/*************************************************************************** * Copyright (C) 2005 by Dominic Rath * * Dominic.Rath@gmx.de * * * * Copyright (C) 2006 by Magnus Lundin * * lundin@mlu.mine.nu * * * * Copyright (C) 2008 by Spencer Oliver * * spen@spen-soft.co.uk * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program. If not, see . * * * * * * Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0) * * * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "jtag/interface.h" #include "breakpoints.h" #include "cortex_m.h" #include "target_request.h" #include "target_type.h" #include "arm_disassembler.h" #include "register.h" #include "arm_opcodes.h" #include "arm_semihosting.h" #include /* NOTE: most of this should work fine for the Cortex-M1 and * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M. * Some differences: M0/M1 doesn't have FPB remapping or the * DWT tracing/profiling support. (So the cycle counter will * not be usable; the other stuff isn't currently used here.) * * Although there are some workarounds for errata seen only in r0p0 * silicon, such old parts are hard to find and thus not much tested * any longer. */ /* forward declarations */ static int cortex_m_store_core_reg_u32(struct target *target, uint32_t num, uint32_t value); static void cortex_m_dwt_free(struct target *target); static int cortexm_dap_read_coreregister_u32(struct target *target, uint32_t *value, int regnum) { struct armv7m_common *armv7m = target_to_armv7m(target); int retval; uint32_t dcrdr; /* because the DCB_DCRDR is used for the emulated dcc channel * we have to save/restore the DCB_DCRDR when used */ if (target->dbg_msg_enabled) { retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, &dcrdr); if (retval != ERROR_OK) return retval; } retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRSR, regnum); if (retval != ERROR_OK) return retval; retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DCRDR, value); if (retval != ERROR_OK) return retval; if (target->dbg_msg_enabled) { /* restore DCB_DCRDR - this needs to be in a separate * transaction otherwise the emulated DCC channel breaks */ if (retval == ERROR_OK) retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRDR, dcrdr); } return retval; } static int cortexm_dap_write_coreregister_u32(struct target *target, uint32_t value, int regnum) { struct armv7m_common *armv7m = target_to_armv7m(target); int retval; uint32_t dcrdr; /* because the DCB_DCRDR is used for the emulated dcc channel * we have to save/restore the DCB_DCRDR when used */ if (target->dbg_msg_enabled) { retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, &dcrdr); if (retval != ERROR_OK) return retval; } retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, value); if (retval != ERROR_OK) return retval; retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRSR, regnum | DCRSR_WnR); if (retval != ERROR_OK) return retval; if (target->dbg_msg_enabled) { /* restore DCB_DCRDR - this needs to be in a separate * transaction otherwise the emulated DCC channel breaks */ if (retval == ERROR_OK) retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRDR, dcrdr); } return retval; } static int cortex_m_write_debug_halt_mask(struct target *target, uint32_t mask_on, uint32_t mask_off) { struct cortex_m_common *cortex_m = target_to_cm(target); struct armv7m_common *armv7m = &cortex_m->armv7m; /* mask off status bits */ cortex_m->dcb_dhcsr &= ~((0xFFFFul << 16) | mask_off); /* create new register mask */ cortex_m->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on; return mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR, cortex_m->dcb_dhcsr); } static int cortex_m_set_maskints(struct target *target, bool mask) { struct cortex_m_common *cortex_m = target_to_cm(target); if (!!(cortex_m->dcb_dhcsr & C_MASKINTS) != mask) return cortex_m_write_debug_halt_mask(target, mask ? C_MASKINTS : 0, mask ? 0 : C_MASKINTS); else return ERROR_OK; } static int cortex_m_set_maskints_for_halt(struct target *target) { struct cortex_m_common *cortex_m = target_to_cm(target); switch (cortex_m->isrmasking_mode) { case CORTEX_M_ISRMASK_AUTO: /* interrupts taken at resume, whether for step or run -> no mask */ return cortex_m_set_maskints(target, false); case CORTEX_M_ISRMASK_OFF: /* interrupts never masked */ return cortex_m_set_maskints(target, false); case CORTEX_M_ISRMASK_ON: /* interrupts always masked */ return cortex_m_set_maskints(target, true); case CORTEX_M_ISRMASK_STEPONLY: /* interrupts masked for single step only -> mask now if MASKINTS * erratum, otherwise only mask before stepping */ return cortex_m_set_maskints(target, cortex_m->maskints_erratum); } return ERROR_OK; } static int cortex_m_set_maskints_for_run(struct target *target) { switch (target_to_cm(target)->isrmasking_mode) { case CORTEX_M_ISRMASK_AUTO: /* interrupts taken at resume, whether for step or run -> no mask */ return cortex_m_set_maskints(target, false); case CORTEX_M_ISRMASK_OFF: /* interrupts never masked */ return cortex_m_set_maskints(target, false); case CORTEX_M_ISRMASK_ON: /* interrupts always masked */ return cortex_m_set_maskints(target, true); case CORTEX_M_ISRMASK_STEPONLY: /* interrupts masked for single step only -> no mask */ return cortex_m_set_maskints(target, false); } return ERROR_OK; } static int cortex_m_set_maskints_for_step(struct target *target) { switch (target_to_cm(target)->isrmasking_mode) { case CORTEX_M_ISRMASK_AUTO: /* the auto-interrupt should already be done -> mask */ return cortex_m_set_maskints(target, true); case CORTEX_M_ISRMASK_OFF: /* interrupts never masked */ return cortex_m_set_maskints(target, false); case CORTEX_M_ISRMASK_ON: /* interrupts always masked */ return cortex_m_set_maskints(target, true); case CORTEX_M_ISRMASK_STEPONLY: /* interrupts masked for single step only -> mask */ return cortex_m_set_maskints(target, true); } return ERROR_OK; } static int cortex_m_clear_halt(struct target *target) { struct cortex_m_common *cortex_m = target_to_cm(target); struct armv7m_common *armv7m = &cortex_m->armv7m; int retval; /* clear step if any */ cortex_m_write_debug_halt_mask(target, C_HALT, C_STEP); /* Read Debug Fault Status Register */ retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_DFSR, &cortex_m->nvic_dfsr); if (retval != ERROR_OK) return retval; /* Clear Debug Fault Status */ retval = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_DFSR, cortex_m->nvic_dfsr); if (retval != ERROR_OK) return retval; LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m->nvic_dfsr); return ERROR_OK; } static int cortex_m_single_step_core(struct target *target) { struct cortex_m_common *cortex_m = target_to_cm(target); struct armv7m_common *armv7m = &cortex_m->armv7m; int retval; /* Mask interrupts before clearing halt, if not done already. This avoids * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing * HALT can put the core into an unknown state. */ if (!(cortex_m->dcb_dhcsr & C_MASKINTS)) { retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR, DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN); if (retval != ERROR_OK) return retval; } retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR, DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN); if (retval != ERROR_OK) return retval; LOG_DEBUG(" "); /* restore dhcsr reg */ cortex_m_clear_halt(target); return ERROR_OK; } static int cortex_m_enable_fpb(struct target *target) { int retval = target_write_u32(target, FP_CTRL, 3); if (retval != ERROR_OK) return retval; /* check the fpb is actually enabled */ uint32_t fpctrl; retval = target_read_u32(target, FP_CTRL, &fpctrl); if (retval != ERROR_OK) return retval; if (fpctrl & 1) return ERROR_OK; return ERROR_FAIL; } static int cortex_m_endreset_event(struct target *target) { int i; int retval; uint32_t dcb_demcr; struct cortex_m_common *cortex_m = target_to_cm(target); struct armv7m_common *armv7m = &cortex_m->armv7m; struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap; struct cortex_m_fp_comparator *fp_list = cortex_m->fp_comparator_list; struct cortex_m_dwt_comparator *dwt_list = cortex_m->dwt_comparator_list; /* REVISIT The four debug monitor bits are currently ignored... */ retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &dcb_demcr); if (retval != ERROR_OK) return retval; LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "", dcb_demcr); /* this register is used for emulated dcc channel */ retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, 0); if (retval != ERROR_OK) return retval; /* Enable debug requests */ retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr); if (retval != ERROR_OK) return retval; if (!