/*************************************************************************** * Copyright (C) 2008 by Spencer Oliver * * spen@spen-soft.co.uk * * * * Copyright (C) 2008 by David T.L. Wong * * * * Copyright (C) 2007,2008 Øyvind Harboe * * oyvind.harboe@zylin.com * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "mips32.h" #include "breakpoints.h" #include "algorithm.h" #include "register.h" static char* mips32_core_reg_list[] = { "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", "t8", "t9", "k0", "k1", "gp", "sp", "fp", "ra", "status", "lo", "hi", "badvaddr", "cause", "pc" }; static const char *mips_isa_strings[] = { "MIPS32", "MIPS16e" }; static struct mips32_core_reg mips32_core_reg_list_arch_info[MIPS32NUMCOREREGS] = { {0, NULL, NULL}, {1, NULL, NULL}, {2, NULL, NULL}, {3, NULL, NULL}, {4, NULL, NULL}, {5, NULL, NULL}, {6, NULL, NULL}, {7, NULL, NULL}, {8, NULL, NULL}, {9, NULL, NULL}, {10, NULL, NULL}, {11, NULL, NULL}, {12, NULL, NULL}, {13, NULL, NULL}, {14, NULL, NULL}, {15, NULL, NULL}, {16, NULL, NULL}, {17, NULL, NULL}, {18, NULL, NULL}, {19, NULL, NULL}, {20, NULL, NULL}, {21, NULL, NULL}, {22, NULL, NULL}, {23, NULL, NULL}, {24, NULL, NULL}, {25, NULL, NULL}, {26, NULL, NULL}, {27, NULL, NULL}, {28, NULL, NULL}, {29, NULL, NULL}, {30, NULL, NULL}, {31, NULL, NULL}, {32, NULL, NULL}, {33, NULL, NULL}, {34, NULL, NULL}, {35, NULL, NULL}, {36, NULL, NULL}, {37, NULL, NULL}, }; /* number of mips dummy fp regs fp0 - fp31 + fsr and fir * we also add 18 unknown registers to handle gdb requests */ #define MIPS32NUMFPREGS 34 + 18 static uint8_t mips32_gdb_dummy_fp_value[] = {0, 0, 0, 0}; static struct reg mips32_gdb_dummy_fp_reg = { .name = "GDB dummy floating-point register", .value = mips32_gdb_dummy_fp_value, .dirty = 0, .valid = 1, .size = 32, .arch_info = NULL, }; static int mips32_get_core_reg(struct reg *reg) { int retval; struct mips32_core_reg *mips32_reg = reg->arch_info; struct target *target = mips32_reg->target; struct mips32_common *mips32_target = target_to_mips32(target); if (target->state != TARGET_HALTED) { return ERROR_TARGET_NOT_HALTED; } retval = mips32_target->read_core_reg(target, mips32_reg->num); return retval; } static int mips32_set_core_reg(struct reg *reg, uint8_t *buf) { struct mips32_core_reg *mips32_reg = reg->arch_info; struct target *target = mips32_reg->target; uint32_t value = buf_get_u32(buf, 0, 32); if (target->state != TARGET_HALTED) { return ERROR_TARGET_NOT_HALTED; } buf_set_u32(reg->value, 0, 32, value); reg->dirty = 1; reg->valid = 1; return ERROR_OK; } static int mips32_read_core_reg(struct target *target, int num) { uint32_t reg_value; struct mips32_core_reg *mips_core_reg; /* get pointers to arch-specific information */ struct mips32_common *mips32 = target_to_mips32(target); if ((num < 0) || (num >= MIPS32NUMCOREREGS)) return ERROR_INVALID_ARGUMENTS; mips_core_reg = mips32->core_cache->reg_list[num].arch_info; reg_value = mips32->core_regs[num]; buf_set_u32(mips32->core_cache->reg_list[num].value, 0, 32, reg_value); mips32->core_cache->reg_list[num].valid = 1; mips32->core_cache->reg_list[num].dirty = 0; return ERROR_OK; } static int mips32_write_core_reg(struct target *target, int num) { uint32_t reg_value; struct mips32_core_reg *mips_core_reg; /* get pointers to arch-specific information */ struct mips32_common *mips32 = target_to_mips32(target); if ((num < 0) || (num >= MIPS32NUMCOREREGS)) return ERROR_INVALID_ARGUMENTS; reg_value = buf_get_u32(mips32->core_cache->reg_list[num].value, 0, 32); mips_core_reg = mips32->core_cache->reg_list[num].arch_info; mips32->core_regs[num] = reg_value; LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", num , reg_value); mips32->core_cache->reg_list[num].valid = 1; mips32->core_cache->reg_list[num].dirty = 0; return ERROR_OK; } int mips32_get_gdb_reg_list(struct target *target, struct reg **reg_list[], int *reg_list_size) { /* get pointers to arch-specific information */ struct mips32_common *mips32 = target_to_mips32(target); int i; /* include floating point registers */ *reg_list_size = MIPS32NUMCOREREGS + MIPS32NUMFPREGS; *reg_list = malloc(sizeof(struct reg*) * (*reg_list_size)); for (i = 0; i < MIPS32NUMCOREREGS; i++) { (*reg_list)[i] = &mips32->core_cache->reg_list[i]; } /* add dummy floating points regs */ for (i = MIPS32NUMCOREREGS; i < (MIPS32NUMCOREREGS + MIPS32NUMFPREGS); i++) { (*reg_list)[i] = &mips32_gdb_dummy_fp_reg; } return ERROR_OK; } int mips32_save_context(struct target *target) { int i; /* get pointers to arch-specific information */ struct mips32_common *mips32 = target_to_mips32(target); struct mips_ejtag *ejtag_info = &mips32->ejtag_info; /* read core registers */ mips32_pracc_read_regs(ejtag_info, mips32->core_regs); for (i = 0; i < MIPS32NUMCOREREGS; i++) { if (!mips32->core_cache->reg_list[i].valid) { mips32->read_core_reg(target, i); } } return ERROR_OK; } int mips32_restore_context(struct target *target) { int i; /* get pointers to arch-specific information */ struct mips32_common *mips32 = target_to_mips32(target); struct mips_ejtag *ejtag_info = &mips32->ejtag_info; for (i = 0; i < MIPS32NUMCOREREGS; i++) { if (mips32->core_cache->reg_list[i].dirty) { mips32->write_core_reg(target, i); } } /* write core regs */ mips32_pracc_write_regs(ejtag_info, mips32->core_regs); return ERROR_OK; } int mips32_arch_state(struct target *target) { struct mips32_common *mips32 = target_to_mips32(target); LOG_USER("target halted in %s mode due to %s, pc: 0x%8.8" PRIx32 "", mips_isa_strings[mips32->isa_mode], debug_reason_name(target), buf_get_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32)); return ERROR_OK; } static const struct reg_arch_type mips32_reg_type = { .get = mips32_get_core_reg, .set = mips32_set_core_reg, }; struct reg_cache *mips32_build_reg_cache(struct target *target) { /* get pointers to arch-specific information */ struct mips32_common *mips32 = target_to_mips32(target); int num_regs = MIPS32NUMCOREREGS; struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache); struct reg_cache *cache = malloc(sizeof(struct reg_cache)); struct reg *reg_list = malloc(sizeof(struct reg) * num_regs); struct mips32_core_reg *arch_info = malloc(sizeof(struct mips32_core_reg) * num_regs); int i; register_init_dummy(&mips32_gdb_dummy_fp_reg); /* Build the process context cache */ cache->name = "mips32 registers"; cache->next = NULL; cache->reg_list = reg_list; cache->num_regs = num_regs; (*cache_p) = cache; mips32->core_cache = cache; for (i = 0; i < num_regs; i++) { arch_info[i] = mips32_core_reg_list_arch_info[i]; arch_info[i].target = target; arch_info[i].mips32_common = mips32; reg_list[i].name = mips32_core_reg_list[i]; reg_list[i].size = 32; reg_list[i].value = calloc(1, 4); reg_list[i].dirty = 0; reg_list[i].valid = 0; reg_list[i].type = &mips32_reg_type; reg_list[i].arch_info = &arch_info[i]; } return cache; } int mips32_init_arch_info(struct target *target, struct mips32_common *mips32, struct jtag_tap *tap) { target->arch_info = mips32; mips32->common_magic = MIPS32_COMMON_MAGIC; mips32->fast_data_area = NULL; /* has breakpoint/watchpint unit been scanned */ mips32->bp_scanned = 0; mips32->data_break_list = NULL; mips32->ejtag_info.tap = tap; mips32->read_core_reg = mips32_read_core_reg; mips32->write_core_reg = mips32_write_core_reg; return ERROR_OK; } /* run to exit