/*************************************************************************** * Copyright (C) 2005 by Dominic Rath * * Dominic.Rath@gmx.de * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "embeddedice.h" #include "armv4_5.h" #include "arm7_9_common.h" #include "log.h" #include "arm_jtag.h" #include "types.h" #include "binarybuffer.h" #include "target.h" #include "register.h" #include "jtag.h" #include bitfield_desc_t embeddedice_comms_ctrl_bitfield_desc[] = { {"R", 1}, {"W", 1}, {"reserved", 26}, {"version", 4} }; int embeddedice_reg_arch_info[] = { 0x0, 0x1, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x2 }; char* embeddedice_reg_list[] = { "debug_ctrl", "debug_status", "comms_ctrl", "comms_data", "watch 0 addr value", "watch 0 addr mask", "watch 0 data value", "watch 0 data mask", "watch 0 control value", "watch 0 control mask", "watch 1 addr value", "watch 1 addr mask", "watch 1 data value", "watch 1 data mask", "watch 1 control value", "watch 1 control mask", "vector catch" }; int embeddedice_reg_arch_type = -1; int embeddedice_get_reg(reg_t *reg); int embeddedice_set_reg(reg_t *reg, u32 value); int embeddedice_set_reg_w_exec(reg_t *reg, u8 *buf); int embeddedice_write_reg(reg_t *reg, u32 value); int embeddedice_read_reg(reg_t *reg); reg_cache_t* embeddedice_build_reg_cache(target_t *target, arm7_9_common_t *arm7_9) { reg_cache_t *reg_cache = malloc(sizeof(reg_cache_t)); reg_t *reg_list = NULL; embeddedice_reg_t *arch_info = NULL; arm_jtag_t *jtag_info = &arm7_9->jtag_info; int num_regs; int i; int eice_version = 0; /* register a register arch-type for EmbeddedICE registers only once */ if (embeddedice_reg_arch_type == -1) embeddedice_reg_arch_type = register_reg_arch_type(embeddedice_get_reg, embeddedice_set_reg_w_exec); if (arm7_9->has_vector_catch) num_regs = 17; else num_regs = 16; /* the actual registers are kept in two arrays */ reg_list = calloc(num_regs, sizeof(reg_t)); arch_info = calloc(num_regs, sizeof(embeddedice_reg_t)); /* fill in values for the reg cache */ reg_cache->name = "EmbeddedICE registers"; reg_cache->next = NULL; reg_cache->reg_list = reg_list; reg_cache->num_regs = num_regs; /* set up registers */ for (i = 0; i < num_regs; i++) { reg_list[i].name = embeddedice_reg_list[i]; reg_list[i].size = 32; reg_list[i].dirty = 0; reg_list[i].valid = 0; reg_list[i].bitfield_desc = NULL; reg_list[i].num_bitfields = 0; reg_list[i].value = calloc(1, 4); reg_list[i].arch_info = &arch_info[i]; reg_list[i].arch_type = embeddedice_reg_arch_type; arch_info[i].addr = embeddedice_reg_arch_info[i]; arch_info[i].jtag_info = jtag_info; } /* identify EmbeddedICE version by reading DCC control register */ embeddedice_read_reg(®_list[EICE_COMMS_CTRL]); jtag_execute_queue(); eice_version = buf_get_u32(reg_list[EICE_COMMS_CTRL].value, 28, 4); switch (eice_version) { case 1: reg_list[EICE_DBG_CTRL].size = 3; reg_list[EICE_DBG_STAT].size = 5; break; case 2: reg_list[EICE_DBG_CTRL].size = 4; reg_list[EICE_DBG_STAT].size = 5; arm7_9->has_single_step = 1; break; case 3: ERROR("EmbeddedICE version 3 detected, EmbeddedICE handling might be broken"); reg_list[EICE_DBG_CTRL].size = 6; reg_list[EICE_DBG_STAT].size = 5; arm7_9->has_single_step = 1; arm7_9->has_monitor_mode = 1; break; case 4: reg_list[EICE_DBG_CTRL].size = 6; reg_list[EICE_DBG_STAT].size = 5; arm7_9->has_monitor_mode = 1; break; case 5: reg_list[EICE_DBG_CTRL].size = 6; reg_list[EICE_DBG_STAT].size = 