/*************************************************************************** * Copyright (C) 2015 by David Ung * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include "armv8.h" #include "arm_disassembler.h" #include "register.h" #include #include #include #include #include #include "armv8_opcodes.h" #include "arm_opcodes.h" #include "target.h" #include "target_type.h" static const char * const armv8_state_strings[] = { "ARM", "Thumb", "Jazelle", "ThumbEE", "ARM64", }; static const struct { const char *name; unsigned psr; /* For user and system modes, these list indices for all registers. * otherwise they're just indices for the shadow registers and SPSR. */ unsigned short n_indices; const uint8_t *indices; } armv8_mode_data[] = { /* These special modes are currently only supported * by ARMv6M and ARMv7M profiles */ { .name = "EL0T", .psr = ARMV8_64_EL0T, }, { .name = "EL1T", .psr = ARMV8_64_EL1T, }, { .name = "EL1H", .psr = ARMV8_64_EL1H, }, { .name = "EL2T", .psr = ARMV8_64_EL2T, }, { .name = "EL2H", .psr = ARMV8_64_EL2H, }, { .name = "EL3T", .psr = ARMV8_64_EL3T, }, { .name = "EL3H", .psr = ARMV8_64_EL3H, }, }; /** Map PSR mode bits to the name of an ARM processor operating mode. */ const char *armv8_mode_name(unsigned psr_mode) { for (unsigned i = 0; i < ARRAY_SIZE(armv8_mode_data); i++) { if (armv8_mode_data[i].psr == psr_mode) return armv8_mode_data[i].name; } LOG_ERROR("unrecognized psr mode: %#02x", psr_mode); return "UNRECOGNIZED"; } int armv8_mode_to_number(enum arm_mode mode) { switch (mode) { case ARM_MODE_ANY: /* map MODE_ANY to user mode */ case ARM_MODE_USR: return 0; case ARM_MODE_FIQ: return 1; case ARM_MODE_IRQ: return 2; case ARM_MODE_SVC: return 3; case ARM_MODE_ABT: return 4; case ARM_MODE_UND: return 5; case ARM_MODE_SYS: return 6; case ARM_MODE_MON: return 7; case ARMV8_64_EL0T: return 8; case ARMV8_64_EL1T: return 9; case ARMV8_64_EL1H: return 10; case ARMV8_64_EL2T: return 11; case ARMV8_64_EL2H: return 12; case ARMV8_64_EL3T: return 13; case ARMV8_64_EL3H: return 14; default: LOG_ERROR("invalid mode value encountered %d", mode); return -1; } } static int armv8_read_core_reg(struct target *target, struct reg *r, int num, enum arm_mode mode) { uint64_t reg_value; int retval; struct arm_reg *armv8_core_reg; struct armv8_common *armv8 = target_to_armv8(target); assert(num < (int)armv8->arm.core_cache->num_regs); armv8_core_reg = armv8->arm.core_cache->reg_list[num].arch_info; retval = armv8->load_core_reg_u64(target, armv8_core_reg->num, ®_value); buf_set_u64(armv8->arm.core_cache->reg_list[num].value, 0, 64, reg_value); armv8->arm.core_cache->reg_list[num].valid = 1; armv8->arm.core_cache->reg_list[num].dirty = 0; return retval; } #if 0 static int armv8_write_core_reg(struct target *target, struct reg *r, int num, enum arm_mode mode, target_addr_t value) { int retval; struct arm_reg *armv8_core_reg; struct armv8_common *armv8 = target_to_armv8(target); assert(num < (int)armv8->arm.core_cache->num_regs); armv8_core_reg = armv8->arm.core_cache->reg_list[num].arch_info; retval = armv8->store_core_reg_u64(target, armv8_core_reg->num, value); if (retval != ERROR_OK) { LOG_ERROR("JTAG