also access it directly. * However, R8..R14, and SPSR (arm->spsr) *must* be mapped. * CPSR (arm->cpsr) is also not mapped. */ struct reg *arm_reg_current(struct arm *arm, unsigned regnum) { struct reg *r; if (regnum > 16) return NULL; if (!arm->map) { LOG_ERROR("Register map is not available yet, the target is not fully initialised"); r = arm->core_cache->reg_list + regnum; } else r = arm->core_cache->reg_list + arm->map[regnum]; /* e.g. invalid CPSR said "secure monitor" mode on a core * that doesn't support it... */ if (!r) { LOG_ERROR("Invalid CPSR mode"); r = arm->core_cache->reg_list + regnum; } return r; } static const uint8_t arm_gdb_dummy_fp_value[12]; static struct reg_feature arm_gdb_dummy_fp_features = { .name = "net.sourceforge.openocd.fake_fpa" }; /** * Dummy FPA registers are required to support GDB on ARM. * Register packets require eight obsolete FPA register values. * Modern ARM cores use Vector Floating Point (VFP), if they * have any floating point support. VFP is not FPA-compatible. */ static struct reg arm_gdb_dummy_fp_reg = { .name = "GDB dummy FPA register", .value = (uint8_t *) arm_gdb_dummy_fp_value, .valid = true, .size = 96, .exist = false, .number = 16, .feature = &arm_gdb_dummy_fp_features, .group = "fake_fpa", }; static const uint8_t arm_gdb_dummy_fps_value[4]; /** * Dummy FPA status registers are required to support GDB on ARM. * Register packets require an obsolete FPA status register. */ static struct reg arm_gdb_dummy_fps_reg = { .name = "GDB dummy FPA status register", .value = (uint8_t *) arm_gdb_dummy_fps_value, .valid = true, .size = 32, .exist = false, .number = 24, .feature = &arm_gdb_dummy_fp_features, .group = "fake_fpa", }; static void arm_gdb_dummy_init(void) __attribute__ ((constructor)); static void arm_gdb_dummy_init(void) { register_init_dummy(&arm_gdb_dummy_fp_reg); register_init_dummy(&arm_gdb_dummy_fps_reg); } static int armv4_5_get_core_reg(struct reg *reg) { int retval; struct arm_reg *reg_arch_info = reg->arch_info; struct target *target = reg_arch_info->target; if (target->state != TARGET_HALTED) { LOG_TARGET_ERROR(target, "not halted"); return ERROR_TARGET_NOT_HALTED; } retval = reg_arch_info->arm->read_core_reg(target, reg, reg_arch_info->num, reg_arch_info->mode); if (retval == ERROR_OK) { reg->valid = true; reg->dirty = false; } return retval; } static int armv4_5_set_core_reg(struct reg *reg, uint8_t *buf) { struct arm_reg *reg_arch_info = reg->arch_info; struct target *target = reg_arch_info->target; struct arm *armv4_5_target = target_to_arm(target); uint32_t value = buf_get_u32(buf, 0, 32); if (target->state != TARGET_HALTED) { LOG_TARGET_ERROR(target, "not halted"); return ERROR_TARGET_NOT_HALTED; } /* Except for CPSR, the "reg" command exposes a writeback model * for the register cache. */ if (reg == armv4_5_target->cpsr) { arm_set_cpsr(armv4_5_target, value); /* Older cores need help to be in ARM mode during halt * mode debug, so we clear the J and T bits if we flush. * For newer cores (v6/v7a/v7r) we don't need that, but * it won't hurt since CPSR is always flushed anyway. */ if (armv4_5_target->core_mode != (enum arm_mode)(value & 0x1f)) { LOG_DEBUG("changing ARM core mode to '%s'", arm_mode_name(value & 0x1f)); value &= ~((1 << 24) | (1 << 5)); uint8_t t[4]; buf_set_u32(t, 0, 32, value); armv4_5_target->write_core_reg(target, reg, 16, ARM_MODE_ANY, t); } } else { buf_set_u32(reg->value, 0, 32, value); if (reg->size == 64) { value = buf_get_u32(buf + 4, 0, 32); buf_set_u32(reg->value + 4, 0, 32, value); } reg->valid = true; } reg->dirty = true; return ERROR_OK; } static const struct reg_arch_type arm_reg_type = { .get = armv4_5_get_core_reg, .set = armv4_5_set_core_reg, }; struct reg_cache *arm_build_reg_cache(struct target *target, struct arm *arm) { int num_regs = ARRAY_SIZE(arm_core_regs); int num_core_regs = num_regs; if (arm->arm_vfp_version == ARM_VFP_V3) num_regs += ARRAY_SIZE(arm_vfp_v3_regs); struct reg_cache *cache = malloc(sizeof(struct reg_cache)); struct reg *reg_list = calloc(num_regs, sizeof(struct reg)); struct arm_reg *reg_arch_info = calloc(num_regs, sizeof(struct arm_reg)); int i; if (!cache || !reg_list || !reg_arch_info) { free(cache); free(reg_list); free(reg_arch_info); return NULL; } cache->name = "ARM registers"; cache->next = NULL; cache->reg_list = reg_list; cache->num_regs = 0; for (i = 0; i < num_core_regs; i++) { /* Skip registers this core doesn't expose */ if (arm_core_regs[i].mode == ARM_MODE_MON && arm->core_type != ARM_CORE_TYPE_SEC_EXT && arm->core_type != ARM_CORE_TYPE_VIRT_EXT) continue; if (arm_core_regs[i].mode == ARM_MODE_HYP && arm->core_type != ARM_CORE_TYPE_VIRT_EXT) continue; /* REVISIT handle Cortex-M, which only shadows R13/SP */ reg_arch_info[i].num = arm_core_regs[i].cookie; reg_arch_info[i].mode = arm_core_regs[i].mode; reg_arch_info[i].target = target; reg_arch_info[i].arm = arm; reg_list[i].name = arm_core_regs[i].name; reg_list[i].number = arm_core_regs[i].gdb_index; reg_list[i].size = 32; reg_list[i].value = reg_arch_info[i].value; reg_list[i].type = &arm_reg_type; reg_list[i].arch_info = ®_arch_info[i]; reg_list[i].exist = true; /* This really depends on the calling convention in use */ reg_list[i].caller_save = false; /* Registers data type, as used by GDB target description */ reg_list[i].reg_data_type = malloc(sizeof(struct reg_data_type)); switch (arm_core_regs[i].cookie) { case 13: reg_list[i].reg_data_type->type = REG_TYPE_DATA_PTR; break; case 14: case 15: reg_list[i].reg_data_type->type = REG_TYPE_CODE_PTR; break; default: reg_list[i].reg_data_type->type = REG_TYPE_UINT32; break; } /* let GDB shows banked registers only in "info all-reg" */ reg_list[i].feature = malloc(sizeof(struct reg_feature)); if (reg_list[i].number <= 15 || reg_list[i].number == 25) { reg_list[i].feature->name = "org.gnu.gdb.arm.core"; reg_list[i].group = "general"; } else { reg_list[i].feature->name = "net.sourceforge.openocd.banked"; reg_list[i].group = "banked"; } cache->num_regs++; } int j; for (i = num_core_regs, j = 0; i < num_regs; i++, j++) { reg_arch_info[i].num = arm_vfp_v3_regs[j].id; reg_arch_info[i].mode = arm_vfp_v3_regs[j].mode; reg_arch_info[i].target = target; reg_arch_info[i].arm = arm; reg_list[i].name = arm_vfp_v3_regs[j].name; reg_list[i].number = arm_vfp_v3_regs[j].id; reg_list[i].size = arm_vfp_v3_regs[j].bits; reg_list[i].value = reg_arch_info[i].value; reg_list[i].type = &arm_reg_type; reg_list[i].arch_info = ®_arch_info[i]; reg_list[i].exist = true; reg_list[i].caller_save = false; reg_list[i].reg_data_type = malloc(sizeof(struct reg_data_type)); reg_list[i].reg_data_type->type = arm_vfp_v3_regs[j].type; reg_list[i].feature = malloc(sizeof(struct reg_feature)); reg_list[i].feature->name = arm_vfp_v3_regs[j].feature; reg_list[i].group = arm_vfp_v3_regs[j].group; cache->num_regs++; } arm->pc = reg_list + 15; arm->cpsr = reg_list + ARMV4_5_CPSR; arm->core_cache = cache; return cache; } void arm_free_reg_cache(struct arm *arm) { if (!arm || !arm->core_cache) return; struct reg_cache *cache = arm->core_cache; for (unsigned int i = 0; i < cache->num_regs; i++) { struct reg *reg = &cache->reg_list[i]; free(reg->feature); free(reg->reg_data_type); } free(cache->reg_list[0].arch_info); free(cache->reg_list); free(cache); arm->core_cache = NULL; } int arm_arch_state(struct target *target) { struct arm *arm = target_to_arm(target); if (arm->common_magic != ARM_COMMON_MAGIC) { LOG_ERROR("BUG: called for a non-ARM target"); return ERROR_FAIL; } /* avoid filling log waiting for fileio reply */ if (target->semihosting && target->semihosting->hit_fileio) return ERROR_OK; LOG_USER("target halted in %s state due to %s, current mode: %s\n" "cpsr: 0x%8.8" PRIx32 " pc: 0x%8.8" PRIx32 "%s%s", arm_state_strings[arm->core_state], debug_reason_name(target), arm_mode_name(arm->core_mode), buf_get_u32(arm->cpsr->value, 0, 32), buf_get_u32(arm->pc->value, 0, 32), (target->semihosting && target->semihosting->is_active) ? ", semihosting" : "", (target->semihosting && target->semihosting->is_fileio) ? " fileio" : ""); return ERROR_OK; } COMMAND_HANDLER(handle_armv4_5_reg_command) { struct target *target = get_current_target(CMD_CTX); struct arm *arm = target_to_arm(target); struct reg *regs; if (!is_arm(arm)) { command_print(CMD, "current target isn't an ARM"); return