5; arm7_9->has_single_step = 1; arm7_9->has_monitor_mode = 1; break; case 6: reg_list[EICE_DBG_CTRL].size = 6; reg_list[EICE_DBG_STAT].size = 10; arm7_9->has_monitor_mode = 1; break; case 7: WARNING("EmbeddedICE version 7 detected, EmbeddedICE handling might be broken"); reg_list[EICE_DBG_CTRL].size = 6; reg_list[EICE_DBG_STAT].size = 5; arm7_9->has_monitor_mode = 1; break; default: ERROR("unknown EmbeddedICE version (comms ctrl: 0x%8.8x)", buf_get_u32(reg_list[EICE_COMMS_CTRL].value, 0, 32)); } /* explicitly disable monitor mode */ if (arm7_9->has_monitor_mode) { embeddedice_read_reg(®_list[EICE_DBG_CTRL]); jtag_execute_queue(); buf_set_u32(reg_list[EICE_DBG_CTRL].value, 4, 1, 0); embeddedice_set_reg_w_exec(®_list[EICE_DBG_CTRL], reg_list[EICE_DBG_CTRL].value); } return reg_cache; } int embeddedice_get_reg(reg_t *reg) { if (embeddedice_read_reg(reg) != ERROR_OK) { ERROR("BUG: error scheduling EmbeddedICE register read"); exit(-1); } if (jtag_execute_queue() != ERROR_OK) { ERROR("register read failed"); } return ERROR_OK; } int embeddedice_read_reg_w_check(reg_t *reg, u8* check_value, u8* check_mask) { embeddedice_reg_t *ice_reg = reg->arch_info; u8 reg_addr = ice_reg->addr & 0x1f; scan_field_t fields[3]; u8 field1_out[1]; u8 field2_out[1]; DEBUG("%i", ice_reg->addr); jtag_add_end_state(TAP_RTI); arm_jtag_scann(ice_reg->jtag_info, 0x2); arm_jtag_set_instr(ice_reg->jtag_info, ice_reg->jtag_info->intest_instr, NULL); fields[0].device = ice_reg->jtag_info->chain_pos; fields[0].num_bits = 32; fields[0].out_value = reg->value; fields[0].out_mask = NULL; fields[0].in_value = NULL; fields[0].in_check_value = NULL; fields[0].in_check_mask = NULL; fields[0].in_handler = NULL; fields[0].in_handler_priv = NULL; fields[1].device = ice_reg->jtag_info->chain_pos; fields[1].num_bits = 5; fields[1].out_value = field1_out; buf_set_u32(fields[1].out_value, 0, 5, reg_addr); fields[1].out_mask = NULL; fields[1].in_value = NULL; fields[1].in_check_value = NULL; fields[1].in_check_mask = NULL; fields[1].in_handler = NULL; fields[1].in_handler_priv = NULL; fields[2].device = ice_reg->jtag_info->chain_pos; fields[2].num_bits = 1; fields[2].out_value = field2_out; buf_set_u32(fields[2].out_value, 0, 1, 0); fields[2].out_mask = NULL; fields[2].in_value = NULL; fields[2].in_check_value = NULL; fields[2].in_check_mask = NULL; fields[2].in_handler = NULL; fields[2].in_handler_priv = NULL; jtag_add_dr_scan(3, fields, -1); fields[0].in_value = reg->value; jtag_set_check_value(fields+0, check_value, check_mask, NULL); /* when reading the DCC data register, leaving the address field set to * EICE_COMMS_DATA would read the register twice * reading the control register is safe */ buf_set_u32(fields[1].out_value, 0, 5, embeddedice_reg_arch_info[EICE_COMMS_CTRL]); jtag_add_dr_scan(3, fields, -1); return ERROR_OK; } /* receive words of 32 bit from the DCC * we pretend the target is always going to be fast enough * (relative to the JTAG clock), so we don't need to handshake */ int embeddedice_receive(arm_jtag_t *jtag_info, u32 *data, u32 size) { scan_field_t fields[3]; u8 field1_out[1]; u8 field2_out[1]; jtag_add_end_state(TAP_RTI); arm_jtag_scann(jtag_info, 0x2); arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL); fields[0].device = jtag_info->chain_pos; fields[0].num_bits = 32; fields[0].out_value = NULL; fields[0].out_mask = NULL; fields[0].in_value = NULL; fields[0].in_check_value = NULL; fields[0].in_check_mask = NULL; fields[0].in_handler = NULL; fields[0].in_handler_priv = NULL; fields[1].device = jtag_info->chain_pos; fields[1].num_bits = 5; fields[1].out_value = field1_out; buf_set_u32(fields[1].out_value, 0, 5, embeddedice_reg_arch_info[EICE_COMMS_DATA]); fields[1].out_mask = NULL; fields[1].in_value = NULL; fields[1].in_check_value = NULL; fields[1].in_check_mask = NULL; fields[1].in_handler = NULL; fields[1].in_handler_priv = NULL; fields[2].device = jtag_info->chain_pos; fields[2].num_bits = 1; fields[2].out_value = field2_out; buf_set_u32(fields[2].out_value, 0, 1, 0); fields[2].out_mask = NULL; fields[2].in_value = NULL; fields[2].in_check_value = NULL; fields[2].in_check_mask = NULL; fields[2].in_handler = NULL; fields[2].in_handler_priv = NULL; jtag_add_dr_scan(3, fields, -1); while (size > 0) { /* when reading the last item, set the register address to the DCC control reg, * to avoid reading additional data from the DCC data reg */ if (size == 1) buf_set_u32(fields[1].out_value, 0, 5, embeddedice_reg_arch_info[EICE_COMMS_CTRL]); fields[0].in_handler = arm_jtag_buf_to_u32; fields[0].in_handler_priv = data; jtag_add_dr_scan(3, fields, -1); data++; size--; } return jtag_execute_queue(); } int embeddedice_read_reg(reg_t *reg) { return embeddedice_read_reg_w_check(reg, NULL, NULL); } int embeddedice_set_reg(reg_t *reg, u32 value) { if (embeddedice_write_reg(reg, value) != ERROR_OK) { ERROR("BUG: error scheduling EmbeddedICE register write"); exit(-1); } buf_set_u32(reg->value, 0, reg->size, value); reg->valid = 1; reg->dirty = 0; return ERROR_OK; } int embeddedice_set_reg_w_exec(reg_t *reg, u8 *buf) { embeddedice_set_reg(reg, buf_get_u32(buf, 0, reg->size)); if (jtag_execute_queue() != ERROR_OK) { ERROR("register write failed"); exit(-1); } return ERROR_OK; } int embeddedice_write_reg(reg_t *reg, u32 value) { embeddedice_reg_t *ice_reg = reg->arch_info; u8 reg_addr = ice_reg->addr & 0x1f; scan_field_t fields[3]; u8 field0_out[4]; u8 field1_out[1]; u8 field2_out[1]; DEBUG("%i: 0x%8.8x", ice_reg->addr, value); jtag_add_end_state(TAP_RTI); arm_jtag_scann(ice_reg->jtag_info, 0x2); arm_jtag_set_instr(ice_reg->jtag_info, ice_reg->jtag_info->intest_instr, NULL); fields[0].device = ice_reg->jtag_info->chain_pos; fields[0].num_bits = 32; fields[0].out_value = field0_out; buf_set_u32(fields[0].out_value, 0, 32, value); fields[0].out_mask = NULL; fields[0].in_value = NULL; fields[0].in_check_value = NULL; fields[0].in_check_mask = NULL; fields[0].in_handler = NULL; fields[0].in_handler_priv = NULL; fields[1].device = ice_reg->jtag_info->chain_pos; fields[1].num_bits = 5; fields[1].out_value = field1_out; buf_set_u32(fields[1].out_value, 0, 5, reg_addr); fields[1].out_mask = NULL; fields[1].in_value = NULL; fields[1].in_check_value = NULL; fields[1].in_check_mask = NULL; fields[1].in_handler = NULL; fields[1].in_handler_priv = NULL; fields[2].device = ice_reg->jtag_info->chain_pos; fields[2].num_bits = 1; fields[2].out_value = field2_out; buf_set_u32(fields[2].out_value, 0, 1, 1); fields[2].out_mask = NULL; fields[2].in_value = NULL; fields[2].in_check_value = NULL; fields[2].in_check_mask = NULL; fields[2].in_handler = NULL; fields[2].in_handler_priv = NULL; jtag_add_dr_scan(3, fields, -1); return ERROR_OK; } int embeddedice_store_reg(reg_t *reg) { return embeddedice_write_reg(reg, buf_get_u32(reg->value, 0, reg->size)); } /* send words of 32 bit to the