failure"); armv8->arm.core_cache->reg_list[num].dirty = armv8->arm.core_cache->reg_list[num].valid; return ERROR_JTAG_DEVICE_ERROR; } LOG_DEBUG("write core reg %i value 0x%" PRIx64 "", num, value); armv8->arm.core_cache->reg_list[num].valid = 1; armv8->arm.core_cache->reg_list[num].dirty = 0; return ERROR_OK; } #endif /** * Configures host-side ARM records to reflect the specified CPSR. * Later, code can use arm_reg_current() to map register numbers * according to how they are exposed by this mode. */ void armv8_set_cpsr(struct arm *arm, uint32_t cpsr) { uint32_t mode = cpsr & 0x1F; /* NOTE: this may be called very early, before the register * cache is set up. We can't defend against many errors, in * particular against CPSRs that aren't valid *here* ... */ if (arm->cpsr) { buf_set_u32(arm->cpsr->value, 0, 32, cpsr); arm->cpsr->valid = 1; arm->cpsr->dirty = 0; } /* Older ARMs won't have the J bit */ enum arm_state state = 0xFF; if (((cpsr & 0x10) >> 4) == 0) { state = ARM_STATE_AARCH64; } else { if (cpsr & (1 << 5)) { /* T */ if (cpsr & (1 << 24)) { /* J */ LOG_WARNING("ThumbEE -- incomplete support"); state = ARM_STATE_THUMB_EE; } else state = ARM_STATE_THUMB; } else { if (cpsr & (1 << 24)) { /* J */ LOG_ERROR("Jazelle state handling is BROKEN!"); state = ARM_STATE_JAZELLE; } else state = ARM_STATE_ARM; } } arm->core_state = state; if (arm->core_state == ARM_STATE_AARCH64) { switch (mode) { case SYSTEM_AAR64_MODE_EL0t: arm->core_mode = ARMV8_64_EL0T; break; case SYSTEM_AAR64_MODE_EL1t: arm->core_mode = ARMV8_64_EL0T; break; case SYSTEM_AAR64_MODE_EL1h: arm->core_mode = ARMV8_64_EL1H; break; case SYSTEM_AAR64_MODE_EL2t: arm->core_mode = ARMV8_64_EL2T; break; case SYSTEM_AAR64_MODE_EL2h: arm->core_mode = ARMV8_64_EL2H; break; case SYSTEM_AAR64_MODE_EL3t: arm->core_mode = ARMV8_64_EL3T; break; case SYSTEM_AAR64_MODE_EL3h: arm->core_mode = ARMV8_64_EL3H; break; default: LOG_DEBUG("unknow mode 0x%x", (unsigned) (mode)); break; } } else { arm->core_mode = mode; } LOG_DEBUG("set CPSR %#8.8x: %s mode, %s state", (unsigned) cpsr, armv8_mode_name(arm->core_mode), armv8_state_strings[arm->core_state]); } static void armv8_show_fault_registers(struct target *target) { /* TODO */ } static int armv8_read_ttbcr(struct target *target) { struct armv8_common *armv8 = target_to_armv8(target); struct arm_dpm *dpm = armv8->arm.dpm; uint32_t ttbcr; int retval = dpm->prepare(dpm); if (retval != ERROR_OK) goto done; /* MRC p15,0,,c2,c0,2 ; Read CP15 Translation Table Base Control Register*/ retval = dpm->instr_read_data_r0(dpm, ARMV4_5_MRC(15, 0, 0, 2, 0, 2), &ttbcr); if (retval != ERROR_OK) goto done; armv8->armv8_mmu.ttbr1_used = ((ttbcr & 0x7) != 0) ? 