/*************************************************************************** * Copyright (C) 2005 by Dominic Rath * * Dominic.Rath@gmx.de * * * * Copyright (C) 2008 by Spencer Oliver * * spen@spen-soft.co.uk * * * * Copyright (C) 2008 by Oyvind Harboe * * oyvind.harboe@zylin.com * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "armv4_5.h" #include "arm_jtag.h" #include "breakpoints.h" #include "arm_disassembler.h" #include "binarybuffer.h" #include "algorithm.h" #include "register.h" static const char *armv4_5_core_reg_list[] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "sp_usr", "lr_usr", "pc", "r8_fiq", "r9_fiq", "r10_fiq", "r11_fiq", "r12_fiq", "sp_fiq", "lr_fiq", "sp_irq", "lr_irq", "sp_svc", "lr_svc", "sp_abt", "lr_abt", "sp_und", "lr_und", "cpsr", "spsr_fiq", "spsr_irq", "spsr_svc", "spsr_abt", "spsr_und", "sp_mon", "lr_mon", "spsr_mon", }; static const uint8_t arm_usr_indices[17] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ARMV4_5_CPSR, }; static const uint8_t arm_fiq_indices[8] = { 16, 17, 18, 19, 20, 21, 22, ARMV4_5_SPSR_FIQ, }; static const uint8_t arm_irq_indices[3] = { 23, 24, ARMV4_5_SPSR_IRQ, }; static const uint8_t arm_svc_indices[3] = { 25, 26, ARMV4_5_SPSR_SVC, }; static const uint8_t arm_abt_indices[3] = { 27, 28, ARMV4_5_SPSR_ABT, }; static const uint8_t arm_und_indices[3] = { 29, 30, ARMV4_5_SPSR_UND, }; static const uint8_t arm_mon_indices[3] = { 37, 38, ARM_SPSR_MON, }; static const struct { const char *name; unsigned short psr; /* For user and system modes, these list indices for all registers. * otherwise they're just indices for the shadow registers and SPSR. */ unsigned short n_indices; const uint8_t *indices; } arm_mode_data[] = { /* Seven modes are standard from ARM7 on. "System" and "User" share * the same registers; other modes shadow from 3 to 8 registers. */ { .name = "User", .psr = ARMV4_5_MODE_USR, .n_indices = ARRAY_SIZE(arm_usr_indices), .indices = arm_usr_indices, }, { .name = "FIQ", .psr = ARMV4_5_MODE_FIQ, .n_indices = ARRAY_SIZE(arm_fiq_indices), .indices = arm_fiq_indices, }, { .name = "Supervisor", .psr = ARMV4_5_MODE_SVC, .n_indices = ARRAY_SIZE(arm_svc_indices), .indices = arm_svc_indices, }, { .name = "Abort", .psr = ARMV4_5_MODE_ABT, .n_indices = ARRAY_SIZE(arm_abt_indices), .indices = arm_abt_indices, }, { .name = "IRQ", .psr = ARMV4_5_MODE_IRQ, .n_indices = ARRAY_SIZE(arm_irq_indices), .indices = arm_irq_indices, }, { .name = "Undefined instruction", .psr = ARMV4_5_MODE_UND, .n_indices = ARRAY_SIZE(arm_und_indices), .indices = arm_und_indices, }, { .name = "System", .psr = ARMV4_5_MODE_SYS, .n_indices = ARRAY_SIZE(arm_usr_indices), .indices = arm_usr_indices, }, /* TrustZone "Security Extensions" add a secure monitor mode. * This is distinct from a "debug monitor" which can support * non-halting debug, in conjunction with some debuggers. */ { .name = "Secure Monitor", .psr = ARM_MODE_MON, .n_indices = ARRAY_SIZE(arm_mon_indices), .indices = arm_mon_indices, }, }; /** Map PSR mode bits to the name of an ARM processor operating mode. */ const char *arm_mode_name(unsigned psr_mode) { for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) { if (arm_mode_data[i].psr == psr_mode) return arm_mode_data[i].name; } LOG_ERROR("unrecognized psr mode: %#02x", psr_mode); return "UNRECOGNIZED"; } /** Return true iff the parameter denotes a valid ARM processor mode. */ bool is_arm_mode(unsigned psr_mode) { for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) { if (arm_mode_data[i].psr == psr_mode) return true; } return false; } /** Map PSR mode bits to