(cortex_m->dcb_dhcsr & C_DEBUGEN)) { retval = cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP | C_MASKINTS); if (retval != ERROR_OK) return retval; } /* Restore proper interrupt masking setting for running CPU. */ cortex_m_set_maskints_for_run(target); /* Enable features controlled by ITM and DWT blocks, and catch only * the vectors we were told to pay attention to. * * Target firmware is responsible for all fault handling policy * choices *EXCEPT* explicitly scripted overrides like "vector_catch" * or manual updates to the NVIC SHCSR and CCR registers. */ retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR, TRCENA | armv7m->demcr); if (retval != ERROR_OK) return retval; /* Paranoia: evidently some (early?) chips don't preserve all the * debug state (including FPB, DWT, etc) across reset... */ /* Enable FPB */ retval = cortex_m_enable_fpb(target); if (retval != ERROR_OK) { LOG_ERROR("Failed to enable the FPB"); return retval; } cortex_m->fpb_enabled = true; /* Restore FPB registers */ for (i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) { retval = target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value); if (retval != ERROR_OK) return retval; } /* Restore DWT registers */ for (i = 0; i < cortex_m->dwt_num_comp; i++) { retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 0, dwt_list[i].comp); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 4, dwt_list[i].mask); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 8, dwt_list[i].function); if (retval != ERROR_OK) return retval; } retval = dap_run(swjdp); if (retval != ERROR_OK) return retval; register_cache_invalidate(armv7m->arm.core_cache); /* make sure we have latest dhcsr flags */ retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr); return retval; } static int cortex_m_examine_debug_reason(struct target *target) { struct cortex_m_common *cortex_m = target_to_cm(target); /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason * only check the debug reason if we don't know it already */ if ((target->debug_reason != DBG_REASON_DBGRQ) && (target->debug_reason != DBG_REASON_SINGLESTEP)) { if (cortex_m->nvic_dfsr & DFSR_BKPT) { target->debug_reason = DBG_REASON_BREAKPOINT; if (cortex_m->nvic_dfsr & DFSR_DWTTRAP) target->debug_reason = DBG_REASON_WPTANDBKPT; } else if (cortex_m->nvic_dfsr & DFSR_DWTTRAP) target->debug_reason = DBG_REASON_WATCHPOINT; else if (cortex_m->nvic_dfsr & DFSR_VCATCH) target->debug_reason = DBG_REASON_BREAKPOINT; else if (cortex_m->nvic_dfsr & DFSR_EXTERNAL) target->debug_reason = DBG_REASON_DBGRQ; else /* HALTED */ target->debug_reason = DBG_REASON_UNDEFINED; } return ERROR_OK; } static int cortex_m_examine_exception_reason(struct target *target) { uint32_t shcsr = 0, except_sr = 0, cfsr = -1, except_ar = -1; struct armv7m_common *armv7m = target_to_armv7m(target); struct adiv5_dap *swjdp = armv7m->arm.dap; int retval; retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_SHCSR, &shcsr); if (retval != ERROR_OK) return retval; switch (armv7m->exception_number) { case 2: /* NMI */ break; case 3: /* Hard Fault */ retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_HFSR, &except_sr); if (retval != ERROR_OK) return retval; if (except_sr & 0x40000000) { retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &cfsr); if (retval != ERROR_OK) return retval; } break; case 4: /* Memory Management */ retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr); if (retval != ERROR_OK) return retval; retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_MMFAR, &except_ar); if (retval != ERROR_OK) return retval; break; case 5: /* Bus Fault */ retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr); if (retval != ERROR_OK) return retval; retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_BFAR, &except_ar); if (retval != ERROR_OK) return retval; break; case 6: /* Usage Fault */ retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr); if (retval != ERROR_OK) return retval; break; case 7: /* Secure Fault */ retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_SFSR, &except_sr); if (retval != ERROR_OK) return retval; retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_SFAR, &except_ar); if (retval != ERROR_OK) return retval; break; case 11: /* SVCall */ break; case 12: /* Debug Monitor */ retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_DFSR, &except_sr); if (retval != ERROR_OK) return retval; break; case 14: /* PendSV */ break; case 15: /* SysTick */ break; default: except_sr = 0; break; } retval = dap_run(swjdp); if (retval == ERROR_OK) LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32 ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32, armv7m_exception_string(armv7m->exception_number), shcsr, except_sr, cfsr, except_ar); return retval; } static int cortex_m_debug_entry(struct target *target) { int i; uint32_t xPSR; int retval; struct cortex_m_common *cortex_m = target_to_cm(target); struct armv7m_common *armv7m = &cortex_m->armv7m; struct arm *arm = &armv7m->arm; struct reg *r; LOG_DEBUG(" "); /* Do this really early to minimize the window where the MASKINTS erratum * can pile up pending interrupts. */ cortex_m_set_maskints_for_halt(target); cortex_m_clear_halt(target); retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr); if (retval != ERROR_OK) return retval; retval = armv7m->examine_debug_reason(target); if (retval != ERROR_OK) return retval; /* examine PE security state */ bool secure_state = false; if (armv7m->arm.is_armv8m) { uint32_t dscsr; retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DSCSR, &dscsr); if (retval != ERROR_OK) return retval; secure_state = (dscsr & DSCSR_CDS) == DSCSR_CDS; } /* Examine target state and mode * First load register accessible through core debug port */ int num_regs = arm->core_cache->num_regs; for (i = 0; i < num_regs; i++) { r = &armv7m->arm.core_cache->reg_list[i]; if (!r->valid) arm->read_core_reg(target, r, i, ARM_MODE_ANY); } r = arm->cpsr; xPSR = buf_get_u32(r->value, 0, 32); /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */ if (xPSR & 0xf00) { r->dirty = r->valid; cortex_m_store_core_reg_u32(target, 16, xPSR & ~0xff); } /* Are we in an exception handler */ if (xPSR & 0x1FF) { armv7m->exception_number = (xPSR & 0x1FF); arm->core_mode = ARM_MODE_HANDLER; arm->map = armv7m_msp_reg_map; } else { unsigned control = buf_get_u32(arm->core_cache ->reg_list[ARMV7M_CONTROL].value, 0, 2); /* is this thread privileged? */ arm->core_mode = control & 1 ? ARM_MODE_USER_THREAD : ARM_MODE_THREAD; /* which stack is it using? */ if (control & 2) arm->map = armv7m_psp_reg_map; else arm->map = armv7m_msp_reg_map; armv7m->exception_number = 0; } if (armv7m->exception_number) cortex_m_examine_exception_reason(target); LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", cpu in %s state, target->state: %s", arm_mode_name(arm->core_mode), buf_get_u32(arm->pc->value, 0, 32), secure_state ? "Secure" : "Non-Secure", target_state_name(target)); if (armv7m->post_debug_entry) { retval = armv7m->post_debug_entry(target); if (retval != ERROR_OK) return retval; } return ERROR_OK; } static int cortex_m_poll(struct target *target) { int detected_failure = ERROR_OK; int retval = ERROR_OK; enum target_state prev_target_state = target->state; struct cortex_m_common *cortex_m = target_to_cm(target); struct armv7m_common *armv7m = &cortex_m->armv7m; /* Read from Debug Halting Control and Status Register */ retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr); if (retval != ERROR_OK) { target->state = TARGET_UNKNOWN; return retval; } /* Recover from lockup. See ARMv7-M architecture spec, * section B1.5.15 "Unrecoverable exception cases". */ if (cortex_m->dcb_dhcsr & S_LOCKUP) { LOG_ERROR("%s -- clearing lockup after double fault", target_name(target)); cortex_m_write_debug_halt_mask(target, C_HALT, 0); target->debug_reason = DBG_REASON_DBGRQ; /* We have to execute the rest (the "finally" equivalent, but * still throw this exception again). */ detected_failure = ERROR_FAIL; /* refresh status bits */ retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr); if (retval != ERROR_OK) return retval; } if (cortex_m->dcb_dhcsr & S_RESET_ST) { if (target->state != TARGET_RESET) { target->state = TARGET_RESET; LOG_INFO("%s: external reset detected", target_name(target)); } return ERROR_OK; } if (target->state == TARGET_RESET) { /* Cannot switch context while running so endreset is * called with target->state == TARGET_RESET */ LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32, cortex_m->dcb_dhcsr); retval = cortex_m_endreset_event(target); if (retval != ERROR_OK) { target->state = TARGET_UNKNOWN; return retval; } target->state = TARGET_RUNNING; prev_target_state = TARGET_RUNNING; } if (cortex_m->dcb_dhcsr & S_HALT) { target->state = TARGET_HALTED; if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET)) { retval = cortex_m_debug_entry(target); if (retval != ERROR_OK) return retval; if (arm_semihosting(target, &retval) != 0) return retval; target_call_event_callbacks(target, TARGET_EVENT_HALTED); } if (prev_target_state == TARGET_DEBUG_RUNNING) { LOG_DEBUG(" "); retval = cortex_m_debug_entry(target); if (retval != ERROR_OK) return retval; target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED); } } /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state. * How best to model low power modes? */ if (target->state == TARGET_UNKNOWN) { /* check if processor is retiring instructions */ if (cortex_m->dcb_dhcsr & S_RETIRE_ST) { target->state = TARGET_RUNNING; retval = ERROR_OK; } } /* Check that target is truly halted, since the target could be resumed externally */ if ((prev_target_state == TARGET_HALTED) && !