/*************************************************************************** * Copyright (C) 2005 by Dominic Rath * * Dominic.Rath@gmx.de * * * * Copyright (C) 2006 by Magnus Lundin * * lundin@mlu.mine.nu * * * * Copyright (C) 2008 by Spencer Oliver * * spen@spen-soft.co.uk * * * * Copyright (C) 2007,2008 Øyvind Harboe * * oyvind.harboe@zylin.com * * * * Copyright (C) 2018 by Liviu Ionescu * * * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program. If not, see . * * * * ARMv7-M Architecture, Application Level Reference Manual * * ARM DDI 0405C (September 2008) * * * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "breakpoints.h" #include "armv7m.h" #include "algorithm.h" #include "register.h" #include "semihosting_common.h" #if 0 #define _DEBUG_INSTRUCTION_EXECUTION_ #endif static const char * const armv7m_exception_strings[] = { "", "Reset", "NMI", "HardFault", "MemManage", "BusFault", "UsageFault", "RESERVED", "RESERVED", "RESERVED", "RESERVED", "SVCall", "DebugMonitor", "RESERVED", "PendSV", "SysTick" }; /* PSP is used in some thread modes */ const int armv7m_psp_reg_map[ARMV7M_NUM_CORE_REGS] = { ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3, ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7, ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11, ARMV7M_R12, ARMV7M_PSP, ARMV7M_R14, ARMV7M_PC, ARMV7M_xPSR, }; /* MSP is used in handler and some thread modes */ const int armv7m_msp_reg_map[ARMV7M_NUM_CORE_REGS] = { ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3, ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7, ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11, ARMV7M_R12, ARMV7M_MSP, ARMV7M_R14, ARMV7M_PC, ARMV7M_xPSR, }; /* * These registers are not memory-mapped. The ARMv7-M profile includes * memory mapped registers too, such as for the NVIC (interrupt controller) * and SysTick (timer) modules; those can mostly be treated as peripherals. * * The ARMv6-M profile is almost identical in this respect, except that it * doesn't include basepri or faultmask registers. */ static const struct { unsigned id; const char *name; unsigned bits; enum reg_type type; const char *group; const char *feature; } armv7m_regs[] = { { ARMV7M_R0, "r0", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" }, { ARMV7M_R1, "r1", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" }, { ARMV7M_R2, "r2", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" }, { ARMV7M_R3, "r3", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" }, { ARMV7M_R4, "r4", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" }, { ARMV7M_R5, "r5", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" }, { ARMV7M_R6, "r6", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" }, { ARMV7M_R7, "r7", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" }, { ARMV7M_R8, "r8", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" }, { ARMV7M_R9, "r9", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" }, { ARMV7M_R10, "r10", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" }, { ARMV7M_R11, "r11", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" }, { ARMV7M_R12, "r12", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" }, { ARMV7M_R13, "sp", 32, REG_TYPE_DATA_PTR, "general", "org.gnu.gdb.arm.m-profile" }, { ARMV7M_R14, "lr", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" }, { ARMV7M_PC, "pc", 32, REG_TYPE_CODE_PTR, "general", "org.gnu.gdb.arm.m-profile" }, { ARMV7M_xPSR, "xPSR", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" }, { ARMV7M_MSP, "msp", 32, REG_TYPE_DATA_PTR, "system", "org.gnu.gdb.arm.m-system" }, { ARMV7M_PSP, "psp", 32, REG_TYPE_DATA_PTR, "system", "org.gnu.gdb.arm.m-system" }, { ARMV7M_PRIMASK, "primask", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" }, { ARMV7M_BASEPRI, "basepri", 8, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" }, { ARMV7M_FAULTMASK, "faultmask", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" }, { ARMV7M_CONTROL, "control", 2, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" }, { ARMV7M_D0, "d0", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" }, { ARMV7M_D1, "d1", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" }, { ARMV7M_D2, "d2", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" }, { ARMV7M_D3, "d3", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" }, { ARMV7M_D4, "d4", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" }, { ARMV7M_D5, "d5", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" }, { ARMV7M_D6, "d6", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" }, { ARMV7M_D7, "d7", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" }, { ARMV7M_D8, "d8", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" }, { ARMV7M_D9, "d9", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" }, { ARMV7M_D10, "d10", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" }, { ARMV7M_D11, "d11", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" }, { ARMV7M_D12, "d12", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" }, { ARMV7M_D13, "d13", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" }, { ARMV7M_D14, "d14", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" }, { ARMV7M_D15, "d15", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" }, { ARMV7M_FPSCR, "fpscr", 32, REG_TYPE_INT, "float", "org.gnu.gdb.arm.vfp" }, }; #define ARMV7M_NUM_REGS ARRAY_SIZE(armv7m_regs) /** * Restores target context using the cache of core registers set up * by armv7m_build_reg_cache(), calling optional core-specific hooks. */ int armv7m_restore_context(struct target *target) { int i; struct armv7m_common *armv7m = target_to_armv7m(target); struct reg_cache *cache = armv7m->arm.core_cache; LOG_DEBUG(" "); if (armv7m->pre_restore_context) armv7m->pre_restore_context(target); for (i = cache->num_regs - 1; i >= 0; i--) { if (cache->reg_list[i].dirty) { armv7m->arm.write_core_reg(target, &cache->reg_list[i], i, ARM_MODE_ANY, cache->reg_list[i].value); } } return ERROR_OK; } /* Core state functions */ /** * Maps ISR number (from xPSR) to name. * Note that while names and meanings for the first sixteen are standardized * (with zero not a true exception), external interrupts are only numbered. * They are assigned by vendors, which generally assign different numbers to * peripherals (such as UART0 or a USB peripheral controller). */ const char *armv7m_exception_string(int number) { static char enamebuf[32]; if ((number < 0) | (number > 511)) return "Invalid exception"; if (number < 16) return armv7m_exception_strings[number]; sprintf(enamebuf, "External Interrupt(%i)", number - 16); return enamebuf; } static int armv7m_get_core_reg(struct reg *reg) { int retval; struct arm_reg *armv7m_reg = reg->arch_info; struct target *target = armv7m_reg->target; struct arm *arm = target_to_arm(target); if (target->state != TARGET_HALTED) return ERROR_TARGET_NOT_HALTED; retval = arm->read_core_reg(target, reg, armv7m_reg->num, arm->core_mode); return retval; } static int armv7m_set_core_reg(struct reg *reg, uint8_t *buf) { struct arm_reg *armv7m_reg = reg->arch_info; struct target *target = armv7m_reg->target; if (target->state != TARGET_HALTED) return ERROR_TARGET_NOT_HALTED; buf_cpy(buf, reg->value, reg->size); reg->dirty = true; reg->valid = true; return ERROR_OK; } static int armv7m_read_core_reg(struct target *target, struct reg *r, int num, enum arm_mode mode) { uint32_t reg_value; int retval; struct arm_reg *armv7m_core_reg; struct armv7m_common *armv7m = target_to_armv7m(target); assert(num < (int)armv7m->arm.core_cache->num_regs); armv7m_core_reg = armv7m->arm.core_cache->reg_list[num].arch_info; if ((armv7m_core_reg->num >= ARMV7M_D0) && (armv7m_core_reg->num <= ARMV7M_D15)) { /* map D0..D15 to S0..S31 */ size_t regidx = ARMV7M_S0 + 2 * (armv7m_core_reg->num - ARMV7M_D0); retval = armv7m->load_core_reg_u32(target, regidx, ®_value); if (retval != ERROR_OK) return retval; buf_set_u32(armv7m->arm.core_cache->reg_list[num].value, 0, 32, reg_value); retval = armv7m->load_core_reg_u32(target, regidx + 1, ®_value); if (retval != ERROR_OK) return retval; buf_set_u32(armv7m->arm.core_cache->reg_list[num].value + 4, 0, 32, reg_value); } else { retval = armv7m->load_core_reg_u32(target, armv7m_core_reg->num, ®_value); if (retval != ERROR_OK) return retval; buf_set_u32(armv7m->arm.core_cache->reg_list[num].value, 0, 32, reg_value); } armv7m->arm.core_cache->reg_list[num].valid = true; armv7m->arm.core_cache->reg_list[num].dirty = false; return retval; } static int armv7m_write_core_reg(struct target *target, struct reg *r, int num, enum arm_mode mode, uint8_t *value) { int retval; struct arm_reg *armv7m_core_reg; struct armv7m_common *armv7m = target_to_armv7m(target); assert(num < (int)armv7m->arm.core_cache->num_regs); armv7m_core_reg = armv7m->arm.core_cache->reg_list[num].arch_info; if ((armv7m_core_reg->num >= ARMV7M_D0) && (armv7m_core_reg->num <= ARMV7M_D15)) { /* map D0..D15 to S0..S31 */ size_t regidx = ARMV7M_S0 + 2 * (armv7m_core_reg->num - ARMV7M_D0); uint32_t t = buf_get_u32(value, 0, 32); retval = armv7m->store_core_reg_u32(target, regidx, t); if (retval != ERROR_OK) goto out_error; t = buf_get_u32(value + 4, 0, 32); retval = armv7m->store_core_reg_u32(target, regidx + 1, t); if (retval != ERROR_OK) goto out_error; } else { uint32_t t = buf_get_u32(value, 0, 32); LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", num, t); retval = armv7m->store_core_reg_u32(target, armv7m_core_reg->num, t); if (retval != ERROR_OK) goto out_error; } armv7m->arm.core_cache->reg_list[num].valid = true; armv7m->arm.core_cache->reg_list[num].dirty = false; return ERROR_OK; out_error: LOG_ERROR("Error setting register"); armv7m->arm.core_cache->reg_list[num].dirty = armv7m->arm.core_cache->reg_list[num].valid; return ERROR_JTAG_DEVICE_ERROR; } /** * Returns generic ARM userspace registers to GDB. */ int armv7m_get_gdb_reg_list(struct target *target, struct reg **reg_list[], int *reg_list_size, enum target_register_class reg_class) { struct armv7m_common *armv7m = target_to_armv7m(target); int i; if (reg_class == REG_CLASS_ALL) *reg_list_size = armv7m->arm.core_cache->num_regs; else *reg_list_size = ARMV7M_NUM_CORE_REGS; *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size)); if (*reg_list == NULL) return ERROR_FAIL; for (i = 0; i < *reg_list_size; i++) (*reg_list)[i] = &armv7m->arm.core_cache->reg_list[i]; return ERROR_OK; } /** Runs a Thumb algorithm in the target. */ int armv7m_run_algorithm(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, target_addr_t entry_point, target_addr_t exit_point, int timeout_ms, void *arch_info) { int retval; retval = armv7m_start_algorithm(target, num_mem_params, mem_params, num_reg_params, reg_params, entry_point, exit_point, arch_info); if (retval == ERROR_OK) retval = armv7m_wait_algorithm(target, num_mem_params, mem_params, num_reg_params, reg_params, exit_point, timeout_ms, arch_info); return retval; } /** Starts a Thumb algorithm in the target. */ int armv7m_start_algorithm(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, target_addr_t entry_point, target_addr_t exit_point, void *arch_info) { struct armv7m_common *armv7m = target_to_armv7m(target); struct armv7m_algorithm *armv7m_algorithm_info = arch_info; enum arm_mode core_mode = armv7m->arm.core_mode; int retval = ERROR_OK; /* NOTE: armv7m_run_algorithm requires that each algorithm uses a software breakpoint * at the exit point */ if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC) { LOG_ERROR("current target isn't an ARMV7M target"); return ERROR_TARGET_INVALID; } if (target->state != TARGET_HALTED) { LOG_WARNING("target not halted"); return ERROR_TARGET_NOT_HALTED; } /* refresh core register cache * Not needed if core register cache is always consistent