// SPDX-License-Identifier: GPL-2.0-or-later /*************************************************************************** * Copyright (C) 2008 by Spencer Oliver * * spen@spen-soft.co.uk * * * * Copyright (C) 2008 by David T.L. Wong * * * * Copyright (C) 2009 by David N. Claffey * * * * Copyright (C) 2011 by Drasko DRASKOVIC * * drasko.draskovic@gmail.com * ***************************************************************************/ /* * This version has optimized assembly routines for 32 bit operations: * - read word * - write word * - write array of words * * One thing to be aware of is that the MIPS32 cpu will execute the * instruction after a branch instruction (one delay slot). * * For example: * LW $2, ($5 +10) * B foo * LW $1, ($2 +100) * * The LW $1, ($2 +100) instruction is also executed. If this is * not wanted a NOP can be inserted: * * LW $2, ($5 +10) * B foo * NOP * LW $1, ($2 +100) * * or the code can be changed to: * * B foo * LW $2, ($5 +10) * LW $1, ($2 +100) * * The original code contained NOPs. I have removed these and moved * the branches. * * These changes result in a 35% speed increase when programming an * external flash. * * More improvement could be gained if the registers do no need * to be preserved but in that case the routines should be aware * OpenOCD is used as a flash programmer or as a debug tool. * * Nico Coesel */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include "mips_cpu.h" #include "mips32.h" #include "mips32_pracc.h" static int wait_for_pracc_rw(struct mips_ejtag *ejtag_info) { int64_t then = timeval_ms(); /* wait for the PrAcc to become "1" */ mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL); while (1) { ejtag_info->pa_ctrl = ejtag_info->ejtag_ctrl; int retval = mips_ejtag_drscan_32(ejtag_info, &ejtag_info->pa_ctrl); if (retval != ERROR_OK) return retval; if (ejtag_info->pa_ctrl & EJTAG_CTRL_PRACC) break; int64_t timeout = timeval_ms() - then; if (timeout > 1000) { LOG_DEBUG("DEBUGMODULE: No memory access in progress!"); return ERROR_JTAG_DEVICE_ERROR; } } return ERROR_OK; } /* Shift in control and address for a new processor access, save them in ejtag_info */ static int mips32_pracc_read_ctrl_addr(struct mips_ejtag *ejtag_info) { int retval = wait_for_pracc_rw(ejtag_info); if (retval != ERROR_OK) return retval; mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS); ejtag_info->pa_addr = 0; return mips_ejtag_drscan_32(ejtag_info, &ejtag_info->pa_addr); } /* Finish processor access */ static void mips32_pracc_finish(struct mips_ejtag *ejtag_info) { uint32_t ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC; mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL); mips_ejtag_drscan_32_out(ejtag_info, ctrl); } static int mips32_pracc_clean_text_jump(struct mips_ejtag *ejtag_info) { uint32_t jt_code = MIPS32_J(ejtag_info->isa, MIPS32_PRACC_TEXT); pracc_swap16_array(ejtag_info, &jt_code, 1); /* do 3 0/nops to clean pipeline before a jump to pracc text, NOP in delay slot */ for (int i = 0; i != 5; i++) { /* Wait for pracc */ int retval = wait_for_pracc_rw(ejtag_info); if (retval != ERROR_OK) return retval; /* Data or instruction out */ mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA); uint32_t data = (i == 3) ? jt_code : MIPS32_NOP; mips_ejtag_drscan_32_out(ejtag_info, data); /* finish pa */ mips32_pracc_finish(ejtag_info); } if (ejtag_info->mode != 0) /* async mode support only for MIPS ... */ return ERROR_OK; for (int i = 0; i != 2; i++) { int retval = mips32_pracc_read_ctrl_addr(ejtag_info); if (retval != ERROR_OK) return retval; if (ejtag_info->pa_addr != MIPS32_PRACC_TEXT) { /* LEXRA/BMIPS ?, shift out another NOP, max 2 */ mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA); mips_ejtag_drscan_32_out(ejtag_info, MIPS32_NOP); mips32_pracc_finish(ejtag_info); } else break; } return ERROR_OK; } static int mips32_pracc_exec(struct mips_ejtag *ejtag_info, struct pracc_queue_info *ctx, uint32_t *param_out, bool check_last) { int code_count = 0; int store_pending = 0; /* increases with every store instr at dmseg, decreases with every store pa */ uint32_t max_store_addr = 0; /* for store pa address testing */ bool restart = 0; /* restarting control */ int restart_count = 0; uint32_t instr = 0; bool final_check = 0; /* set to 1 if in final checks after function code shifted out */ bool pass = 0; /* to check the pass through pracc text after function code sent */ int retval; while (1) { if (restart) { if (restart_count < 3) { /* max 3 restarts allowed */ retval = mips32_pracc_clean_text_jump(ejtag_info); if (retval != ERROR_OK) return retval; } else return ERROR_JTAG_DEVICE_ERROR; restart_count++; restart = 0; code_count = 0; LOG_DEBUG("restarting code"); } retval = mips32_pracc_read_ctrl_addr(ejtag_info); /* update current pa info: control and address */ if (retval != ERROR_OK) return retval; /* Check for read or write access */ if (ejtag_info->pa_ctrl & EJTAG_CTRL_PRNW) { /* write/store access */ /* Check for pending store from a previous store instruction at dmseg */ if (store_pending == 0) { LOG_DEBUG("unexpected write at address %" PRIx32, ejtag_info->pa_addr); if (code_count < 2) { /* allow