ERROR_FAIL; } if (target->state != TARGET_HALTED) { command_print(CMD, "Error: target must be halted for register accesses"); return ERROR_TARGET_NOT_HALTED; } if (arm->core_type != ARM_CORE_TYPE_STD) { command_print(CMD, "Microcontroller Profile not supported - use standard reg cmd"); return ERROR_OK; } if (!is_arm_mode(arm->core_mode)) { LOG_ERROR("not a valid arm core mode - communication failure?"); return ERROR_FAIL; } if (!arm->full_context) { command_print(CMD, "Error: target doesn't support %s", CMD_NAME); return ERROR_FAIL; } regs = arm->core_cache->reg_list; for (unsigned mode = 0; mode < ARRAY_SIZE(arm_mode_data); mode++) { const char *name; char *sep = "\n"; char *shadow = ""; if (!arm_mode_data[mode].n_indices) continue; /* label this bank of registers (or shadows) */ switch (arm_mode_data[mode].psr) { case ARM_MODE_SYS: continue; case ARM_MODE_USR: name = "System and User"; sep = ""; break; case ARM_MODE_HYP: if (arm->core_type != ARM_CORE_TYPE_VIRT_EXT) continue; /* FALLTHROUGH */ case ARM_MODE_MON: case ARM_MODE_1176_MON: if (arm->core_type != ARM_CORE_TYPE_SEC_EXT && arm->core_type != ARM_CORE_TYPE_VIRT_EXT) continue; /* FALLTHROUGH */ default: name = arm_mode_data[mode].name; shadow = "shadow "; break; } command_print(CMD, "%s%s mode %sregisters", sep, name, shadow); /* display N rows of up to 4 registers each */ for (unsigned i = 0; i < arm_mode_data[mode].n_indices; ) { char output[80]; int output_len = 0; for (unsigned j = 0; j < 4; j++, i++) { uint32_t value; struct reg *reg = regs; if (i >= arm_mode_data[mode].n_indices) break; reg += arm_mode_data[mode].indices[i]; /* REVISIT be smarter about faults... */ if (!reg->valid) arm->full_context(target); value = buf_get_u32(reg->value, 0, 32); output_len += snprintf(output + output_len, sizeof(output) - output_len, "%8s: %8.8" PRIx32 " ", reg->name, value); } command_print(CMD, "%s", output); } } return ERROR_OK; } COMMAND_HANDLER(handle_arm_core_state_command) { struct target *target = get_current_target(CMD_CTX); struct arm *arm = target_to_arm(target); int ret = ERROR_OK; if (!is_arm(arm)) { command_print(CMD, "current target isn't an ARM"); return ERROR_FAIL; } if (CMD_ARGC > 0) { if (strcmp(CMD_ARGV[0], "arm") == 0) { if (arm->core_type == ARM_CORE_TYPE_M_PROFILE) { command_print(CMD, "arm mode not supported on Cortex-M"); ret = ERROR_FAIL; } else { arm->core_state = ARM_STATE_ARM; } } if (strcmp(CMD_ARGV[0], "thumb") == 0) arm->core_state = ARM_STATE_THUMB; } command_print(CMD, "core state: %s", arm_state_strings[arm->core_state]); return ret; } COMMAND_HANDLER(handle_arm_disassemble_command) { #if HAVE_CAPSTONE struct target *target = get_current_target(CMD_CTX); if (!target) { LOG_ERROR("No target selected"); return ERROR_FAIL; } struct arm *arm = target_to_arm(target); target_addr_t address; unsigned int count = 1; bool thumb = false; if (!is_arm(arm)) { command_print(CMD, "current target isn't an ARM"); return ERROR_FAIL; } if (arm->core_type == ARM_CORE_TYPE_M_PROFILE) { /* armv7m is always thumb mode */ thumb = true; } switch (CMD_ARGC) { case 3: if (strcmp(CMD_ARGV[2], "thumb") != 0) return ERROR_COMMAND_SYNTAX_ERROR; thumb = true; /* FALL THROUGH */ case 2: COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count); /* FALL THROUGH */ case 1: COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address); if (address & 0x01) { if (!thumb) { command_print(CMD, "Disassemble as Thumb"); thumb = true; } address &= ~1; } break; default: return ERROR_COMMAND_SYNTAX_ERROR; } return arm_disassemble(CMD, target, address, count, thumb); #else command_print(CMD, "capstone disassembly framework required"); return ERROR_FAIL; #endif } COMMAND_HANDLER(handle_armv4_5_mcrmrc) { bool is_mcr = false; unsigned int arg_cnt = 5; if (!strcmp(CMD_NAME, "mcr")) { is_mcr = true; arg_cnt = 6; } if (arg_cnt != CMD_ARGC) return ERROR_COMMAND_SYNTAX_ERROR; struct target *target = get_current_target(CMD_CTX); if (!target) { command_print(CMD, "no current target"); return ERROR_FAIL; } if (!target_was_examined(target)) { command_print(CMD, "%s: not yet examined", target_name(target)); return ERROR_TARGET_NOT_EXAMINED; } struct