/*************************************************************************** * Copyright (C) 2005 by Dominic Rath * * Dominic.Rath@gmx.de * * * * Copyright (C) 2008 by Spencer Oliver * * spen@spen-soft.co.uk * * * * Copyright (C) 2008 by Oyvind Harboe * * oyvind.harboe@zylin.com * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "arm.h" #include "armv4_5.h" #include "arm_jtag.h" #include "breakpoints.h" #include "arm_disassembler.h" #include #include "algorithm.h" #include "register.h" /* offsets into armv4_5 core register cache */ enum { // ARMV4_5_CPSR = 31, ARMV4_5_SPSR_FIQ = 32, ARMV4_5_SPSR_IRQ = 33, ARMV4_5_SPSR_SVC = 34, ARMV4_5_SPSR_ABT = 35, ARMV4_5_SPSR_UND = 36, ARM_SPSR_MON = 39, }; static const uint8_t arm_usr_indices[17] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ARMV4_5_CPSR, }; static const uint8_t arm_fiq_indices[8] = { 16, 17, 18, 19, 20, 21, 22, ARMV4_5_SPSR_FIQ, }; static const uint8_t arm_irq_indices[3] = { 23, 24, ARMV4_5_SPSR_IRQ, }; static const uint8_t arm_svc_indices[3] = { 25, 26, ARMV4_5_SPSR_SVC, }; static const uint8_t arm_abt_indices[3] = { 27, 28, ARMV4_5_SPSR_ABT, }; static const uint8_t arm_und_indices[3] = { 29, 30, ARMV4_5_SPSR_UND, }; static const uint8_t arm_mon_indices[3] = { 37, 38, ARM_SPSR_MON, }; static const struct { const char *name; unsigned short psr; /* For user and system modes, these list indices for all registers. * otherwise they're just indices for the shadow registers and SPSR. */ unsigned short n_indices; const uint8_t *indices; } arm_mode_data[] = { /* Seven modes are standard from ARM7 on. "System" and "User" share * the same registers; other modes shadow from 3 to 8 registers. */ { .name = "User", .psr = ARM_MODE_USR, .n_indices = ARRAY_SIZE(arm_usr_indices), .indices = arm_usr_indices, }, { .name = "FIQ", .psr = ARM_MODE_FIQ, .n_indices = ARRAY_SIZE(arm_fiq_indices), .indices = arm_fiq_indices, }, { .name = "Supervisor", .psr = ARM_MODE_SVC, .n_indices = ARRAY_SIZE(arm_svc_indices), .indices = arm_svc_indices, }, { .name = "Abort", .psr = ARM_MODE_ABT, .n_indices = ARRAY_SIZE(arm_abt_indices), .indices = arm_abt_indices, }, { .name = "IRQ", .psr = ARM_MODE_IRQ, .n_indices = ARRAY_SIZE(arm_irq_indices), .indices = arm_irq_indices, }, { .name = "Undefined instruction", .psr = ARM_MODE_UND, .n_indices = ARRAY_SIZE(arm_und_indices), .indices = arm_und_indices, }, { .name = "System", .psr = ARM_MODE_SYS, .n_indices = ARRAY_SIZE(arm_usr_indices), .indices = arm_usr_indices, }, /* TrustZone "Security Extensions" add a secure monitor mode. * This is distinct from a "debug monitor" which can support * non-halting debug, in conjunction with some debuggers. */ { .name = "Secure Monitor", .psr = ARM_MODE_MON, .n_indices = ARRAY_SIZE(arm_mon_indices), .indices = arm_mon_indices, }, }; /** Map PSR mode bits to the name of an ARM processor operating mode. */ const char *arm_mode_name(unsigned psr_mode) { for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) { if (arm_mode_data[i].psr == psr_mode) return arm_mode_data[i].name; } LOG_ERROR("unrecognized psr mode: %#02x", psr_mode); return "UNRECOGNIZED"; } /** Return true iff the parameter denotes a valid ARM processor mode. */ bool is_arm_mode(unsigned psr_mode) { for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) { if (arm_mode_data[i].psr == psr_mode) return true; } return false; } /** Map PSR mode bits to linear number indexing armv4_5_core_reg_map */ int arm_mode_to_number(enum arm_mode mode) { switch (mode) { case ARM_MODE_ANY: /* map MODE_ANY to user mode */ case ARM_MODE_USR: return 0; case ARM_MODE_FIQ: return 1; case ARM_MODE_IRQ: return 2; case ARM_MODE_SVC: return 3; case ARM_MODE_ABT: return 4; case ARM_MODE_UND: return 5; case ARM_MODE_SYS: return 6; case ARM_MODE_MON: return 7; default: LOG_ERROR("invalid mode value encountered %d", mode); return -1; } } /** Map linear number indexing armv4_5_core_reg_map to PSR mode bits. */ enum arm_mode armv4_5_number_to_mode(int number) { switch (number) { case 0: return ARM_MODE_USR; case 1: return ARM_MODE_FIQ; case 2: return ARM_MODE_IRQ; case 3: return ARM_MODE_SVC; case 4: return ARM_MODE_ABT; case 5: return ARM_MODE_UND; case 6: return ARM_MODE_SYS; case 7: return ARM_MODE_MON; default: LOG_ERROR("mode index out of bounds %d", number); return ARM_MODE_ANY; } } const char *arm_state_strings[] = { "ARM", "Thumb", "Jazelle", "ThumbEE", }; /* Templates for ARM core registers. * * NOTE: offsets in this table are coupled to the arm_mode_data * table above, the armv4_5_core_reg_map array below, and also to * the ARMV4_5_CPSR symbol (which should vanish after ARM11 updates). */ static const struct { /* The name is used for e.g. the "regs" command. */ const char *name; /* The {cookie, mode} tuple uniquely identifies one register. * In a given mode, cookies 0..15 map to registers R0..R15, * with R13..R15 usually called SP, LR, PC. * * MODE_ANY is used as *input* to the mapping, and indicates * various special cases (sigh) and errors. * * Cookie 16 is (currently) confusing, since it indicates * CPSR -or- SPSR depending on whether 'mode' is MODE_ANY. * (Exception modes have both CPSR and SPSR registers ...) */ unsigned cookie; enum arm_mode mode; } arm_core_regs[] = { /* IMPORTANT: we guarantee that the first eight cached registers * correspond to r0..r7, and the fifteenth to PC, so that callers * don't need to map them. */ { .name = "r0", .cookie = 0, .mode = ARM_MODE_ANY, }, { .name = "r1", .cookie = 1, .mode = ARM_MODE_ANY, }, { .name = "r2", .cookie = 2, .mode = ARM_MODE_ANY, }, { .name = "r3", .cookie = 3, .mode = ARM_MODE_ANY, }, { .name = "r4", .cookie = 4, .mode = ARM_MODE_ANY, }, { .name = "r5", .cookie = 5, .mode = ARM_MODE_ANY, }, { .name = "r6", .cookie = 6, .mode = ARM_MODE_ANY, }, { .name = "r7", .cookie = 7, .mode = ARM_MODE_ANY, }, /* NOTE: regs 8..12 might be shadowed by FIQ ... flagging * them as MODE_ANY creates special cases. (ANY means * "not mapped" elsewhere; here it's "everything but FIQ".) */ { .name = "r8", .cookie = 8, .mode = ARM_MODE_ANY, }, { .name = "r9", .cookie = 9, .mode = ARM_MODE_ANY, }, { .name = "r10", .cookie = 10, .mode = ARM_MODE_ANY, }, { .name = "r11", .cookie = 11, .mode = ARM_MODE_ANY, }, { .name = "r12", .cookie = 12, .mode = ARM_MODE_ANY, }, /* NOTE all MODE_USR registers are equivalent to MODE_SYS ones */ { .name = "sp_usr", .cookie = 13, .mode = ARM_MODE_USR, }, { .name = "lr_usr", .cookie = 14, .mode = ARM_MODE_USR, }, /* guaranteed to be at index 15 */ { .name = "pc", .cookie = 15, .mode = ARM_MODE_ANY, }, { .name = "r8_fiq", .cookie = 8, .mode = ARM_MODE_FIQ, }, { .name = "r9_fiq", .cookie = 9, .mode = ARM_MODE_FIQ, }, { .name = "r10_fiq", .cookie = 10, .mode = ARM_MODE_FIQ, }, { .name = "r11_fiq", .cookie = 11, .mode = ARM_MODE_FIQ, }, { .name = "r12_fiq", .cookie = 12, .mode = ARM_MODE_FIQ, }, { .name = "sp_fiq", .cookie = 13, .mode = ARM_MODE_FIQ, }, { .name = "lr_fiq", .cookie = 14, .mode = ARM_MODE_FIQ, }, { .name = "sp_irq", .cookie = 13, .mode = ARM_MODE_IRQ, }, { .name = "lr_irq", .cookie = 14, .mode = ARM_MODE_IRQ, }, { .name = "sp_svc", .cookie = 13, .mode = ARM_MODE_SVC, }, { .name = "lr_svc", .cookie = 14, .mode = ARM_MODE_SVC, }, { .name = "sp_abt", .cookie = 13, .mode = ARM_MODE_ABT, }, { .name = "lr_abt", .cookie = 14, .mode = ARM_MODE_ABT, }, { .name = "sp_und", .cookie = 13, .mode = ARM_MODE_UND, }, { .name = "lr_und", .cookie = 14, .mode = ARM_MODE_UND, }, { .name = "cpsr", .cookie = 16, .mode = ARM_MODE_ANY, }, { .name = "spsr_fiq", .cookie = 16, .mode = ARM_MODE_FIQ, }, { .name = "spsr_irq", .cookie = 16, .mode = ARM_MODE_IRQ, }, { .name = "spsr_svc", .cookie = 16, .mode = ARM_MODE_SVC, }, { .name = "spsr_abt", .cookie = 16, .mode = ARM_MODE_ABT, }, { .name = "spsr_und", .cookie = 16, .mode = ARM_MODE_UND, }, { .name = "sp_mon", .cookie = 13, .mode = ARM_MODE_MON, }, { .name = "lr_mon", .cookie = 14, .mode = ARM_MODE_MON, }, { .name = "spsr_mon", .cookie = 16, .mode = ARM_MODE_MON, }, }; /* map core mode (USR, FIQ, ...) and register number to * indices into the register cache */ const int armv4_5_core_reg_map[8][17] = { { /* USR */ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31 }, { /* FIQ (8 shadows of USR, vs normal 3) */ 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 15, 32 }, { /* IRQ */ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23, 24, 15, 33 }, { /* SVC */ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 25, 26, 15, 34 }, { /* ABT */ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 27, 28, 15, 35 }, { /* UND */ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 29, 30, 15, 36 }, { /* SYS (same registers as USR) */ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31 }, { /* MON */ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 37, 38, 15, 39, } }; /** * Configures host-side ARM records to reflect the specified