/*************************************************************************** * ESP32-S2 target for OpenOCD * * Copyright (C) 2019 Espressif Systems Ltd. * * Author: Alexey Gerenkov * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program. If not, see . * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include "assert.h" #include #include #include "esp_xtensa.h" #include "esp32s2.h" /* Overall memory map * TODO: read memory configuration from target registers */ #define ESP32_S2_IROM_MASK_LOW 0x40000000 #define ESP32_S2_IROM_MASK_HIGH 0x40020000 #define ESP32_S2_IRAM_LOW 0x40020000 #define ESP32_S2_IRAM_HIGH 0x40070000 #define ESP32_S2_DRAM_LOW 0x3ffb0000 #define ESP32_S2_DRAM_HIGH 0x40000000 #define ESP32_S2_RTC_IRAM_LOW 0x40070000 #define ESP32_S2_RTC_IRAM_HIGH 0x40072000 #define ESP32_S2_RTC_DRAM_LOW 0x3ff9e000 #define ESP32_S2_RTC_DRAM_HIGH 0x3ffa0000 #define ESP32_S2_RTC_DATA_LOW 0x50000000 #define ESP32_S2_RTC_DATA_HIGH 0x50002000 #define ESP32_S2_EXTRAM_DATA_LOW 0x3f500000 #define ESP32_S2_EXTRAM_DATA_HIGH 0x3ff80000 #define ESP32_S2_DR_REG_LOW 0x3f400000 #define ESP32_S2_DR_REG_HIGH 0x3f4d3FFC #define ESP32_S2_SYS_RAM_LOW 0x60000000UL #define ESP32_S2_SYS_RAM_HIGH (ESP32_S2_SYS_RAM_LOW + 0x20000000UL) /* ESP32-S2 DROM mapping is not contiguous. */ /* IDF declares this as 0x3F000000..0x3FF80000, but there are peripheral registers mapped to * 0x3f400000..0x3f4d3FFC. */ #define ESP32_S2_DROM0_LOW ESP32_S2_DROM_LOW #define ESP32_S2_DROM0_HIGH ESP32_S2_DR_REG_LOW #define ESP32_S2_DROM1_LOW ESP32_S2_DR_REG_HIGH #define ESP32_S2_DROM1_HIGH ESP32_S2_DROM_HIGH /* ESP32 WDT */ #define ESP32_S2_WDT_WKEY_VALUE 0x50d83aa1 #define ESP32_S2_TIMG0_BASE 0x3f41F000 #define ESP32_S2_TIMG1_BASE 0x3f420000 #define ESP32_S2_TIMGWDT_CFG0_OFF 0x48 #define ESP32_S2_TIMGWDT_PROTECT_OFF 0x64 #define ESP32_S2_TIMG0WDT_CFG0 (ESP32_S2_TIMG0_BASE + ESP32_S2_TIMGWDT_CFG0_OFF) #define ESP32_S2_TIMG1WDT_CFG0 (ESP32_S2_TIMG1_BASE + ESP32_S2_TIMGWDT_CFG0_OFF) #define ESP32_S2_TIMG0WDT_PROTECT (ESP32_S2_TIMG0_BASE + ESP32_S2_TIMGWDT_PROTECT_OFF) #define ESP32_S2_TIMG1WDT_PROTECT (ESP32_S2_TIMG1_BASE + ESP32_S2_TIMGWDT_PROTECT_OFF) #define ESP32_S2_RTCCNTL_BASE 0x3f408000 #define ESP32_S2_RTCWDT_CFG_OFF 0x94 #define ESP32_S2_RTCWDT_PROTECT_OFF 0xAC #define ESP32_S2_SWD_CONF_OFF 0xB0 #define ESP32_S2_SWD_WPROTECT_OFF 0xB4 #define ESP32_S2_RTC_CNTL_DIG_PWC_REG_OFF 0x8C #define ESP32_S2_RTC_CNTL_DIG_PWC_REG (ESP32_S2_RTCCNTL_BASE + ESP32_S2_RTC_CNTL_DIG_PWC_REG_OFF) #define ESP32_S2_RTCWDT_CFG (ESP32_S2_RTCCNTL_BASE + ESP32_S2_RTCWDT_CFG_OFF) #define ESP32_S2_RTCWDT_PROTECT (ESP32_S2_RTCCNTL_BASE + ESP32_S2_RTCWDT_PROTECT_OFF) #define ESP32_S2_SWD_CONF_REG (ESP32_S2_RTCCNTL_BASE + ESP32_S2_SWD_CONF_OFF) #define ESP32_S2_SWD_WPROTECT_REG (ESP32_S2_RTCCNTL_BASE + ESP32_S2_SWD_WPROTECT_OFF) #define ESP32_S2_SWD_AUTO_FEED_EN_M BIT(31) #define ESP32_S2_SWD_WKEY_VALUE 0x8F1D312AU #define ESP32_S2_OPTIONS0 (ESP32_S2_RTCCNTL_BASE + 0x0000) #define ESP32_S2_SW_SYS_RST_M 0x80000000 #define ESP32_S2_SW_SYS_RST_V 0x1 #define ESP32_S2_SW_SYS_RST_S 31 #define ESP32_S2_SW_STALL_PROCPU_C0_M ((ESP32_S2_SW_STALL_PROCPU_C0_V) << (ESP32_S2_SW_STALL_PROCPU_C0_S)) #define ESP32_S2_SW_STALL_PROCPU_C0_V 0x3 #define ESP32_S2_SW_STALL_PROCPU_C0_S 2 #define ESP32_S2_SW_CPU_STALL (ESP32_S2_RTCCNTL_BASE + 0x00B8) #define ESP32_S2_SW_STALL_PROCPU_C1_M ((ESP32_S2_SW_STALL_PROCPU_C1_V) << (ESP32_S2_SW_STALL_PROCPU_C1_S)) #define ESP32_S2_SW_STALL_PROCPU_C1_V 0x3FU #define ESP32_S2_SW_STALL_PROCPU_C1_S 26 #define ESP32_S2_CLK_CONF (ESP32_S2_RTCCNTL_BASE + 0x0074) #define ESP32_S2_CLK_CONF_DEF 0x1583218 #define ESP32_S2_STORE4 (ESP32_S2_RTCCNTL_BASE + 0x00BC) #define ESP32_S2_STORE5 (ESP32_S2_RTCCNTL_BASE + 0x00C0) #define ESP32_S2_DPORT_PMS_OCCUPY_3 0x3F4C10E0 #define ESP32_S2_TRACEMEM_BLOCK_SZ 0x4000 #define ESP32_S2_DR_REG_UART_BASE 0x3f400000 #define ESP32_S2_REG_UART_BASE(i) (ESP32_S2_DR_REG_UART_BASE + (i) * 0x10000) #define ESP32_S2_UART_DATE_REG(i) (ESP32_S2_REG_UART_BASE(i) + 0x74) /* this should map local reg IDs to GDB reg mapping as defined in xtensa-config.c 'rmap' in * xtensa-overlay */ static const unsigned int esp32s2_gdb_regs_mapping[ESP32_S2_NUM_REGS] = { XT_REG_IDX_PC, XT_REG_IDX_AR0, XT_REG_IDX_AR1, XT_REG_IDX_AR2, XT_REG_IDX_AR3, XT_REG_IDX_AR4, XT_REG_IDX_AR5, XT_REG_IDX_AR6, XT_REG_IDX_AR7, XT_REG_IDX_AR8, XT_REG_IDX_AR9, XT_REG_IDX_AR10, XT_REG_IDX_AR11, XT_REG_IDX_AR12, XT_REG_IDX_AR13, XT_REG_IDX_AR14, XT_REG_IDX_AR15, XT_REG_IDX_AR16, XT_REG_IDX_AR17, XT_REG_IDX_AR18, XT_REG_IDX_AR19, XT_REG_IDX_AR20, XT_REG_IDX_AR21, XT_REG_IDX_AR22, XT_REG_IDX_AR23, XT_REG_IDX_AR24, XT_REG_IDX_AR25, XT_REG_IDX_AR26, XT_REG_IDX_AR27, XT_REG_IDX_AR28, XT_REG_IDX_AR29, XT_REG_IDX_AR30, XT_REG_IDX_AR31, XT_REG_IDX_AR32, XT_REG_IDX_AR33, XT_REG_IDX_AR34, XT_REG_IDX_AR35, XT_REG_IDX_AR36, XT_REG_IDX_AR37, XT_REG_IDX_AR38, XT_REG_IDX_AR39, XT_REG_IDX_AR40, XT_REG_IDX_AR41, XT_REG_IDX_AR42, XT_REG_IDX_AR43, XT_REG_IDX_AR44, XT_REG_IDX_AR45, XT_REG_IDX_AR46, XT_REG_IDX_AR47, XT_REG_IDX_AR48, XT_REG_IDX_AR49, XT_REG_IDX_AR50, XT_REG_IDX_AR51, XT_REG_IDX_AR52, XT_REG_IDX_AR53, XT_REG_IDX_AR54, XT_REG_IDX_AR55, XT_REG_IDX_AR56, XT_REG_IDX_AR57, XT_REG_IDX_AR58, XT_REG_IDX_AR59, XT_REG_IDX_AR60, XT_REG_IDX_AR61, XT_REG_IDX_AR62, XT_REG_IDX_AR63, XT_REG_IDX_SAR, XT_REG_IDX_WINDOWBASE, XT_REG_IDX_WINDOWSTART, XT_REG_IDX_CONFIGID0, XT_REG_IDX_CONFIGID1, XT_REG_IDX_PS, XT_REG_IDX_THREADPTR