(cortex_m->dcb_dhcsr & S_HALT)) { /* registers are now invalid */ register_cache_invalidate(armv7m->arm.core_cache); target->state = TARGET_RUNNING; LOG_WARNING("%s: external resume detected", target_name(target)); target_call_event_callbacks(target, TARGET_EVENT_RESUMED); retval = ERROR_OK; } /* Did we detect a failure condition that we cleared? */ if (detected_failure != ERROR_OK) retval = detected_failure; return retval; } static int cortex_m_halt(struct target *target) { LOG_DEBUG("target->state: %s", target_state_name(target)); if (target->state == TARGET_HALTED) { LOG_DEBUG("target was already halted"); return ERROR_OK; } if (target->state == TARGET_UNKNOWN) LOG_WARNING("target was in unknown state when halt was requested"); if (target->state == TARGET_RESET) { if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst()) { LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST"); return ERROR_TARGET_FAILURE; } else { /* we came here in a reset_halt or reset_init sequence * debug entry was already prepared in cortex_m3_assert_reset() */ target->debug_reason = DBG_REASON_DBGRQ; return ERROR_OK; } } /* Write to Debug Halting Control and Status Register */ cortex_m_write_debug_halt_mask(target, C_HALT, 0); /* Do this really early to minimize the window where the MASKINTS erratum * can pile up pending interrupts. */ cortex_m_set_maskints_for_halt(target); target->debug_reason = DBG_REASON_DBGRQ; return ERROR_OK; } static int cortex_m_soft_reset_halt(struct target *target) { struct cortex_m_common *cortex_m = target_to_cm(target); struct armv7m_common *armv7m = &cortex_m->armv7m; uint32_t dcb_dhcsr = 0; int retval, timeout = 0; /* on single cortex_m MCU soft_reset_halt should be avoided as same functionality * can be obtained by using 'reset halt' and 'cortex_m reset_config vectreset'. * As this reset only uses VC_CORERESET it would only ever reset the cortex_m * core, not the peripherals */ LOG_DEBUG("soft_reset_halt is discouraged, please use 'reset halt' instead."); /* Set C_DEBUGEN */ retval = cortex_m_write_debug_halt_mask(target, 0, C_STEP | C_MASKINTS); if (retval != ERROR_OK) return retval; /* Enter debug state on reset; restore DEMCR in endreset_event() */ retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET); if (retval != ERROR_OK) return retval; /* Request a core-only reset */ retval = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_AIRCR, AIRCR_VECTKEY | AIRCR_VECTRESET); if (retval != ERROR_OK) return retval; target->state = TARGET_RESET; /* registers are now invalid */ register_cache_invalidate(cortex_m->armv7m.arm.core_cache); while (timeout < 100) { retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &dcb_dhcsr); if (retval == ERROR_OK) { retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_DFSR, &cortex_m->nvic_dfsr); if (retval != ERROR_OK) return retval; if ((dcb_dhcsr & S_HALT) && (cortex_m->nvic_dfsr & DFSR_VCATCH)) { LOG_DEBUG("system reset-halted, DHCSR 0x%08x, " "DFSR 0x%08x", (unsigned) dcb_dhcsr, (unsigned) cortex_m->nvic_dfsr); cortex_m_poll(target); /* FIXME restore user's vector catch config */ return ERROR_OK; } else LOG_DEBUG("waiting for system reset-halt, " "DHCSR 0x%08x, %d ms", (unsigned) dcb_dhcsr, timeout); } timeout++; alive_sleep(1); } return ERROR_OK; } void cortex_m_enable_breakpoints(struct target *target) { struct breakpoint *breakpoint = target->breakpoints; /* set any pending breakpoints */ while (breakpoint) { if (!breakpoint->set) cortex_m_set_breakpoint(target, breakpoint); breakpoint = breakpoint->next; } } static int cortex_m_resume(struct target *target, int current, target_addr_t address, int handle_breakpoints, int debug_execution) { struct armv7m_common *armv7m = target_to_armv7m(target); struct breakpoint *breakpoint = NULL; uint32_t resume_pc; struct reg *r; if (target->state != TARGET_HALTED) { LOG_WARNING("target not halted"); return ERROR_TARGET_NOT_HALTED; } if (!debug_execution) { target_free_all_working_areas(target); cortex_m_enable_breakpoints(target); cortex_m_enable_watchpoints(target); } if (debug_execution) { r = armv7m->arm.core_cache->reg_list + ARMV7M_PRIMASK; /* Disable interrupts */ /* We disable interrupts in the PRIMASK register instead of * masking with C_MASKINTS. This is probably the same issue * as Cortex-M3 Erratum 377493 (fixed in r1p0): C_MASKINTS * in parallel with disabled interrupts can cause local faults * to not be taken. * * REVISIT this clearly breaks non-debug execution, since the * PRIMASK register state isn't saved/restored... workaround * by never resuming app code after debug execution. */ buf_set_u32(r->value, 0, 1, 1); r->dirty = true; r->valid = true; /* Make sure we are in Thumb mode */ r = armv7m->arm.cpsr; buf_set_u32(r->value, 24, 1, 1); r->dirty = true; r->valid = true; } /* current = 1: continue on current pc, otherwise continue at
*/ r = armv7m->arm.pc; if (!current) { buf_set_u32(r->value, 0, 32, address); r->dirty = true; r->valid = true; } /* if we halted last time due to a bkpt instruction * then we have to manually step over it, otherwise * the core will break again */ if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32)) && !debug_execution) armv7m_maybe_skip_bkpt_inst(target, NULL); resume_pc = buf_get_u32(r->value, 0, 32); armv7m_restore_context(target); /* the front-end may request us not to handle breakpoints */ if (handle_breakpoints) { /* Single step past breakpoint at current address */ breakpoint = breakpoint_find(target, resume_pc); if (breakpoint) { LOG_DEBUG("unset breakpoint at " TARGET_ADDR_FMT " (ID: %" PRIu32 ")", breakpoint->address, breakpoint->unique_id); cortex_m_unset_breakpoint(target, breakpoint); cortex_m_single_step_core(target); cortex_m_set_breakpoint(target, breakpoint); } } /* Restart core */ cortex_m_set_maskints_for_run(target); cortex_m_write_debug_halt_mask(target, 0, C_HALT); target->debug_reason = DBG_REASON_NOTHALTED; /* registers are now invalid */ register_cache_invalidate(armv7m->arm.core_cache); if (!debug_execution) { target->state = TARGET_RUNNING; target_call_event_callbacks(target, TARGET_EVENT_RESUMED); LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc); } else { target->state = TARGET_DEBUG_RUNNING; target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED); LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc); } return ERROR_OK; } /* int irqstepcount = 0; */ static int cortex_m_step(struct target *target, int current, target_addr_t address, int handle_breakpoints) { struct cortex_m_common *cortex_m = target_to_cm(target); struct armv7m_common *armv7m = &cortex_m->armv7m; struct breakpoint *breakpoint = NULL; struct reg *pc = armv7m->arm.pc; bool bkpt_inst_found = false; int retval; bool isr_timed_out = false; if (target->state != TARGET_HALTED) { LOG_WARNING("target not halted"); return ERROR_TARGET_NOT_HALTED; } /* current = 1: continue on current pc, otherwise continue at
*/ if (!current) buf_set_u32(pc->value, 0, 32, address); uint32_t pc_value = buf_get_u32(pc->value, 0, 32); /* the front-end may request us not to handle breakpoints */ if (handle_breakpoints) { breakpoint = breakpoint_find(target, pc_value); if (breakpoint) cortex_m_unset_breakpoint(target, breakpoint); } armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found); target->debug_reason = DBG_REASON_SINGLESTEP; armv7m_restore_context(target); target_call_event_callbacks(target, TARGET_EVENT_RESUMED); /* if no bkpt instruction is found at pc then we can perform * a normal step, otherwise we have to manually step over the bkpt * instruction - as such simulate a step */ if (bkpt_inst_found == false) { if (cortex_m->isrmasking_mode != CORTEX_M_ISRMASK_AUTO) { /* Automatic ISR masking mode off: Just step over the next * instruction, with interrupts on or off as appropriate. */ cortex_m_set_maskints_for_step(target); cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT); } else { /* Process interrupts during stepping in a way they don't interfere * debugging. * * Principle: * * Set a temporary break point at the current pc and let the core run * with interrupts enabled. Pending interrupts get served and we run * into the breakpoint again afterwards. Then we step over the next * instruction with interrupts disabled. * * If the pending interrupts don't complete within time, we leave the * core running. This may happen if the interrupts trigger faster * than the core can process them or the handler doesn't return. * * If no more breakpoints are available we simply do a step with * interrupts enabled. * */ /* 2012-09-29 ph * * If a break point is already set on the lower half word then a break point on * the upper half word will not break again when the core is restarted. So we * just step over the instruction with interrupts disabled. * * The documentation has no information about this, it was found by observation * on STM32F1 and STM32F2. Proper explanation welcome. STM32F0 doesn't seem to * suffer from this problem. * * To add some confusion: pc_value has bit 0 always set, while the breakpoint * address has it always cleared. The former