CPSR. * Later, code can use arm_reg_current() to map register numbers * according to how they are exposed by this mode. */ void arm_set_cpsr(struct arm *arm, uint32_t cpsr) { enum arm_mode mode = cpsr & 0x1f; int num; /* NOTE: this may be called very early, before the register * cache is set up. We can't defend against many errors, in * particular against CPSRs that aren't valid *here* ... */ if (arm->cpsr) { buf_set_u32(arm->cpsr->value, 0, 32, cpsr); arm->cpsr->valid = 1; arm->cpsr->dirty = 0; } arm->core_mode = mode; /* mode_to_number() warned; set up a somewhat-sane mapping */ num = arm_mode_to_number(mode); if (num < 0) { mode = ARM_MODE_USR; num = 0; } arm->map = &armv4_5_core_reg_map[num][0]; arm->spsr = (mode == ARM_MODE_USR || mode == ARM_MODE_SYS) ? NULL : arm->core_cache->reg_list + arm->map[16]; /* Older ARMs won't have the J bit */ enum arm_state state; if (cpsr & (1 << 5)) { /* T */ if (cpsr & (1 << 24)) { /* J */ LOG_WARNING("ThumbEE -- incomplete support"); state = ARM_STATE_THUMB_EE; } else state = ARM_STATE_THUMB; } else { if (cpsr & (1 << 24)) { /* J */ LOG_ERROR("Jazelle state handling is BROKEN!"); state = ARM_STATE_JAZELLE; } else state = ARM_STATE_ARM; } arm->core_state = state; LOG_DEBUG("set CPSR %#8.8x: %s mode, %s state", (unsigned) cpsr, arm_mode_name(mode), arm_state_strings[arm->core_state]); } /** * Returns handle to the register currently mapped to a given number. * Someone must have called arm_set_cpsr() before. * * \param arm This core's state and registers are used. * \param regnum From 0..15 corresponding to R0..R14 and PC. * Note that R0..R7 don't require mapping; you may access those * as the first eight entries in the register cache. Likewise * R15 (PC) doesn't need mapping; you may also access it directly. * However, R8..R14, and SPSR (arm->spsr) *must* be mapped. * CPSR (arm->cpsr) is also not mapped. */ struct reg *arm_reg_current(struct arm *arm, unsigned regnum) { struct reg *r; if (regnum > 16) return NULL; r = arm->core_cache->reg_list + arm->map[regnum]; /* e.g. invalid CPSR said "secure monitor" mode on a core * that doesn't support it... */ if (!r) { LOG_ERROR("Invalid CPSR mode"); r = arm->core_cache->reg_list + regnum; } return r; } static const uint8_t arm_gdb_dummy_fp_value[12]; /** * Dummy FPA registers are required to support GDB on ARM. * Register packets require eight obsolete FPA register values. * Modern ARM cores use Vector Floating Point (VFP), if they * have any floating point support. VFP is not FPA-compatible. */ struct reg arm_gdb_dummy_fp_reg = { .name = "GDB dummy FPA register", .value = (uint8_t *) arm_gdb_dummy_fp_value, .valid = 1, .size = 96, }; static const uint8_t arm_gdb_dummy_fps_value[4]; /** * Dummy FPA status registers are required to support GDB on ARM. * Register packets require an obsolete FPA status register. */ struct reg arm_gdb_dummy_fps_reg = { .name = "GDB dummy FPA status register", .value = (uint8_t *) arm_gdb_dummy_fps_value, .valid = 1, .size = 32, }; static void arm_gdb_dummy_init(void) __attribute__ ((constructor)); static void arm_gdb_dummy_init(void) { register_init_dummy(&arm_gdb_dummy_fp_reg); register_init_dummy(&arm_gdb_dummy_fps_reg); } static int armv4_5_get_core_reg(struct reg *reg) { int retval; struct arm_reg *armv4_5 = reg->arch_info; struct target *target = armv4_5->target; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } retval = armv4_5->armv4_5_common->read_core_reg(target, reg, armv4_5->num, armv4_5->mode); if (retval == ERROR_OK) { reg->valid = 1; reg->dirty = 0; } return retval; } static int armv4_5_set_core_reg(struct reg *reg, uint8_t *buf) { struct arm_reg *armv4_5 = reg->arch_info; struct target *target = armv4_5->target; struct arm *armv4_5_target = target_to_arm(target); uint32_t value = buf_get_u32(buf, 0, 32); if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } /* Except for CPSR, the "reg" command exposes a writeback model * for the register cache. */ if (reg == armv4_5_target->cpsr) { arm_set_cpsr(armv4_5_target, value); /* Older cores need help to be in ARM mode during halt * mode debug, so we clear the J and T bits if we flush. * For newer cores (v6/v7a/v7r) we don't need that, but * it won't hurt since CPSR is always flushed anyway. */ if (armv4_5_target->core_mode != (enum arm_mode)(value & 0x1f)) { LOG_DEBUG("changing ARM core mode to '%s'", arm_mode_name(value & 0x1f)); value &= ~((1 << 24) | (1 << 5)); armv4_5_target->write_core_reg(target, reg, 