, ESP32_S2_REG_IDX_GPIOOUT, XT_REG_IDX_MMID, XT_REG_IDX_IBREAKENABLE, XT_REG_IDX_OCD_DDR, XT_REG_IDX_IBREAKA0, XT_REG_IDX_IBREAKA1, XT_REG_IDX_DBREAKA0, XT_REG_IDX_DBREAKA1, XT_REG_IDX_DBREAKC0, XT_REG_IDX_DBREAKC1, XT_REG_IDX_EPC1, XT_REG_IDX_EPC2, XT_REG_IDX_EPC3, XT_REG_IDX_EPC4, XT_REG_IDX_EPC5, XT_REG_IDX_EPC6, XT_REG_IDX_EPC7, XT_REG_IDX_DEPC, XT_REG_IDX_EPS2, XT_REG_IDX_EPS3, XT_REG_IDX_EPS4, XT_REG_IDX_EPS5, XT_REG_IDX_EPS6, XT_REG_IDX_EPS7, XT_REG_IDX_EXCSAVE1, XT_REG_IDX_EXCSAVE2, XT_REG_IDX_EXCSAVE3, XT_REG_IDX_EXCSAVE4, XT_REG_IDX_EXCSAVE5, XT_REG_IDX_EXCSAVE6, XT_REG_IDX_EXCSAVE7, XT_REG_IDX_CPENABLE, XT_REG_IDX_INTERRUPT, XT_REG_IDX_INTSET, XT_REG_IDX_INTCLEAR, XT_REG_IDX_INTENABLE, XT_REG_IDX_VECBASE, XT_REG_IDX_EXCCAUSE, XT_REG_IDX_DEBUGCAUSE, XT_REG_IDX_CCOUNT, XT_REG_IDX_PRID, XT_REG_IDX_ICOUNT, XT_REG_IDX_ICOUNTLEVEL, XT_REG_IDX_EXCVADDR, XT_REG_IDX_CCOMPARE0, XT_REG_IDX_CCOMPARE1, XT_REG_IDX_CCOMPARE2, XT_REG_IDX_MISC0, XT_REG_IDX_MISC1, XT_REG_IDX_MISC2, XT_REG_IDX_MISC3, XT_REG_IDX_A0, XT_REG_IDX_A1, XT_REG_IDX_A2, XT_REG_IDX_A3, XT_REG_IDX_A4, XT_REG_IDX_A5, XT_REG_IDX_A6, XT_REG_IDX_A7, XT_REG_IDX_A8, XT_REG_IDX_A9, XT_REG_IDX_A10, XT_REG_IDX_A11, XT_REG_IDX_A12, XT_REG_IDX_A13, XT_REG_IDX_A14, XT_REG_IDX_A15, XT_REG_IDX_PWRCTL, XT_REG_IDX_PWRSTAT, XT_REG_IDX_ERISTAT, XT_REG_IDX_CS_ITCTRL, XT_REG_IDX_CS_CLAIMSET, XT_REG_IDX_CS_CLAIMCLR, XT_REG_IDX_CS_LOCKACCESS, XT_REG_IDX_CS_LOCKSTATUS, XT_REG_IDX_CS_AUTHSTATUS, XT_REG_IDX_FAULT_INFO, XT_REG_IDX_TRAX_ID, XT_REG_IDX_TRAX_CTRL, XT_REG_IDX_TRAX_STAT, XT_REG_IDX_TRAX_DATA, XT_REG_IDX_TRAX_ADDR, XT_REG_IDX_TRAX_PCTRIGGER, XT_REG_IDX_TRAX_PCMATCH, XT_REG_IDX_TRAX_DELAY, XT_REG_IDX_TRAX_MEMSTART, XT_REG_IDX_TRAX_MEMEND, XT_REG_IDX_PMG, XT_REG_IDX_PMPC, XT_REG_IDX_PM0, XT_REG_IDX_PM1, XT_REG_IDX_PMCTRL0, XT_REG_IDX_PMCTRL1, XT_REG_IDX_PMSTAT0, XT_REG_IDX_PMSTAT1, XT_REG_IDX_OCD_ID, XT_REG_IDX_OCD_DCRCLR, XT_REG_IDX_OCD_DCRSET, XT_REG_IDX_OCD_DSR, }; static const struct xtensa_user_reg_desc esp32s2_user_regs[ESP32_S2_NUM_REGS - XT_NUM_REGS] = { { "gpio_out", 0x00, 0, 32, &xtensa_user_reg_u32_type }, }; static const struct xtensa_config esp32s2_xtensa_cfg = { .density = true, .aregs_num = XT_AREGS_NUM_MAX, .windowed = true, .coproc = true, .miscregs_num = 4, .reloc_vec = true, .proc_id = true, .threadptr = true, .user_regs_num = ARRAY_SIZE(esp32s2_user_regs), .user_regs = esp32s2_user_regs, .fetch_user_regs = xtensa_fetch_user_regs_u32, .queue_write_dirty_user_regs = xtensa_queue_write_dirty_user_regs_u32, .gdb_general_regs_num = ESP32_S2_NUM_REGS_G_COMMAND, .gdb_regs_mapping = esp32s2_gdb_regs_mapping, .irom = { .count = 2, .regions = { { .base = ESP32_S2_IROM_LOW, .size = ESP32_S2_IROM_HIGH - ESP32_S2_IROM_LOW, .access = XT_MEM_ACCESS_READ, }, { .base = ESP32_S2_IROM_MASK_LOW, .size = ESP32_S2_IROM_MASK_HIGH - ESP32_S2_IROM_MASK_LOW, .access = XT_MEM_ACCESS_READ, }, } }, .iram = { .count = 2, .regions = { { .base = ESP32_S2_IRAM_LOW, .size = ESP32_S2_IRAM_HIGH - ESP32_S2_IRAM_LOW, .access = XT_MEM_ACCESS_READ | XT_MEM_ACCESS_WRITE, }, { .base = ESP32_S2_RTC_IRAM_LOW, .size = ESP32_S2_RTC_IRAM_HIGH - ESP32_S2_RTC_IRAM_LOW, .access = XT_MEM_ACCESS_READ | XT_MEM_ACCESS_WRITE, }, } }, .drom = { .count = 2, .regions = { { .base = ESP32_S2_DROM0_LOW, .size = ESP32_S2_DROM0_HIGH - ESP32_S2_DROM0_LOW, .access = XT_MEM_ACCESS_READ, }, { .base = ESP32_S2_DROM1_LOW, .size = ESP32_S2_DROM1_HIGH - ESP32_S2_DROM1_LOW, .access = XT_MEM_ACCESS_READ, }, } }, .dram = { .count = 6, .regions = { { .base = ESP32_S2_DRAM_LOW, .size = ESP32_S2_DRAM_HIGH - ESP32_S2_DRAM_LOW, .access = XT_MEM_ACCESS_READ | XT_MEM_ACCESS_WRITE, }, { .base = ESP32_S2_RTC_DRAM_LOW, .size = ESP32_S2_RTC_DRAM_HIGH - ESP32_S2_RTC_DRAM_LOW, .access = XT_MEM_ACCESS_READ | XT_MEM_ACCESS_WRITE, }, { .base = ESP32_S2_RTC_DATA_LOW, .size = ESP32_S2_RTC_DATA_HIGH - ESP32_S2_RTC_DATA_LOW, .access = XT_MEM_ACCESS_READ | XT_MEM_ACCESS_WRITE, }, { .base = ESP32_S2_EXTRAM_DATA_LOW, .size = ESP32_S2_EXTRAM_DATA_HIGH - ESP32_S2_EXTRAM_DATA_LOW, .access = XT_MEM_ACCESS_READ | XT_MEM_ACCESS_WRITE, }, { .base = ESP32_S2_DR_REG_LOW, .size = ESP32_S2_DR_REG_HIGH - ESP32_S2_DR_REG_LOW, .access = XT_MEM_ACCESS_READ | XT_MEM_ACCESS_WRITE, }, { .base = ESP32_S2_SYS_RAM_LOW, .size = ESP32_S2_SYS_RAM_HIGH - ESP32_S2_SYS_RAM_LOW, .access = XT_MEM_ACCESS_READ | XT_MEM_ACCESS_WRITE, }, } }, .exc = { .enabled = true, }, .irq = { .enabled = true, .irq_num = 32, }, .high_irq = { .enabled = true, .excm_level = 3, .nmi_num = 1, }, .tim_irq = { .enabled = true, .comp_num = 3, }, .debug = { .enabled = true, .irq_level = 6, .ibreaks_num = 2, .dbreaks_num = 2, .icount_sz = 32, }, .trace = { .enabled = true, .mem_sz = ESP32_S2_TRACEMEM_BLOCK_SZ, }, }; struct esp32s2_common { struct esp_xtensa_common esp_xtensa; }; static int esp32s2_soc_reset(struct target *target); static int esp32s2_disable_wdts(struct target *target); static int esp32s2_assert_reset(struct target *target) { return ERROR_OK; } static int esp32s2_deassert_reset(struct target *target) { struct xtensa *xtensa = target_to_xtensa(target); LOG_TARGET_DEBUG(target, "begin"); int res = xtensa_deassert_reset(target); if (res != ERROR_OK) return res; /* restore configured value esp32s2_soc_reset() modified it, but can not restore just after SW reset for some reason (???) */ res = xtensa_smpbreak_write(xtensa, xtensa->smp_break); if (res != ERROR_OK) { LOG_ERROR("Failed to restore smpbreak (%d)!", res); return res; } return ERROR_OK; } int esp32s2_soft_reset_halt(struct target *target) { LOG_TARGET_DEBUG(target, "begin"); /* Reset the SoC first */ int res = esp32s2_soc_reset(target); if (res != ERROR_OK) return res; return xtensa_assert_reset(target); } static int esp32s2_set_peri_reg_mask(struct target *target, target_addr_t addr, uint32_t mask, uint32_t val) { uint32_t reg_val; int res = target_read_u32(target, addr, ®_val); if (res != ERROR_OK) return res; reg_val = (reg_val & (~mask)) | val; res = target_write_u32(target, addr, reg_val); if (res != ERROR_OK) return res; return ERROR_OK; } static int esp32s2_stall_set(struct target *target, bool stall) { LOG_TARGET_DEBUG(target, "begin"); int res = esp32s2_set_peri_reg_mask(target, ESP32_S2_SW_CPU_STALL, ESP32_S2_SW_STALL_PROCPU_C1_M, stall ? 0x21U << ESP32_S2_SW_STALL_PROCPU_C1_S : 0); if (res != ERROR_OK) { LOG_ERROR("Failed to write ESP32_S2_SW_CPU_STALL (%d)!", res); return res; } res = esp32s2_set_peri_reg_mask(target, ESP32_S2_OPTIONS0, ESP32_S2_SW_STALL_PROCPU_C0_M, stall ? 0x2 << ESP32_S2_SW_STALL_PROCPU_C0_S : 0); if (res != ERROR_OK) { LOG_ERROR("Failed to write ESP32_S2_OPTIONS0 (%d)!", res); return res; } return ERROR_OK; } static inline int esp32s2_stall(struct target *target) { return esp32s2_stall_set(target, true); } static inline int esp32s2_unstall(struct target *target) { return esp32s2_stall_set(target, false); } /* Reset ESP32-S2's peripherals. Postconditions: all peripherals except RTC_CNTL are reset, CPU's PC is undefined, PRO CPU is halted, APP CPU is in reset How this works: 0. make sure target is halted; if not, try to halt it; if that fails, try to reset it (via OCD) and then halt 1. Resets clock related registers 2. Stalls CPU 3. trigger SoC reset using RTC_CNTL_SW_SYS_RST bit 4. CPU is reset and stalled at the first reset vector instruction 5. wait for the OCD to be reset 6. halt the target 7. Unstalls CPU 8. Disables WDTs and trace memory mapping */ static int esp32s2_soc_reset(struct target *target) { int res; struct xtensa *xtensa = target_to_xtensa(target); LOG_DEBUG("start"); /* In order to write to peripheral registers, target must be halted first */ if (target->state != TARGET_HALTED) { LOG_TARGET_DEBUG(target, "Target not halted before SoC reset, trying to halt it first"); xtensa_halt(target); res = target_wait_state(target, TARGET_HALTED, 1000); if (res != ERROR_OK) { LOG_TARGET_DEBUG(target, "Couldn't halt target before SoC reset, trying to do reset-halt"); res = xtensa_assert_reset(target); if (res != ERROR_OK) { LOG_TARGET_ERROR( target, "Couldn't halt target before SoC reset! (xtensa_assert_reset returned %d)", res); return res; } alive_sleep(10); xtensa_poll(target); int