for restart */ restart = 1; continue; } else return ERROR_JTAG_DEVICE_ERROR; } else { /* check address */ if (ejtag_info->pa_addr < MIPS32_PRACC_PARAM_OUT || ejtag_info->pa_addr > max_store_addr) { LOG_DEBUG("writing at unexpected address %" PRIx32, ejtag_info->pa_addr); return ERROR_JTAG_DEVICE_ERROR; } } /* read data */ uint32_t data = 0; mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA); retval = mips_ejtag_drscan_32(ejtag_info, &data); if (retval != ERROR_OK) return retval; /* store data at param out, address based offset */ param_out[(ejtag_info->pa_addr - MIPS32_PRACC_PARAM_OUT) / 4] = data; store_pending--; } else { /* read/fetch access */ if (!final_check) { /* executing function code */ /* check address */ if (ejtag_info->pa_addr != (MIPS32_PRACC_TEXT + code_count * 4)) { LOG_DEBUG("reading at unexpected address %" PRIx32 ", expected %x", ejtag_info->pa_addr, MIPS32_PRACC_TEXT + code_count * 4); /* restart code execution only in some cases */ if (code_count == 1 && ejtag_info->pa_addr == MIPS32_PRACC_TEXT && restart_count == 0) { LOG_DEBUG("restarting, without clean jump"); restart_count++; code_count = 0; continue; } else if (code_count < 2) { restart = 1; continue; } return ERROR_JTAG_DEVICE_ERROR; } /* check for store instruction at dmseg */ uint32_t store_addr = ctx->pracc_list[code_count].addr; if (store_addr != 0) { if (store_addr > max_store_addr) max_store_addr = store_addr; store_pending++; } instr = ctx->pracc_list[code_count++].instr; if (code_count == ctx->code_count) /* last instruction, start final check */ final_check = 1; } else { /* final check after function code shifted out */ /* check address */ if (ejtag_info->pa_addr == MIPS32_PRACC_TEXT) { if (!pass) { /* first pass through pracc text */ if (store_pending == 0) /* done, normal exit */ return ERROR_OK; pass = 1; /* pracc text passed */ code_count = 0; /* restart code count */ } else { LOG_DEBUG("unexpected second pass through pracc text"); return ERROR_JTAG_DEVICE_ERROR; } } else { if (ejtag_info->pa_addr != (MIPS32_PRACC_TEXT + code_count * 4)) { LOG_DEBUG("unexpected read address in final check: %" PRIx32 ", expected: %x", ejtag_info->pa_addr, MIPS32_PRACC_TEXT + code_count * 4); return ERROR_JTAG_DEVICE_ERROR; } } if (!pass) { if ((code_count - ctx->code_count) > 1) { /* allow max 2 instr delay slot */ LOG_DEBUG("failed to jump back to pracc text"); return ERROR_JTAG_DEVICE_ERROR; } } else if (code_count > 10) { /* enough, abandon */ LOG_DEBUG("execution abandoned, store pending: %d", store_pending); return ERROR_JTAG_DEVICE_ERROR; } instr = MIPS32_NOP; /* shift out NOPs instructions */ code_count++; } /* Send instruction out */ mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA); mips_ejtag_drscan_32_out(ejtag_info, instr); } /* finish processor access, let the processor eat! */ mips32_pracc_finish(ejtag_info); if (final_check && !check_last) /* last instr, don't check, execute and exit */ return jtag_execute_queue(); if (store_pending == 0 && pass) { /* store access done, but after passing pracc text */ LOG_DEBUG("warning: store access pass pracc text"); return ERROR_OK; } } } inline void pracc_queue_init(struct pracc_queue_info *ctx) { ctx->retval = ERROR_OK; ctx->code_count = 0; ctx->store_count = 0; ctx->max_code = 0; ctx->pracc_list = NULL; ctx->isa = ctx->ejtag_info->isa ? 1 : 0; } void pracc_add(struct pracc_queue_info *ctx, uint32_t addr, uint32_t instr) { if (ctx->retval != ERROR_OK) /* On previous out of memory, return */ return; if (ctx->code_count == ctx->max_code) { void *p = realloc(ctx->pracc_list, sizeof(struct pa_list) * (ctx->max_code + PRACC_BLOCK)); if (p) { ctx->max_code += PRACC_BLOCK; ctx->pracc_list = p; } else { ctx->retval = ERROR_FAIL; /* Out of memory */ return; } } ctx->pracc_list[ctx->code_count].instr = instr; ctx->pracc_list[ctx->code_count++].addr = addr; if (addr) ctx->store_count++; } static void pracc_add_li32(struct pracc_queue_info *ctx, uint32_t reg_num, uint32_t data, bool optimize) { if (LOWER16(data) == 0 && optimize) pracc_add(ctx, 0, MIPS32_LUI(ctx->isa, reg_num, UPPER16(data))); /* load only upper value */ else if (UPPER16(data) == 0 && optimize) pracc_add(ctx, 0, MIPS32_ORI(ctx->isa, reg_num, 0, LOWER16(data))); /* load only lower */ else { pracc_add(ctx, 0, MIPS32_LUI(ctx->isa, reg_num, UPPER16(data))); /* load upper and lower */ pracc_add(ctx, 0, MIPS32_ORI(ctx->isa, reg_num, reg_num, LOWER16(data))); } } inline void pracc_queue_free(struct pracc_queue_info *ctx) { free(ctx->pracc_list); } int mips32_pracc_queue_exec(struct mips_ejtag *ejtag_info, struct pracc_queue_info *ctx, uint32_t *buf, bool check_last) { if (ctx->retval != ERROR_OK) { LOG_ERROR("Out of memory"); return ERROR_FAIL; } if (ejtag_info->isa && ejtag_info->endianness) for (int i = 0; i != ctx->code_count; i++) ctx->pracc_list[i].instr = SWAP16(ctx->pracc_list[i].instr); if (ejtag_info->mode == 0) return mips32_pracc_exec(ejtag_info, ctx, buf, check_last); union scan_in { uint8_t scan_96[12]; struct { uint8_t ctrl[4]; uint8_t data[4]; uint8_t addr[4]; } scan_32; } *scan_in = malloc(sizeof(union scan_in) * (ctx->code_count + ctx->store_count)); if (!scan_in) { LOG_ERROR("Out of memory"); return ERROR_FAIL; } unsigned num_clocks = ((uint64_t)(ejtag_info->scan_delay) * adapter_get_speed_khz() + 500000) / 1000000; uint32_t ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC; mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ALL); int scan_count = 0; for (int i = 0; i != ctx->code_count; i++) { jtag_add_clocks(num_clocks); mips_ejtag_add_scan_96(ejtag_info, ejtag_ctrl, ctx->pracc_list[i].instr, scan_in[scan_count++].scan_96); /* Check store address from previous instruction, if not the first */ if (i > 0 && ctx->pracc_list[i - 1].addr) { jtag_add_clocks(num_clocks); mips_ejtag_add_scan_96(ejtag_info, ejtag_ctrl, 0, scan_in[scan_count++].scan_96); } } int retval = jtag_execute_queue(); /* execute queued scans */ if (retval != ERROR_OK) goto exit; uint32_t fetch_addr = MIPS32_PRACC_TEXT; /* start address */ scan_count = 0; for (int i = 0; i != ctx->code_count; i++) { /* verify every pracc access */ /* check pracc bit */ ejtag_ctrl = buf_get_u32(scan_in[scan_count].scan_32.ctrl, 0, 32); uint32_t addr = buf_get_u32(scan_in[scan_count].scan_32.addr, 0, 32); if (!(ejtag_ctrl & EJTAG_CTRL_PRACC)) { LOG_ERROR("Error: access not pending count: %d", scan_count); retval = ERROR_FAIL; goto exit; } if (ejtag_ctrl & EJTAG_CTRL_PRNW) { LOG_ERROR("Not a fetch/read access, count: %d", scan_count); retval = ERROR_FAIL; goto exit; } if (addr != fetch_addr) { LOG_ERROR("Fetch addr mismatch, read: %" PRIx32 " expected: %" PRIx32 " count: %d", addr, fetch_addr, scan_count); retval = ERROR_FAIL; goto exit; } fetch_addr += 4; scan_count++; /* check if previous instruction is a store instruction at dmesg */ if (i > 0 && ctx->pracc_list[i - 1].addr) { uint32_t store_addr = ctx->pracc_list[i - 1].addr; ejtag_ctrl = buf_get_u32(scan_in[scan_count].scan_32.ctrl, 0, 32); addr = buf_get_u32(scan_in[scan_count].scan_32.addr, 0, 32); if (!(ejtag_ctrl & EJTAG_CTRL_PRNW)) { LOG_ERROR("Not a store/write access, count: %d", scan_count); retval = ERROR_FAIL; goto exit; } if (addr != store_addr) { LOG_ERROR("Store address mismatch, read: %" PRIx32 " expected: %" PRIx32 " count: %d", addr, store_addr, scan_count); retval = ERROR_FAIL; goto exit; } int buf_index = (addr - MIPS32_PRACC_PARAM_OUT) / 4; buf[buf_index] = buf_get_u32(scan_in[scan_count].scan_32.data, 0, 32); scan_count++; } } exit: free(scan_in); return retval; } static int mips32_pracc_read_u32(struct mips_ejtag *ejtag_info, uint32_t addr, uint32_t *buf) { struct pracc_queue_info ctx = {.ejtag_info = ejtag_info}; pracc_queue_init(&ctx); pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */ pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 8, UPPER16((addr + 0x8000)))); /* load $8 with modified upper addr */ pracc_add(&ctx, 0, MIPS32_LW(ctx.isa, 8, LOWER16(addr), 8)); /* lw $8, LOWER16(addr)($8) */ if (mips32_cpu_support_sync(ejtag_info)) pracc_add(&ctx, 0, MIPS32_SYNC(ctx.isa)); pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT, MIPS32_SW(ctx.isa, 8, PRACC_OUT_OFFSET, 15)); /* sw $8,PRACC_OUT_OFFSET($15) */ pracc_add_li32(&ctx, 8, ejtag_info->reg8, 0); /* restore $8 */ pracc_add(&ctx, 0, MIPS32_B(ctx.isa, NEG16((ctx.code_count + 1) << ctx.isa))); /* jump to start */ pracc_add(&ctx, 0, MIPS32_MFC0(ctx.isa, 15, 31, 0)); /* move COP0 DeSave to $15 */ ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, buf, 1); pracc_queue_free(&ctx); return ctx.retval; } int mips32_pracc_read_mem(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, void *buf) { if (count == 1 && size == 4) return mips32_pracc_read_u32(ejtag_info, addr, (uint32_t *)buf); struct pracc_queue_info ctx = {.ejtag_info = ejtag_info}; pracc_queue_init(&ctx); uint32_t *data = NULL; if (size != 4) { data = malloc(256 * sizeof(uint32_t)); if (!data) { LOG_ERROR("Out of memory"); goto exit; } } uint32_t *buf32 = buf; uint16_t *buf16 = buf; uint8_t *buf8 = buf; while (count) { ctx.code_count = 0; ctx.store_count = 0; int this_round_count = (count > 256) ? 256 : count; uint32_t last_upper_base_addr = UPPER16((addr + 0x8000)); pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */ pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 9, last_upper_base_addr)); /* upper memory addr to $9 */ for (int i = 0; i != this_round_count; i++) { /* Main code loop */ uint32_t upper_base_addr = UPPER16((addr + 0x8000)); if (last_upper_base_addr != upper_base_addr) { /* if needed, change upper addr in $9 */ pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 9, upper_base_addr)); last_upper_base_addr = upper_base_addr; } if (size == 4) /* load from memory to $8 */ pracc_add(&ctx, 0, MIPS32_LW(ctx.isa, 8, LOWER16(addr), 9)); else if (size == 2) pracc_add(&ctx, 0, MIPS32_LHU(ctx.isa, 8, LOWER16(addr), 9)); else pracc_add(&ctx, 0, MIPS32_LBU(ctx.isa, 8, LOWER16(addr), 9)); if (mips32_cpu_support_sync(ejtag_info)) pracc_add(&ctx, 0, MIPS32_SYNC(ctx.isa)); pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + i * 4, /* store $8 at param out */ MIPS32_SW(ctx.isa, 8, PRACC_OUT_OFFSET + i * 4, 15)); addr += size; } pracc_add_li32(&ctx, 8, ejtag_info->reg8, 0); /* restore $8 */ pracc_add_li32(&ctx, 9, ejtag_info->reg9, 0); /* restore $9 */ pracc_add(&ctx, 0, MIPS32_B(ctx.isa, NEG16((ctx.code_count + 1) << ctx.isa))); /* jump to start */ pracc_add(&ctx, 0, MIPS32_MFC0(ctx.isa, 15, 31, 0)); /* restore $15 from DeSave */ if (size == 4) { ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, buf32, 1); if (ctx.retval != ERROR_OK) goto exit; buf32 += this_round_count; } else { ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, data, 1); if (ctx.retval != ERROR_OK) goto exit; uint32_t *data_p = data; for (int i = 0; i != this_round_count; i++) { if (size == 2) *buf16++ = *data_p++; else *buf8++ = *data_p++; } } count -= this_round_count; } exit: pracc_queue_free(&ctx); free(data); return ctx.retval; } int mips32_cp0_read(struct mips_ejtag *ejtag_info, uint32_t *val, uint32_t cp0_reg, uint32_t cp0_sel) { struct pracc_queue_info ctx = {.ejtag_info = ejtag_info}; pracc_queue_init(&ctx); pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */ if (mips32_cpu_support_hazard_barrier(ejtag_info)) pracc_add(&ctx, 0, MIPS32_EHB(ctx.isa)); pracc_add(&ctx, 0, MIPS32_MFC0(ctx.isa, 8, cp0_reg, cp0_sel)); /* move cp0 reg / sel to $8 */ pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT, MIPS32_SW(ctx.isa, 8, PRACC_OUT_OFFSET, 15)); /* store $8 to pracc_out */ pracc_add(&ctx, 0, MIPS32_MFC0(ctx.isa, 15, 31, 0)); /* restore $15 from DeSave */ pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 8, UPPER16(ejtag_info->reg8))); /* restore upper 16 bits of $8 */ pracc_add(&ctx, 0, MIPS32_B(ctx.isa, NEG16((ctx.code_count + 1) << ctx.isa))); /* jump to start */ pracc_add(&ctx, 0, MIPS32_ORI(ctx.isa, 8, 8, LOWER16(ejtag_info->reg8))); /* restore lower 16 bits of $8 */ ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, val, 1); pracc_queue_free(&ctx); return ctx.retval; } int mips32_cp0_write(struct mips_ejtag *ejtag_info, uint32_t val, uint32_t cp0_reg, uint32_t cp0_sel) { struct pracc_queue_info ctx = {.ejtag_info = ejtag_info}; pracc_queue_init(&ctx); pracc_add_li32(&ctx, 15, val, 0); /* Load val to $15 */ pracc_add(&ctx, 0, MIPS32_MTC0(ctx.isa, 15, cp0_reg, cp0_sel)); /* write $15 to cp0 reg / sel */ if (mips32_cpu_support_hazard_barrier(ejtag_info)) pracc_add(&ctx, 0, MIPS32_EHB(ctx.isa)); pracc_add(&ctx, 0, MIPS32_B(ctx.isa, NEG16((ctx.code_count + 1) << ctx.isa))); /* jump to start */ pracc_add(&ctx, 0, MIPS32_MFC0(ctx.isa, 15, 31, 0)); /* restore $15 from DeSave */ ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL, 1); pracc_queue_free(&ctx); return ctx.retval; } int mips32_cp1_control_read(struct mips_ejtag *ejtag_info, uint32_t *val, uint32_t cp1_c_reg) { struct pracc_queue_info ctx = {.ejtag_info = ejtag_info}; pracc_queue_init(&ctx); pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */ pracc_add(&ctx, 0, MIPS32_EHB(ctx.isa)); pracc_add(&ctx, 0, MIPS32_CFC1(ctx.isa, 8, cp1_c_reg)); /* move cp1c reg to $8 */ pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT, MIPS32_SW(ctx.isa, 8, PRACC_OUT_OFFSET, 15)); /* store $8 to pracc_out */ pracc_add(&ctx, 0, MIPS32_MFC0(ctx.isa, 15, 31, 0)); /* restore $15 from DeSave */ pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 8, UPPER16(ejtag_info->reg8))); /* restore upper 16 bits of $8 */ pracc_add(&ctx, 0, MIPS32_B(ctx.isa, NEG16((ctx.code_count + 1) << ctx.isa))); /* jump to start */ pracc_add(&ctx, 0, MIPS32_ORI(ctx.isa, 8, 8, LOWER16(ejtag_info->reg8))); /* restore lower 16 bits of $8 */ ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, val, 1); pracc_queue_free(&ctx); return ctx.retval; } /** * \b mips32_pracc_sync_cache * * Synchronize Caches to Make Instruction Writes Effective * (ref. doc. MIPS32 Architecture For Programmers Volume II: The MIPS32 Instruction Set, * Document Number: MD00086, Revision 2.00, June 9, 2003) * * When the instruction stream is written, the SYNCI instruction should be used * in conjunction with other instructions to make the newly-written instructions effective. * * Explanation : * A program that loads another program into memory is actually writing the D- side cache. * The instructions it has loaded can't be executed until they reach the I-cache. * * After the instructions have been written, the loader should arrange * to write back any containing D-cache line and invalidate any locations * already in the I-cache. * * If the cache coherency attribute (CCA) is set to zero, it's a write through cache, there is no need * to write back. * * In the latest MIPS32/64 CPUs, MIPS provides the synci instruction, * which does the whole job for a cache-line-sized chunk of the memory you just loaded: * That is, it arranges a D-cache write-back (if CCA = 3) and an I-cache invalidate. * * The line size is obtained with the rdhwr SYNCI_Step in release 2 or from cp0 config 1 register in release 1. */ static int mips32_pracc_synchronize_cache(struct mips_ejtag *ejtag_info, uint32_t start_addr, uint32_t end_addr, int cached, int rel) { struct pracc_queue_info ctx = {.ejtag_info = ejtag_info}; pracc_queue_init(&ctx); /** Find cache line size in bytes */ uint32_t clsiz; if (rel) { /* Release 2 (rel = 1) */ pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */ pracc_add(&ctx, 0, MIPS32_RDHWR(ctx.isa, 8, MIPS32_SYNCI_STEP)); /* load