arm *arm = target_to_arm(target); if (!is_arm(arm)) { command_print(CMD, "%s: not an ARM", target_name(target)); return ERROR_FAIL; } if (target->state != TARGET_HALTED) { command_print(CMD, "Error: [%s] not halted", target_name(target)); return ERROR_TARGET_NOT_HALTED; } int cpnum; uint32_t op1; uint32_t op2; uint32_t crn; uint32_t crm; uint32_t value; /* NOTE: parameter sequence matches ARM instruction set usage: * MCR pNUM, op1, rX, CRn, CRm, op2 ; write CP from rX * MRC pNUM, op1, rX, CRn, CRm, op2 ; read CP into rX * The "rX" is necessarily omitted; it uses Tcl mechanisms. */ COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], cpnum); if (cpnum & ~0xf) { command_print(CMD, "coprocessor %d out of range", cpnum); return ERROR_COMMAND_ARGUMENT_INVALID; } COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], op1); if (op1 & ~0x7) { command_print(CMD, "op1 %d out of range", op1); return ERROR_COMMAND_ARGUMENT_INVALID; } COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], crn); if (crn & ~0xf) { command_print(CMD, "CRn %d out of range", crn); return ERROR_COMMAND_ARGUMENT_INVALID; } COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], crm); if (crm & ~0xf) { command_print(CMD, "CRm %d out of range", crm); return ERROR_COMMAND_ARGUMENT_INVALID; } COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], op2); if (op2 & ~0x7) { command_print(CMD, "op2 %d out of range", op2); return ERROR_COMMAND_ARGUMENT_INVALID; } /* * FIXME change the call syntax here ... simplest to just pass * the MRC() or MCR() instruction to be executed. That will also * let us support the "mrc2" and "mcr2" opcodes (toggling one bit) * if that's ever needed. */ if (is_mcr) { COMMAND_PARSE_NUMBER(u32, CMD_ARGV[5], value); /* NOTE: parameters reordered! */ /* ARMV4_5_MCR(cpnum, op1, 0, crn, crm, op2) */ int retval = arm->mcr(target, cpnum, op1, op2, crn, crm, value); if (retval != ERROR_OK) return retval; } else { value = 0; /* NOTE: parameters reordered! */ /* ARMV4_5_MRC(cpnum, op1, 0, crn, crm, op2) */ int retval = arm->mrc(target, cpnum, op1, op2, crn, crm, &value); if (retval != ERROR_OK) return retval; command_print(CMD, "0x%" PRIx32, value); } return ERROR_OK; } COMMAND_HANDLER(handle_armv4_5_mcrrmrrc) { bool is_mcrr = false; unsigned int arg_cnt = 3; if (!strcmp(CMD_NAME, "mcrr")) { is_mcrr = true; arg_cnt = 4; } if (arg_cnt != CMD_ARGC) return ERROR_COMMAND_SYNTAX_ERROR; struct target *target = get_current_target(CMD_CTX); if (!target) { command_print(CMD, "no current target"); return ERROR_FAIL; } if (!target_was_examined(target)) { command_print(CMD, "%s: not yet examined", target_name(target)); return ERROR_TARGET_NOT_EXAMINED; } struct arm *arm = target_to_arm(target); if (!is_arm(arm)) { command_print(CMD, "%s: not an ARM", target_name(target)); return ERROR_FAIL; } if (target->state != TARGET_HALTED) return ERROR_TARGET_NOT_HALTED; int cpnum; uint32_t op1; uint32_t crm; uint64_t value; /* NOTE: parameter sequence matches ARM instruction set usage: * MCRR pNUM, op1, rX1, rX2, CRm ; write CP from rX1 and rX2 * MREC pNUM, op1, rX1, rX2, CRm ; read CP into rX1 and rX2 * The "rXn" are necessarily omitted; they use Tcl mechanisms. */ COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], cpnum); if (cpnum & ~0xf) { command_print(CMD, "coprocessor %d out of range", cpnum); return ERROR_COMMAND_ARGUMENT_INVALID; } COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], op1); if (op1 & ~0xf) { command_print(CMD, "op1 %d out of range", op1); return ERROR_COMMAND_ARGUMENT_INVALID; } COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], crm); if (crm & ~0xf) { command_print(CMD, "CRm %d out of range", crm); return ERROR_COMMAND_ARGUMENT_INVALID; } /* * FIXME change the call syntax here ... simplest to just pass * the MRC() or MCR() instruction to be executed. That will also * let us support the "mrrc2" and "mcrr2" opcodes (toggling one bit) * if that's ever needed. */ if (is_mcrr) { COMMAND_PARSE_NUMBER(u64, CMD_ARGV[3], value); /* NOTE: parameters reordered! */ /* ARMV5_T_MCRR(cpnum, op1, crm) */ int retval = arm->mcrr(target, cpnum, op1, crm, value); if (retval != ERROR_OK) return