point. return error if exit point was not reached. */ static int mips32_run_and_wait(struct target *target, uint32_t entry_point, int timeout_ms, uint32_t exit_point, struct mips32_common *mips32) { uint32_t pc; int retval; /* This code relies on the target specific resume() and poll()->debug_entry() * sequence to write register values to the processor and the read them back */ if ((retval = target_resume(target, 0, entry_point, 0, 1)) != ERROR_OK) { return retval; } retval = target_wait_state(target, TARGET_HALTED, timeout_ms); /* If the target fails to halt due to the breakpoint, force a halt */ if (retval != ERROR_OK || target->state != TARGET_HALTED) { if ((retval = target_halt(target)) != ERROR_OK) return retval; if ((retval = target_wait_state(target, TARGET_HALTED, 500)) != ERROR_OK) { return retval; } return ERROR_TARGET_TIMEOUT; } pc = buf_get_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32); if (exit_point && (pc != exit_point)) { LOG_DEBUG("failed algoritm halted at 0x%" PRIx32 " ", pc); return ERROR_TARGET_TIMEOUT; } return ERROR_OK; } int mips32_run_algorithm(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info) { struct mips32_common *mips32 = target_to_mips32(target); struct mips32_algorithm *mips32_algorithm_info = arch_info; enum mips32_isa_mode isa_mode = mips32->isa_mode; uint32_t context[MIPS32NUMCOREREGS]; int i; int retval = ERROR_OK; LOG_DEBUG("Running algorithm"); /* NOTE: mips32_run_algorithm requires that each algorithm uses a software breakpoint * at the exit point */ if (mips32->common_magic != MIPS32_COMMON_MAGIC) { LOG_ERROR("current target isn't a MIPS32 target"); return ERROR_TARGET_INVALID; } if (target->state != TARGET_HALTED) { LOG_WARNING("target not halted"); return ERROR_TARGET_NOT_HALTED; } /* refresh core register cache */ for (i = 0; i < MIPS32NUMCOREREGS; i++) { if (!mips32->core_cache->reg_list[i].valid) mips32->read_core_reg(target, i); context[i] = buf_get_u32(mips32->core_cache->reg_list[i].value, 0, 32); } for (i = 0; i < num_mem_params; i++) { if ((retval = target_write_buffer(target, mem_params[i].address, mem_params[i].size, mem_params[i].value)) != ERROR_OK) { return retval; } } for (i = 0; i < num_reg_params; i++) { struct reg *reg = register_get_by_name(mips32->core_cache, reg_params[i].reg_name, 0); if (!reg) { LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name); return ERROR_INVALID_ARGUMENTS; } if (reg->size != reg_params[i].size) { LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size", reg_params[i].reg_name); return ERROR_INVALID_ARGUMENTS; } mips32_set_core_reg(reg, reg_params[i].value); } mips32->isa_mode = mips32_algorithm_info->isa_mode; retval = mips32_run_and_wait(target, entry_point, timeout_ms, exit_point, mips32); if (retval != ERROR_OK) return retval; for (i = 0; i < num_mem_params; i++) { if (mem_params[i].direction != PARAM_OUT) { if ((retval = target_read_buffer(target, mem_params[i].address, mem_params[i].size, mem_params[i].value)) != ERROR_OK) { return retval; } } } for (i = 0; i < num_reg_params; i++) { if (reg_params[i].direction != PARAM_OUT) { struct reg *reg = register_get_by_name(mips32->core_cache, reg_params[i].reg_name, 0); if (!reg) { LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name); return ERROR_INVALID_ARGUMENTS; } if (reg->size != reg_params[i].size) { LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size", reg_params[i].reg_name); return ERROR_INVALID_ARGUMENTS; } buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32)); } } /* restore everything we saved before */ for (i = 0; i < MIPS32NUMCOREREGS; i++) { uint32_t regvalue; regvalue = buf_get_u32(mips32->core_cache->reg_list[i].value, 