16, ARM_MODE_ANY, value); } } else { buf_set_u32(reg->value, 0, 32, value); reg->valid = 1; } reg->dirty = 1; return ERROR_OK; } static const struct reg_arch_type arm_reg_type = { .get = armv4_5_get_core_reg, .set = armv4_5_set_core_reg, }; struct reg_cache *arm_build_reg_cache(struct target *target, struct arm *arm) { int num_regs = ARRAY_SIZE(arm_core_regs); struct reg_cache *cache = malloc(sizeof(struct reg_cache)); struct reg *reg_list = calloc(num_regs, sizeof(struct reg)); struct arm_reg *arch_info = calloc(num_regs, sizeof(struct arm_reg)); int i; if (!cache || !reg_list || !arch_info) { free(cache); free(reg_list); free(arch_info); return NULL; } cache->name = "ARM registers"; cache->next = NULL; cache->reg_list = reg_list; cache->num_regs = 0; for (i = 0; i < num_regs; i++) { /* Skip registers this core doesn't expose */ if (arm_core_regs[i].mode == ARM_MODE_MON && arm->core_type != ARM_MODE_MON) continue; /* REVISIT handle Cortex-M, which only shadows R13/SP */ arch_info[i].num = arm_core_regs[i].cookie; arch_info[i].mode = arm_core_regs[i].mode; arch_info[i].target = target; arch_info[i].armv4_5_common = arm; reg_list[i].name = (char *) arm_core_regs[i].name; reg_list[i].size = 32; reg_list[i].value = &arch_info[i].value; reg_list[i].type = &arm_reg_type; reg_list[i].arch_info = &arch_info[i]; cache->num_regs++; } arm->cpsr = reg_list + ARMV4_5_CPSR; arm->core_cache = cache; return cache; } int arm_arch_state(struct target *target) { struct arm *armv4_5 = target_to_arm(target); if (armv4_5->common_magic != ARM_COMMON_MAGIC) { LOG_ERROR("BUG: called for a non-ARM target"); return ERROR_FAIL; } LOG_USER("target halted in %s state due to %s, current mode: %s\n" "cpsr: 0x%8.8" PRIx32 " pc: 0x%8.8" PRIx32 "%s", arm_state_strings[armv4_5->core_state], debug_reason_name(target), arm_mode_name(armv4_5->core_mode), buf_get_u32(armv4_5->cpsr->value, 0, 32), buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32), armv4_5->is_semihosting ? ", semihosting" : ""); return ERROR_OK; } #define ARMV4_5_CORE_REG_MODENUM(cache, mode, num) \ cache->reg_list[armv4_5_core_reg_map[mode][num]] COMMAND_HANDLER(handle_armv4_5_reg_command) { struct target *target = get_current_target(CMD_CTX); struct arm *armv4_5 = target_to_arm(target); unsigned num_regs; struct reg *regs; if (!is_arm(armv4_5)) { command_print(CMD_CTX, "current target isn't an ARM"); return ERROR_FAIL; } if (target->state != TARGET_HALTED) { command_print(CMD_CTX, "error: target must be halted for register accesses"); return ERROR_FAIL; } if (!is_arm_mode(armv4_5->core_mode)) return ERROR_FAIL; if (!armv4_5->full_context) { command_print(CMD_CTX, "error: target doesn't support %s", CMD_NAME); return ERROR_FAIL; } num_regs = armv4_5->core_cache->num_regs; regs = armv4_5->core_cache->reg_list; for (unsigned mode = 0; mode < ARRAY_SIZE(arm_mode_data); mode++) { const char *name; char *sep = "\n"; char *shadow = ""; /* label this bank of registers (or shadows) */ switch (arm_mode_data[mode].psr) { case ARM_MODE_SYS: continue; case ARM_MODE_USR: name = "System and User"; sep = ""; break; case ARM_MODE_MON: if (armv4_5->core_type != ARM_MODE_MON) continue; /* FALLTHROUGH */ default: name = arm_mode_data[mode].name; shadow = "shadow "; break; } command_print(CMD_CTX, "%s%s mode %sregisters", sep, name, shadow); /* display N rows of up to 4 registers each */ for (unsigned i = 0; i < arm_mode_data[mode].n_indices;) { char output[80]; int output_len = 0; for (unsigned j = 0; j < 4; j++, i++) { uint32_t value; struct reg *reg = regs; if (i >= arm_mode_data[mode].n_indices) break; reg += arm_mode_data[mode].indices[i]; /* REVISIT be smarter about faults... */ if (!reg->valid) armv4_5->full_context(target); value = buf_get_u32(reg->value, 0, 32); output_len += snprintf(output + output_len, sizeof(output) - output_len, "%8s: %8.8" PRIx32 " ", reg->name, value); } command_print(CMD_CTX, "%s", output); } } return ERROR_OK; } COMMAND_HANDLER(handle_armv4_5_core_state_command) { struct target *target = get_current_target(CMD_CTX); struct arm *armv4_5 = target_to_arm(target); if (!is_arm(armv4_5)) { command_print(CMD_CTX, "current target isn't an ARM"); return ERROR_FAIL; } if (CMD_ARGC > 0) { if (strcmp(CMD_ARGV[0], "arm") == 0) { armv4_5->core_state = ARM_STATE_ARM; } if (strcmp(CMD_ARGV[0], "thumb") == 0) { armv4_5->core_state = ARM_STATE_THUMB; } } command_print(CMD_CTX, "core state: %s", arm_state_strings[armv4_5->core_state]); return ERROR_OK; } COMMAND_HANDLER(handle_armv4_5_disassemble_command) { int retval = ERROR_OK; struct target *target = get_current_target(CMD_CTX); struct arm *arm = target ? target_to_arm(target) : NULL; uint32_t address; int count = 1; int thumb = 0; if (!is_arm(arm)) { command_print(CMD_CTX, "current target isn't an ARM"); return ERROR_FAIL; } switch (CMD_ARGC) { case 3: if (strcmp(CMD_ARGV[2], "thumb") != 0) goto usage; thumb = 1; /* FALL THROUGH */ case 2: COMMAND_PARSE_NUMBER(int, CMD_ARGV[1], count); /* FALL THROUGH */ case 1: COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address); if (address & 0x01) { if (!thumb) { command_print(CMD_CTX, "Disassemble as Thumb"); thumb = 1; } address &= ~1; } break; default: usage: command_print(CMD_CTX, "usage: arm disassemble
[ ['thumb']]"); count = 0; retval = ERROR_FAIL; } while (count-- > 0) { struct arm_instruction cur_instruction; if (thumb) { /* Always use Thumb2 disassembly for best handling * of 32-bit BL/BLX, and to work with newer cores * (some ARMv6, all ARMv7) that use Thumb2. */ retval = thumb2_opcode(target, address, &cur_instruction); if (retval != ERROR_OK) break; } else { uint32_t opcode; retval = target_read_u32(target, address, &opcode); if (retval != ERROR_OK) break; retval = arm_evaluate_opcode(opcode, address, &cur_instruction) != ERROR_OK; if (retval != ERROR_OK) break; } command_print(CMD_CTX, "%s", cur_instruction.text); address += cur_instruction.instruction_size; } return retval; } static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { struct command_context *context; struct target *target; struct arm *arm; int retval; context = Jim_GetAssocData(interp, "context"); if (context == NULL) { LOG_ERROR("%s: no command context", __func__); return JIM_ERR; } target = get_current_target(context); if (target == NULL) { LOG_ERROR("%s: no current target", __func__); return JIM_ERR; } if (!target_was_examined(target)) { LOG_ERROR("%s: not yet examined", target_name(target)); return JIM_ERR; } arm = target_to_arm(target); if (!is_arm(arm)) { LOG_ERROR("%s: not an ARM", target_name(target)); return JIM_ERR; } if ((argc < 6) || (argc > 7)) { /* FIXME use the command name to verify # params... */ LOG_ERROR("%s: wrong number of arguments", __func__); return JIM_ERR; } int cpnum; uint32_t op1; uint32_t op2; uint32_t CRn; uint32_t CRm; uint32_t value; long l; /* NOTE: parameter sequence matches ARM instruction set usage: * MCR pNUM, op1, rX, CRn, CRm, op2 ; write CP from rX * MRC pNUM, op1, rX, CRn, CRm, op2 ; read CP into rX * The "rX" is necessarily omitted; it uses Tcl mechanisms. */ retval = Jim_GetLong(interp, argv[1], &l); if (retval != JIM_OK) return retval; if (l & ~0xf) { LOG_ERROR("%s: %s %d out of range", __func__, "coprocessor", (int) l); return JIM_ERR; } cpnum = l; retval = Jim_GetLong(interp, argv[2], &l); if (retval != JIM_OK) return retval; if (l & ~0x7) { LOG_ERROR("%s: %s %d out of range", __func__, "op1", (int) l); return JIM_ERR; } op1 = l; retval = Jim_GetLong(interp, argv[3], &l); if (retval != JIM_OK) return retval; if (l & ~0xf) { LOG_ERROR("%s: %s %d out of range", __func__, "CRn", (int) l); return JIM_ERR; } CRn = l; retval = Jim_GetLong(interp, argv[4], &l); if (retval != JIM_OK) return retval; if (l & ~0xf) { LOG_ERROR("%s: %s %d out of range", __func__, "CRm", (int) l); return JIM_ERR; } CRm = l; retval = Jim_GetLong(interp, argv[5], &l); if (retval != JIM_OK) return retval; if (l & ~0x7) { LOG_ERROR("%s: %s %d out of range", __func__, "op2", (int) l); return JIM_ERR; } op2 = l; value = 0; /* FIXME don't assume "mrc" vs "mcr" from the number of params; * that could easily be a typo! Check both... * * FIXME change the call syntax here ... simplest to just pass * the MRC() or MCR() instruction to be executed. That will also * let us support the "mrc2" and "mcr2" opcodes (toggling one bit) * if that's ever needed. */ if (argc == 7) { retval = Jim_GetLong(interp, argv[6], &l); if (retval != JIM_OK) { return retval; } value = l; /* NOTE: parameters reordered! */ // ARMV4_5_MCR(cpnum, op1, 0, CRn, CRm, op2) retval = arm->mcr(target, cpnum, op1, op2, CRn, CRm, value); if (retval != ERROR_OK) return JIM_ERR; } else { /* NOTE: parameters reordered! */ // ARMV4_5_MRC(cpnum, op1, 0, CRn, CRm, op2) retval = arm->mrc(target, cpnum, op1, op2, CRn, CRm, &value); if (retval != ERROR_OK) return