retval; } else { value = 0; /* NOTE: parameters reordered! */ /* ARMV5_T_MRRC(cpnum, op1, crm) */ int retval = arm->mrrc(target, cpnum, op1, crm, &value); if (retval != ERROR_OK) return retval; command_print(CMD, "0x%" PRIx64, value); } return ERROR_OK; } static const struct command_registration arm_exec_command_handlers[] = { { .name = "reg", .handler = handle_armv4_5_reg_command, .mode = COMMAND_EXEC, .help = "display ARM core registers", .usage = "", }, { .name = "mcr", .mode = COMMAND_EXEC, .handler = handle_armv4_5_mcrmrc, .help = "write coprocessor register", .usage = "cpnum op1 CRn CRm op2 value", }, { .name = "mrc", .mode = COMMAND_EXEC, .handler = handle_armv4_5_mcrmrc, .help = "read coprocessor register", .usage = "cpnum op1 CRn CRm op2", }, { .name = "mcrr", .mode = COMMAND_EXEC, .handler = handle_armv4_5_mcrrmrrc, .help = "write coprocessor 64-bit register", .usage = "cpnum op1 CRm value", }, { .name = "mrrc", .mode = COMMAND_EXEC, .handler = handle_armv4_5_mcrrmrrc, .help = "read coprocessor 64-bit register", .usage = "cpnum op1 CRm", }, { .chain = arm_all_profiles_command_handlers, }, COMMAND_REGISTRATION_DONE }; const struct command_registration arm_all_profiles_command_handlers[] = { { .name = "core_state", .handler = handle_arm_core_state_command, .mode = COMMAND_EXEC, .usage = "['arm'|'thumb']", .help = "display/change ARM core state", }, { .name = "disassemble", .handler = handle_arm_disassemble_command, .mode = COMMAND_EXEC, .usage = "address [count ['thumb']]", .help = "disassemble instructions", }, { .chain = semihosting_common_handlers, }, COMMAND_REGISTRATION_DONE }; const struct command_registration arm_command_handlers[] = { { .name = "arm", .mode = COMMAND_ANY, .help = "ARM command group", .usage = "", .chain = arm_exec_command_handlers, }, COMMAND_REGISTRATION_DONE }; /* * gdb for arm targets (e.g. arm-none-eabi-gdb) supports several variants * of arm architecture. You can list them using the autocompletion of gdb * command prompt by typing "set architecture " and then press TAB key. * The default, selected automatically, is "arm". * Let's use the default value, here, to make gdb-multiarch behave in the * same way as a gdb for arm. This can be changed later on. User can still * set the specific architecture variant with the gdb command. */ const char *arm_get_gdb_arch(const struct target *target) { return "arm"; } int arm_get_gdb_reg_list(struct target *target, struct reg **reg_list[], int *reg_list_size, enum target_register_class reg_class) { struct arm *arm = target_to_arm(target); unsigned int i; if (!is_arm_mode(arm->core_mode)) { LOG_ERROR("not a valid arm core mode - communication failure?"); return ERROR_FAIL; } switch (reg_class) { case REG_CLASS_GENERAL: *reg_list_size = 26; *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size)); for (i = 0; i < 16; i++) (*reg_list)[i] = arm_reg_current(arm, i); /* For GDB compatibility, take FPA registers size into account and zero-fill it*/ for (i = 16; i < 24; i++) (*reg_list)[i] = &arm_gdb_dummy_fp_reg; (*reg_list)[24] = &arm_gdb_dummy_fps_reg; (*reg_list)[25] = arm->cpsr; return ERROR_OK; case REG_CLASS_ALL: switch (arm->core_type) { case ARM_CORE_TYPE_SEC_EXT: *reg_list_size = 51; break; case ARM_CORE_TYPE_VIRT_EXT: *reg_list_size = 53; break; default: *reg_list_size = 48; } unsigned int list_size_core = *reg_list_size; if (arm->arm_vfp_version == ARM_VFP_V3) *reg_list_size += 33; *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size)); for (i = 0; i < 16; i++) (*reg_list)[i] = arm_reg_current(arm, i); for (i = 13; i < ARRAY_SIZE(arm_core_regs); i++) { int reg_index = arm->core_cache->reg_list[i].number; if (arm_core_regs[i].mode == ARM_MODE_MON && arm->core_type != ARM_CORE_TYPE_SEC_EXT && arm->core_type != ARM_CORE_TYPE_VIRT_EXT) continue; if (arm_core_regs[i].mode == ARM_MODE_HYP && arm->core_type != ARM_CORE_TYPE_VIRT_EXT) continue; (*reg_list)[reg_index] = &(arm->core_cache->reg_list[i]); } /* When we supply the target description, there is no need for fake FPA */ for (i = 16; i < 24; i++) { (*reg_list)[i] = &arm_gdb_dummy_fp_reg; (*reg_list)[i]->size = 