0, 32); if (regvalue != context[i]) { LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32, mips32->core_cache->reg_list[i].name, context[i]); buf_set_u32(mips32->core_cache->reg_list[i].value, 0, 32, context[i]); mips32->core_cache->reg_list[i].valid = 1; mips32->core_cache->reg_list[i].dirty = 1; } } mips32->isa_mode = isa_mode; return ERROR_OK; } int mips32_examine(struct target *target) { struct mips32_common *mips32 = target_to_mips32(target); if (!target_was_examined(target)) { target_set_examined(target); /* we will configure later */ mips32->bp_scanned = 0; mips32->num_inst_bpoints = 0; mips32->num_data_bpoints = 0; mips32->num_inst_bpoints_avail = 0; mips32->num_data_bpoints_avail = 0; } return ERROR_OK; } int mips32_configure_break_unit(struct target *target) { /* get pointers to arch-specific information */ struct mips32_common *mips32 = target_to_mips32(target); int retval; uint32_t dcr, bpinfo; int i; if (mips32->bp_scanned) return ERROR_OK; /* get info about breakpoint support */ if ((retval = target_read_u32(target, EJTAG_DCR, &dcr)) != ERROR_OK) return retval; if (dcr & EJTAG_DCR_IB) { /* get number of inst breakpoints */ if ((retval = target_read_u32(target, EJTAG_IBS, &bpinfo)) != ERROR_OK) return retval; mips32->num_inst_bpoints = (bpinfo >> 24) & 0x0F; mips32->num_inst_bpoints_avail = mips32->num_inst_bpoints; mips32->inst_break_list = calloc(mips32->num_inst_bpoints, sizeof(struct mips32_comparator)); for (i = 0; i < mips32->num_inst_bpoints; i++) { mips32->inst_break_list[i].reg_address = EJTAG_IBA1 + (0x100 * i); } /* clear IBIS reg */ if ((retval = target_write_u32(target, EJTAG_IBS, 0)) != ERROR_OK) return retval; } if (dcr & EJTAG_DCR_DB) { /* get number of data breakpoints */ if ((retval = target_read_u32(target, EJTAG_DBS, &bpinfo)) != ERROR_OK) return retval; mips32->num_data_bpoints = (bpinfo >> 24) & 0x0F; mips32->num_data_bpoints_avail = mips32->num_data_bpoints; mips32->data_break_list = calloc(mips32->num_data_bpoints, sizeof(struct mips32_comparator)); for (i = 0; i < mips32->num_data_bpoints; i++) { mips32->data_break_list[i].reg_address = EJTAG_DBA1 + (0x100 * i); } /* clear DBIS reg */ if ((retval = target_write_u32(target, EJTAG_DBS, 0)) != ERROR_OK) return retval; } LOG_DEBUG("DCR 0x%" PRIx32 " numinst %i numdata %i", dcr, mips32->num_inst_bpoints, mips32->num_data_bpoints); mips32->bp_scanned = 1; return ERROR_OK; } int mips32_enable_interrupts(struct target *target, int enable) { int retval; int update = 0; uint32_t dcr; /* read debug control register */ if ((retval = target_read_u32(target, EJTAG_DCR, &dcr)) != ERROR_OK) return retval; if (enable) { if (!(dcr & EJTAG_DCR_INTE)) { /* enable interrupts */ dcr |= EJTAG_DCR_INTE; update = 1; } } else { if (dcr & EJTAG_DCR_INTE) { /* disable interrupts */ dcr &= ~EJTAG_DCR_INTE; update = 1; } } if (update) { if ((retval = target_write_u32(target, EJTAG_DCR, dcr)) != ERROR_OK) return retval; } return ERROR_OK; } int mips32_checksum_memory(struct target *target, uint32_t address, uint32_t count, uint32_t* checksum) { struct working_area *crc_algorithm; struct reg_param reg_params[2]; struct mips32_algorithm mips32_info; int retval; uint32_t i; /* see contib/loaders/checksum/mips32.s for src */ static const uint32_t mips_crc_code[] = { 0x248C0000, /* addiu $t4, $a0, 0 */ 0x24AA0000, /* addiu $t2, $a1, 0 */ 0x2404FFFF, /* addiu $a0, $zero, 0xffffffff */ 0x10000010, /* beq $zero, $zero, ncomp */ 0x240B0000, /* addiu $t3, $zero, 0 */ /* nbyte: */ 0x81850000, /* lb $a1, ($t4) */ 0x218C0001, /* addi $t4, $t4, 1 */ 0x00052E00, /* sll $a1, $a1, 24 */ 0x3C0204C1, /* lui $v0, 0x04c1 */ 0x00852026, /* xor $a0, $a0, $a1 */ 0x34471DB7, /* ori $a3, $v0, 0x1db7 */ 0x00003021, /* addu $a2, $zero, $zero */ /* loop: */ 0x00044040, /* sll $t0, $a0, 1 */ 0x24C60001, /* addiu $a2, $a2, 1 */ 0x28840000, /* slti $a0, $a0, 0 */ 0x01074826, /* xor $t1, $t0, $a3 */ 0x0124400B, /* movn $t0, $t1, $a0 */ 0x28C30008, /* slti $v1, $a2, 8 */ 0x1460FFF9, /* bne $v1, $zero, loop */ 0x01002021, /* addu $a0, $t0, $zero */ /* ncomp: */ 0x154BFFF0, /* bne $t2, $t3, nbyte */ 0x256B0001, /* addiu $t3, $t3, 1 */ 0x7000003F, /* sdbbp */ }; /* make sure we have a working area */ if (target_alloc_working_area(target, sizeof(mips_crc_code), &crc_algorithm) != ERROR_OK) { return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } /* convert flash writing code into a buffer in target endianness */ for (i = 0; i < ARRAY_SIZE(mips_crc_code); i++) target_write_u32(target, crc_algorithm->address + i*sizeof(uint32_t), mips_crc_code[i]); mips32_info.common_magic = MIPS32_COMMON_MAGIC; mips32_info.isa_mode = MIPS32_ISA_MIPS32; init_reg_param(®_params[0], "a0", 32, PARAM_IN_OUT); buf_set_u32(reg_params[0].value, 0, 32, address); init_reg_param(®_params[1], "a1", 32, PARAM_OUT); buf_set_u32(reg_params[1].value, 0, 32, count); int timeout = 20000 * (1 + (count / (1024 * 1024))); if ((retval = target_run_algorithm(target, 0, NULL, 2, reg_params, crc_algorithm->address, crc_algorithm->address + (sizeof(mips_crc_code)-4), timeout, &mips32_info)) != ERROR_OK) { destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); target_free_working_area(target, crc_algorithm); return 0; } *checksum = buf_get_u32(reg_params[0].value, 0, 32); destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); target_free_working_area(target, crc_algorithm); return ERROR_OK; } /** Checks whether a memory region is zeroed. */ int mips32_blank_check_memory(struct target *target, uint32_t address, uint32_t count, uint32_t* blank) { struct working_area *erase_check_algorithm; struct reg_param reg_params[3]; struct mips32_algorithm mips32_info; int retval; uint32_t i; static const uint32_t erase_check_code[] = { /* nbyte: */ 0x80880000, /* lb $t0, ($a0) */ 0x00C83024, /* and $a2, $a2, $t0 */ 0x24A5FFFF, /* addiu $a1, $a1, -1 */ 0x14A0FFFC, /* bne $a1, $zero, nbyte */ 0x24840001, /* addiu $a0, $a0, 1 */ 0x7000003F /* sdbbp */ }; /* make sure we have a working area */ if (target_alloc_working_area(target, sizeof(erase_check_code), &erase_check_algorithm) != ERROR_OK) { return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } /* convert flash writing code into a buffer in target endianness */ for (i = 0; i < ARRAY_SIZE(erase_check_code); i++) { target_write_u32(target, erase_check_algorithm->address + i*sizeof(uint32_t), erase_check_code[i]); } mips32_info.common_magic = MIPS32_COMMON_MAGIC; mips32_info.isa_mode = MIPS32_ISA_MIPS32; init_reg_param(®_params[0], "a0", 32, PARAM_OUT); buf_set_u32(reg_params[0].value, 0, 32, address); init_reg_param(®_params[1], "a1", 32, PARAM_OUT); buf_set_u32(reg_params[1].value, 0, 32, count); init_reg_param(®_params[2], "a2", 32, PARAM_IN_OUT); buf_set_u32(reg_params[2].value, 0, 32, 0xff); if ((retval = target_run_algorithm(target, 0, NULL, 3, reg_params, erase_check_algorithm->address, erase_check_algorithm->address + (sizeof(erase_check_code)-2), 10000, &mips32_info)) != ERROR_OK) { destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); destroy_reg_param(®_params[2]); target_free_working_area(target, erase_check_algorithm); return 0; } *blank = buf_get_u32(reg_params[2].value, 0, 32); destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); destroy_reg_param(®_params[2]); target_free_working_area(target, erase_check_algorithm); return ERROR_OK; }