1 : 0; armv8->armv8_mmu.ttbr0_mask = 7 << (32 - ((ttbcr & 0x7))); #if 0 LOG_INFO("ttb1 %s ,ttb0_mask %x", armv8->armv8_mmu.ttbr1_used ? "used" : "not used", armv8->armv8_mmu.ttbr0_mask); #endif if (armv8->armv8_mmu.ttbr1_used == 1) { LOG_INFO("SVC access above %" PRIx32, (uint32_t)(0xffffffff & armv8->armv8_mmu.ttbr0_mask)); armv8->armv8_mmu.os_border = 0xffffffff & armv8->armv8_mmu.ttbr0_mask; } else { /* fix me , default is hard coded LINUX border */ armv8->armv8_mmu.os_border = 0xc0000000; } done: dpm->finish(dpm); return retval; } /* method adapted to cortex A : reused arm v4 v5 method*/ int armv8_mmu_translate_va(struct target *target, uint32_t va, uint32_t *val) { uint32_t first_lvl_descriptor = 0x0; uint32_t second_lvl_descriptor = 0x0; int retval; struct armv8_common *armv8 = target_to_armv8(target); struct arm_dpm *dpm = armv8->arm.dpm; uint32_t ttb = 0; /* default ttb0 */ if (armv8->armv8_mmu.ttbr1_used == -1) armv8_read_ttbcr(target); if ((armv8->armv8_mmu.ttbr1_used) && (va > (0xffffffff & armv8->armv8_mmu.ttbr0_mask))) { /* select ttb 1 */ ttb = 1; } retval = dpm->prepare(dpm); if (retval != ERROR_OK) goto done; /* MRC p15,0,,c2,c0,ttb */ retval = dpm->instr_read_data_r0(dpm, ARMV4_5_MRC(15, 0, 0, 2, 0, ttb), &ttb); if (retval != ERROR_OK) return retval; retval = armv8->armv8_mmu.read_physical_memory(target, (ttb & 0xffffc000) | ((va & 0xfff00000) >> 18), 4, 1, (uint8_t *)&first_lvl_descriptor); if (retval != ERROR_OK) return retval; first_lvl_descriptor = target_buffer_get_u32(target, (uint8_t *) &first_lvl_descriptor); /* reuse armv4_5 piece of code, specific armv8 changes may come later */ LOG_DEBUG("1st lvl desc: %8.8" PRIx32 "", first_lvl_descriptor); if ((first_lvl_descriptor & 0x3) == 0) { LOG_ERROR("Address translation failure"); return ERROR_TARGET_TRANSLATION_FAULT; } if ((first_lvl_descriptor & 0x3) == 2) { /* section descriptor */ *val = (first_lvl_descriptor & 0xfff00000) | (va & 0x000fffff); return ERROR_OK; } if ((first_lvl_descriptor & 0x3) == 1) { /* coarse page table */ retval = armv8->armv8_mmu.read_physical_memory(target, (first_lvl_descriptor & 0xfffffc00) | ((va & 0x000ff000) >> 10), 4, 1, (uint8_t *)&second_lvl_descriptor); if (retval != ERROR_OK) return retval; } else if ((first_lvl_descriptor & 0x3) == 3) { /* fine page table */ retval = armv8->armv8_mmu.read_physical_memory(target, (first_lvl_descriptor & 0xfffff000) | ((va & 0x000ffc00) >> 8), 4, 1, (uint8_t *)&second_lvl_descriptor); if (retval != ERROR_OK) return retval; } second_lvl_descriptor = target_buffer_get_u32(target, (uint8_t *) &second_lvl_descriptor); LOG_DEBUG("2nd lvl desc: %8.8" PRIx32 "", second_lvl_descriptor); if ((second_lvl_descriptor & 0x3) == 0) { LOG_ERROR("Address translation failure"); return ERROR_TARGET_TRANSLATION_FAULT; } if ((second_lvl_descriptor & 0x3) == 1) { /* large page descriptor */ *val = (second_lvl_descriptor & 0xffff0000) | (va & 0x0000ffff); return ERROR_OK; } if ((second_lvl_descriptor & 0x3) == 2) { /* small page descriptor */ *val = (second_lvl_descriptor & 0xfffff000) | (va & 0x00000fff); return ERROR_OK; } if ((second_lvl_descriptor & 0x3) == 3) { *val = (second_lvl_descriptor & 0xfffffc00) | (va & 0x000003ff); return ERROR_OK; } /* should not happen */ LOG_ERROR("Address translation failure"); return ERROR_TARGET_TRANSLATION_FAULT; done: return retval; } /* V8 method VA TO PA */ int armv8_mmu_translate_va_pa(struct target *target, target_addr_t va, target_addr_t *val, int meminfo) { return ERROR_OK; } static int armv8_handle_inner_cache_info_command(struct command_context *cmd_ctx, struct armv8_cache_common *armv8_cache) { if (armv8_cache->ctype == -1) { command_print(cmd_ctx, "cache not yet identified"); return ERROR_OK; } command_print(cmd_ctx, "D-Cache: linelen %" PRIi32 ", associativity %" PRIi32 ", nsets %" PRIi32 ", cachesize %" PRId32 " KBytes", armv8_cache->d_u_size.linelen, armv8_cache->d_u_size.associativity, armv8_cache->d_u_size.nsets, armv8_cache->d_u_size.cachesize); command_print(cmd_ctx, "I-Cache: linelen %" PRIi32 ", associativity %" PRIi32 ", nsets %" PRIi32 ", cachesize %" PRId32 " KBytes", armv8_cache->i_size.linelen, armv8_cache->i_size.associativity, armv8_cache->i_size.nsets, armv8_cache->i_size.cachesize); return ERROR_OK; } static int _armv8_flush_all_data(struct target *target) { struct armv8_common *armv8 = target_to_armv8(target); struct arm_dpm *dpm = armv8->arm.dpm; struct armv8_cachesize *d_u_size = &(armv8->armv8_mmu.armv8_cache.d_u_size); int32_t c_way, c_index = d_u_size->index; int retval; /* check that cache data is on at target halt */ if (!armv8->armv8_mmu.armv8_cache.d_u_cache_enabled) { LOG_INFO("flushed not performed :cache not on at target halt"); return ERROR_OK; } retval = dpm->prepare(dpm); if (retval != ERROR_OK) goto done; do { c_way = d_u_size->way; do { uint32_t value = (c_index << d_u_size->index_shift) | (c_way << d_u_size->way_shift); /* DCCISW */ /* LOG_INFO ("%d %d %x",c_way,c_index,value); */ retval = dpm->instr_write_data_r0(dpm, ARMV4_5_MCR(15, 0, 0, 7, 14, 2), value); if (retval != ERROR_OK) goto done; c_way -= 1; } while (c_way >= 0); c_index -= 1; } while (c_index >= 0); return retval; done: LOG_ERROR("flushed failed"); dpm->finish(dpm); return retval; } static int armv8_flush_all_data(struct target *target) { int retval = ERROR_FAIL; /* check that armv8_cache is correctly identify */ struct armv8_common *armv8 = target_to_armv8(target); if (armv8->armv8_mmu.armv8_cache.ctype == -1) { LOG_ERROR("trying to flush un-identified cache"); return retval; } if (target->smp) { /* look if all the other target have been flushed in order to flush level * 2 */ struct target_list *head; struct target *curr; head = target->head; while (head != (struct target_list *)NULL) { curr = head->target; if (curr->state == TARGET_HALTED) { LOG_INFO("Wait flushing data l1 on core %" PRId32, curr->coreid); retval = _armv8_flush_all_data(curr); } head = head->next; } } else retval = _armv8_flush_all_data(target); return retval; } int armv8_handle_cache_info_command(struct command_context *cmd_ctx, struct armv8_cache_common *armv8_cache) { if (armv8_cache->ctype == -1) { command_print(cmd_ctx, "cache not yet identified"); return ERROR_OK; } if (armv8_cache->display_cache_info) armv8_cache->display_cache_info(cmd_ctx, armv8_cache); return ERROR_OK; } /* retrieve core id cluster id */ static int armv8_read_mpidr(struct target *target) { int retval = ERROR_FAIL; struct armv8_common *armv8 = target_to_armv8(target); struct arm_dpm *dpm = armv8->arm.dpm; uint32_t mpidr; retval = dpm->prepare(dpm); if (retval != ERROR_OK) goto done; /* MRC p15,0,,c0,c0,5; read Multiprocessor ID register*/ retval = dpm->instr_read_data_r0(dpm, ARMV8_MRS(SYSTEM_MPIDR, 0), &mpidr); if (retval != ERROR_OK) goto done; if (mpidr & 1<<31) { armv8->multi_processor_system = (mpidr >> 30) & 1; armv8->cluster_id = (mpidr >> 8) & 0xf; armv8->cpu_id = mpidr & 0x3; LOG_INFO("%s cluster %x core %x %s", target_name(target), armv8->cluster_id, armv8->cpu_id, armv8->multi_processor_system == 0 ? "multi core" : "mono core"); } else LOG_ERROR("mpdir not in multiprocessor format"); done: dpm->finish(dpm); return retval; } int armv8_identify_cache(struct target *target) { /* read cache descriptor */ int retval = ERROR_FAIL; struct armv8_common *armv8 = target_to_armv8(target); struct arm_dpm *dpm = armv8->arm.dpm; uint32_t cache_selected, clidr; uint32_t cache_i_reg, cache_d_reg; struct armv8_cache_common *cache = &(armv8->armv8_mmu.armv8_cache); if (!armv8->is_armv7r) armv8_read_ttbcr(target); retval = dpm->prepare(dpm); if (retval != ERROR_OK) goto done; /* retrieve CLIDR * mrc p15, 1, r0, c0, c0, 1 @ read clidr */ retval = dpm->instr_read_data_r0(dpm, ARMV4_5_MRC(15, 1, 0, 0, 0, 1), &clidr); if (retval != ERROR_OK) goto done; clidr = (clidr & 0x7000000) >> 23; LOG_INFO("number of cache level %" PRIx32, (uint32_t)(clidr / 2)); if ((clidr / 2) > 1) { /* FIXME not supported present in cortex A8 and later */ /* in cortex A7, A15 */ LOG_ERROR("cache l2 present :not supported"); } /* retrieve selected cache * MRC p15, 2,, c0, c0, 0; Read CSSELR */ retval = dpm->instr_read_data_r0(dpm, ARMV4_5_MRC(15, 2, 0, 0, 0, 0), &cache_selected); if (retval != ERROR_OK) goto done; retval = armv8->arm.mrc(target, 15, 2, 0, /* op1, op2 */ 0, 0, /* CRn, CRm */ &cache_selected); if (retval != ERROR_OK) goto done; /* select instruction cache * MCR p15, 2,, c0, c0, 0; Write CSSELR * [0] : 1 instruction cache selection , 0 data cache selection */ retval = dpm->instr_write_data_r0(dpm, ARMV4_5_MRC(15, 2, 0, 0, 0, 0), 1); if (retval != ERROR_OK) goto done; /* read CCSIDR * MRC P15,1,,C0, C0,0 ;on cortex A9 read CCSIDR * [2:0] line size 001 eight word per line * [27:13] NumSet 0x7f 16KB, 0xff 32Kbytes, 0x1ff 64Kbytes */ retval = dpm->instr_read_data_r0(dpm, ARMV4_5_MRC(15, 1, 0, 0, 0, 0), &cache_i_reg); if (retval != ERROR_OK) goto done; /* select data cache*/ retval = dpm->instr_write_data_r0(dpm, ARMV4_5_MRC(15, 2, 0, 0, 0, 0), 0); if (retval != ERROR_OK) goto done; retval = dpm->instr_read_data_r0(dpm, ARMV4_5_MRC(15, 1, 0, 0, 0, 0), &cache_d_reg); if (retval != ERROR_OK) goto done; /* restore selected cache */ dpm->instr_write_data_r0(dpm, ARMV4_5_MRC(15, 2, 0, 0, 0, 0), cache_selected); if (retval != ERROR_OK) goto done; dpm->finish(dpm); /* put fake type */ cache->d_u_size.linelen = 16 << (cache_d_reg & 0x7); cache->d_u_size.cachesize = (((cache_d_reg >> 13) & 0x7fff)+1)/8; cache->d_u_size.nsets = (cache_d_reg >> 13) & 0x7fff; cache->d_u_size.associativity = ((cache_d_reg >> 3) & 0x3ff) + 1; /* compute info for set way operation on cache */ cache->d_u_size.index_shift = (cache_d_reg & 0x7) + 4; cache->d_u_size.index = (cache_d_reg >> 13) & 0x7fff; cache->d_u_size.way = ((cache_d_reg >> 3) & 0x3ff); cache->d_u_size.way_shift = cache->d_u_size.way + 1; { int i = 0; while (((cache->d_u_size.way_shift >> i) & 1) != 