linear number indexing armv4_5_core_reg_map */ int armv4_5_mode_to_number(enum armv4_5_mode mode) { switch (mode) { case ARMV4_5_MODE_ANY: /* map MODE_ANY to user mode */ case ARMV4_5_MODE_USR: return 0; case ARMV4_5_MODE_FIQ: return 1; case ARMV4_5_MODE_IRQ: return 2; case ARMV4_5_MODE_SVC: return 3; case ARMV4_5_MODE_ABT: return 4; case ARMV4_5_MODE_UND: return 5; case ARMV4_5_MODE_SYS: return 6; case ARM_MODE_MON: return 7; default: LOG_ERROR("invalid mode value encountered %d", mode); return -1; } } /** Map linear number indexing armv4_5_core_reg_map to PSR mode bits. */ enum armv4_5_mode armv4_5_number_to_mode(int number) { switch (number) { case 0: return ARMV4_5_MODE_USR; case 1: return ARMV4_5_MODE_FIQ; case 2: return ARMV4_5_MODE_IRQ; case 3: return ARMV4_5_MODE_SVC; case 4: return ARMV4_5_MODE_ABT; case 5: return ARMV4_5_MODE_UND; case 6: return ARMV4_5_MODE_SYS; case 7: return ARM_MODE_MON; default: LOG_ERROR("mode index out of bounds %d", number); return ARMV4_5_MODE_ANY; } } char* armv4_5_state_strings[] = { "ARM", "Thumb", "Jazelle" }; static const struct armv4_5_core_reg armv4_5_core_reg_list_arch_info[] = { {0, ARMV4_5_MODE_ANY, NULL, NULL}, {1, ARMV4_5_MODE_ANY, NULL, NULL}, {2, ARMV4_5_MODE_ANY, NULL, NULL}, {3, ARMV4_5_MODE_ANY, NULL, NULL}, {4, ARMV4_5_MODE_ANY, NULL, NULL}, {5, ARMV4_5_MODE_ANY, NULL, NULL}, {6, ARMV4_5_MODE_ANY, NULL, NULL}, {7, ARMV4_5_MODE_ANY, NULL, NULL}, {8, ARMV4_5_MODE_ANY, NULL, NULL}, {9, ARMV4_5_MODE_ANY, NULL, NULL}, {10, ARMV4_5_MODE_ANY, NULL, NULL}, {11, ARMV4_5_MODE_ANY, NULL, NULL}, {12, ARMV4_5_MODE_ANY, NULL, NULL}, {13, ARMV4_5_MODE_USR, NULL, NULL}, {14, ARMV4_5_MODE_USR, NULL, NULL}, {15, ARMV4_5_MODE_ANY, NULL, NULL}, {8, ARMV4_5_MODE_FIQ, NULL, NULL}, {9, ARMV4_5_MODE_FIQ, NULL, NULL}, {10, ARMV4_5_MODE_FIQ, NULL, NULL}, {11, ARMV4_5_MODE_FIQ, NULL, NULL}, {12, ARMV4_5_MODE_FIQ, NULL, NULL}, {13, ARMV4_5_MODE_FIQ, NULL, NULL}, {14, ARMV4_5_MODE_FIQ, NULL, NULL}, {13, ARMV4_5_MODE_IRQ, NULL, NULL}, {14, ARMV4_5_MODE_IRQ, NULL, NULL}, {13, ARMV4_5_MODE_SVC, NULL, NULL}, {14, ARMV4_5_MODE_SVC, NULL, NULL}, {13, ARMV4_5_MODE_ABT, NULL, NULL}, {14, ARMV4_5_MODE_ABT, NULL, NULL}, {13, ARMV4_5_MODE_UND, NULL, NULL}, {14, ARMV4_5_MODE_UND, NULL, NULL}, {16, ARMV4_5_MODE_ANY, NULL, NULL}, {16, ARMV4_5_MODE_FIQ, NULL, NULL}, {16, ARMV4_5_MODE_IRQ, NULL, NULL}, {16, ARMV4_5_MODE_SVC, NULL, NULL}, {16, ARMV4_5_MODE_ABT, NULL, NULL}, {16, ARMV4_5_MODE_UND, NULL, NULL}, {13, ARM_MODE_MON, NULL, NULL}, {14, ARM_MODE_MON, NULL, NULL}, {16, ARM_MODE_MON, NULL, NULL}, }; /* map core mode (USR, FIQ, ...) and register number to indizes into the register cache */ const int armv4_5_core_reg_map[8][17] = { { /* USR */ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31 }, { /* FIQ (8 shadows of USR, vs normal 3) */ 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 15, 32 }, { /* IRQ */ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23, 24, 15, 33 }, { /* SVC */ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 25, 26, 15, 34 }, { /* ABT */ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 27, 28, 15, 35 }, { /* UND */ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 29, 30, 15, 36 }, { /* SYS (same registers as USR) */ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31 }, { /* MON */ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 37, 38, 15, 39, } }; static const uint8_t arm_gdb_dummy_fp_value[12]; /** * Dummy FPA registers are required to support GDB on ARM. * Register packets require eight obsolete FPA register values. * Modern ARM cores