JIM_ERR; Jim_SetResult(interp, Jim_NewIntObj(interp, value)); } return JIM_OK; } static const struct command_registration arm_exec_command_handlers[] = { { .name = "reg", .handler = handle_armv4_5_reg_command, .mode = COMMAND_EXEC, .help = "display ARM core registers", }, { .name = "core_state", .handler = handle_armv4_5_core_state_command, .mode = COMMAND_EXEC, .usage = "['arm'|'thumb']", .help = "display/change ARM core state", }, { .name = "disassemble", .handler = handle_armv4_5_disassemble_command, .mode = COMMAND_EXEC, .usage = "address [count ['thumb']]", .help = "disassemble instructions ", }, { .name = "mcr", .mode = COMMAND_EXEC, .jim_handler = &jim_mcrmrc, .help = "write coprocessor register", .usage = "cpnum op1 CRn op2 CRm value", }, { .name = "mrc", .jim_handler = &jim_mcrmrc, .help = "read coprocessor register", .usage = "cpnum op1 CRn op2 CRm", }, COMMAND_REGISTRATION_DONE }; const struct command_registration arm_command_handlers[] = { { .name = "arm", .mode = COMMAND_ANY, .help = "ARM command group", .chain = arm_exec_command_handlers, }, COMMAND_REGISTRATION_DONE }; int arm_get_gdb_reg_list(struct target *target, struct reg **reg_list[], int *reg_list_size) { struct arm *armv4_5 = target_to_arm(target); int i; if (!is_arm_mode(armv4_5->core_mode)) return ERROR_FAIL; *reg_list_size = 26; *reg_list = malloc(sizeof(struct reg*) * (*reg_list_size)); for (i = 0; i < 16; i++) (*reg_list)[i] = arm_reg_current(armv4_5, i); for (i = 16; i < 24; i++) (*reg_list)[i] = &arm_gdb_dummy_fp_reg; (*reg_list)[24] = &arm_gdb_dummy_fps_reg; (*reg_list)[25] = armv4_5->cpsr; return ERROR_OK; } /* wait for execution to complete and check exit point */ static int armv4_5_run_algorithm_completion(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info) { int retval; struct arm *armv4_5 = target_to_arm(target); if ((retval = target_wait_state(target, TARGET_HALTED, timeout_ms)) != ERROR_OK) { return retval; } if (target->state != TARGET_HALTED) { if ((retval = target_halt(target)) != ERROR_OK) return retval; if ((retval = target_wait_state(target, TARGET_HALTED, 500)) != ERROR_OK) { return retval; } return ERROR_TARGET_TIMEOUT; } /* fast exit: ARMv5+ code can use BKPT */ if (exit_point && buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32) != exit_point) { LOG_WARNING("target reentered debug state, but not at the desired exit point: 0x%4.4" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32)); return ERROR_TARGET_TIMEOUT; } return ERROR_OK; } int armv4_5_run_algorithm_inner(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info, int (*run_it)(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info)) { struct arm *armv4_5 = target_to_arm(target); struct arm_algorithm *arm_algorithm_info = arch_info; enum arm_state core_state = armv4_5->core_state; uint32_t context[17]; uint32_t cpsr; int exit_breakpoint_size = 0; int i; int retval = ERROR_OK; LOG_DEBUG("Running algorithm"); if (arm_algorithm_info->common_magic != ARM_COMMON_MAGIC) { LOG_ERROR("current target isn't an ARMV4/5 target"); return ERROR_TARGET_INVALID; } if (target->state != TARGET_HALTED) { LOG_WARNING("target not halted"); return ERROR_TARGET_NOT_HALTED; } if (!is_arm_mode(armv4_5->core_mode)) return ERROR_FAIL; /* armv5 and later can terminate with BKPT instruction; less overhead */ if (!exit_point && armv4_5->is_armv4) { LOG_ERROR("ARMv4 target needs HW breakpoint location"); return ERROR_FAIL; } /* save r0..pc, cpsr-or-spsr, and then cpsr-for-sure; * they'll be restored later. */ for (i = 0; i <= 16; i++) { struct reg *r; r = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, arm_algorithm_info->core_mode, i); if (!r->valid) armv4_5->read_core_reg(target, r, i, arm_algorithm_info->core_mode); context[i] = buf_get_u32(r->value, 0, 32); } cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 32); for (i = 0; i < num_mem_params; i++) { if ((retval = target_write_buffer(target, mem_params[i].address, mem_params[i].size, mem_params[i].value)) != ERROR_OK) { return retval; } } for (i = 0; i < num_reg_params; i++) { struct reg *reg = register_get_by_name(armv4_5->core_cache, reg_params[i].reg_name, 0); if (!reg) { LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name); return ERROR_INVALID_ARGUMENTS; } if (reg->size != reg_params[i].size) { LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size", reg_params[i].reg_name); return ERROR_INVALID_ARGUMENTS; } if ((retval = armv4_5_set_core_reg(reg, reg_params[i].value)) != ERROR_OK) { return