1) i++; cache->d_u_size.way_shift = 32-i; } #if 0 LOG_INFO("data cache index %d << %d, way %d << %d", cache->d_u_size.index, cache->d_u_size.index_shift, cache->d_u_size.way, cache->d_u_size.way_shift); LOG_INFO("data cache %d bytes %d KBytes asso %d ways", cache->d_u_size.linelen, cache->d_u_size.cachesize, cache->d_u_size.associativity); #endif cache->i_size.linelen = 16 << (cache_i_reg & 0x7); cache->i_size.associativity = ((cache_i_reg >> 3) & 0x3ff) + 1; cache->i_size.nsets = (cache_i_reg >> 13) & 0x7fff; cache->i_size.cachesize = (((cache_i_reg >> 13) & 0x7fff)+1)/8; /* compute info for set way operation on cache */ cache->i_size.index_shift = (cache_i_reg & 0x7) + 4; cache->i_size.index = (cache_i_reg >> 13) & 0x7fff; cache->i_size.way = ((cache_i_reg >> 3) & 0x3ff); cache->i_size.way_shift = cache->i_size.way + 1; { int i = 0; while (((cache->i_size.way_shift >> i) & 1) != 1) i++; cache->i_size.way_shift = 32-i; } #if 0 LOG_INFO("instruction cache index %d << %d, way %d << %d", cache->i_size.index, cache->i_size.index_shift, cache->i_size.way, cache->i_size.way_shift); LOG_INFO("instruction cache %d bytes %d KBytes asso %d ways", cache->i_size.linelen, cache->i_size.cachesize, cache->i_size.associativity); #endif /* if no l2 cache initialize l1 data cache flush function function */ if (armv8->armv8_mmu.armv8_cache.flush_all_data_cache == NULL) { armv8->armv8_mmu.armv8_cache.display_cache_info = armv8_handle_inner_cache_info_command; armv8->armv8_mmu.armv8_cache.flush_all_data_cache = armv8_flush_all_data; } armv8->armv8_mmu.armv8_cache.ctype = 0; done: dpm->finish(dpm); armv8_read_mpidr(target); return retval; } int armv8_init_arch_info(struct target *target, struct armv8_common *armv8) { struct arm *arm = &armv8->arm; arm->arch_info = armv8; target->arch_info = &armv8->arm; /* target is useful in all function arm v4 5 compatible */ armv8->arm.target = target; armv8->arm.common_magic = ARM_COMMON_MAGIC; armv8->common_magic = ARMV8_COMMON_MAGIC; arm->read_core_reg = armv8_read_core_reg; #if 0 arm->write_core_reg = armv8_write_core_reg; #endif armv8->armv8_mmu.armv8_cache.l2_cache = NULL; armv8->armv8_mmu.armv8_cache.ctype = -1; armv8->armv8_mmu.armv8_cache.flush_all_data_cache = NULL; armv8->armv8_mmu.armv8_cache.display_cache_info = NULL; return ERROR_OK; } int armv8_arch_state(struct target *target) { static const char * const state[] = { "disabled", "enabled" }; struct armv8_common *armv8 = target_to_armv8(target); struct arm *arm = &armv8->arm; if (armv8->common_magic != ARMV8_COMMON_MAGIC) { LOG_ERROR("BUG: called for a non-Armv8 target"); return ERROR_COMMAND_SYNTAX_ERROR; } arm_arch_state(target); if (armv8->is_armv7r) { LOG_USER("D-Cache: %s, I-Cache: %s", state[armv8->armv8_mmu.armv8_cache.d_u_cache_enabled], state[armv8->armv8_mmu.armv8_cache.i_cache_enabled]); } else { LOG_USER("MMU: %s, D-Cache: %s, I-Cache: %s", state[armv8->armv8_mmu.mmu_enabled], state[armv8->armv8_mmu.armv8_cache.d_u_cache_enabled], state[armv8->armv8_mmu.armv8_cache.i_cache_enabled]); } if (arm->core_mode == ARM_MODE_ABT) armv8_show_fault_registers(target); if (target->debug_reason == DBG_REASON_WATCHPOINT) LOG_USER("Watchpoint