with target process state */ for (unsigned i = 0; i < armv7m->arm.core_cache->num_regs; i++) { armv7m_algorithm_info->context[i] = buf_get_u32( armv7m->arm.core_cache->reg_list[i].value, 0, 32); } for (int i = 0; i < num_mem_params; i++) { if (mem_params[i].direction == PARAM_IN) continue; retval = target_write_buffer(target, mem_params[i].address, mem_params[i].size, mem_params[i].value); if (retval != ERROR_OK) return retval; } for (int i = 0; i < num_reg_params; i++) { if (reg_params[i].direction == PARAM_IN) continue; struct reg *reg = register_get_by_name(armv7m->arm.core_cache, reg_params[i].reg_name, 0); /* uint32_t regvalue; */ if (!reg) { LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name); return ERROR_COMMAND_SYNTAX_ERROR; } if (reg->size != reg_params[i].size) { LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size", reg_params[i].reg_name); return ERROR_COMMAND_SYNTAX_ERROR; } /* regvalue = buf_get_u32(reg_params[i].value, 0, 32); */ armv7m_set_core_reg(reg, reg_params[i].value); } { /* * Ensure xPSR.T is set to avoid trying to run things in arm * (non-thumb) mode, which armv7m does not support. * * We do this by setting the entirety of xPSR, which should * remove all the unknowns about xPSR state. * * Because xPSR.T is populated on reset from the vector table, * it might be 0 if the vector table has "bad" data in it. */ struct reg *reg = &armv7m->arm.core_cache->reg_list[ARMV7M_xPSR]; buf_set_u32(reg->value, 0, 32, 0x01000000); reg->valid = true; reg->dirty = true; } if (armv7m_algorithm_info->core_mode != ARM_MODE_ANY && armv7m_algorithm_info->core_mode != core_mode) { /* we cannot set ARM_MODE_HANDLER, so use ARM_MODE_THREAD instead */ if (armv7m_algorithm_info->core_mode == ARM_MODE_HANDLER) { armv7m_algorithm_info->core_mode = ARM_MODE_THREAD; LOG_INFO("ARM_MODE_HANDLER not currently supported, using ARM_MODE_THREAD instead"); } LOG_DEBUG("setting core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode); buf_set_u32(armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].value, 0, 1, armv7m_algorithm_info->core_mode); armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].dirty = true; armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].valid = true; } /* save previous core mode */ armv7m_algorithm_info->core_mode = core_mode; retval = target_resume(target, 0, entry_point, 1, 1); return retval; } /** Waits for an algorithm in the target. */ int armv7m_wait_algorithm(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, target_addr_t exit_point, int timeout_ms, void *arch_info) { struct armv7m_common *armv7m = target_to_armv7m(target); struct armv7m_algorithm *armv7m_algorithm_info = arch_info; int retval = ERROR_OK; uint32_t pc; /* NOTE: armv7m_run_algorithm requires that each algorithm uses a software breakpoint * at the exit point */ if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC) { LOG_ERROR("current target isn't an ARMV7M target"); return ERROR_TARGET_INVALID; } retval = target_wait_state(target, TARGET_HALTED, timeout_ms); /* If the target fails to halt due to the breakpoint, force a halt */ if (retval != ERROR_OK || target->state != TARGET_HALTED) { retval = target_halt(target); if (retval != ERROR_OK) return retval; retval = target_wait_state(target, TARGET_HALTED, 500); if (retval != ERROR_OK) return retval; return ERROR_TARGET_TIMEOUT; } armv7m->load_core_reg_u32(target, 15, &pc); if (exit_point && (pc != exit_point)) { LOG_DEBUG("failed algorithm halted at 0x%" PRIx32 ", expected 0x%" TARGET_PRIxADDR, pc, exit_point); return ERROR_TARGET_TIMEOUT; } /* Read memory values to mem_params[] */ for (int i = 0; i < num_mem_params; i++) { if (mem_params[i].direction != PARAM_OUT) { retval = target_read_buffer(target, mem_params[i].address, mem_params[i].size, mem_params[i].value); if (retval != ERROR_OK) return retval; } } /* Copy core register values to reg_params[] */ for (int i = 0; i < num_reg_params; i++) { if (reg_params[i].direction != PARAM_OUT) { struct reg *reg = register_get_by_name(armv7m->arm.core_cache, reg_params[i].reg_name, 0); if (!reg) { LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name); return ERROR_COMMAND_SYNTAX_ERROR; } if (reg->size != reg_params[i].size) { LOG_ERROR( "BUG: register '%s' size doesn't match reg_params[i].size", reg_params[i].reg_name); return ERROR_COMMAND_SYNTAX_ERROR; } buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32)); } } for (int i = armv7m->arm.core_cache->num_regs - 1; i >= 0; i--) { uint32_t regvalue; regvalue = buf_get_u32(armv7m->arm.core_cache->reg_list[i].value, 0, 32); if (regvalue != armv7m_algorithm_info->context[i]) { LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32, armv7m->arm.core_cache->reg_list[i].name, armv7m_algorithm_info->context[i]); buf_set_u32(armv7m->arm.core_cache->reg_list[i].value, 0, 32, armv7m_algorithm_info->context[i]); armv7m->arm.core_cache->reg_list[i].valid = true; armv7m->arm.core_cache->reg_list[i].dirty = true; } } /* restore previous core mode */ if (armv7m_algorithm_info->core_mode != armv7m->arm.core_mode) { LOG_DEBUG("restoring core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode); buf_set_u32(armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].value, 0, 1, armv7m_algorithm_info->core_mode); armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].dirty = true; armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].valid = true; } armv7m->arm.core_mode = armv7m_algorithm_info->core_mode; return retval; } /** Logs summary of ARMv7-M state for a halted target. */ int armv7m_arch_state(struct target *target) { struct armv7m_common *armv7m = target_to_armv7m(target); struct arm *arm = &armv7m->arm; uint32_t ctrl, sp; /* avoid filling log waiting for fileio reply */ if (target->semihosting && target->semihosting->hit_fileio) return ERROR_OK; ctrl = buf_get_u32(arm->core_cache->reg_list[ARMV7M_CONTROL].value, 0, 32); sp = buf_get_u32(arm->core_cache->reg_list[ARMV7M_R13].value, 0, 32); LOG_USER("target halted due to %s, current mode: %s %s\n" "xPSR: %#8.8" PRIx32 " pc: %#8.8" PRIx32 " %csp: %#8.8" PRIx32 "%s%s", debug_reason_name(target), arm_mode_name(arm->core_mode), armv7m_exception_string(armv7m->exception_number), buf_get_u32(arm->cpsr->value, 0, 32), buf_get_u32(arm->pc->value, 0, 32), (ctrl & 0x02) ? 'p' : 'm', sp, (target->semihosting && target->semihosting->is_active) ? ", semihosting" : "", (target->semihosting && target->semihosting->is_fileio) ? " fileio" : ""); return ERROR_OK; } static const struct reg_arch_type armv7m_reg_type = { .get = armv7m_get_core_reg, .set = armv7m_set_core_reg, }; /** Builds cache of architecturally defined registers. */ struct reg_cache *armv7m_build_reg_cache(struct target *target) { struct armv7m_common *armv7m = target_to_armv7m(target); struct arm *arm = &armv7m->arm; int num_regs = ARMV7M_NUM_REGS; struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache); struct reg_cache *cache = malloc(sizeof(struct reg_cache)); struct reg *reg_list = calloc(num_regs, sizeof(struct reg)); struct arm_reg *arch_info = calloc(num_regs, sizeof(struct arm_reg)); struct reg_feature *feature; int i; /* Build the process context cache */ cache->name = "arm v7m registers"; cache->next = NULL; cache->reg_list = reg_list; cache->num_regs = num_regs; (*cache_p) = cache; for (i = 0; i < num_regs; i++) { arch_info[i].num = armv7m_regs[i].id; arch_info[i].target = target; arch_info[i].arm = arm; reg_list[i].name = armv7m_regs[i].name; reg_list[i].size = armv7m_regs[i].bits; size_t storage_size = DIV_ROUND_UP(armv7m_regs[i].bits, 8); if (storage_size < 4) storage_size = 4; reg_list[i].value = calloc(1, storage_size); reg_list[i].dirty = false; reg_list[i].valid = false; reg_list[i].type = &armv7m_reg_type; reg_list[i].arch_info = &arch_info[i]; reg_list[i].group = armv7m_regs[i].group; reg_list[i].number = i; reg_list[i].exist = true; reg_list[i].caller_save = true; /* gdb defaults to true */ feature = calloc(1, sizeof(struct reg_feature)); if (feature) { feature->name = armv7m_regs[i].feature; reg_list[i].feature = feature; } else LOG_ERROR("unable to allocate feature list"); reg_list[i].reg_data_type = calloc(1, sizeof(struct reg_data_type)); if (reg_list[i].reg_data_type) reg_list[i].reg_data_type->type = armv7m_regs[i].type; else LOG_ERROR("unable to allocate reg type list"); } arm->cpsr = reg_list + ARMV7M_xPSR; arm->pc = reg_list + ARMV7M_PC; arm->core_cache = cache; return cache; } void armv7m_free_reg_cache(struct target *target) { struct armv7m_common *armv7m = target_to_armv7m(target); struct arm *arm = &armv7m->arm; struct reg_cache *cache; struct reg *reg; unsigned int i; cache = arm->core_cache; if (!cache) return; for (i = 0; i < cache->num_regs; i++) { reg = &cache->reg_list[i]; free(reg->feature); free(reg->reg_data_type); free(reg->value); } free(cache->reg_list[0].arch_info); free(cache->reg_list); free(cache); arm->core_cache = NULL; } static int armv7m_setup_semihosting(struct target *target, int enable) { /* nothing todo for armv7m */ return ERROR_OK; } /** Sets up target as a generic ARMv7-M core */ int armv7m_init_arch_info(struct target *target, struct armv7m_common *armv7m) { struct arm *arm = &armv7m->arm; armv7m->common_magic = ARMV7M_COMMON_MAGIC; armv7m->fp_feature = FP_NONE; armv7m->trace_config.trace_bus_id = 1; /* Enable stimulus port #0 by default */ armv7m->trace_config.itm_ter[0] = 1; arm->core_type = ARM_MODE_THREAD; arm->arch_info = armv7m; arm->setup_semihosting = armv7m_setup_semihosting; arm->read_core_reg = armv7m_read_core_reg; arm->write_core_reg = armv7m_write_core_reg; return arm_init_arch_info(target, arm); } /** Generates a CRC32 checksum of a memory region. */ int armv7m_checksum_memory(struct target *target, target_addr_t address, uint32_t count, uint32_t *checksum) { struct working_area *crc_algorithm; struct armv7m_algorithm armv7m_info; struct reg_param reg_params[2]; int retval; static const uint8_t cortex_m_crc_code[] = { #include "../../contrib/loaders/checksum/armv7m_crc.inc" }; retval = target_alloc_working_area(target, sizeof(cortex_m_crc_code), &crc_algorithm); if (retval != ERROR_OK) return retval; retval = target_write_buffer(target, crc_algorithm->address, sizeof(cortex_m_crc_code), (uint8_t *)cortex_m_crc_code); if (retval != ERROR_OK) goto cleanup; armv7m_info.common_magic = ARMV7M_COMMON_MAGIC; armv7m_info.core_mode = ARM_MODE_THREAD; init_reg_param(®_params[0], "r0", 32, PARAM_IN_OUT); init_reg_param(®_params[1], "r1", 32, PARAM_OUT); buf_set_u32(reg_params[0].value, 0, 32, address); buf_set_u32(reg_params[1].value, 0, 32, count); int timeout = 20000 * (1 + (count / (1024 * 1024))); retval = target_run_algorithm(target, 0, NULL, 2, reg_params, crc_algorithm->address, crc_algorithm->address + (sizeof(cortex_m_crc_code) - 6), timeout, &armv7m_info); if (retval == ERROR_OK) *checksum = buf_get_u32(reg_params[0].value, 0, 32); else LOG_ERROR("error executing cortex_m crc algorithm"); destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); cleanup: target_free_working_area(target, crc_algorithm); return retval; } /** Checks an array of memory regions whether they are erased. */ int armv7m_blank_check_memory(struct target *target, struct target_memory_check_block *blocks, int num_blocks, uint8_t erased_value) { struct working_area *erase_check_algorithm; struct working_area *erase_check_params; struct reg_param reg_params[2]; struct armv7m_algorithm armv7m_info; int retval; static bool timed_out; static const uint8_t erase_check_code[] = { #include "../../contrib/loaders/erase_check/armv7m_erase_check.inc" }; const uint32_t code_size = sizeof(erase_check_code); /* make sure we have a working area */ if (target_alloc_working_area(target, code_size, &erase_check_algorithm) != ERROR_OK) return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; retval = target_write_buffer(target, erase_check_algorithm->address, code_size, erase_check_code); if (retval != ERROR_OK) goto cleanup1; /* prepare blocks array for algo */ struct algo_block { union { uint32_t size; uint32_t result; }; uint32_t address; }; uint32_t avail = target_get_working_area_avail(target); int blocks_to_check = avail / sizeof(struct algo_block) - 1; if (num_blocks < blocks_to_check) blocks_to_check = num_blocks; struct algo_block *params = malloc((blocks_to_check+1)*sizeof(struct algo_block)); if (params == NULL) { retval = ERROR_FAIL; goto cleanup1; } int i; uint32_t total_size = 0; for (i = 0; i < blocks_to_check; i++) { total_size += blocks[i].size; target_buffer_set_u32(target, (uint8_t *)&(params[i].size), blocks[i].size / sizeof(uint32_t)); target_buffer_set_u32(target, (uint8_t *)&(params[i].address), blocks[i].address); } target_buffer_set_u32(target, (uint8_t *)&(params[blocks_to_check].size), 0); uint32_t param_size = (blocks_to_check + 1) * sizeof(struct algo_block); if (target_alloc_working_area(target, param_size, &erase_check_params) != ERROR_OK) { retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE; goto cleanup2; } retval = target_write_buffer(target, erase_check_params->address, param_size, (uint8_t *)params); if (retval != ERROR_OK) goto cleanup3; uint32_t erased_word = erased_value | (erased_value << 8) | (erased_value << 16) | (erased_value << 24); LOG_DEBUG("Starting erase check of %d blocks, parameters@" TARGET_ADDR_FMT, blocks_to_check, erase_check_params->address); armv7m_info.common_magic = ARMV7M_COMMON_MAGIC; armv7m_info.core_mode = ARM_MODE_THREAD; init_reg_param(®_params[0], "r0", 32, PARAM_OUT); buf_set_u32(reg_params[0].value, 0, 32, erase_check_params->address); init_reg_param(®_params[1], "r1", 32, PARAM_OUT); buf_set_u32(reg_params[1].value, 0, 32, erased_word); /* assume CPU clk at least 1 MHz */ int timeout = (timed_out ? 30000 : 2000) + total_size * 3 / 1000; retval = target_run_algorithm(target, 0, NULL, ARRAY_SIZE(reg_params), reg_params, erase_check_algorithm->address, erase_check_algorithm->address + (code_size - 2), timeout, &armv7m_info); timed_out = retval == ERROR_TARGET_TIMEOUT; if (retval != ERROR_OK && !timed_out) goto cleanup4; retval = target_read_buffer(target, erase_check_params->address, param_size, (uint8_t *)params); if (retval != ERROR_OK) goto cleanup4; for (i = 0; i < blocks_to_check; i++) { uint32_t result = target_buffer_get_u32(target, (uint8_t *)&(params[i].result)); if (result != 0 && result != 1) break; blocks[i].result = result; } if (i && timed_out) LOG_INFO("Slow CPU clock: %d blocks checked, %d remain. Continuing...", i, num_blocks-i); retval = i; /* return number of blocks really checked */ cleanup4: destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); cleanup3: target_free_working_area(target, erase_check_params); cleanup2: free(params); cleanup1: target_free_working_area(target, erase_check_algorithm); return retval; } int armv7m_maybe_skip_bkpt_inst(struct target *target, bool *inst_found) { struct armv7m_common *armv7m = target_to_armv7m(target); struct reg *r = armv7m->arm.pc; bool result = false; /* if we halted last time due to a bkpt instruction * then we have to manually step over it, otherwise * the core will break again */ if (target->debug_reason == DBG_REASON_BREAKPOINT) { uint16_t op; uint32_t pc = buf_get_u32(r->value, 0, 32); pc &= ~1; if (target_read_u16(target, pc, &op) == ERROR_OK) { if ((op & 0xFF00) == 0xBE00) { pc = buf_get_u32(r->value, 0, 32) + 2; buf_set_u32(r->value, 0, 32, pc); r->dirty = true; r->valid = true; result = true; LOG_DEBUG("Skipping over BKPT instruction"); } } } if (inst_found) *inst_found = result; return ERROR_OK; } const struct command_registration armv7m_command_handlers[] = { { .chain = arm_command_handlers, }, COMMAND_REGISTRATION_DONE };