retval; } } armv4_5->core_state = arm_algorithm_info->core_state; if (armv4_5->core_state == ARM_STATE_ARM) exit_breakpoint_size = 4; else if (armv4_5->core_state == ARM_STATE_THUMB) exit_breakpoint_size = 2; else { LOG_ERROR("BUG: can't execute algorithms when not in ARM or Thumb state"); return ERROR_INVALID_ARGUMENTS; } if (arm_algorithm_info->core_mode != ARM_MODE_ANY) { LOG_DEBUG("setting core_mode: 0x%2.2x", arm_algorithm_info->core_mode); buf_set_u32(armv4_5->cpsr->value, 0, 5, arm_algorithm_info->core_mode); armv4_5->cpsr->dirty = 1; armv4_5->cpsr->valid = 1; } /* terminate using a hardware or (ARMv5+) software breakpoint */ if (exit_point && (retval = breakpoint_add(target, exit_point, exit_breakpoint_size, BKPT_HARD)) != ERROR_OK) { LOG_ERROR("can't add HW breakpoint to terminate algorithm"); return ERROR_TARGET_FAILURE; } if ((retval = target_resume(target, 0, entry_point, 1, 1)) != ERROR_OK) { return retval; } int retvaltemp; retval = run_it(target, exit_point, timeout_ms, arch_info); if (exit_point) breakpoint_remove(target, exit_point); if (retval != ERROR_OK) return retval; for (i = 0; i < num_mem_params; i++) { if (mem_params[i].direction != PARAM_OUT) if ((retvaltemp = target_read_buffer(target, mem_params[i].address, mem_params[i].size, mem_params[i].value)) != ERROR_OK) { retval = retvaltemp; } } for (i = 0; i < num_reg_params; i++) { if (reg_params[i].direction != PARAM_OUT) { struct reg *reg = register_get_by_name(armv4_5->core_cache, reg_params[i].reg_name, 0); if (!reg) { LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name); retval = ERROR_INVALID_ARGUMENTS; continue; } if (reg->size != reg_params[i].size) { LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size", reg_params[i].reg_name); retval = ERROR_INVALID_ARGUMENTS; continue; } buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32)); } } /* restore everything we saved before (17 or 18 registers) */ for (i = 0; i <= 16; i++) { uint32_t regvalue; regvalue = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, arm_algorithm_info->core_mode, i).value, 0, 32); if (regvalue != context[i]) { LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32 "", ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, arm_algorithm_info->core_mode, i).name, context[i]); buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, arm_algorithm_info->core_mode, i).value, 0, 32, context[i]); ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, arm_algorithm_info->core_mode, i).valid = 1; ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, arm_algorithm_info->core_mode, i).dirty = 1; } } arm_set_cpsr(armv4_5, cpsr); armv4_5->cpsr->dirty = 1; armv4_5->core_state = core_state; return retval; } int armv4_5_run_algorithm(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info) { return armv4_5_run_algorithm_inner(target, num_mem_params, mem_params, num_reg_params, reg_params, entry_point, exit_point, timeout_ms, arch_info, armv4_5_run_algorithm_completion); } /** * Runs ARM code in the target to calculate a CRC32 checksum. * * \todo On ARMv5+, rely on BKPT termination for reduced overhead. */ int arm_checksum_memory(struct target *target, uint32_t address, uint32_t count, uint32_t *checksum) { struct working_area *crc_algorithm; struct arm_algorithm armv4_5_info; struct reg_param reg_params[2]; int retval; uint32_t i; static const uint32_t arm_crc_code[] = { 0xE1A02000, /* mov r2, r0 */ 0xE3E00000, /* mov r0, #0xffffffff */ 0xE1A03001, /* mov r3, r1 */ 0xE3A04000, /* mov r4, #0 */ 0xEA00000B, /* b ncomp */ /* nbyte: */ 0xE7D21004, /* ldrb r1, [r2, r4] */ 0xE59F7030, /* ldr r7, CRC32XOR */ 0xE0200C01, /* eor r0, r0, r1, asl 24 */ 0xE3A05000, /* mov r5, #0 */ /* loop: */ 0xE3500000, /* cmp r0, #0 */ 0xE1A06080, /* mov r6, r0, asl #1 */ 0xE2855001, /* add r5, r5, #1 */ 0xE1A00006, /* mov r0, r6 */ 0xB0260007, /* eorlt r0, r6, r7 */ 0xE3550008, /* cmp r5, #8 */ 0x1AFFFFF8, /* bne loop */ 0xE2844001, /* add r4, r4, #1 */ /* ncomp: */ 0xE1540003, /* cmp r4, r3 */ 0x1AFFFFF1, /* bne nbyte */ /* end: */ 0xEAFFFFFE, /* b end */ /* CRC32XOR: */ 0x04C11DB7 /* .word 0x04C11DB7 */ }; retval = target_alloc_working_area(target, sizeof(arm_crc_code), &crc_algorithm); if (retval != ERROR_OK) return retval; /* convert code into a buffer in target endianness */ for (i = 0; i < ARRAY_SIZE(arm_crc_code); i++) { retval = target_write_u32(target, crc_algorithm->address + i * sizeof(uint32_t), arm_crc_code[i]); if (retval != ERROR_OK) return retval; } armv4_5_info.common_magic = ARM_COMMON_MAGIC; armv4_5_info.core_mode = ARM_MODE_SVC; armv4_5_info.core_state = ARM_STATE_ARM; init_reg_param(®_params[0], "r0", 32, PARAM_IN_OUT); init_reg_param(®_params[1], "r1", 32, PARAM_OUT); buf_set_u32(reg_params[0].value, 0, 32, address); buf_set_u32(reg_params[1].value, 0, 32, count); /* 20 second timeout/megabyte */ int timeout = 20000 * (1 + (count / (1024 * 1024))); retval = target_run_algorithm(target, 0, NULL, 2, reg_params, crc_algorithm->address, crc_algorithm->address + sizeof(arm_crc_code) - 8, timeout, &armv4_5_info); if (retval != ERROR_OK) { LOG_ERROR("error executing ARM crc algorithm"); destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); target_free_working_area(target, crc_algorithm); return retval; } *checksum = buf_get_u32(reg_params[0].value, 0, 32); destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); target_free_working_area(target, crc_algorithm); return ERROR_OK; } /** * Runs ARM code in the target to check whether a memory block holds * all ones. NOR flash which has been erased, and thus may be written, * holds all ones. * * \todo On ARMv5+, rely on BKPT termination for reduced overhead. */ int arm_blank_check_memory(struct target *target, uint32_t address, uint32_t count, uint32_t *blank) { struct working_area *check_algorithm; struct reg_param reg_params[3]; struct arm_algorithm armv4_5_info; int retval; uint32_t i; static const uint32_t check_code[] = { /* loop: */ 0xe4d03001, /* ldrb r3, [r0], #1 */ 0xe0022003, /* and r2, r2, r3 */ 0xe2511001, /* subs r1, r1, #1 */ 0x1afffffb, /* bne loop */ /* end: */ 0xeafffffe /* b end */ }; /* make sure we have a working area */ retval = target_alloc_working_area(target, sizeof(check_code), &check_algorithm); if (retval != ERROR_OK) return retval; /* convert code into a buffer in target endianness */ for (i = 0; i < ARRAY_SIZE(check_code); i++) { retval = target_write_u32(target, check_algorithm->address + i * sizeof(uint32_t), check_code[i]); if (retval != ERROR_OK) return retval; } armv4_5_info.common_magic = ARM_COMMON_MAGIC; armv4_5_info.core_mode = ARM_MODE_SVC; armv4_5_info.core_state = ARM_STATE_ARM; init_reg_param(®_params[0], "r0", 32, PARAM_OUT); buf_set_u32(reg_params[0].value, 0, 32, address); init_reg_param(®_params[1], "r1", 32, PARAM_OUT); buf_set_u32(reg_params[1].value, 0, 32, count); init_reg_param(®_params[2], "r2", 32, PARAM_IN_OUT); buf_set_u32(reg_params[2].value, 0, 32, 0xff); retval = target_run_algorithm(target, 0, NULL, 3, reg_params, check_algorithm->address, check_algorithm->address + sizeof(check_code) - 4, 10000, &armv4_5_info); if (retval != ERROR_OK) { destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); destroy_reg_param(®_params[2]); target_free_working_area(target, check_algorithm); return retval; } *blank = buf_get_u32(reg_params[2].value, 0, 32); destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); destroy_reg_param(®_params[2]); target_free_working_area(target, check_algorithm); return ERROR_OK; } static int arm_full_context(struct target *target) { struct arm *armv4_5 = target_to_arm(target); unsigned num_regs = armv4_5->core_cache->num_regs; struct reg *reg = armv4_5->core_cache->reg_list; int retval = ERROR_OK; for (; num_regs && retval == ERROR_OK; num_regs--, reg++) { if (reg->valid) continue; retval = armv4_5_get_core_reg(reg); } return retval; } static int arm_default_mrc(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value) { LOG_ERROR("%s doesn't implement MRC", target_type_name(target)); return ERROR_FAIL; } static int arm_default_mcr(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value) { LOG_ERROR("%s doesn't implement MCR", target_type_name(target)); return ERROR_FAIL; } int arm_init_arch_info(struct target *target, struct arm *armv4_5) { target->arch_info = armv4_5; armv4_5->target = target; armv4_5->common_magic = ARM_COMMON_MAGIC; /* core_type may be overridden by subtype logic */ if (armv4_5->core_type != ARM_MODE_THREAD) { armv4_5->core_type = ARM_MODE_ANY; arm_set_cpsr(armv4_5, ARM_MODE_USR); } /* default full_context() has no core-specific optimizations */ if (!armv4_5->full_context && armv4_5->read_core_reg) armv4_5->full_context = arm_full_context; if (!armv4_5->mrc) armv4_5->mrc = arm_default_mrc; if (!armv4_5->mcr) armv4_5->mcr = arm_default_mcr; return ERROR_OK; }