triggered at PC %#08x", (unsigned) armv8->dpm.wp_pc); return ERROR_OK; } static const struct { unsigned id; const char *name; unsigned bits; enum reg_type type; const char *group; const char *feature; } armv8_regs[] = { { ARMV8_R0, "x0", 64, REG_TYPE_INT, "general", "org.gnu.gdb.aarch64.core" }, { ARMV8_R1, "x1", 64, REG_TYPE_INT, "general", "org.gnu.gdb.aarch64.core" }, { ARMV8_R2, "x2", 64, REG_TYPE_INT, "general", "org.gnu.gdb.aarch64.core" }, { ARMV8_R3, "x3", 64, REG_TYPE_INT, "general", "org.gnu.gdb.aarch64.core" }, { ARMV8_R4, "x4", 64, REG_TYPE_INT, "general", "org.gnu.gdb.aarch64.core" }, { ARMV8_R5, "x5", 64, REG_TYPE_INT, "general", "org.gnu.gdb.aarch64.core" }, { ARMV8_R6, "x6", 64, REG_TYPE_INT, "general", "org.gnu.gdb.aarch64.core" }, { ARMV8_R7, "x7", 64, REG_TYPE_INT, "general", "org.gnu.gdb.aarch64.core" }, { ARMV8_R8, "x8", 64, REG_TYPE_INT, "general", "org.gnu.gdb.aarch64.core" }, { ARMV8_R9, "x9", 64, REG_TYPE_INT, "general", "org.gnu.gdb.aarch64.core" }, { ARMV8_R10, "x10", 64, REG_TYPE_INT, "general", "org.gnu.gdb.aarch64.core" }, { ARMV8_R11, "x11", 64, REG_TYPE_INT, "general", "org.gnu.gdb.aarch64.core" }, { ARMV8_R12, "x12", 64, REG_TYPE_INT, "general", "org.gnu.gdb.aarch64.core" }, { ARMV8_R13, "x13", 64, REG_TYPE_INT, "general", "org.gnu.gdb.aarch64.core" }, { ARMV8_R14, "x14", 64, REG_TYPE_INT, "general", "org.gnu.gdb.aarch64.core" }, { ARMV8_R15, "x15", 64, REG_TYPE_INT, "general", "org.gnu.gdb.aarch64.core" }, { ARMV8_R16, "x16", 64, REG_TYPE_INT, "general", "org.gnu.gdb.aarch64.core" }, { ARMV8_R17, "x17", 64, REG_TYPE_INT, "general", "org.gnu.gdb.aarch64.core" }, { ARMV8_R18, "x18", 64, REG_TYPE_INT, "general", "org.gnu.gdb.aarch64.core" }, { ARMV8_R19, "x19", 64, REG_TYPE_INT, "general", "org.gnu.gdb.aarch64.core" }, { ARMV8_R20, "x20", 64, REG_TYPE_INT, "general", "org.gnu.gdb.aarch64.core" }, { ARMV8_R21, "x21", 64, REG_TYPE_INT, "general", "org.gnu.gdb.aarch64.core" }, { ARMV8_R22, "x22", 64, REG_TYPE_INT, "general", "org.gnu.gdb.aarch64.core" }, { ARMV8_R23, "x23", 64, REG_TYPE_INT, "general", "org.gnu.gdb.aarch64.core" }, { ARMV8_R24, "x24", 64, REG_TYPE_INT, "general", "org.gnu.gdb.aarch64.core" }, { ARMV8_R25, "x25", 64, REG_TYPE_INT, "general", "org.gnu.gdb.aarch64.core" }, { ARMV8_R26, "x26", 64, REG_TYPE_INT, "general", "org.gnu.gdb.aarch64.core" }, { ARMV8_R27, "x27", 64, REG_TYPE_INT, "general", "org.gnu.gdb.aarch64.core" }, { ARMV8_R28, "x28", 64, REG_TYPE_INT, "general", "org.gnu.gdb.aarch64.core" }, { ARMV8_R29, "x29", 64, REG_TYPE_INT, "general", "org.gnu.gdb.aarch64.core" }, { ARMV8_R30, "x30", 64, REG_TYPE_INT, "general", "org.gnu.gdb.aarch64.core" }, { ARMV8_R31, "sp", 64, REG_TYPE_DATA_PTR, "general", "org.gnu.gdb.aarch64.core" }, { ARMV8_PC, "pc", 64, REG_TYPE_CODE_PTR, "general", "org.gnu.gdb.aarch64.core" }, { ARMV8_xPSR, "CPSR", 64, REG_TYPE_INT, "general", "org.gnu.gdb.aarch64.core" }, }; #define ARMV8_NUM_REGS ARRAY_SIZE(armv8_regs) static int armv8_get_core_reg(struct reg *reg) { int retval; struct arm_reg *armv8_reg = reg->arch_info; struct target *target = armv8_reg->target; struct arm *arm = target_to_arm(target); if (target->state != TARGET_HALTED) return ERROR_TARGET_NOT_HALTED; retval = arm->read_core_reg(target, reg, armv8_reg->num, arm->core_mode); return retval; } static int armv8_set_core_reg(struct reg *reg, uint8_t *buf) { struct arm_reg *armv8_reg = reg->arch_info; struct target *target = armv8_reg->target; uint64_t value = buf_get_u64(buf, 0, 64); if (target->state != TARGET_HALTED) return ERROR_TARGET_NOT_HALTED; buf_set_u64(reg->value, 0, 64, value); reg->dirty = 1; reg->valid = 1; return ERROR_OK; } static const struct reg_arch_type armv8_reg_type = { .get = armv8_get_core_reg, .set = armv8_set_core_reg, }; /** Builds cache of architecturally defined registers. */ struct reg_cache *armv8_build_reg_cache(struct target *target) { struct armv8_common *armv8 = target_to_armv8(target); struct arm *arm = &armv8->arm; int num_regs = ARMV8_NUM_REGS; struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache); struct reg_cache *cache = malloc(sizeof(struct reg_cache)); struct reg *reg_list = calloc(num_regs, sizeof(struct reg)); struct arm_reg *arch_info = calloc(num_regs, sizeof(struct arm_reg)); struct reg_feature *feature; int i; /* Build the process context cache */ cache->name = "arm v8 registers"; cache->next = NULL; cache->reg_list = reg_list; cache->num_regs = num_regs; (*cache_p) = cache; for (i = 0; i < num_regs; i++) { arch_info[i].num = armv8_regs[i].id; arch_info[i].target = target; arch_info[i].arm = arm; reg_list[i].name = armv8_regs[i].name; reg_list[i].size = armv8_regs[i].bits; reg_list[i].value = calloc(1, 4); reg_list[i].dirty = 0; reg_list[i].valid = 0; reg_list[i].type = &armv8_reg_type; reg_list[i].arch_info = &arch_info[i]; reg_list[i].group = armv8_regs[i].group; reg_list[i].number = i; reg_list[i].exist = true; reg_list[i].caller_save = true; /* gdb defaults to true */ feature = calloc(1, sizeof(struct reg_feature)); if (feature) { feature->name = armv8_regs[i].feature; reg_list[i].feature = feature; } else LOG_ERROR("unable to allocate feature list"); reg_list[i].reg_data_type = calloc(1, sizeof(struct reg_data_type)); if (reg_list[i].reg_data_type) reg_list[i].reg_data_type->type = armv8_regs[i].type; else LOG_ERROR("unable to allocate reg type list"); } arm->cpsr = reg_list + ARMV8_xPSR; arm->pc = reg_list + ARMV8_PC; arm->core_cache = cache; return cache; } struct reg *armv8_reg_current(struct arm *arm, unsigned regnum) { struct reg *r; if (regnum > 33) return NULL; r = arm->core_cache->reg_list + regnum; return r; } const struct command_registration armv8_command_handlers[] = { { .chain = dap_command_handlers, }, COMMAND_REGISTRATION_DONE }; int armv8_get_gdb_reg_list(struct target *target, struct reg **reg_list[], int *reg_list_size, enum target_register_class reg_class) { struct arm *arm = target_to_arm(target); int i; switch (reg_class) { case REG_CLASS_GENERAL: case REG_CLASS_ALL: *reg_list_size = 34; *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size)); for (i = 0; i < *reg_list_size; i++) (*reg_list)[i] = armv8_reg_current(arm, i); return ERROR_OK; break; default: LOG_ERROR("not a valid register class type in query."); return ERROR_FAIL; break; } }