reset_halt_save = target->reset_halt; target->reset_halt = 1; res = xtensa_deassert_reset(target); target->reset_halt = reset_halt_save; if (res != ERROR_OK) { LOG_TARGET_ERROR( target, "Couldn't halt target before SoC reset! (xtensa_deassert_reset returned %d)", res); return res; } alive_sleep(10); xtensa_poll(target); xtensa_halt(target); res = target_wait_state(target, TARGET_HALTED, 1000); if (res != ERROR_OK) { LOG_TARGET_ERROR(target, "Couldn't halt target before SoC reset"); return res; } } } assert(target->state == TARGET_HALTED); /* Set some clock-related RTC registers to the default values */ res = target_write_u32(target, ESP32_S2_STORE4, 0); if (res != ERROR_OK) { LOG_ERROR("Failed to write ESP32_S2_STORE4 (%d)!", res); return res; } res = target_write_u32(target, ESP32_S2_STORE5, 0); if (res != ERROR_OK) { LOG_ERROR("Failed to write ESP32_S2_STORE5 (%d)!", res); return res; } res = target_write_u32(target, ESP32_S2_RTC_CNTL_DIG_PWC_REG, 0); if (res != ERROR_OK) { LOG_ERROR("Failed to write ESP32_S2_RTC_CNTL_DIG_PWC_REG (%d)!", res); return res; } res = target_write_u32(target, ESP32_S2_CLK_CONF, ESP32_S2_CLK_CONF_DEF); if (res != ERROR_OK) { LOG_ERROR("Failed to write ESP32_S2_CLK_CONF (%d)!", res); return res; } /* Stall CPU */ res = esp32s2_stall(target); if (res != ERROR_OK) return res; /* enable stall */ res = xtensa_smpbreak_write(xtensa, OCDDCR_RUNSTALLINEN); if (res != ERROR_OK) { LOG_ERROR("Failed to set smpbreak (%d)!", res); return res; } /* Reset CPU */ xtensa->suppress_dsr_errors = true; res = esp32s2_set_peri_reg_mask(target, ESP32_S2_OPTIONS0, ESP32_S2_SW_SYS_RST_M, BIT(ESP32_S2_SW_SYS_RST_S)); xtensa->suppress_dsr_errors = false; if (res != ERROR_OK) { LOG_ERROR("Failed to write ESP32_S2_OPTIONS0 (%d)!", res); return res; } /* Wait for SoC to reset */ alive_sleep(100); int64_t timeout = timeval_ms() + 100; while (target->state != TARGET_RESET && target->state != TARGET_RUNNING) { alive_sleep(10); xtensa_poll(target); if (timeval_ms() >= timeout) { LOG_TARGET_ERROR(target, "Timed out waiting for CPU to be reset, target state=%d", target->state); return ERROR_TARGET_TIMEOUT; } } xtensa_halt(target); res = target_wait_state(target, TARGET_HALTED, 1000); if (res != ERROR_OK) { LOG_TARGET_ERROR(target, "Couldn't halt target before SoC reset"); return res; } /* Unstall CPU */ res = esp32s2_unstall(target); if (res != ERROR_OK) return res; /* Disable WDTs */ res = esp32s2_disable_wdts(target); if (res != ERROR_OK) return res; /* Disable trace memory mapping */ res = target_write_u32(target, ESP32_S2_DPORT_PMS_OCCUPY_3, 0); if (res != ERROR_OK) { LOG_ERROR("Failed to write ESP32_S2_DPORT_PMS_OCCUPY_3 (%d)!", res); return