0; } (*reg_list)[24] = &arm_gdb_dummy_fps_reg; (*reg_list)[24]->size = 0; if (arm->arm_vfp_version == ARM_VFP_V3) { unsigned int num_core_regs = ARRAY_SIZE(arm_core_regs); for (i = 0; i < 33; i++) (*reg_list)[list_size_core + i] = &(arm->core_cache->reg_list[num_core_regs + i]); } return ERROR_OK; default: LOG_ERROR("not a valid register class type in query."); return ERROR_FAIL; } } /* wait for execution to complete and check exit point */ static int armv4_5_run_algorithm_completion(struct target *target, uint32_t exit_point, unsigned int timeout_ms, void *arch_info) { int retval; struct arm *arm = target_to_arm(target); retval = target_wait_state(target, TARGET_HALTED, timeout_ms); if (retval != ERROR_OK) return retval; if (target->state != TARGET_HALTED) { retval = target_halt(target); if (retval != ERROR_OK) return retval; retval = target_wait_state(target, TARGET_HALTED, 500); if (retval != ERROR_OK) return retval; return ERROR_TARGET_TIMEOUT; } /* fast exit: ARMv5+ code can use BKPT */ if (exit_point && buf_get_u32(arm->pc->value, 0, 32) != exit_point) { LOG_WARNING( "target reentered debug state, but not at the desired exit point: 0x%4.4" PRIx32 "", buf_get_u32(arm->pc->value, 0, 32)); return ERROR_TARGET_TIMEOUT; } return ERROR_OK; } int armv4_5_run_algorithm_inner(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, uint32_t entry_point, uint32_t exit_point, unsigned int timeout_ms, void *arch_info, int (*run_it)(struct target *target, uint32_t exit_point, unsigned int timeout_ms, void *arch_info)) { struct arm *arm = target_to_arm(target); struct arm_algorithm *arm_algorithm_info = arch_info; enum arm_state core_state = arm->core_state; uint32_t context[17]; uint32_t cpsr; int exit_breakpoint_size = 0; int i; int retval = ERROR_OK; LOG_DEBUG("Running algorithm"); if (arm_algorithm_info->common_magic != ARM_COMMON_MAGIC) { LOG_ERROR("current target isn't an ARMV4/5 target"); return ERROR_TARGET_INVALID; } if (target->state != TARGET_HALTED) { LOG_TARGET_ERROR(target, "not halted (run target algo)"); return ERROR_TARGET_NOT_HALTED; } if (!is_arm_mode(arm->core_mode)) { LOG_ERROR("not a valid arm core mode - communication failure?"); return ERROR_FAIL; } /* armv5 and later can terminate with BKPT instruction; less overhead */ if (!exit_point && arm->arch == ARM_ARCH_V4) { LOG_ERROR("ARMv4 target needs HW breakpoint location"); return ERROR_FAIL; } /* save r0..pc, cpsr-or-spsr, and then cpsr-for-sure; * they'll be restored later. */ for (i = 0; i <= 16; i++) { struct reg *r; r = &ARMV4_5_CORE_REG_MODE(arm->core_cache, arm_algorithm_info->core_mode, i); if (!r->valid) arm->read_core_reg(target, r, i, arm_algorithm_info->core_mode); context[i] = buf_get_u32(r->value, 0, 32); } cpsr = buf_get_u32(arm->cpsr->value, 0, 32); for (i = 0; i < num_mem_params; i++) { if (mem_params[i].direction == PARAM_IN) continue; retval = target_write_buffer(target, mem_params[i].address, mem_params[i].size, mem_params[i].value); if (retval != ERROR_OK) return retval; } for (i = 0; i < num_reg_params; i++) { if (reg_params[i].direction == PARAM_IN) continue; struct reg *reg = register_get_by_name(arm->core_cache, reg_params[i].reg_name, false); if (!reg) { LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name); return ERROR_COMMAND_SYNTAX_ERROR; } if (reg->size != reg_params[i].size) { LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size", reg_params[i].reg_name); return ERROR_COMMAND_SYNTAX_ERROR; } retval = armv4_5_set_core_reg(reg, reg_params[i].value); if (retval != ERROR_OK) return retval; } arm->core_state = arm_algorithm_info->core_state; if (arm->core_state == ARM_STATE_ARM) exit_breakpoint_size = 4; else if (arm->core_state == ARM_STATE_THUMB) exit_breakpoint_size = 2; else { LOG_ERROR("BUG: can't execute algorithms when not in ARM or Thumb state"); return ERROR_COMMAND_SYNTAX_ERROR; } if (arm_algorithm_info->core_mode != ARM_MODE_ANY) { LOG_DEBUG("setting core_mode: 0x%2.2x", arm_algorithm_info->core_mode); buf_set_u32(arm->cpsr->value, 0, 5, arm_algorithm_info->core_mode); arm->cpsr->dirty = true; arm->cpsr->valid = true; } /* terminate using a hardware or (ARMv5+) software breakpoint */ if (exit_point) { retval = breakpoint_add(target, exit_point, exit_breakpoint_size, BKPT_HARD); if (retval != ERROR_OK) { LOG_ERROR("can't add HW breakpoint to terminate algorithm"); return ERROR_TARGET_FAILURE; } } retval = target_resume(target, 0, entry_point, 1, 1); if (retval != ERROR_OK) return retval; retval = run_it(target, exit_point, timeout_ms, arch_info); if (exit_point) breakpoint_remove(target, exit_point); if (retval != ERROR_OK) return retval; for (i = 0; i < num_mem_params; i++) { if (mem_params[i].direction != PARAM_OUT) { int retvaltemp = target_read_buffer(target, mem_params[i].address, mem_params[i].size, mem_params[i].value); if (retvaltemp != ERROR_OK) retval = retvaltemp; } } for (i = 0; i < num_reg_params; i++) { if (reg_params[i].direction != PARAM_OUT) { struct reg *reg = register_get_by_name(arm->core_cache, reg_params[i].reg_name, false); if (!reg) { LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name); retval = ERROR_COMMAND_SYNTAX_ERROR; continue; } if (reg->size != reg_params[i].size) { LOG_ERROR( "BUG: register '%s' size doesn't match reg_params[i].size", reg_params[i].reg_name); retval = ERROR_COMMAND_SYNTAX_ERROR; continue; } buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32)); } } /* restore everything we saved before (17 or 18 registers) */ for (i = 0; i <= 16; i++) { uint32_t regvalue; regvalue = buf_get_u32(ARMV4_5_CORE_REG_MODE(arm->core_cache, arm_algorithm_info->core_mode, i).value, 0, 32); if (regvalue != context[i]) { LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32 "", ARMV4_5_CORE_REG_MODE(arm->core_cache, arm_algorithm_info->core_mode, i).name, context[i]); buf_set_u32(ARMV4_5_CORE_REG_MODE(arm->core_cache, arm_algorithm_info->core_mode, i).value, 0, 32, context[i]); ARMV4_5_CORE_REG_MODE(arm->core_cache, arm_algorithm_info->core_mode, i).valid = true; ARMV4_5_CORE_REG_MODE(arm->core_cache, arm_algorithm_info->core_mode, i).dirty = true; } } arm_set_cpsr(arm, cpsr); arm->cpsr->dirty = true; arm->core_state = core_state; return retval; } int armv4_5_run_algorithm(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, target_addr_t entry_point, target_addr_t exit_point, unsigned int timeout_ms, void *arch_info) { return armv4_5_run_algorithm_inner(target, num_mem_params, mem_params, num_reg_params, reg_params, (uint32_t)entry_point, (uint32_t)exit_point, timeout_ms, arch_info, armv4_5_run_algorithm_completion); } /** * Runs ARM code in the target to calculate a CRC32 checksum. * */ int arm_checksum_memory(struct target *target, target_addr_t address, uint32_t count, uint32_t *checksum) { struct working_area *crc_algorithm; struct arm_algorithm arm_algo; struct arm *arm = target_to_arm(target); struct reg_param reg_params[2]; int retval; uint32_t i; uint32_t exit_var = 0; static const uint8_t arm_crc_code_le[] = { #include "../../contrib/loaders/checksum/armv4_5_crc.inc" }; assert(sizeof(arm_crc_code_le) % 4 == 0); retval = target_alloc_working_area(target, sizeof(arm_crc_code_le), &crc_algorithm); if (retval != ERROR_OK) return retval; /* convert code into a buffer in target endianness */ for (i = 0; i < ARRAY_SIZE(arm_crc_code_le) / 4; i++) { retval = target_write_u32(target, crc_algorithm->address + i * sizeof(uint32_t), le_to_h_u32(&arm_crc_code_le[i * 4])); if (retval != ERROR_OK) goto cleanup; } arm_algo.common_magic = ARM_COMMON_MAGIC; arm_algo.core_mode = ARM_MODE_SVC; arm_algo.core_state = ARM_STATE_ARM; init_reg_param(®_params[0], "r0", 32, PARAM_IN_OUT); init_reg_param(®_params[1], "r1", 32, PARAM_OUT); buf_set_u32(reg_params[0].value, 0, 32, address); buf_set_u32(reg_params[1].value, 0, 32, count); /* 20 second timeout/megabyte */ unsigned int timeout = 20000 * (1 + (count / (1024 * 1024))); /* armv4 must exit using a hardware breakpoint */ if (arm->arch == ARM_ARCH_V4) exit_var = crc_algorithm->address + sizeof(arm_crc_code_le) - 8; retval = target_run_algorithm(target, 0, NULL, 2, reg_params, crc_algorithm->address, exit_var, timeout, &arm_algo); if (retval == ERROR_OK) *checksum = buf_get_u32(reg_params[0].value, 0, 32); else LOG_ERROR("error executing ARM crc algorithm"); destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); cleanup: target_free_working_area(target, crc_algorithm); return retval; } /** * Runs ARM code in the target to check whether a memory block holds * all ones. NOR flash which has been erased, and thus may be written, * holds all ones. * */ int arm_blank_check_memory(struct target *target, struct target_memory_check_block *blocks, int num_blocks, uint8_t erased_value) { struct working_area *check_algorithm; struct reg_param reg_params[3]; struct arm_algorithm arm_algo; struct arm *arm = target_to_arm(target); int retval; uint32_t i; uint32_t exit_var = 0; static const uint8_t check_code_le[] = { #include "../../contrib/loaders/erase_check/armv4_5_erase_check.inc" }; assert(sizeof(check_code_le) % 4 == 0); if (erased_value != 0xff) { LOG_ERROR("Erase value 0x%02" PRIx8 " not yet supported for ARMv4/v5 targets", erased_value); return ERROR_FAIL; } /* make sure we have a working area */ retval = target_alloc_working_area(target, sizeof(check_code_le), &check_algorithm); if (retval != ERROR_OK) return retval; /* convert code into a buffer in target endianness */ for (i = 0; i < ARRAY_SIZE(check_code_le) / 4; i++) { retval = target_write_u32(target, check_algorithm->address + i * sizeof(uint32_t), le_to_h_u32(&check_code_le[i * 4])); if (retval != ERROR_OK) goto cleanup; } arm_algo.common_magic = ARM_COMMON_MAGIC; arm_algo.core_mode = ARM_MODE_SVC; arm_algo.core_state = ARM_STATE_ARM; init_reg_param(®_params[0], "r0", 32, PARAM_OUT); buf_set_u32(reg_params[0].value, 0, 32, blocks[0].address); init_reg_param(®_params[1], "r1", 32, PARAM_OUT); buf_set_u32(reg_params[1].value, 0, 32, blocks[0].size); init_reg_param(®_params[2], "r2", 32, PARAM_IN_OUT); buf_set_u32(reg_params[2].value, 0, 32, erased_value); /* armv4 must exit using a hardware breakpoint */ if (arm->arch == ARM_ARCH_V4) exit_var = check_algorithm->address + sizeof(check_code_le) - 4; retval = target_run_algorithm(target, 0, NULL, 3, reg_params, check_algorithm->address, exit_var, 10000, &arm_algo); if (retval == ERROR_OK) blocks[0].result = buf_get_u32(reg_params[2].value, 0, 32); destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); destroy_reg_param(®_params[2]); cleanup: target_free_working_area(target, check_algorithm); if (retval != ERROR_OK) return retval; return 1; /* only one block has been checked */ } static int arm_full_context(struct target *target) { struct arm *arm = target_to_arm(target); unsigned num_regs = arm->core_cache->num_regs; struct reg *reg = arm->core_cache->reg_list; int retval = ERROR_OK; for (; num_regs && retval == ERROR_OK; num_regs--, reg++) { if (!reg->exist || reg->valid) continue; retval = armv4_5_get_core_reg(reg); } return retval; } static int arm_default_mrc(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t crn, uint32_t crm, uint32_t *value) { LOG_ERROR("%s doesn't implement MRC", target_type_name(target)); return ERROR_FAIL; } static int arm_default_mrrc(struct target *target, int cpnum, uint32_t op, uint32_t crm, uint64_t *value) { LOG_ERROR("%s doesn't implement MRRC", target_type_name(target)); return ERROR_FAIL; } static int arm_default_mcr(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t crn, uint32_t crm, uint32_t value) { LOG_ERROR("%s doesn't implement MCR", target_type_name(target)); return ERROR_FAIL; } static int arm_default_mcrr(struct target *target, int cpnum, uint32_t op, uint32_t crm, uint64_t value) { LOG_ERROR("%s doesn't implement MCRR", target_type_name(target)); return ERROR_FAIL; } int arm_init_arch_info(struct target *target, struct arm *arm) { target->arch_info = arm; arm->target = target; arm->common_magic = ARM_COMMON_MAGIC; /* core_type may be overridden by subtype logic */ if (arm->core_type != ARM_CORE_TYPE_M_PROFILE) { arm->core_type = ARM_CORE_TYPE_STD; arm_set_cpsr(arm, ARM_MODE_USR); } /* default full_context() has no core-specific optimizations */ if (!arm->full_context && arm->read_core_reg) arm->full_context = arm_full_context; if (!arm->mrc) arm->mrc = arm_default_mrc; if (!arm->mrrc) arm->mrrc = arm_default_mrrc; if (!arm->mcr) arm->mcr = arm_default_mcr; if (!arm->mcrr) arm->mcrr = arm_default_mcrr; return ERROR_OK; }