is done to indicate thumb mode * to gdb. * */ if ((pc_value & 0x02) && breakpoint_find(target, pc_value & ~0x03)) { LOG_DEBUG("Stepping over next instruction with interrupts disabled"); cortex_m_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0); cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT); /* Re-enable interrupts if appropriate */ cortex_m_write_debug_halt_mask(target, C_HALT, 0); cortex_m_set_maskints_for_halt(target); } else { /* Set a temporary break point */ if (breakpoint) { retval = cortex_m_set_breakpoint(target, breakpoint); } else { enum breakpoint_type type = BKPT_HARD; if (cortex_m->fp_rev == 0 && pc_value > 0x1FFFFFFF) { /* FPB rev.1 cannot handle such addr, try BKPT instr */ type = BKPT_SOFT; } retval = breakpoint_add(target, pc_value, 2, type); } bool tmp_bp_set = (retval == ERROR_OK); /* No more breakpoints left, just do a step */ if (!tmp_bp_set) { cortex_m_set_maskints_for_step(target); cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT); /* Re-enable interrupts if appropriate */ cortex_m_write_debug_halt_mask(target, C_HALT, 0); cortex_m_set_maskints_for_halt(target); } else { /* Start the core */ LOG_DEBUG("Starting core to serve pending interrupts"); int64_t t_start = timeval_ms(); cortex_m_set_maskints_for_run(target); cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP); /* Wait for pending handlers to complete or timeout */ do { retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr); if (retval != ERROR_OK) { target->state = TARGET_UNKNOWN; return retval; } isr_timed_out = ((timeval_ms() - t_start) > 500); } while (!((cortex_m->dcb_dhcsr & S_HALT) || isr_timed_out)); /* only remove breakpoint if we created it */ if (breakpoint) cortex_m_unset_breakpoint(target, breakpoint); else { /* Remove the temporary breakpoint */ breakpoint_remove(target, pc_value); } if (isr_timed_out) { LOG_DEBUG("Interrupt handlers didn't complete within time, " "leaving target running"); } else { /* Step over next instruction with interrupts disabled */ cortex_m_set_maskints_for_step(target); cortex_m_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0); cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT); /* Re-enable interrupts if appropriate */ cortex_m_write_debug_halt_mask(target, C_HALT, 0); cortex_m_set_maskints_for_halt(target); } } } } } retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr); if (retval != ERROR_OK) return retval; /* registers are now invalid */ register_cache_invalidate(armv7m->arm.core_cache); if (breakpoint) cortex_m_set_breakpoint(target, breakpoint); if (isr_timed_out) { /* Leave the core running. The user has to stop execution manually. */ target->debug_reason = DBG_REASON_NOTHALTED; target->state = TARGET_RUNNING; return ERROR_OK; } LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32 " nvic_icsr = 0x%" PRIx32, cortex_m->dcb_dhcsr, cortex_m->nvic_icsr); retval = cortex_m_debug_entry(target); if (retval != ERROR_OK) return retval; target_call_event_callbacks(target, TARGET_EVENT_HALTED); LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32 " nvic_icsr = 0x%" PRIx32, cortex_m->dcb_dhcsr, cortex_m->nvic_icsr); return ERROR_OK; } static int cortex_m_assert_reset(struct target *target) { struct cortex_m_common *cortex_m = target_to_cm(target); struct armv7m_common *armv7m = &cortex_m->armv7m; enum cortex_m_soft_reset_config reset_config = cortex_m->soft_reset_config; LOG_DEBUG("target->state: %s", target_state_name(target)); enum reset_types jtag_reset_config = jtag_get_reset_config(); if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) { /* allow scripts to override the reset event */ target_handle_event(target, TARGET_EVENT_RESET_ASSERT); register_cache_invalidate(cortex_m->armv7m.arm.core_cache); target->state = TARGET_RESET; return ERROR_OK; } /* some cores support connecting while srst is asserted * use that mode is it has been configured */ bool srst_asserted = false; if (!target_was_examined(target)) { if (jtag_reset_config & RESET_HAS_SRST) { adapter_assert_reset(); if (target->reset_halt) LOG_ERROR("Target not examined, will not halt after reset!"); return ERROR_OK; } else { LOG_ERROR("Target not examined, reset NOT asserted!"); return ERROR_FAIL; } } if ((jtag_reset_config & RESET_HAS_SRST) && (jtag_reset_config & RESET_SRST_NO_GATING)) { adapter_assert_reset(); srst_asserted = true; } /* Enable debug requests */ int retval; retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr); /* Store important errors instead of failing and proceed to reset assert */ if (retval != ERROR_OK || !(cortex_m->dcb_dhcsr & C_DEBUGEN)) retval = cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP | C_MASKINTS); /* If the processor is sleeping in a WFI or WFE instruction, the * C_HALT bit must be asserted to regain control */ if (retval == ERROR_OK && (cortex_m->dcb_dhcsr & S_SLEEP)) retval = cortex_m_write_debug_halt_mask(target, C_HALT, 0); mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, 0); /* Ignore less important errors */ if (!target->reset_halt) { /* Set/Clear C_MASKINTS in a separate operation */ cortex_m_set_maskints_for_run(target); /* clear any debug flags before resuming */ cortex_m_clear_halt(target); /* clear C_HALT in dhcsr reg */ cortex_m_write_debug_halt_mask(target, 0, C_HALT); } else { /* Halt in debug on reset; endreset_event() restores DEMCR. * * REVISIT catching BUSERR presumably helps to defend against * bad vector table entries. Should this include MMERR or * other flags too? */ int retval2; retval2 = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET); if (retval != ERROR_OK || retval2 != ERROR_OK) LOG_INFO("AP write error, reset will not halt"); } if (jtag_reset_config & RESET_HAS_SRST) { /* default to asserting srst */ if (!srst_asserted) adapter_assert_reset(); /* srst is asserted, ignore AP access errors */ retval = ERROR_OK; } else { /* Use a standard Cortex-M3 software reset mechanism. * We default to using VECRESET as it is supported on all current cores * (except Cortex-M0, M0+ and M1 which support SYSRESETREQ only!) * This has the disadvantage of not resetting the peripherals, so a * reset-init event handler is needed to perform any peripheral resets. */ if (!cortex_m->vectreset_supported && reset_config == CORTEX_M_RESET_VECTRESET) { reset_config = CORTEX_M_RESET_SYSRESETREQ; LOG_WARNING("VECTRESET is not supported on this Cortex-M core, using SYSRESETREQ instead."); LOG_WARNING("Set 'cortex_m reset_config sysresetreq'."); } LOG_DEBUG("Using Cortex-M %s", (reset_config == CORTEX_M_RESET_SYSRESETREQ) ? "SYSRESETREQ" : "VECTRESET"); if (reset_config == CORTEX_M_RESET_VECTRESET) { LOG_WARNING("Only resetting the Cortex-M core, use a reset-init event " "handler to reset any peripherals or configure hardware srst support."); } int retval3; retval3 = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_AIRCR, AIRCR_VECTKEY | ((reset_config == CORTEX_M_RESET_SYSRESETREQ) ? AIRCR_SYSRESETREQ : AIRCR_VECTRESET)); if (retval3 != ERROR_OK) LOG_DEBUG("Ignoring AP write error right after reset"); retval3 = dap_dp_init(armv7m->debug_ap->dap); if (retval3 != ERROR_OK) LOG_ERROR("DP initialisation failed"); else { /* I do not know why this is necessary, but it * fixes strange effects (step/resume cause NMI * after reset) on LM3S6918 -- Michael Schwingen */ uint32_t tmp; mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_AIRCR, &tmp); } } target->state = TARGET_RESET; jtag_sleep(50000); register_cache_invalidate(cortex_m->armv7m.arm.core_cache); /* now return stored error code if any */ if (retval != ERROR_OK) return retval; if (target->reset_halt) { retval = target_halt(target); if (retval != ERROR_OK) return retval; } return ERROR_OK; } static int cortex_m_deassert_reset(struct target *target) { struct armv7m_common *armv7m = &target_to_cm(target)->armv7m; LOG_DEBUG("target->state: %s", target_state_name(target)); /* deassert reset lines */ adapter_deassert_reset(); enum reset_types jtag_reset_config = jtag_get_reset_config(); if ((jtag_reset_config & RESET_HAS_SRST) && !(jtag_reset_config & RESET_SRST_NO_GATING) && target_was_examined(target)) { int retval = dap_dp_init(armv7m->debug_ap->dap); if (retval != ERROR_OK) { LOG_ERROR("DP initialisation failed"); return retval; } } return ERROR_OK; } int cortex_m_set_breakpoint(struct target *target, struct breakpoint *breakpoint) { int retval; int fp_num = 0; struct cortex_m_common *cortex_m = target_to_cm(target); struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list; if (breakpoint->set) { LOG_WARNING("breakpoint (BPID: %" PRIu32 ") already set", breakpoint->unique_id); return ERROR_OK; } if (breakpoint->type == BKPT_HARD) { uint32_t fpcr_value; while (comparator_list[fp_num].used && (fp_num < cortex_m->fp_num_code)) fp_num++; if (fp_num >= cortex_m->fp_num_code) { LOG_ERROR("Can not find free FPB Comparator!"