use Vector Floating Point (VFP), if they * have any floating point support. VFP is not FPA-compatible. */ struct reg arm_gdb_dummy_fp_reg = { .name = "GDB dummy FPA register", .value = (uint8_t *) arm_gdb_dummy_fp_value, .valid = 1, .size = 96, }; static const uint8_t arm_gdb_dummy_fps_value[4]; /** * Dummy FPA status registers are required to support GDB on ARM. * Register packets require an obsolete FPA status register. */ struct reg arm_gdb_dummy_fps_reg = { .name = "GDB dummy FPA status register", .value = (uint8_t *) arm_gdb_dummy_fps_value, .valid = 1, .size = 32, }; static void arm_gdb_dummy_init(void) __attribute__ ((constructor)); static void arm_gdb_dummy_init(void) { register_init_dummy(&arm_gdb_dummy_fp_reg); register_init_dummy(&arm_gdb_dummy_fps_reg); } static int armv4_5_get_core_reg(struct reg *reg) { int retval; struct armv4_5_core_reg *armv4_5 = reg->arch_info; struct target *target = armv4_5->target; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } retval = armv4_5->armv4_5_common->read_core_reg(target, armv4_5->num, armv4_5->mode); if (retval == ERROR_OK) reg->valid = 1; return retval; } static int armv4_5_set_core_reg(struct reg *reg, uint8_t *buf) { struct armv4_5_core_reg *armv4_5 = reg->arch_info; struct target *target = armv4_5->target; struct armv4_5_common_s *armv4_5_target = target_to_armv4_5(target); uint32_t value = buf_get_u32(buf, 0, 32); if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if (reg == &armv4_5_target->core_cache->reg_list[ARMV4_5_CPSR]) { if (value & 0x20) { /* T bit should be set */ if (armv4_5_target->core_state == ARMV4_5_STATE_ARM) { /* change state to Thumb */ LOG_DEBUG("changing to Thumb state"); armv4_5_target->core_state = ARMV4_5_STATE_THUMB; } } else { /* T bit should be cleared */ if (armv4_5_target->core_state == ARMV4_5_STATE_THUMB) { /* change state to ARM */ LOG_DEBUG("changing to ARM state"); armv4_5_target->core_state = ARMV4_5_STATE_ARM; } } if (armv4_5_target->core_mode != (enum armv4_5_mode)(value & 0x1f)) { LOG_DEBUG("changing ARM core mode to '%s'", arm_mode_name(value & 0x1f)); armv4_5_target->core_mode = value & 0x1f; armv4_5_target->write_core_reg(target, 16, ARMV4_5_MODE_ANY, value); } } buf_set_u32(reg->value, 0, 32, value); reg->dirty = 1; reg->valid = 1; return ERROR_OK; } static const struct reg_arch_type arm_reg_type = { .get = armv4_5_get_core_reg, .set = armv4_5_set_core_reg, }; /** Marks the contents of the register cache as invalid (and clean). */ int armv4_5_invalidate_core_regs(struct target *target) { struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target); unsigned num_regs = armv4_5->core_cache->num_regs; struct reg *reg = armv4_5->core_cache->reg_list; for (unsigned i = 0; i < num_regs; i++, reg++) { reg->valid = 0; reg->dirty = 0; } /* FIXME don't bother returning a value then */ return ERROR_OK; } struct reg_cache* armv4_5_build_reg_cache(struct target *target, struct arm *armv4_5_common) { int num_regs = ARRAY_SIZE(armv4_5_core_reg_list_arch_info); struct reg_cache *cache = malloc(sizeof(struct reg_cache)); struct reg *reg_list = calloc(num_regs, sizeof(struct reg)); struct armv4_5_core_reg *arch_info = calloc(num_regs, sizeof(struct armv4_5_core_reg)); int i; if (!cache || !reg_list || !arch_info) { free(cache); free(reg_list); free(arch_info); return NULL; } cache->name = "ARM registers"; cache->next = NULL; cache->reg_list = reg_list; cache->num_regs = 0; for (i = 0; i < num_regs; i++) { /* Skip registers this core doesn't expose */ if (armv4_5_core_reg_list_arch_info[i].mode == ARM_MODE_MON && armv4_5_common->core_type != ARM_MODE_MON) continue; /* REVISIT handle Cortex-M, which only shadows R13/SP */ arch_info[i] = armv4_5_core_reg_list_arch_info[i]; arch_info[i].target = target; arch_info[i].armv4_5_common = armv4_5_common; reg_list[i].name = (char *) armv4_5_core_reg_list[i]; reg_list[i].size = 32; reg_list[i].value = calloc(1, 4); reg_list[i].type = &arm_reg_type; reg_list[i].arch_info = &arch_info[i]; cache->num_regs++; } return cache; } int armv4_5_arch_state(struct target *target) { struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target); if (armv4_5->common_magic != ARMV4_5_COMMON_MAGIC) { LOG_ERROR("BUG: called for a non-ARMv4/5 target"); return ERROR_FAIL; } LOG_USER("target halted in %s state due to %s, current mode: %s\ncpsr: 0x%8.8" PRIx32 " pc: 0x%8.8" PRIx32 "", armv4_5_state_strings[armv4_5->core_state], Jim_Nvp_value2name_simple(nvp_target_debug_reason, target->debug_reason)->name, arm_mode_name(armv4_5->core_mode), buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32), buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32)); return ERROR_OK; } #define ARMV4_5_CORE_REG_MODENUM(cache, mode, num) \ cache->reg_list[armv4_5_core_reg_map[mode][num]] COMMAND_HANDLER(handle_armv4_5_reg_command) { struct target *target = get_current_target(CMD_CTX); struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target); unsigned num_regs; struct reg *regs; if (!is_arm(armv4_5)) { command_print(CMD_CTX, "current target isn't an ARM"); return ERROR_FAIL; } if (target->state != TARGET_HALTED) { command_print(CMD_CTX, "error: target must be halted for register accesses"); return ERROR_FAIL; } if (!is_arm_mode(armv4_5->core_mode)) return ERROR_FAIL; if (!armv4_5->full_context) { command_print(CMD_CTX, "error: target doesn't support %s", CMD_NAME); return ERROR_FAIL; } num_regs = armv4_5->core_cache->num_regs; regs = armv4_5->core_cache->reg_list; for (unsigned mode = 0; mode < ARRAY_SIZE(arm_mode_data); mode++) { const char *name; char *sep = "\n"; char *shadow = ""; /* label this bank of registers (or shadows) */ switch (arm_mode_data[mode].psr) { case ARMV4_5_MODE_SYS: continue; case ARMV4_5_MODE_USR: name = "System and User"; sep = ""; break; case ARM_MODE_MON: if (armv4_5->core_type != ARM_MODE_MON) continue; /* FALLTHROUGH */ default: name = arm_mode_data[mode].name; shadow = "shadow "; break; } command_print(CMD_CTX, "%s%s mode %sregisters", sep, name, shadow); /* display N rows of up to 4 registers each */ for (unsigned i = 0; i < arm_mode_data[mode].n_indices;) { char output[80]; int output_len = 0; for (unsigned j = 0; j < 4; j++, i++) { uint32_t value; struct reg *reg = regs; if (i >= arm_mode_data[mode].n_indices) break; reg += arm_mode_data[mode].indices[i]; /* REVISIT be smarter about faults... */ if (!reg->valid) armv4_5->full_context(target); value = buf_get_u32(reg->value, 0, 32); output_len += snprintf(output + output_len, sizeof(output) - output_len, "%8s: %8.8" PRIx32 " ", reg->name, value); } command_print(CMD_CTX, "%s", output); } } return ERROR_OK; } COMMAND_HANDLER(handle_armv4_5_core_state_command) { struct target *target = get_current_target(CMD_CTX); struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target); if (!is_arm(armv4_5)) { command_print(CMD_CTX, "current target isn't an ARM"); return ERROR_FAIL; } if (CMD_ARGC > 0) { if (strcmp(CMD_ARGV[0], "arm") == 0) { armv4_5->core_state = ARMV4_5_STATE_ARM; } if (strcmp(CMD_ARGV[0], "thumb") == 0) { armv4_5->core_state = ARMV4_5_STATE_THUMB; } } command_print(CMD_CTX, "core state: %s", armv4_5_state_strings[armv4_5->core_state]); return