synci_step value to $8 */ pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT, MIPS32_SW(ctx.isa, 8, PRACC_OUT_OFFSET, 15)); /* store $8 to pracc_out */ pracc_add_li32(&ctx, 8, ejtag_info->reg8, 0); /* restore $8 */ pracc_add(&ctx, 0, MIPS32_B(ctx.isa, NEG16((ctx.code_count + 1) << ctx.isa))); /* jump to start */ pracc_add(&ctx, 0, MIPS32_MFC0(ctx.isa, 15, 31, 0)); /* restore $15 from DeSave */ ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, &clsiz, 1); if (ctx.retval != ERROR_OK) goto exit; } else { /* Release 1 (rel = 0) */ uint32_t conf; ctx.retval = mips32_cp0_read(ejtag_info, &conf, 16, 1); if (ctx.retval != ERROR_OK) goto exit; uint32_t dl = (conf & MIPS32_CONFIG1_DL_MASK) >> MIPS32_CONFIG1_DL_SHIFT; /* dl encoding : dl=1 => 4 bytes, dl=2 => 8 bytes, etc... max dl=6 => 128 bytes cache line size */ clsiz = 0x2 << dl; if (dl == 0) clsiz = 0; } if (clsiz == 0) goto exit; /* Nothing to do */ /* make sure clsiz is power of 2 */ if (!IS_PWR_OF_2(clsiz)) { LOG_DEBUG("clsiz must be power of 2"); ctx.retval = ERROR_FAIL; goto exit; } /* make sure start_addr and end_addr have the same offset inside de cache line */ start_addr |= clsiz - 1; end_addr |= clsiz - 1; ctx.code_count = 0; ctx.store_count = 0; int count = 0; uint32_t last_upper_base_addr = UPPER16((start_addr + 0x8000)); pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 15, last_upper_base_addr)); /* load upper memory base addr to $15 */ while (start_addr <= end_addr) { /* main loop */ uint32_t upper_base_addr = UPPER16((start_addr + 0x8000)); if (last_upper_base_addr != upper_base_addr) { /* if needed, change upper addr in $15 */ pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 15, upper_base_addr)); last_upper_base_addr = upper_base_addr; } if (rel) /* synci instruction, offset($15) */ pracc_add(&ctx, 0, MIPS32_SYNCI(ctx.isa, LOWER16(start_addr), 15)); else { if (cached == 3) /* cache Hit_Writeback_D, offset($15) */ pracc_add(&ctx, 0, MIPS32_CACHE(ctx.isa, MIPS32_CACHE_D_HIT_WRITEBACK, LOWER16(start_addr), 15)); /* cache Hit_Invalidate_I, offset($15) */ pracc_add(&ctx, 0, MIPS32_CACHE(ctx.isa, MIPS32_CACHE_I_HIT_INVALIDATE, LOWER16(start_addr), 15)); } start_addr += clsiz; count++; if (count == 256 && start_addr <= end_addr) { /* more ?, then execute code list */ pracc_add(&ctx, 0, MIPS32_B(ctx.isa, NEG16((ctx.code_count + 1) << ctx.isa))); /* to start */ pracc_add(&ctx, 0, MIPS32_NOP); /* nop in delay slot */ ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL, 1); if (ctx.retval != ERROR_OK) goto exit; ctx.code_count = 0; /* reset counters for another loop */ ctx.store_count = 0; count = 0; } } pracc_add(&ctx, 0, MIPS32_SYNC(ctx.isa)); pracc_add(&ctx, 0, MIPS32_B(ctx.isa, NEG16((ctx.code_count + 1) << ctx.isa))); /* jump to start */ pracc_add(&ctx, 0, MIPS32_MFC0(ctx.isa, 15, 31, 0)); /* restore $15 from DeSave*/ ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL, 1); exit: pracc_queue_free(&ctx); return ctx.retval; } static int mips32_pracc_write_mem_generic(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, const void *buf) { struct pracc_queue_info ctx = {.ejtag_info = ejtag_info}; pracc_queue_init(&ctx); const uint32_t *buf32 = buf; const uint16_t *buf16 = buf; const uint8_t *buf8 = buf; while (count) { ctx.code_count = 0; ctx.store_count = 0; int this_round_count = (count > 128) ? 128 : count; uint32_t last_upper_base_addr = UPPER16((addr + 0x8000)); /* load $15 with memory base address */ pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 15, last_upper_base_addr)); for (int i = 0; i != this_round_count; i++) { uint32_t upper_base_addr = UPPER16((addr + 0x8000)); if (last_upper_base_addr != upper_base_addr) { /* if needed, change upper address in $15*/ pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 15, upper_base_addr)); last_upper_base_addr = upper_base_addr; } if (size == 4) { pracc_add_li32(&ctx, 8, *buf32, 1); /* load with li32, optimize */ pracc_add(&ctx, 0, MIPS32_SW(ctx.isa, 8, LOWER16(addr), 15)); /* store word to mem */ buf32++; } else if (size == 2) { pracc_add(&ctx, 0, MIPS32_ORI(ctx.isa, 8, 0, *buf16)); /* load lower value */ pracc_add(&ctx, 0, MIPS32_SH(ctx.isa, 8, LOWER16(addr), 15)); /* store half word */ buf16++; } else { pracc_add(&ctx, 0, MIPS32_ORI(ctx.isa, 8, 0, *buf8)); /* load lower value */ pracc_add(&ctx, 0, MIPS32_SB(ctx.isa, 8, LOWER16(addr), 15)); /* store byte */ buf8++; } addr += size; } pracc_add_li32(&ctx, 8, ejtag_info->reg8, 0); /* restore $8 */ pracc_add(&ctx, 0, MIPS32_B(ctx.isa, NEG16((ctx.code_count + 1) << ctx.isa))); /* jump to start */ pracc_add(&ctx, 0, MIPS32_MFC0(ctx.isa, 15, 31, 0)); /* restore $15 from DeSave */ ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL, 1); if (ctx.retval != ERROR_OK) goto exit; count -= this_round_count; } exit: pracc_queue_free(&ctx); return ctx.retval; } int mips32_pracc_write_mem(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, const void *buf) { int retval = mips32_pracc_write_mem_generic(ejtag_info, addr, size, count, buf); if (retval != ERROR_OK) return retval; /** * If we are in the cacheable region and cache is activated, * we must clean D$ (if Cache