res; } return ERROR_OK; } static int esp32s2_disable_wdts(struct target *target) { /* TIMG1 WDT */ int res = target_write_u32(target, ESP32_S2_TIMG0WDT_PROTECT, ESP32_S2_WDT_WKEY_VALUE); if (res != ERROR_OK) { LOG_ERROR("Failed to write ESP32_S2_TIMG0WDT_PROTECT (%d)!", res); return res; } res = target_write_u32(target, ESP32_S2_TIMG0WDT_CFG0, 0); if (res != ERROR_OK) { LOG_ERROR("Failed to write ESP32_S2_TIMG0WDT_CFG0 (%d)!", res); return res; } /* TIMG2 WDT */ res = target_write_u32(target, ESP32_S2_TIMG1WDT_PROTECT, ESP32_S2_WDT_WKEY_VALUE); if (res != ERROR_OK) { LOG_ERROR("Failed to write ESP32_S2_TIMG1WDT_PROTECT (%d)!", res); return res; } res = target_write_u32(target, ESP32_S2_TIMG1WDT_CFG0, 0); if (res != ERROR_OK) { LOG_ERROR("Failed to write ESP32_S2_TIMG1WDT_CFG0 (%d)!", res); return res; } /* RTC WDT */ res = target_write_u32(target, ESP32_S2_RTCWDT_PROTECT, ESP32_S2_WDT_WKEY_VALUE); if (res != ERROR_OK) { LOG_ERROR("Failed to write ESP32_S2_RTCWDT_PROTECT (%d)!", res); return res; } res = target_write_u32(target, ESP32_S2_RTCWDT_CFG, 0); if (res != ERROR_OK) { LOG_ERROR("Failed to write ESP32_S2_RTCWDT_CFG (%d)!", res); return res; } /* Enable SWD auto-feed */ res = target_write_u32(target, ESP32_S2_SWD_WPROTECT_REG, ESP32_S2_SWD_WKEY_VALUE); if (res != ERROR_OK) { LOG_ERROR("Failed to write ESP32_S2_SWD_WPROTECT_REG (%d)!", res); return res; } uint32_t swd_conf_reg = 0; res = target_read_u32(target, ESP32_S2_SWD_CONF_REG, &swd_conf_reg); if (res != ERROR_OK) { LOG_ERROR("Failed to read ESP32_S2_SWD_CONF_REG (%d)!", res); return res; } swd_conf_reg |= ESP32_S2_SWD_AUTO_FEED_EN_M; res = target_write_u32(target, ESP32_S2_SWD_CONF_REG, swd_conf_reg); if (res != ERROR_OK) { LOG_ERROR("Failed to write ESP32_S2_SWD_CONF_REG (%d)!", res); return res; } return ERROR_OK; } static int esp32s2_arch_state(struct target *target) { return ERROR_OK; } static int esp32s2_on_halt(struct target *target) { return esp32s2_disable_wdts(target); } static int esp32s2_step(struct target *target, int current, target_addr_t address, int handle_breakpoints) { int ret = xtensa_step(target, current, address, handle_breakpoints); if (ret == ERROR_OK) { esp32s2_on_halt(target); target_call_event_callbacks(target, TARGET_EVENT_HALTED); } return ret; } static int esp32s2_poll(struct target *target) { enum target_state old_state = target->state; int ret = esp_xtensa_poll(target); if (old_state != TARGET_HALTED && target->state == TARGET_HALTED) { /* Call any event callbacks that are applicable */ if (old_state == TARGET_DEBUG_RUNNING) { target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED); } else { esp32s2_on_halt(target); target_call_event_callbacks(target, TARGET_EVENT_HALTED); } } return