ERROR_OK; } COMMAND_HANDLER(handle_armv4_5_disassemble_command) { int retval = ERROR_OK; struct target *target = get_current_target(CMD_CTX); struct arm *arm = target ? target_to_arm(target) : NULL; uint32_t address; int count = 1; int thumb = 0; if (!is_arm(arm)) { command_print(CMD_CTX, "current target isn't an ARM"); return ERROR_FAIL; } switch (CMD_ARGC) { case 3: if (strcmp(CMD_ARGV[2], "thumb") != 0) goto usage; thumb = 1; /* FALL THROUGH */ case 2: COMMAND_PARSE_NUMBER(int, CMD_ARGV[1], count); /* FALL THROUGH */ case 1: COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address); if (address & 0x01) { if (!thumb) { command_print(CMD_CTX, "Disassemble as Thumb"); thumb = 1; } address &= ~1; } break; default: usage: command_print(CMD_CTX, "usage: arm disassemble
[ ['thumb']]"); count = 0; retval = ERROR_FAIL; } while (count-- > 0) { struct arm_instruction cur_instruction; if (thumb) { /* Always use Thumb2 disassembly for best handling * of 32-bit BL/BLX, and to work with newer cores * (some ARMv6, all ARMv7) that use Thumb2. */ retval = thumb2_opcode(target, address, &cur_instruction); if (retval != ERROR_OK) break; } else { uint32_t opcode; retval = target_read_u32(target, address, &opcode); if (retval != ERROR_OK) break; retval = arm_evaluate_opcode(opcode, address, &cur_instruction) != ERROR_OK; if (retval != ERROR_OK) break; } command_print(CMD_CTX, "%s", cur_instruction.text); address += cur_instruction.instruction_size; } return retval; } int armv4_5_register_commands(struct command_context *cmd_ctx) { struct command *armv4_5_cmd; armv4_5_cmd = register_command(cmd_ctx, NULL, "arm", NULL, COMMAND_ANY, "generic ARM commands"); register_command(cmd_ctx, armv4_5_cmd, "reg", handle_armv4_5_reg_command, COMMAND_EXEC, "display ARM core registers"); register_command(cmd_ctx, armv4_5_cmd, "core_state", handle_armv4_5_core_state_command, COMMAND_EXEC, "display/change ARM core state "); register_command(cmd_ctx, armv4_5_cmd, "disassemble", handle_armv4_5_disassemble_command, COMMAND_EXEC, "disassemble instructions " "
[ ['thumb']]"); return ERROR_OK; } int armv4_5_get_gdb_reg_list(struct target *target, struct reg **reg_list[], int *reg_list_size) { struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target); int i; if (!is_arm_mode(armv4_5->core_mode)) return ERROR_FAIL; *reg_list_size = 26; *reg_list = malloc(sizeof(struct reg*) * (*reg_list_size)); for (i = 0; i < 16; i++) { (*reg_list)[i] = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i); } for (i = 16; i < 24; i++) { (*reg_list)[i] = &arm_gdb_dummy_fp_reg; } (*reg_list)[24] = &arm_gdb_dummy_fps_reg; (*reg_list)[25] = &armv4_5->core_cache->reg_list[ARMV4_5_CPSR]; return ERROR_OK; } /* wait for execution to complete and check exit point */ static int armv4_5_run_algorithm_completion(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info) { int retval; struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target); if ((retval = target_wait_state(target, TARGET_HALTED, timeout_ms)) != ERROR_OK) { return retval; } if (target->state != TARGET_HALTED) { if ((retval = target_halt(target)) != ERROR_OK) return retval; if ((retval = target_wait_state(target, TARGET_HALTED, 500)) != ERROR_OK) { return retval; } return ERROR_TARGET_TIMEOUT; } /* fast exit: ARMv5+ code can use BKPT */ if (exit_point && buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32) != exit_point) { LOG_WARNING("target reentered debug state, but not at the desired exit point: 0x%4.4" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32)); return