Coherency Attribute is set to 3) + invalidate I$ after we did the write, * so that changes do not continue to live only in D$ (if CCA = 3), but to be * replicated in I$ also (maybe we wrote the instructions) */ uint32_t conf = 0; int cached = 0; if ((KSEGX(addr) == KSEG1) || ((addr >= 0xff200000) && (addr <= 0xff3fffff))) return retval; /*Nothing to do*/ /* Reads Config0 */ mips32_cp0_read(ejtag_info, &conf, 16, 0); switch (KSEGX(addr)) { case KUSEG: cached = (conf & MIPS32_CONFIG0_KU_MASK) >> MIPS32_CONFIG0_KU_SHIFT; break; case KSEG0: cached = (conf & MIPS32_CONFIG0_K0_MASK) >> MIPS32_CONFIG0_K0_SHIFT; break; case KSEG2: case KSEG3: cached = (conf & MIPS32_CONFIG0_K23_MASK) >> MIPS32_CONFIG0_K23_SHIFT; break; default: /* what ? */ break; } /** * Check cacheability bits coherency algorithm * is the region cacheable or uncached. * If cacheable we have to synchronize the cache */ if (cached == 3 || cached == 0) { /* Write back cache or write through cache */ uint32_t start_addr = addr; uint32_t end_addr = addr + count * size; uint32_t rel = (conf & MIPS32_CONFIG0_AR_MASK) >> MIPS32_CONFIG0_AR_SHIFT; /* FIXME: In MIPS Release 6, the encoding of CACHE instr has changed */ if (rel > MIPS32_RELEASE_2) { LOG_DEBUG("Unsupported MIPS Release ( > 5)"); return ERROR_FAIL; } retval = mips32_pracc_synchronize_cache(ejtag_info, start_addr, end_addr, cached, rel); } else { struct pracc_queue_info ctx = {.ejtag_info = ejtag_info}; pracc_queue_init(&ctx); if (mips32_cpu_support_sync(ejtag_info)) pracc_add(&ctx, 0, MIPS32_SYNC(ctx.isa)); if (mips32_cpu_support_hazard_barrier(ejtag_info)) pracc_add(&ctx, 0, MIPS32_EHB(ctx.isa)); pracc_add(&ctx, 0, MIPS32_B(ctx.isa, NEG16((ctx.code_count + 1) << ctx.isa))); /* jump to start */ pracc_add(&ctx, 0, MIPS32_NOP); ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL, 1); if (ctx.retval != ERROR_OK) { LOG_ERROR("Unable to barrier"); retval = ctx.retval; } pracc_queue_free(&ctx); } return retval; } int mips32_pracc_write_regs(struct mips32_common *mips32) { struct mips_ejtag *ejtag_info = &mips32->ejtag_info; struct pracc_queue_info ctx = {.ejtag_info = ejtag_info}; uint32_t *gprs = mips32->core_regs.gpr; uint32_t *c0rs = mips32->core_regs.cp0; bool fpu_in_64bit = ((c0rs[0] & BIT(MIPS32_CP0_STATUS_FR_SHIFT)) != 0); bool fp_enabled = ((c0rs[0] & BIT(MIPS32_CP0_STATUS_CU1_SHIFT)) != 0); uint32_t rel = (ejtag_info->config[0] & MIPS32_CONFIG0_AR_MASK) >> MIPS32_CONFIG0_AR_SHIFT; pracc_queue_init(&ctx); uint32_t cp0_write_code[] = { MIPS32_MTC0(ctx.isa, 1, 12, 0), /* move $1 to status */ MIPS32_MTLO(ctx.isa, 1), /* move $1 to lo */ MIPS32_MTHI(ctx.isa, 1), /* move $1 to hi */ MIPS32_MTC0(ctx.isa, 1, 8, 0), /* move $1 to badvaddr */ MIPS32_MTC0(ctx.isa, 1, 13, 0), /* move $1 to cause*/ MIPS32_MTC0(ctx.isa, 1, 24, 0), /* move $1 to depc (pc) */ }; uint32_t cp0_write_data[] = { /* status */ c0rs[0], /* lo */ gprs[32], /* hi */ gprs[33], /* badvaddr */ c0rs[1], /* cause */ c0rs[2], /* depc (pc) */ c0rs[3], }; /* Write CP0 Status Register first, changes on EXL or ERL bits * may lead to different behaviour on writing to other CP0 registers. */ for (size_t i = 0; i < ARRAY_SIZE(cp0_write_code); i++) { /* load CP0 value in $1 */ pracc_add_li32(&ctx, 1, cp0_write_data[i], 0); /* write value from $1 to CP0 register */ pracc_add(&ctx, 0, cp0_write_code[i]); } if (mips32_cpu_support_hazard_barrier(ejtag_info)) pracc_add(&ctx, 0, MIPS32_EHB(ctx.isa)); /* store FPRs */ if (mips32->fp_imp && fp_enabled) { uint64_t *fprs = mips32->core_regs.fpr; if (fpu_in_64bit) { for (int i = 0; i != MIPS32_REG_FP_COUNT; i++) { uint32_t fp_lo = fprs[i] & 0xffffffff; uint32_t fp_hi = (fprs[i] >> 32) & 0xffffffff; pracc_add_li32(&ctx, 2, fp_lo, 0); pracc_add_li32(&ctx, 3, fp_hi, 0); pracc_add(&ctx, 0, MIPS32_MTC1(ctx.isa, 2, i)); pracc_add(&ctx, 0, MIPS32_MTHC1(ctx.isa, 3, i)); } } else { for (int i = 0; i != MIPS32_REG_FP_COUNT; i++) { uint32_t fp_lo = fprs[i] & 0xffffffff; pracc_add_li32(&ctx, 2, fp_lo, 0); pracc_add(&ctx, 0, MIPS32_MTC1(ctx.isa, 2, i)); } } if (rel > MIPS32_RELEASE_1) pracc_add(&ctx, 0, MIPS32_EHB(ctx.isa)); } /* load registers 2 to 31 with li32, optimize */ for (int i = 2; i < 32; i++) pracc_add_li32(&ctx, i, gprs[i], 1); /* load $15 in DeSave */ pracc_add(&ctx, 0, MIPS32_MTC0(ctx.isa, 15, 31, 0)); /* load upper half word in $1 */ pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 1, UPPER16((gprs[1])))); /* jump to start */ pracc_add(&ctx, 0, MIPS32_B(ctx.isa, NEG16((ctx.code_count + 1) << ctx.isa))); /* load lower half word in $1 */ pracc_add(&ctx, 0, MIPS32_ORI(ctx.isa, 1, 1, LOWER16((gprs[1])))); ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL, 1); ejtag_info->reg8 = gprs[8]; ejtag_info->reg9 = gprs[9]; pracc_queue_free(&ctx); return ctx.retval; } /* Saves content in `$1` to `DeSave(cp0.31.0)` and loads `MIPS32_PRACC_BASE_ADDR` into `$1` */ static void mips32_pracc_store_regs_set_base_addr(struct pracc_queue_info *ctx) { /* move $1 to COP0 DeSave */ pracc_add(ctx, 0, MIPS32_MTC0(ctx->isa, 1, 31, 0)); /* $1 = MIP32_PRACC_BASE_ADDR */ pracc_add(ctx, 0, MIPS32_LUI(ctx->isa, 1, PRACC_UPPER_BASE_ADDR)); } /* This function assumes the address for