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } breakpoint->set = fp_num + 1; fpcr_value = breakpoint->address | 1; if (cortex_m->fp_rev == 0) { if (breakpoint->address > 0x1FFFFFFF) { LOG_ERROR("Cortex-M Flash Patch Breakpoint rev.1 cannot handle HW breakpoint above address 0x1FFFFFFE"); return ERROR_FAIL; } uint32_t hilo; hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW; fpcr_value = (fpcr_value & 0x1FFFFFFC) | hilo | 1; } else if (cortex_m->fp_rev > 1) { LOG_ERROR("Unhandled Cortex-M Flash Patch Breakpoint architecture revision"); return ERROR_FAIL; } comparator_list[fp_num].used = true; comparator_list[fp_num].fpcr_value = fpcr_value; target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value); LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "", fp_num, comparator_list[fp_num].fpcr_value); if (!cortex_m->fpb_enabled) { LOG_DEBUG("FPB wasn't enabled, do it now"); retval = cortex_m_enable_fpb(target); if (retval != ERROR_OK) { LOG_ERROR("Failed to enable the FPB"); return retval; } cortex_m->fpb_enabled = true; } } else if (breakpoint->type == BKPT_SOFT) { uint8_t code[4]; /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for * semihosting; don't use that. Otherwise the BKPT * parameter is arbitrary. */ buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11)); retval = target_read_memory(target, breakpoint->address & 0xFFFFFFFE, breakpoint->length, 1, breakpoint->orig_instr); if (retval != ERROR_OK) return retval; retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, breakpoint->length, 1, code); if (retval != ERROR_OK) return retval; breakpoint->set = true; } LOG_DEBUG("BPID: %" PRIu32 ", Type: %d, Address: " TARGET_ADDR_FMT " Length: %d (set=%d)", breakpoint->unique_id, (int)(breakpoint->type), breakpoint->address, breakpoint->length, breakpoint->set); return ERROR_OK; } int cortex_m_unset_breakpoint(struct target *target, struct breakpoint *breakpoint) { int retval; struct cortex_m_common *cortex_m = target_to_cm(target); struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list; if (!breakpoint->set) { LOG_WARNING("breakpoint not set"); return ERROR_OK; } LOG_DEBUG("BPID: %" PRIu32 ", Type: %d, Address: " TARGET_ADDR_FMT " Length: %d (set=%d)", breakpoint->unique_id, (int)(breakpoint->type), breakpoint->address, breakpoint->length, breakpoint->set); if (breakpoint->type == BKPT_HARD) { int fp_num = breakpoint->set - 1; if ((fp_num < 0) || (fp_num >= cortex_m->fp_num_code)) { LOG_DEBUG("Invalid FP Comparator number in breakpoint"); return ERROR_OK; } comparator_list[fp_num].used = false; comparator_list[fp_num].fpcr_value = 0; target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value); } else { /* restore original instruction (kept in target endianness) */ retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, breakpoint->length, 1, breakpoint->orig_instr); if (retval != ERROR_OK) return retval; } breakpoint->set = false; return ERROR_OK; } int cortex_m_add_breakpoint(struct target *target, struct breakpoint *breakpoint) { if (breakpoint->length == 3) { LOG_DEBUG("Using a two byte breakpoint for 32bit Thumb-2 request"); breakpoint->length = 2; } if ((breakpoint->length != 2)) { LOG_INFO("only breakpoints of two bytes length supported"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } return cortex_m_set_breakpoint(target, breakpoint); } int cortex_m_remove_breakpoint(struct target *target, struct breakpoint *breakpoint) { if (!breakpoint->set) return ERROR_OK; return cortex_m_unset_breakpoint(target, breakpoint); } int cortex_m_set_watchpoint(struct target *target, struct watchpoint *watchpoint) { int dwt_num = 0; struct cortex_m_common *cortex_m = target_to_cm(target); /* REVISIT Don't fully trust these "not used" records ... users * may set up breakpoints by hand, e.g. dual-address data value * watchpoint using comparator #1; comparator #0 matching cycle * count; send data trace info through ITM and TPIU; etc */ struct cortex_m_dwt_comparator *comparator; for (comparator = cortex_m->dwt_comparator_list; comparator->used && dwt_num < cortex_m->dwt_num_comp; comparator++, dwt_num++) continue; if (dwt_num >= cortex_m->dwt_num_comp) { LOG_ERROR("Can not find free DWT Comparator"); return ERROR_FAIL; } comparator->used = true; watchpoint->set = dwt_num + 1; comparator->comp = watchpoint->address; target_write_u32(target, comparator->dwt_comparator_address + 0, comparator->comp); if ((cortex_m->dwt_devarch & 0x1FFFFF) != DWT_DEVARCH_ARMV8M) { uint32_t mask = 0, temp; /* watchpoint params were validated earlier */ temp = watchpoint->length; while (temp) { temp >>= 1; mask++; } mask--; comparator->mask = mask; target_write_u32(target, comparator->dwt_comparator_address + 4, comparator->mask); switch (watchpoint->rw) { case WPT_READ: comparator->function = 5; break; case WPT_WRITE: comparator->function = 6; break; case WPT_ACCESS: comparator->function = 7; break; } } else { uint32_t data_size = watchpoint->length >> 1; comparator->mask = (watchpoint->length >> 1) | 1; switch (watchpoint->rw) { case WPT_ACCESS: comparator->function = 4; break; case WPT_WRITE: comparator->function = 5; break; case WPT_READ: comparator->function = 6; break; } comparator->function = comparator->function | (1 << 4) | (data_size << 10); } target_write_u32(target, comparator->dwt_comparator_address + 8, comparator->function); LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x", watchpoint->unique_id, dwt_num, (unsigned) comparator->comp, (unsigned) comparator->mask, (unsigned) comparator->function); return ERROR_OK; } int cortex_m_unset_watchpoint(struct target *target, struct watchpoint *watchpoint) { struct cortex_m_common *cortex_m = target_to_cm(target); struct cortex_m_dwt_comparator *comparator; int dwt_num; if (!watchpoint->set) { LOG_WARNING("watchpoint (wpid: %d) not set", watchpoint->unique_id); return ERROR_OK; } dwt_num = watchpoint->set - 1; LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear", watchpoint->unique_id, dwt_num, (unsigned) watchpoint->address); if ((dwt_num < 0) || (dwt_num >= cortex_m->dwt_num_comp)) { LOG_DEBUG("Invalid DWT Comparator number in watchpoint"); return ERROR_OK; } comparator = cortex_m->dwt_comparator_list + dwt_num; comparator->used = false; comparator->function = 0; target_write_u32(target, comparator->dwt_comparator_address + 8, comparator->function); watchpoint->set = false; return ERROR_OK; } int cortex_m_add_watchpoint(struct target *target, struct watchpoint *watchpoint) { struct cortex_m_common *cortex_m = target_to_cm(target); if (cortex_m->dwt_comp_available < 1) { LOG_DEBUG("no comparators?"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } /* hardware doesn't support data value masking */ if (watchpoint->mask != ~(uint32_t)0) { LOG_DEBUG("watchpoint value masks not supported"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } /* hardware allows address masks of up to 32K */ unsigned mask; for (mask = 0; mask < 16; mask++) { if ((1u << mask) == watchpoint->length) break; } if (mask == 16) { LOG_DEBUG("unsupported watchpoint length"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } if (watchpoint->address & ((1 << mask) - 1)) { LOG_DEBUG("watchpoint address is unaligned"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } /* Caller doesn't seem to be able to describe watching for data * values of zero; that flags "no value". * * REVISIT This DWT may well be able to watch for specific data * values. Requires comparator #1 to set DATAVMATCH and match * the data, and another comparator (DATAVADDR0) matching addr. */ if (watchpoint->value) { LOG_DEBUG("data value watchpoint not YET supported"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } cortex_m->dwt_comp_available--; LOG_DEBUG("dwt_comp_available: %d", cortex_m->dwt_comp_available); return ERROR_OK; } int cortex_m_remove_watchpoint(struct target *target, struct watchpoint *watchpoint) { struct cortex_m_common *cortex_m = target_to_cm(target); /* REVISIT why check? DWT can be updated with core running ... */ if (target->state != TARGET_HALTED) { LOG_WARNING("target not halted"); return ERROR_TARGET_NOT_HALTED; } if (watchpoint->set) cortex_m_unset_watchpoint(target, watchpoint); cortex_m->dwt_comp_available++; LOG_DEBUG("dwt_comp_available: %d", cortex_m->dwt_comp_available); return ERROR_OK; } void cortex_m_enable_watchpoints(struct target *target) { struct watchpoint *watchpoint = target->watchpoints; /* set any pending watchpoints */ while (watchpoint) { if (!watchpoint->set) cortex_m_set_watchpoint(target, watchpoint); watchpoint = watchpoint->next; } } static int cortex_m_load_core_reg_u32(struct target *target, uint32_t num, uint32_t *value) { int retval; /* NOTE: we "know" here that the register identifiers used * in the v7m header match the Cortex-M3 Debug Core Register * Selector values for R0..R15, xPSR, MSP, and PSP. */ switch (num) { case 0 ... 