DCC * we pretend the target is always going to be fast enough * (relative to the JTAG clock), so we don't need to handshake */ int embeddedice_send(arm_jtag_t *jtag_info, u32 *data, u32 size) { scan_field_t fields[3]; u8 field0_out[4]; u8 field1_out[1]; u8 field2_out[1]; jtag_add_end_state(TAP_RTI); arm_jtag_scann(jtag_info, 0x2); arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL); fields[0].device = jtag_info->chain_pos; fields[0].num_bits = 32; fields[0].out_value = field0_out; fields[0].out_mask = NULL; fields[0].in_value = NULL; fields[0].in_check_value = NULL; fields[0].in_check_mask = NULL; fields[0].in_handler = NULL; fields[0].in_handler_priv = NULL; fields[1].device = jtag_info->chain_pos; fields[1].num_bits = 5; fields[1].out_value = field1_out; buf_set_u32(fields[1].out_value, 0, 5, embeddedice_reg_arch_info[EICE_COMMS_DATA]); fields[1].out_mask = NULL; fields[1].in_value = NULL; fields[1].in_check_value = NULL; fields[1].in_check_mask = NULL; fields[1].in_handler = NULL; fields[1].in_handler_priv = NULL; fields[2].device = jtag_info->chain_pos; fields[2].num_bits = 1; fields[2].out_value = field2_out; buf_set_u32(fields[2].out_value, 0, 1, 1); fields[2].out_mask = NULL; fields[2].in_value = NULL; fields[2].in_check_value = NULL; fields[2].in_check_mask = NULL; fields[2].in_handler = NULL; fields[2].in_handler_priv = NULL; while (size > 0) { buf_set_u32(fields[0].out_value, 0, 32, *data); jtag_add_dr_scan(3, fields, -1); data++; size--; } /* call to jtag_execute_queue() intentionally omitted */ return ERROR_OK; } /* wait for DCC control register R/W handshake bit to become active */ int embeddedice_handshake(arm_jtag_t *jtag_info, int hsbit, u32 timeout) { scan_field_t fields[3]; u8 field0_in[4]; u8 field1_out[1]; u8 field2_out[1]; int retval; int hsact; struct timeval lap; struct timeval now; if (hsbit == EICE_COMM_CTRL_WBIT) hsact = 1; else if (hsbit == EICE_COMM_CTRL_RBIT) hsact = 0; else return ERROR_INVALID_ARGUMENTS; jtag_add_end_state(TAP_RTI); arm_jtag_scann(jtag_info, 0x2); arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL); fields[0].device = jtag_info->chain_pos; fields[0].num_bits = 32; fields[0].out_value = NULL; fields[0].out_mask = NULL; fields[0].in_value = field0_in; fields[0].in_check_value = NULL; fields[0].in_check_mask = NULL; fields[0].in_handler = NULL; fields[0].in_handler_priv = NULL; fields[1].device = jtag_info->chain_pos; fields[1].num_bits = 5; fields[1].out_value = field1_out; buf_set_u32(fields[1].out_value, 0, 5, embeddedice_reg_arch_info[EICE_COMMS_CTRL]); fields[1].out_mask = NULL; fields[1].in_value = NULL; fields[1].in_check_value = NULL; fields[1].in_check_mask = NULL; fields[1].in_handler = NULL; fields[1].in_handler_priv = NULL; fields[2].device = jtag_info->chain_pos; fields[2].num_bits = 1; fields[2].out_value = field2_out; buf_set_u32(fields[2].out_value, 0, 1, 0); fields[2].out_mask = NULL; fields[2].in_value = NULL; fields[2].in_check_value = NULL; fields[2].in_check_mask = NULL; fields[2].in_handler = NULL; fields[2].in_handler_priv = NULL; jtag_add_dr_scan(3, fields, -1); gettimeofday(&lap, NULL); do { jtag_add_dr_scan(3, fields, -1); if ((retval = jtag_execute_queue()) != ERROR_OK) return retval; if (buf_get_u32(field0_in, hsbit, 1) == hsact) return ERROR_OK; gettimeofday(&now, NULL); } while ((now.tv_sec-lap.tv_sec)*1000 + (now.tv_usec-lap.tv_usec)/1000 <= timeout); return ERROR_TARGET_TIMEOUT; }