ret; } static int esp32s2_virt2phys(struct target *target, target_addr_t virtual, target_addr_t *physical) { *physical = virtual; return ERROR_OK; } static int esp32s2_target_init(struct command_context *cmd_ctx, struct target *target) { return esp_xtensa_target_init(cmd_ctx, target); } static const struct xtensa_debug_ops esp32s2_dbg_ops = { .queue_enable = xtensa_dm_queue_enable, .queue_reg_read = xtensa_dm_queue_reg_read, .queue_reg_write = xtensa_dm_queue_reg_write }; static const struct xtensa_power_ops esp32s2_pwr_ops = { .queue_reg_read = xtensa_dm_queue_pwr_reg_read, .queue_reg_write = xtensa_dm_queue_pwr_reg_write }; static int esp32s2_target_create(struct target *target, Jim_Interp *interp) { struct xtensa_debug_module_config esp32s2_dm_cfg = { .dbg_ops = &esp32s2_dbg_ops, .pwr_ops = &esp32s2_pwr_ops, .tap = target->tap, .queue_tdi_idle = NULL, .queue_tdi_idle_arg = NULL }; /* creates xtensa object */ struct esp32s2_common *esp32 = calloc(1, sizeof(*esp32)); if (!esp32) { LOG_ERROR("Failed to alloc memory for arch info!"); return ERROR_FAIL; } int ret = esp_xtensa_init_arch_info(target, &esp32->esp_xtensa, &esp32s2_xtensa_cfg, &esp32s2_dm_cfg); if (ret != ERROR_OK) { LOG_ERROR("Failed to init arch info!"); free(esp32); return ret; } /* Assume running target. If different, the first poll will fix this */ target->state = TARGET_RUNNING; target->debug_reason = DBG_REASON_NOTHALTED; return ERROR_OK; } static const struct command_registration esp32s2_command_handlers[] = { { .name = "xtensa", .mode = COMMAND_ANY, .help = "Xtensa commands group", .usage = "", .chain = xtensa_command_handlers, }, COMMAND_REGISTRATION_DONE }; /* Holds methods for Xtensa targets. */ struct target_type esp32s2_target = { .name = "esp32s2", .poll = esp32s2_poll, .arch_state = esp32s2_arch_state, .halt = xtensa_halt, .resume = xtensa_resume, .step = esp32s2_step, .assert_reset = esp32s2_assert_reset, .deassert_reset = esp32s2_deassert_reset, .soft_reset_halt = esp32s2_soft_reset_halt, .virt2phys = esp32s2_virt2phys, .mmu = xtensa_mmu_is_enabled, .read_memory = xtensa_read_memory, .write_memory = xtensa_write_memory, .read_buffer = xtensa_read_buffer, .write_buffer = xtensa_write_buffer, .checksum_memory = xtensa_checksum_memory, .get_gdb_arch = xtensa_get_gdb_arch, .get_gdb_reg_list = xtensa_get_gdb_reg_list, .add_breakpoint = esp_xtensa_breakpoint_add, .remove_breakpoint = esp_xtensa_breakpoint_remove, .add_watchpoint = xtensa_watchpoint_add, .remove_watchpoint = xtensa_watchpoint_remove, .target_create = esp32s2_target_create, .init_target = esp32s2_target_init, .examine = xtensa_examine, .deinit_target = esp_xtensa_target_deinit, .commands = esp32s2_command_handlers, };