18: /* read a normal core register */ retval = cortexm_dap_read_coreregister_u32(target, value, num); if (retval != ERROR_OK) { LOG_ERROR("JTAG failure %i", retval); return ERROR_JTAG_DEVICE_ERROR; } LOG_DEBUG("load from core reg %i value 0x%" PRIx32 "", (int)num, *value); break; case ARMV7M_FPSCR: /* Floating-point Status and Registers */ retval = target_write_u32(target, DCB_DCRSR, 0x21); if (retval != ERROR_OK) return retval; retval = target_read_u32(target, DCB_DCRDR, value); if (retval != ERROR_OK) return retval; LOG_DEBUG("load from FPSCR value 0x%" PRIx32, *value); break; case ARMV7M_S0 ... ARMV7M_S31: /* Floating-point Status and Registers */ retval = target_write_u32(target, DCB_DCRSR, num - ARMV7M_S0 + 0x40); if (retval != ERROR_OK) return retval; retval = target_read_u32(target, DCB_DCRDR, value); if (retval != ERROR_OK) return retval; LOG_DEBUG("load from FPU reg S%d value 0x%" PRIx32, (int)(num - ARMV7M_S0), *value); break; case ARMV7M_PRIMASK: case ARMV7M_BASEPRI: case ARMV7M_FAULTMASK: case ARMV7M_CONTROL: /* Cortex-M3 packages these four registers as bitfields * in one Debug Core register. So say r0 and r2 docs; * it was removed from r1 docs, but still works. */ cortexm_dap_read_coreregister_u32(target, value, 20); switch (num) { case ARMV7M_PRIMASK: *value = buf_get_u32((uint8_t *)value, 0, 1); break; case ARMV7M_BASEPRI: *value = buf_get_u32((uint8_t *)value, 8, 8); break; case ARMV7M_FAULTMASK: *value = buf_get_u32((uint8_t *)value, 16, 1); break; case ARMV7M_CONTROL: *value = buf_get_u32((uint8_t *)value, 24, 2); break; } LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value); break; default: return ERROR_COMMAND_SYNTAX_ERROR; } return ERROR_OK; } static int cortex_m_store_core_reg_u32(struct target *target, uint32_t num, uint32_t value) { int retval; uint32_t reg; struct armv7m_common *armv7m = target_to_armv7m(target); /* NOTE: we "know" here that the register identifiers used * in the v7m header match the Cortex-M3 Debug Core Register * Selector values for R0..R15, xPSR, MSP, and PSP. */ switch (num) { case 0 ... 18: retval = cortexm_dap_write_coreregister_u32(target, value, num); if (retval != ERROR_OK) { struct reg *r; LOG_ERROR("JTAG failure"); r = armv7m->arm.core_cache->reg_list + num; r->dirty = r->valid; return ERROR_JTAG_DEVICE_ERROR; } LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value); break; case ARMV7M_FPSCR: /* Floating-point Status and Registers */ retval = target_write_u32(target, DCB_DCRDR, value); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, DCB_DCRSR, 0x21 | (1<<16)); if (retval != ERROR_OK) return retval; LOG_DEBUG("write FPSCR value 0x%" PRIx32, value); break; case ARMV7M_S0 ... ARMV7M_S31: /* Floating-point Status and Registers */ retval = target_write_u32(target, DCB_DCRDR, value); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, DCB_DCRSR, (num - ARMV7M_S0 + 0x40) | (1<<16)); if (retval != ERROR_OK) return retval; LOG_DEBUG("write FPU reg S%d value 0x%" PRIx32, (int)(num - ARMV7M_S0), value); break; case ARMV7M_PRIMASK: case ARMV7M_BASEPRI: case ARMV7M_FAULTMASK: case ARMV7M_CONTROL: /* Cortex-M3 packages these four registers as bitfields * in one Debug Core register. So say r0 and r2 docs; * it was removed from r1 docs, but still works. */ cortexm_dap_read_coreregister_u32(target, ®, 20); switch (num) { case ARMV7M_PRIMASK: buf_set_u32((uint8_t *)®, 0, 1, value); break; case ARMV7M_BASEPRI: buf_set_u32((uint8_t *)®, 8, 8, value); break; case ARMV7M_FAULTMASK: buf_set_u32((uint8_t *)®, 16, 1, value); break; case ARMV7M_CONTROL: buf_set_u32((uint8_t *)®, 24, 2, value); break; } cortexm_dap_write_coreregister_u32(target, reg, 20); LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value); break; default: return ERROR_COMMAND_SYNTAX_ERROR; } return ERROR_OK; } static int cortex_m_read_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer) { struct armv7m_common *armv7m = target_to_armv7m(target); if (armv7m->arm.is_armv6m) { /* armv6m does not handle unaligned memory access */ if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u))) return ERROR_TARGET_UNALIGNED_ACCESS; } return mem_ap_read_buf(armv7m->debug_ap, buffer, size, count, address); } static int cortex_m_write_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer) { struct armv7m_common *armv7m = target_to_armv7m(target); if (armv7m->arm.is_armv6m) { /* armv6m does not handle unaligned memory access */ if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u))) return ERROR_TARGET_UNALIGNED_ACCESS; } return mem_ap_write_buf(armv7m->debug_ap, buffer, size, count, address); } static int cortex_m_init_target(struct command_context *cmd_ctx, struct target *target) { armv7m_build_reg_cache(target); arm_semihosting_init(target); return ERROR_OK; } void cortex_m_deinit_target(struct target *target) { struct cortex_m_common *cortex_m = target_to_cm(target); free(cortex_m->fp_comparator_list); cortex_m_dwt_free(target); armv7m_free_reg_cache(target); free(target->private_config); free(cortex_m); } int cortex_m_profiling(struct target *target, uint32_t *samples, uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds) { struct timeval timeout, now; struct armv7m_common *armv7m = target_to_armv7m(target); uint32_t reg_value; bool use_pcsr = false; int retval = ERROR_OK; struct reg *reg; gettimeofday(&timeout, NULL); timeval_add_time(&timeout, seconds, 0); retval = target_read_u32(target, DWT_PCSR, ®_value); if (retval != ERROR_OK) { LOG_ERROR("Error while reading PCSR"); return retval; } if (reg_value != 0) { use_pcsr = true; LOG_INFO("Starting Cortex-M profiling. Sampling DWT_PCSR as fast as we can..."); } else { LOG_INFO("Starting profiling. Halting and resuming the" " target as often as we can..."); reg = register_get_by_name(target->reg_cache, "pc", 1); } /* Make sure the target is running */ target_poll(target); if (target->state == TARGET_HALTED) retval = target_resume(target, 1, 0, 0, 0); if (retval != ERROR_OK) { LOG_ERROR("Error while resuming target"); return retval; } uint32_t sample_count = 0; for (;;) { if (use_pcsr) { if (armv7m && armv7m->debug_ap) { uint32_t read_count = max_num_samples - sample_count; if (read_count > 1024) read_count = 1024; retval = mem_ap_read_buf_noincr(armv7m->debug_ap, (void *)&samples[sample_count], 4, read_count, DWT_PCSR); sample_count += read_count; } else { target_read_u32(target, DWT_PCSR, &samples[sample_count++]); } } else { target_poll(target); if (target->state == TARGET_HALTED) { reg_value = buf_get_u32(reg->value, 0, 32); /* current pc, addr = 0, do not handle breakpoints, not debugging */ retval = target_resume(target, 1, 0, 0, 0); samples[sample_count++] = reg_value; target_poll(target); alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */ } else if (target->state == TARGET_RUNNING) { /* We want to quickly sample the PC. */ retval = target_halt(target); } else { LOG_INFO("Target not halted or running"); retval = ERROR_OK; break; } } if (retval != ERROR_OK) { LOG_ERROR("Error while reading %s", use_pcsr ? "PCSR" : "target pc"); return retval; } gettimeofday(&now, NULL); if (sample_count >= max_num_samples || timeval_compare(&now, &timeout) > 0) { LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count); break; } } *num_samples = sample_count; return retval; } /* REVISIT cache valid/dirty bits are unmaintained. We could set "valid" * on r/w if the core is not running, and clear on resume or reset ... or * at least, in a post_restore_context() method. */ struct dwt_reg_state { struct target *target; uint32_t addr; uint8_t value[4]; /* scratch/cache */ }; static int cortex_m_dwt_get_reg(struct reg *reg) { struct dwt_reg_state *state = reg->arch_info; uint32_t tmp; int retval = target_read_u32(state->target, state->addr, &tmp); if (retval != ERROR_OK) return retval; buf_set_u32(state->value, 0, 32, tmp); return ERROR_OK; } static int cortex_m_dwt_set_reg(struct reg *reg, uint8_t *buf) { struct dwt_reg_state *state = reg->arch_info; return target_write_u32(state->target, state->addr, buf_get_u32(buf, 0, reg->size)); } struct dwt_reg { uint32_t addr; const char *name; unsigned size; }; static const struct dwt_reg dwt_base_regs[] = { { DWT_CTRL, "dwt_ctrl", 32, }, /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT: it wrongly * increments while the core is asleep. */ { DWT_CYCCNT, "dwt_cyccnt", 32, }, /* plus some 8 bit counters, useful for profiling with TPIU */ }; static const struct dwt_reg dwt_comp[] = { #define DWT_COMPARATOR(i) \ { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \ { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \ { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, } DWT_COMPARATOR(0), DWT_COMPARATOR(1), DWT_COMPARATOR(2), DWT_COMPARATOR(3), DWT_COMPARATOR(4), DWT_COMPARATOR(5), DWT_COMPARATOR(6), DWT_COMPARATOR(7), DWT_COMPARATOR(8), DWT_COMPARATOR(9), DWT_COMPARATOR(10), DWT_COMPARATOR(11), DWT_COMPARATOR(12), DWT_COMPARATOR(13), DWT_COMPARATOR(14), DWT_COMPARATOR(15), #undef DWT_COMPARATOR }; static const struct reg_arch_type dwt_reg_type = { .get = cortex_m_dwt_get_reg, .set = cortex_m_dwt_set_reg, }; static void cortex_m_dwt_addreg(struct target *t, struct reg *r, const struct dwt_reg *d) { struct dwt_reg_state *state; state = calloc(1, sizeof(*state)); if (!state) return; state->addr = d->addr; state->target = t; r->name = d->name; r->size = d->size; r->value = state->value; r->arch_info = state; r->type = &dwt_reg_type; } void cortex_m_dwt_setup(struct cortex_m_common *cm, struct target *target) { uint32_t dwtcr; struct reg_cache *cache; struct cortex_m_dwt_comparator *comparator; int reg, i; target_read_u32(target, DWT_CTRL, &dwtcr); LOG_DEBUG("DWT_CTRL: 0x%" PRIx32, dwtcr); if (!dwtcr) { LOG_DEBUG("no DWT"); return; } target_read_u32(target, DWT_DEVARCH, &cm->dwt_devarch); LOG_DEBUG("DWT_DEVARCH: 0x%" PRIx32, cm->dwt_devarch); cm->dwt_num_comp = (dwtcr >> 28) & 0xF; cm->dwt_comp_available = cm->dwt_num_comp; cm->dwt_comparator_list = calloc(cm->dwt_num_comp, sizeof(struct cortex_m_dwt_comparator)); if (!cm->dwt_comparator_list) { fail0: cm->dwt_num_comp = 0; LOG_ERROR("out of mem"); return; } cache = calloc(1, sizeof(*cache)); if (!cache) { fail1: free(cm->dwt_comparator_list); goto fail0; } cache->name = "Cortex-M DWT registers"; cache->num_regs = 2 + cm->dwt_num_comp * 3; cache->reg_list = calloc(cache->num_regs, sizeof(*cache->reg_list)); if (!cache->reg_list) { free(cache); goto fail1; } for (reg = 0; reg < 2; reg++) cortex_m_dwt_addreg(target, cache->reg_list + reg, dwt_base_regs + reg); comparator = cm->dwt_comparator_list; for (i = 0; i < cm->dwt_num_comp; i++, comparator++) { int j; comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i; for (j = 0; j < 3; j++, reg++) cortex_m_dwt_addreg(target, cache->reg_list + reg, dwt_comp + 3 * i + j); /* make sure we clear any watchpoints enabled on the target */ target_write_u32(target, comparator->dwt_comparator_address + 8, 0); } *register_get_last_cache_p(&target->reg_cache) = cache; cm->dwt_cache = cache; LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s", dwtcr, cm->dwt_num_comp, (dwtcr & (0xf << 24)) ? " only" : "/trigger"); /* REVISIT: if num_comp > 1, check whether comparator #1 can * implement single-address data value watchpoints ... so we * won't need to check it later, when asked to set one up. */ } static void cortex_m_dwt_free(struct target *target) { struct cortex_m_common *cm = target_to_cm(target); struct reg_cache *cache = cm->dwt_cache; free(cm->dwt_comparator_list); cm->dwt_comparator_list = NULL; cm->dwt_num_comp = 0; if (cache) { register_unlink_cache(&target->reg_cache, cache); if (cache->reg_list) { for (size_t i = 0; i < cache->num_regs; i++) free(cache->reg_list[i].arch_info); free(cache->reg_list); } free(cache); } cm->dwt_cache = NULL; } #define MVFR0 0xe000ef40 #define MVFR1 0xe000ef44 #define MVFR0_DEFAULT_M4 0x10110021 #define MVFR1_DEFAULT_M4 0x11000011 #define MVFR0_DEFAULT_M7_SP 0x10110021 #define MVFR0_DEFAULT_M7_DP 0x10110221 #define MVFR1_DEFAULT_M7_SP 0x11000011 #define MVFR1_DEFAULT_M7_DP 0x12000011 static int cortex_m_find_mem_ap(struct adiv5_dap *swjdp, struct adiv5_ap **debug_ap) { if (dap_find_ap(swjdp, AP_TYPE_AHB3_AP, debug_ap) == ERROR_OK) return ERROR_OK; return dap_find_ap(swjdp, AP_TYPE_AHB5_AP, debug_ap); } int cortex_m_examine(struct target *target) { int retval; uint32_t cpuid, fpcr, mvfr0, mvfr1; int i; struct cortex_m_common *cortex_m = target_to_cm(target); struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap; struct armv7m_common *armv7m = target_to_armv7m(target); /* stlink shares the examine handler but does not support * all its calls */ if (!armv7m->stlink) { if (cortex_m->apsel == DP_APSEL_INVALID) { /* Search for the MEM-AP */ retval = cortex_m_find_mem_ap(swjdp, &armv7m->debug_ap); if (retval != ERROR_OK) { LOG_ERROR("Could not find MEM-AP to control the core"); return retval; } } else { armv7m->debug_ap = dap_ap(swjdp, cortex_m->apsel); } /* Leave (only) generic DAP stuff for debugport_init(); */ armv7m->debug_ap->memaccess_tck = 8; retval = mem_ap_init(armv7m->debug_ap); if (retval != ERROR_OK) return retval; } if (!target_was_examined(target)) { target_set_examined(target); /* Read from Device Identification Registers */ retval = target_read_u32(target, CPUID, &cpuid); if (retval != ERROR_OK) return retval; /* Get CPU Type */ i = (cpuid >> 4) & 0xf; /* Check if it is an ARMv8-M core */ armv7m->arm.is_armv8m = true; switch (cpuid & ARM_CPUID_PARTNO_MASK) { case CORTEX_M23_PARTNO: i = 23; break; case CORTEX_M33_PARTNO: i = 33; break; case CORTEX_M35P_PARTNO: i = 35; break; case CORTEX_M55_PARTNO: i = 55; break; default: armv7m->arm.is_armv8m = false; break; } LOG_DEBUG("Cortex-M%d r%" PRId8 "p%" PRId8 " processor detected", i, (uint8_t)((cpuid >> 20) & 0xf), (uint8_t)((cpuid >> 0) & 0xf)); cortex_m->maskints_erratum = false; if (i == 7) { uint8_t rev, patch; rev = (cpuid >> 20) & 0xf; patch = (cpuid >> 0) & 0xf; if ((rev == 0) && (patch < 2)) { LOG_WARNING("Silicon bug: single stepping may enter pending exception handler!"); cortex_m->maskints_erratum = true; } } LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid); /* VECTRESET is not supported on Cortex-M0, M0+ and M1 */ cortex_m->vectreset_supported = i > 1; if (i == 4) { target_read_u32(target, MVFR0, &mvfr0); target_read_u32(target, MVFR1, &mvfr1); /* test for floating point feature on Cortex-M4 */ if ((mvfr0 == MVFR0_DEFAULT_M4) && (mvfr1 == MVFR1_DEFAULT_M4)) { LOG_DEBUG("Cortex-M%d floating point feature FPv4_SP found", i); armv7m->fp_feature = FPv4_SP; } } else if (i == 7 || i == 33 || i == 35 || i == 55) { target_read_u32(target, MVFR0, &mvfr0); target_read_u32(target, MVFR1, &mvfr1); /* test for floating point features on Cortex-M7 */ if ((mvfr0 == MVFR0_DEFAULT_M7_SP) && (mvfr1 == MVFR1_DEFAULT_M7_SP)) { LOG_DEBUG("Cortex-M%d floating point feature FPv5_SP found", i); armv7m->fp_feature = FPv5_SP; } else if ((mvfr0 == MVFR0_DEFAULT_M7_DP) && (mvfr1 == MVFR1_DEFAULT_M7_DP)) { LOG_DEBUG("Cortex-M%d floating point feature FPv5_DP found", i); armv7m->fp_feature = FPv5_DP; } } else if (i == 0) { /* Cortex-M0 does not support unaligned memory access */ armv7m->arm.is_armv6m = true; } if (armv7m->fp_feature == FP_NONE && armv7m->arm.core_cache->num_regs > ARMV7M_NUM_CORE_REGS_NOFP) { /* free unavailable FPU registers */ size_t idx; for (idx = ARMV7M_NUM_CORE_REGS_NOFP; idx < armv7m->arm.core_cache->num_regs; idx++) { free(armv7m->arm.core_cache->reg_list[idx].value); free(armv7m->arm.core_cache->reg_list[idx].feature); free(armv7m->arm.core_cache->reg_list[idx].reg_data_type); } armv7m->arm.core_cache->num_regs = ARMV7M_NUM_CORE_REGS_NOFP; } if (!armv7m->stlink) { if (i == 3 || i == 4) /* Cortex-M3/M4 have 4096 bytes autoincrement range, * s. ARM IHI 0031C: MEM-AP 7.2.2 */ armv7m->debug_ap->tar_autoincr_block = (1 << 12); else if (i == 7) /* Cortex-M7 has only 1024 bytes autoincrement range */ armv7m->debug_ap->tar_autoincr_block = (1 << 10); } /* Enable debug requests */ retval = target_read_u32(target, DCB_DHCSR, &cortex_m->dcb_dhcsr); if (retval != ERROR_OK) return retval; if (!(cortex_m->dcb_dhcsr & C_DEBUGEN)) { uint32_t dhcsr = (cortex_m->dcb_dhcsr | C_DEBUGEN) & ~(C_HALT | C_STEP | C_MASKINTS); retval = target_write_u32(target, DCB_DHCSR, DBGKEY | (dhcsr & 0x0000FFFFUL)); if (retval != ERROR_OK) return retval; cortex_m->dcb_dhcsr = dhcsr; } /* Configure trace modules */ retval = target_write_u32(target, DCB_DEMCR, TRCENA | armv7m->demcr); if (retval != ERROR_OK) return retval; if (armv7m->trace_config.config_type != TRACE_CONFIG_TYPE_DISABLED) { armv7m_trace_tpiu_config(target); armv7m_trace_itm_config(target); } /* NOTE: FPB and DWT are both optional. */ /* Setup FPB */ target_read_u32(target, FP_CTRL, &fpcr); /* bits [14:12] and [7:4] */ cortex_m->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF); cortex_m->fp_num_lit = (fpcr >> 8) & 0xF; /* Detect flash patch revision, see RM DDI 0403E.b page C1-817. Revision is zero base, fp_rev == 1 means Rev.2 ! */ cortex_m->fp_rev = (fpcr >> 28) & 0xf; free(cortex_m->fp_comparator_list); cortex_m->fp_comparator_list = calloc( cortex_m->fp_num_code + cortex_m->fp_num_lit, sizeof(struct cortex_m_fp_comparator)); cortex_m->fpb_enabled = fpcr & 1; for (i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) { cortex_m->fp_comparator_list[i].type = (i < cortex_m->fp_num_code) ? FPCR_CODE : FPCR_LITERAL; cortex_m->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i; /* make sure we clear any breakpoints enabled on the target */ target_write_u32(target, cortex_m->fp_comparator_list[i].fpcr_address, 0); } LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i", fpcr, cortex_m->fp_num_code, cortex_m->fp_num_lit); /* Setup DWT */ cortex_m_dwt_free(target); cortex_m_dwt_setup(cortex_m, target); /* These hardware breakpoints only work for code in flash! */ LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints", target_name(target), cortex_m->fp_num_code, cortex_m->dwt_num_comp); } return ERROR_OK; } static int cortex_m_dcc_read(struct target *target, uint8_t *value, uint8_t *ctrl) { struct armv7m_common *armv7m = target_to_armv7m(target); uint16_t dcrdr; uint8_t buf[2]; int retval; retval = mem_ap_read_buf_noincr(armv7m->debug_ap, buf, 2, 1, DCB_DCRDR); if (retval != ERROR_OK) return retval; dcrdr = target_buffer_get_u16(target, buf); *ctrl = (uint8_t)dcrdr; *value = (uint8_t)(dcrdr >> 8); LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl); /* write ack back to software dcc register * signify we have read data */ if (dcrdr & (1 << 0)) { target_buffer_set_u16(target, buf, 0); retval = mem_ap_write_buf_noincr(armv7m->debug_ap, buf, 2, 1, DCB_DCRDR); if (retval != ERROR_OK) return retval; } return ERROR_OK; } static int cortex_m_target_request_data(struct target *target, uint32_t size, uint8_t *buffer) { uint8_t data; uint8_t ctrl; uint32_t i; for (i = 0; i < (size * 4); i++) { int retval = cortex_m_dcc_read(target, &data, &ctrl); if (retval != ERROR_OK) return retval; buffer[i] = data; } return ERROR_OK; } static int cortex_m_handle_target_request(void *priv) { struct target *target = priv; if (!target_was_examined(target)) return ERROR_OK; if (!target->dbg_msg_enabled) return ERROR_OK; if (target->state == TARGET_RUNNING) { uint8_t data; uint8_t ctrl; int retval; retval = cortex_m_dcc_read(target, &data, &ctrl); if (retval != ERROR_OK) return retval; /* check if we have data */ if (ctrl & (1 << 0)) { uint32_t request; /* we assume target is quick enough */ request = data; for (int i = 1; i <= 3; i++) { retval = cortex_m_dcc_read(target, &data, &ctrl); if (retval != ERROR_OK) return retval; request |= ((uint32_t)data << (i * 8)); } target_request(target, request); } } return ERROR_OK; } static int cortex_m_init_arch_info(struct target *target, struct cortex_m_common *cortex_m, struct adiv5_dap *dap) { struct armv7m_common *armv7m = &cortex_m->armv7m; armv7m_init_arch_info(target, armv7m); /* default reset mode is to use srst if fitted * if not it will use CORTEX_M3_RESET_VECTRESET */ cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET; armv7m->arm.dap = dap; /* register arch-specific functions */ armv7m->examine_debug_reason = cortex_m_examine_debug_reason; armv7m->post_debug_entry = NULL; armv7m->pre_restore_context = NULL; armv7m->load_core_reg_u32 = cortex_m_load_core_reg_u32; armv7m->store_core_reg_u32 = cortex_m_store_core_reg_u32; target_register_timer_callback(cortex_m_handle_target_request, 1, TARGET_TIMER_TYPE_PERIODIC, target); return ERROR_OK; } static int cortex_m_target_create(struct target *target, Jim_Interp *interp) { struct adiv5_private_config *pc; pc = (struct adiv5_private_config *)target->private_config; if (adiv5_verify_config(pc) != ERROR_OK) return ERROR_FAIL; struct cortex_m_common *cortex_m = calloc(1, sizeof(struct cortex_m_common)); if (cortex_m == NULL) { LOG_ERROR("No memory creating target"); return ERROR_FAIL; } cortex_m->common_magic = CORTEX_M_COMMON_MAGIC; cortex_m->apsel = pc->ap_num; cortex_m_init_arch_info(target, cortex_m, pc->dap); return ERROR_OK; } /*--------------------------------------------------------------------------*/ static int cortex_m_verify_pointer(struct command_invocation *cmd, struct cortex_m_common *cm) { if (cm->common_magic != CORTEX_M_COMMON_MAGIC) { command_print(cmd, "target is not a Cortex-M"); return ERROR_TARGET_INVALID; } return ERROR_OK; } /* * Only stuff below this line should need to verify that its target * is a Cortex-M3. Everything else should have indirected through the * cortexm3_target structure, which is only used with CM3 targets. */ COMMAND_HANDLER(handle_cortex_m_vector_catch_command) { struct target *target = get_current_target(CMD_CTX); struct cortex_m_common *cortex_m = target_to_cm(target); struct armv7m_common *armv7m = &cortex_m->armv7m; uint32_t demcr = 0; int retval; static const struct { char name[10]; unsigned mask; } vec_ids[] = { { "hard_err", VC_HARDERR, }, { "int_err", VC_INTERR, }, { "bus_err", VC_BUSERR, }, { "state_err", VC_STATERR, }, { "chk_err", VC_CHKERR, }, { "nocp_err", VC_NOCPERR, }, { "mm_err", VC_MMERR, }, { "reset", VC_CORERESET, }, }; retval = cortex_m_verify_pointer(CMD, cortex_m); if (retval != ERROR_OK) return retval; retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &demcr); if (retval != ERROR_OK) return retval; if (CMD_ARGC > 0) { unsigned catch = 0; if (CMD_ARGC == 1) { if (strcmp(CMD_ARGV[0], "all") == 0) { catch = VC_HARDERR | VC_INTERR | VC_BUSERR | VC_STATERR | VC_CHKERR | VC_NOCPERR | VC_MMERR | VC_CORERESET; goto write; } else if (strcmp(CMD_ARGV[0], "none") == 0) goto write; } while (CMD_ARGC-- > 0) { unsigned i; for (i = 0; i < ARRAY_SIZE(vec_ids); i++) { if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0) continue; catch |= vec_ids[i].mask; break; } if (i == ARRAY_SIZE(vec_ids)) { LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]); return ERROR_COMMAND_SYNTAX_ERROR; } } write: /* For now, armv7m->demcr only stores vector catch flags. */ armv7m->demcr = catch; demcr &= ~0xffff; demcr |= catch; /* write, but don't assume it stuck (why not??) */ retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR, demcr); if (retval != ERROR_OK) return retval; retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &demcr); if (retval != ERROR_OK) return retval; /* FIXME be sure to clear DEMCR on clean server shutdown. * Otherwise the vector catch hardware could fire when there's * no debugger hooked up, causing much confusion... */ } for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++) { command_print(CMD, "%9s: %s", vec_ids[i].name, (demcr & vec_ids[i].mask) ? "catch" : "ignore"); } return ERROR_OK; } COMMAND_HANDLER(handle_cortex_m_mask_interrupts_command) { struct target *target = get_current_target(CMD_CTX); struct cortex_m_common *cortex_m = target_to_cm(target); int retval; static const Jim_Nvp nvp_maskisr_modes[] = { { .name = "auto", .value = CORTEX_M_ISRMASK_AUTO }, { .name = "off", .value = CORTEX_M_ISRMASK_OFF }, { .name = "on", .value = CORTEX_M_ISRMASK_ON }, { .name = "steponly", .value = CORTEX_M_ISRMASK_STEPONLY }, { .name = NULL, .value = -1 }, }; const Jim_Nvp *n; retval = cortex_m_verify_pointer(CMD, cortex_m); if (retval != ERROR_OK) return retval; if (target->state != TARGET_HALTED) { command_print(CMD, "target must be stopped for \"%s\" command", CMD_NAME); return ERROR_OK; } if (CMD_ARGC > 0) { n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]); if (n->name == NULL) return ERROR_COMMAND_SYNTAX_ERROR; cortex_m->isrmasking_mode = n->value; cortex_m_set_maskints_for_halt(target); } n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_m->isrmasking_mode); command_print(CMD, "cortex_m interrupt mask %s", n->name); return ERROR_OK; } COMMAND_HANDLER(handle_cortex_m_reset_config_command) { struct target *target = get_current_target(CMD_CTX); struct cortex_m_common *cortex_m = target_to_cm(target); int retval; char *reset_config; retval = cortex_m_verify_pointer(CMD, cortex_m); if (retval != ERROR_OK) return retval; if (CMD_ARGC > 0) { if (strcmp(*CMD_ARGV, "sysresetreq") == 0) cortex_m->soft_reset_config = CORTEX_M_RESET_SYSRESETREQ; else if (strcmp(*CMD_ARGV, "vectreset") == 0) { if (target_was_examined(target) && !cortex_m->vectreset_supported) LOG_WARNING("VECTRESET is not supported on your Cortex-M core!"); else cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET; } else return ERROR_COMMAND_SYNTAX_ERROR; } switch (cortex_m->soft_reset_config) { case CORTEX_M_RESET_SYSRESETREQ: reset_config = "sysresetreq"; break; case CORTEX_M_RESET_VECTRESET: reset_config = "vectreset"; break; default: reset_config = "unknown"; break; } command_print(CMD, "cortex_m reset_config %s", reset_config); return ERROR_OK; } static const struct command_registration cortex_m_exec_command_handlers[] = { { .name = "maskisr", .handler = handle_cortex_m_mask_interrupts_command, .mode = COMMAND_EXEC, .help = "mask cortex_m interrupts", .usage = "['auto'|'on'|'off'|'steponly']", }, { .name = "vector_catch", .handler = handle_cortex_m_vector_catch_command, .mode = COMMAND_EXEC, .help = "configure hardware vectors to trigger debug entry", .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]", }, { .name = "reset_config", .handler = handle_cortex_m_reset_config_command, .mode = COMMAND_ANY, .help = "configure software reset handling", .usage = "['sysresetreq'|'vectreset']", }, COMMAND_REGISTRATION_DONE }; static const struct command_registration cortex_m_command_handlers[] = { { .chain = armv7m_command_handlers, }, { .chain = armv7m_trace_command_handlers, }, { .name = "cortex_m", .mode = COMMAND_EXEC, .help = "Cortex-M command group", .usage = "", .chain = cortex_m_exec_command_handlers, }, COMMAND_REGISTRATION_DONE }; struct target_type cortexm_target = { .name = "cortex_m", .deprecated_name = "cortex_m3", .poll = cortex_m_poll, .arch_state = armv7m_arch_state, .target_request_data = cortex_m_target_request_data, .halt = cortex_m_halt, .resume = cortex_m_resume, .step = cortex_m_step, .assert_reset = cortex_m_assert_reset, .deassert_reset = cortex_m_deassert_reset, .soft_reset_halt = cortex_m_soft_reset_halt, .get_gdb_arch = arm_get_gdb_arch, .get_gdb_reg_list = armv7m_get_gdb_reg_list, .read_memory = cortex_m_read_memory, .write_memory = cortex_m_write_memory, .checksum_memory = armv7m_checksum_memory, .blank_check_memory = armv7m_blank_check_memory, .run_algorithm = armv7m_run_algorithm, .start_algorithm = armv7m_start_algorithm, .wait_algorithm = armv7m_wait_algorithm, .add_breakpoint = cortex_m_add_breakpoint, .remove_breakpoint = cortex_m_remove_breakpoint, .add_watchpoint = cortex_m_add_watchpoint, .remove_watchpoint = cortex_m_remove_watchpoint, .commands = cortex_m_command_handlers, .target_create = cortex_m_target_create, .target_jim_configure = adiv5_jim_configure, .init_target = cortex_m_init_target, .examine = cortex_m_examine, .deinit_target = cortex_m_deinit_target, .profiling = cortex_m_profiling, };