ERROR_TARGET_TIMEOUT; } return ERROR_OK; } int armv4_5_run_algorithm_inner(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info, int (*run_it)(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info)) { struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target); struct armv4_5_algorithm *armv4_5_algorithm_info = arch_info; enum armv4_5_state core_state = armv4_5->core_state; enum armv4_5_mode core_mode = armv4_5->core_mode; uint32_t context[17]; uint32_t cpsr; int exit_breakpoint_size = 0; int i; int retval = ERROR_OK; LOG_DEBUG("Running algorithm"); if (armv4_5_algorithm_info->common_magic != ARMV4_5_COMMON_MAGIC) { LOG_ERROR("current target isn't an ARMV4/5 target"); return ERROR_TARGET_INVALID; } if (target->state != TARGET_HALTED) { LOG_WARNING("target not halted"); return ERROR_TARGET_NOT_HALTED; } if (!is_arm_mode(armv4_5->core_mode)) return ERROR_FAIL; /* armv5 and later can terminate with BKPT instruction; less overhead */ if (!exit_point && armv4_5->is_armv4) { LOG_ERROR("ARMv4 target needs HW breakpoint location"); return ERROR_FAIL; } for (i = 0; i <= 16; i++) { if (!ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_algorithm_info->core_mode, i).valid) armv4_5->read_core_reg(target, i, armv4_5_algorithm_info->core_mode); context[i] = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_algorithm_info->core_mode, i).value, 0, 32); } cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32); for (i = 0; i < num_mem_params; i++) { if ((retval = target_write_buffer(target, mem_params[i].address, mem_params[i].size, mem_params[i].value)) != ERROR_OK) { return retval; } } for (i = 0; i < num_reg_params; i++) { struct reg *reg = register_get_by_name(armv4_5->core_cache, reg_params[i].reg_name, 0); if (!reg) { LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name); return ERROR_INVALID_ARGUMENTS; } if (reg->size != reg_params[i].size) { LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size", reg_params[i].reg_name); return ERROR_INVALID_ARGUMENTS; } if ((retval = armv4_5_set_core_reg(reg, reg_params[i].value)) != ERROR_OK) { return retval; } } armv4_5->core_state = armv4_5_algorithm_info->core_state; if (armv4_5->core_state == ARMV4_5_STATE_ARM) exit_breakpoint_size = 4; else if (armv4_5->core_state == ARMV4_5_STATE_THUMB) exit_breakpoint_size = 2; else { LOG_ERROR("BUG: can't execute algorithms when not in ARM or Thumb state"); return ERROR_INVALID_ARGUMENTS; } if (armv4_5_algorithm_info->core_mode != ARMV4_5_MODE_ANY) { LOG_DEBUG("setting core_mode: 0x%2.2x", armv4_5_algorithm_info->core_mode); buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 5, armv4_5_algorithm_info->core_mode); armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 1; armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1; } /* terminate using a hardware or (ARMv5+) software breakpoint */ if (exit_point && (retval = breakpoint_add(target, exit_point, exit_breakpoint_size, BKPT_HARD)) != ERROR_OK) { LOG_ERROR("can't add HW breakpoint to terminate algorithm"); return ERROR_TARGET_FAILURE; } if ((retval = target_resume(target, 0, entry_point, 1, 1)) != ERROR_OK) { return retval; } int retvaltemp; retval = run_it(target, exit_point, timeout_ms, arch_info); if (exit_point) breakpoint_remove(target, exit_point); if (retval != ERROR_OK) return retval; for (i = 0; i < num_mem_params; i++) { if (mem_params[i].direction != PARAM_OUT) if ((retvaltemp = target_read_buffer(target, mem_params[i].address, mem_params[i].size, mem_params[i].value)) != ERROR_OK) { retval = retvaltemp; } } for (i = 0; i < num_reg_params; i++) { if (reg_params[i].direction != PARAM_OUT) { struct reg *reg = register_get_by_name(armv4_5->core_cache, reg_params[i].reg_name, 0); if (!reg) { LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name); retval = ERROR_INVALID_ARGUMENTS; continue; } if (reg->size != reg_params[i].size) { LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size", reg_params[i].reg_name); retval = ERROR_INVALID_ARGUMENTS; continue; } buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32)); } } for (i = 0; i <= 16; i++) { uint32_t regvalue; regvalue = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_algorithm_info->core_mode, i).value, 0, 32); if (regvalue != context[i]) { LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32 "", ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_algorithm_info->core_mode, i).name, context[i]); buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_algorithm_info->core_mode, i).value, 0, 32, context[i]); ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_algorithm_info->core_mode, i).valid = 1; ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_algorithm_info->core_mode, i).dirty = 1; } } buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32, cpsr); armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1; armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 1; armv4_5->core_state = core_state; armv4_5->core_mode = core_mode; return retval; } int armv4_5_run_algorithm(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info) { return armv4_5_run_algorithm_inner(target, num_mem_params, mem_params, num_reg_params, reg_params, entry_point, exit_point, timeout_ms, arch_info, armv4_5_run_algorithm_completion); } /** * Runs ARM code in the target to calculate a CRC32 checksum. * * \todo On ARMv5+, rely on BKPT termination for reduced overhead. */ int arm_checksum_memory(struct target *target, uint32_t address, uint32_t count, uint32_t *checksum) { struct working_area *crc_algorithm; struct armv4_5_algorithm armv4_5_info; struct reg_param reg_params[2]; int retval; uint32_t i; static const uint32_t arm_crc_code[] = { 0xE1A02000, /* mov r2, r0 */ 0xE3E00000, /* mov r0, #0xffffffff */ 0xE1A03001, /* mov r3, r1 */ 0xE3A04000, /* mov r4, #0 */ 0xEA00000B, /* b ncomp */ /* nbyte: */ 0xE7D21004, /* ldrb r1, [r2, r4] */ 0xE59F7030, /* ldr r7, CRC32XOR */ 0xE0200C01, /* eor r0, r0, r1, asl 24 */ 0xE3A05000, /* mov r5, #0 */ /* loop: */ 0xE3500000, /* cmp r0, #0 */ 0xE1A06080, /* mov r6, r0, asl #1 */ 0xE2855001, /* add r5, r5, #1 */ 0xE1A00006, /* mov r0, r6 */ 0xB0260007, /* eorlt r0, r6, r7 */ 0xE3550008, /* cmp r5, #8 */ 0x1AFFFFF8, /* bne loop */ 0xE2844001, /* add r4, r4, #1 */ /* ncomp: */ 0xE1540003, /* cmp r4, r3 */ 0x1AFFFFF1, /* bne nbyte */ /* end: */ 0xEAFFFFFE, /* b end */ /* CRC32XOR: */ 0x04C11DB7 /* .word 0x04C11DB7 */ }; retval = target_alloc_working_area(target, sizeof(arm_crc_code), &crc_algorithm); if (retval != ERROR_OK) return retval; /* convert code into a buffer in target endianness */ for (i = 0; i < ARRAY_SIZE(arm_crc_code); i++) { retval = target_write_u32(target, crc_algorithm->address + i * sizeof(uint32_t), arm_crc_code[i]); if (retval != ERROR_OK) return retval; } armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC; armv4_5_info.core_mode = ARMV4_5_MODE_SVC; armv4_5_info.core_state = ARMV4_5_STATE_ARM; init_reg_param(®_params[0], "r0", 32, PARAM_IN_OUT); init_reg_param(®_params[1], "r1", 32, PARAM_OUT); buf_set_u32(reg_params[0].value, 0, 32, address); buf_set_u32(reg_params[1].value, 0, 32, count); /* 20 second timeout/megabyte */ int timeout = 20000 * (1 + (count / (1024 * 1024))); retval = target_run_algorithm(target, 0, NULL, 2, reg_params, crc_algorithm->address, crc_algorithm->address + sizeof(arm_crc_code) - 8, timeout, &armv4_5_info); if (retval != ERROR_OK) { LOG_ERROR("error executing ARM crc algorithm"); destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); target_free_working_area(target, crc_algorithm); return retval; } *checksum = buf_get_u32(reg_params[0].value, 0, 32); destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); target_free_working_area(target, crc_algorithm); return ERROR_OK; } /** * Runs ARM code in the target to check whether a memory block holds * all ones. NOR flash which has been erased, and thus may be written, * holds all ones. * * \todo On ARMv5+, rely on BKPT termination for reduced overhead. */ int arm_blank_check_memory(struct target *target, uint32_t address, uint32_t count, uint32_t *blank) { struct working_area *check_algorithm; struct reg_param reg_params[3]; struct armv4_5_algorithm armv4_5_info; int retval; uint32_t i; static const uint32_t check_code[] = { /* loop: */ 0xe4d03001, /* ldrb r3, [r0], #1 */ 0xe0022003, /* and r2, r2, r3 */ 0xe2511001, /* subs r1, r1, #1 */ 0x1afffffb, /* bne loop */ /* end: */ 0xeafffffe /* b end */ }; /* make sure we have a working area */ retval = target_alloc_working_area(target, sizeof(check_code), &check_algorithm); if (retval != ERROR_OK) return retval; /* convert code into a buffer in target endianness */ for (i = 0; i < ARRAY_SIZE(check_code); i++) { retval = target_write_u32(target, check_algorithm->address + i * sizeof(uint32_t), check_code[i]); if (retval != ERROR_OK) return retval; } armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC; armv4_5_info.core_mode = ARMV4_5_MODE_SVC; armv4_5_info.core_state = ARMV4_5_STATE_ARM; init_reg_param(®_params[0], "r0", 32, PARAM_OUT); buf_set_u32(reg_params[0].value, 0, 32, address); init_reg_param(®_params[1], "r1", 32, PARAM_OUT); buf_set_u32(reg_params[1].value, 0, 32, count); init_reg_param(®_params[2], "r2", 32, PARAM_IN_OUT); buf_set_u32(reg_params[2].value, 0, 32, 0xff); retval = target_run_algorithm(target, 0, NULL, 3, reg_params, check_algorithm->address, check_algorithm->address + sizeof(check_code) - 4, 10000, &armv4_5_info); if (retval != ERROR_OK) { destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); destroy_reg_param(®_params[2]); target_free_working_area(target, check_algorithm); return retval; } *blank = buf_get_u32(reg_params[2].value, 0, 32); destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); destroy_reg_param(®_params[2]); target_free_working_area(target, check_algorithm); return ERROR_OK; } static int arm_full_context(struct target *target) { struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target); unsigned num_regs = armv4_5->core_cache->num_regs; struct reg *reg = armv4_5->core_cache->reg_list; int retval = ERROR_OK; for (; num_regs && retval == ERROR_OK; num_regs--, reg++) { if (reg->valid) continue; retval = armv4_5_get_core_reg(reg); } return retval; } int armv4_5_init_arch_info(struct target *target, struct arm *armv4_5) { target->arch_info = armv4_5; armv4_5->common_magic = ARMV4_5_COMMON_MAGIC; armv4_5->core_state = ARMV4_5_STATE_ARM; armv4_5->core_mode = ARMV4_5_MODE_USR; /* core_type may be overridden by subtype logic */ armv4_5->core_type = ARMV4_5_MODE_ANY; /* default full_context() has no core-specific optimizations */ if (!armv4_5->full_context && armv4_5->read_core_reg) armv4_5->full_context = arm_full_context; return ERROR_OK; }