saving is stored in `$1`. * And that action is performed in `mips32_pracc_set_save_base_addr`. */ static void mips32_pracc_store_regs_gpr(struct pracc_queue_info *ctx, unsigned int offset_gpr) { for (int i = 2; i != 32; i++) pracc_add(ctx, MIPS32_PRACC_PARAM_OUT + offset_gpr + (i * 4), MIPS32_SW(ctx->isa, i, PRACC_OUT_OFFSET + offset_gpr + (i * 4), 1)); } static void mips32_pracc_store_regs_lohi(struct pracc_queue_info *ctx) { uint32_t lohi_read_code[] = { MIPS32_MFLO(ctx->isa, 8), /* move lo to $8 */ MIPS32_MFHI(ctx->isa, 8), /* move hi to $8 */ }; /* store lo & hi */ for (int i = 0; i < 2; i++) { /* load COP0 needed registers to $8 */ pracc_add(ctx, 0, lohi_read_code[i]); /* store $8 at PARAM OUT */ pracc_add(ctx, MIPS32_PRACC_PARAM_OUT + (i + 32) * 4, MIPS32_SW(ctx->isa, 8, PRACC_OUT_OFFSET + (i + 32) * 4, 1)); } } /* Saves CP0 registers [status, badvaddr, cause, depc] */ static void mips32_pracc_store_regs_cp0_context(struct pracc_queue_info *ctx, unsigned int offset_cp0) { uint32_t cp0_read_code[] = { MIPS32_MFC0(ctx->isa, 8, 12, 0), /* move status to $8 */ MIPS32_MFC0(ctx->isa, 8, 8, 0), /* move badvaddr to $8 */ MIPS32_MFC0(ctx->isa, 8, 13, 0), /* move cause to $8 */ MIPS32_MFC0(ctx->isa, 8, 24, 0), /* move depc (pc) to $8 */ }; /* store cp0 */ for (size_t i = 0; i < ARRAY_SIZE(cp0_read_code); i++) { size_t offset = offset_cp0 + (i * 4); /* load COP0 needed registers to $8 */ pracc_add(ctx, 0, cp0_read_code[i]); /* store $8 at PARAM OUT */ pracc_add(ctx, MIPS32_PRACC_PARAM_OUT + offset, MIPS32_SW(ctx->isa, 8, PRACC_OUT_OFFSET + offset, 1)); } } /* Loads original content of $1 into $8, * then store it to the batch data access address. * Finally it restores $1 from DeSave. */ static void mips32_pracc_store_regs_restore(struct pracc_queue_info *ctx) { /* move DeSave to $8, reg1 value */ pracc_add(ctx, 0, MIPS32_MFC0(ctx->isa, 8, 31, 0)); /* store reg1 value from $8 to param out */ pracc_add(ctx, MIPS32_PRACC_PARAM_OUT + 4, MIPS32_SW(ctx->isa, 8, PRACC_OUT_OFFSET + 4, 1)); /* move COP0 DeSave to $1, restore reg1 */ pracc_add(ctx, 0, MIPS32_MFC0(ctx->isa, 1, 31, 0)); } /* This function performs following actions: * Saves `$1` to `DeSave`, * then load `PRACC_UPPER_BASE_ADDR` for saving the register data structure into `$1`, * Saves `$2` ~ `$31` to `PRACC_UPPER_BASE_ADDR + offset_gpr` * Saves HI and LO, * Saves necessary cp0 registers. */ static void mips32_pracc_store_regs(struct pracc_queue_info *ctx, unsigned int offset_gpr, unsigned int offset_cp0) { mips32_pracc_store_regs_set_base_addr(ctx); mips32_pracc_store_regs_gpr(ctx, offset_gpr); mips32_pracc_store_regs_lohi(ctx); mips32_pracc_store_regs_cp0_context(ctx, offset_cp0); mips32_pracc_store_regs_restore(ctx); } int mips32_pracc_read_regs(struct mips32_common *mips32) { struct mips_ejtag *ejtag_info = &mips32->ejtag_info; struct pracc_queue_info ctx = {.ejtag_info = ejtag_info}; struct mips32_core_regs *core_regs = &mips32->core_regs; unsigned int offset_gpr = ((uint8_t *)&core_regs->gpr[0]) - (uint8_t *)core_regs; unsigned int offset_cp0 = ((uint8_t *)&core_regs->cp0[0]) - (uint8_t *)core_regs; unsigned int offset_fpr = ((uint8_t *)&core_regs->fpr[0]) - (uint8_t *)core_regs; unsigned int offset_fpcr = ((uint8_t *)&core_regs->fpcr[0]) - (uint8_t *)core_regs; bool fp_enabled; /* * This procedure has to be in 2 distinctive steps, because we can * only know whether FP is enabled after reading CP0. * * Step 1: Read everything except CP1 stuff * Step 2: Read CP1 stuff if FP is implemented */ pracc_queue_init(&ctx); mips32_pracc_store_regs(&ctx, offset_gpr, offset_cp0); /* jump to start */ pracc_add(&ctx, 0, MIPS32_B(ctx.isa, NEG16((ctx.code_count + 1) << ctx.isa))); /* load $15 in DeSave */ pracc_add(&ctx, 0, MIPS32_MTC0(ctx.isa, 15, 31, 0)); ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, (uint32_t *)&mips32->core_regs, 1); pracc_queue_free(&ctx); /* reg8 is saved but not restored, next called function should restore it */ ejtag_info->reg8 = mips32->core_regs.gpr[8]; ejtag_info->reg9 = mips32->core_regs.gpr[9]; if (ctx.retval != ERROR_OK) return ctx.retval; /* we only care if FP is actually impl'd and if cp1 is enabled */ /* since we already read cp0 in the prev step */ /* now we know what's in cp0.status */ fp_enabled = (mips32->core_regs.cp0[0] & BIT(MIPS32_CP0_STATUS_CU1_SHIFT)) != 0; if (mips32->fp_imp && fp_enabled) { pracc_queue_init(&ctx); mips32_pracc_store_regs_set_base_addr(&ctx); /* FCSR */ pracc_add(&ctx, 0, MIPS32_CFC1(ctx.isa, 8, 31)); pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + offset_fpcr, MIPS32_SW(ctx.isa, 8, PRACC_OUT_OFFSET + offset_fpcr, 1)); /* FIR */ pracc_add(&ctx, 0, MIPS32_CFC1(ctx.isa, 8, 0)); pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + offset_fpcr + 4, MIPS32_SW(ctx.isa, 8, PRACC_OUT_OFFSET + offset_fpcr + 4, 1)); /* f0 to f31 */ if (mips32->fpu_in_64bit) { for (int i = 0; i != 32; i++) { size_t offset = offset_fpr + (i * 8); /* current pracc implementation (or EJTAG itself) only supports 32b access */ /* so there is no way to use SDC1 */ /* lower half */ pracc_add(&ctx, 0, MIPS32_MFC1(ctx.isa, 8, i)); pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + offset, MIPS32_SW(ctx.isa, 8, PRACC_OUT_OFFSET + offset, 1)); /* upper half */ pracc_add(&ctx, 0, MIPS32_MFHC1(ctx.isa, 8, i)); pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + offset + 4, MIPS32_SW(ctx.isa, 8, PRACC_OUT_OFFSET + offset + 4, 1)); } } else { for (int i = 0; i != 32; i++) { size_t offset = offset_fpr + (i * 8); pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + offset, MIPS32_SWC1(ctx.isa, i, PRACC_OUT_OFFSET + offset, 1)); } } mips32_pracc_store_regs_restore(&ctx); /* jump to start */ pracc_add(&ctx, 0, MIPS32_B(ctx.isa, NEG16((ctx.code_count + 1) << ctx.isa))); /* load $15 in DeSave */ pracc_add(&ctx, 0, MIPS32_MTC0(ctx.isa, 15, 31, 0)); ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, (uint32_t *)&mips32->core_regs, 1); pracc_queue_free(&ctx); } return ctx.retval; } /** * mips32_pracc_fastdata_xfer_synchronize_cache - Synchronize cache for fast data transfer * @param[in] ejtag_info: EJTAG information structure * @param[in] addr: Starting address for cache synchronization * @param[in] size: Size of each data element * @param[in] count: Number of data elements * * @brief Synchronizes the cache for fast data transfer based on * the specified address and cache configuration. * If the region is cacheable (write-back cache or write-through cache), * it synchronizes the cache for the specified range. * The synchronization is performed using the MIPS32 cache synchronization function. * * @return ERROR_OK on success; error code on failure. */ static int mips32_pracc_fastdata_xfer_synchronize_cache(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count) { int retval = ERROR_OK; if ((KSEGX(addr) == KSEG1) || (addr >= 0xff200000 && addr <= 0xff3fffff)) // DESEG? return retval; /*Nothing to do*/ int cached = 0; uint32_t conf = 0; mips32_cp0_read(ejtag_info, &conf, 16, 0); switch (KSEGX(addr)) { case KUSEG: cached = (conf & MIPS32_CONFIG0_KU_MASK) >> MIPS32_CONFIG0_KU_SHIFT; break; case KSEG0: cached = (conf & MIPS32_CONFIG0_K0_MASK) >> MIPS32_CONFIG0_K0_SHIFT; break; case KSEG2: case KSEG3: cached = (conf & MIPS32_CONFIG0_K23_MASK) >> MIPS32_CONFIG0_K23_SHIFT; break; default: /* what ? */ break; } /** * Check cacheability bits coherency algorithm * is the region cacheable or uncached. * If cacheable we have to synchronize the cache */ if (cached == 3 || cached == 0) { /* Write back cache or write through cache */ uint32_t start_addr = addr; uint32_t end_addr = addr + count * size; uint32_t rel = (conf & MIPS32_CONFIG0_AR_MASK) >> MIPS32_CONFIG0_AR_SHIFT; /* FIXME: In MIPS Release 6, the encoding of CACHE instr has changed */ if (rel > MIPS32_RELEASE_2) { LOG_DEBUG("Unsupported MIPS Release ( > 5)"); return ERROR_FAIL; } retval = mips32_pracc_synchronize_cache(ejtag_info, start_addr, end_addr, cached, rel); } return retval; } /* fastdata upload/download requires an initialized working area * to load the download code; it should not be called otherwise * fetch order from the fastdata area * 1. start addr * 2. end addr * 3. data ... */ int mips32_pracc_fastdata_xfer(struct mips_ejtag *ejtag_info, struct working_area *source, int write_t, uint32_t addr, int count, uint32_t *buf) { uint32_t isa = ejtag_info->isa ? 1 : 0; uint32_t handler_code[] = { /* r15 points to the start of this code */ MIPS32_SW(isa, 8, MIPS32_FASTDATA_HANDLER_SIZE - 4, 15), MIPS32_SW(isa, 9, MIPS32_FASTDATA_HANDLER_SIZE - 8, 15), MIPS32_SW(isa, 10, MIPS32_FASTDATA_HANDLER_SIZE - 12, 15), MIPS32_SW(isa, 11, MIPS32_FASTDATA_HANDLER_SIZE - 16, 15), /* start of fastdata area in t0 */ MIPS32_LUI(isa, 8, UPPER16(MIPS32_PRACC_FASTDATA_AREA)), MIPS32_ORI(isa, 8, 8, LOWER16(MIPS32_PRACC_FASTDATA_AREA)), MIPS32_LW(isa, 9, 0, 8), /* start addr in t1 */ mips32_cpu_support_sync(ejtag_info) ? MIPS32_SYNC(isa) : MIPS32_NOP, /* barrier for ordering */ MIPS32_LW(isa, 10, 0, 8), /* end addr to t2 */ mips32_cpu_support_sync(ejtag_info) ? MIPS32_SYNC(isa) : MIPS32_NOP, /* barrier for ordering */ /* loop: */ write_t ? MIPS32_LW(isa, 11, 0, 8) : MIPS32_LW(isa, 11, 0, 9), /* from xfer area : from memory */ write_t ? MIPS32_SW(isa, 11, 0, 9) : MIPS32_SW(isa, 11, 0, 8), /* to memory : to xfer area */ mips32_cpu_support_sync(ejtag_info) ? MIPS32_SYNC(isa) : MIPS32_NOP, /* barrier for ordering */ MIPS32_BNE(isa, 10, 9, NEG16(4 << isa)), /* bne $t2,t1,loop */ MIPS32_ADDI(isa, 9, 9, 4), /* addi t1,t1,4 */ MIPS32_LW(isa, 8, MIPS32_FASTDATA_HANDLER_SIZE - 4, 15), MIPS32_LW(isa, 9, MIPS32_FASTDATA_HANDLER_SIZE - 8, 15), MIPS32_LW(isa, 10, MIPS32_FASTDATA_HANDLER_SIZE - 12, 15), MIPS32_LW(isa, 11, MIPS32_FASTDATA_HANDLER_SIZE - 16, 15), MIPS32_LUI(isa, 15, UPPER16(MIPS32_PRACC_TEXT)), MIPS32_ORI(isa, 15, 15, LOWER16(MIPS32_PRACC_TEXT) | isa), /* isa bit for JR instr */ mips32_cpu_support_hazard_barrier(ejtag_info) ? MIPS32_JRHB(isa, 15) : MIPS32_JR(isa, 15), /* jr start */ MIPS32_MFC0(isa, 15, 31, 0), /* move COP0 DeSave to $15 */ }; if (source->size < MIPS32_FASTDATA_HANDLER_SIZE) return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; pracc_swap16_array(ejtag_info, handler_code, ARRAY_SIZE(handler_code)); /* write program into RAM */ if (write_t != ejtag_info->fast_access_save) { mips32_pracc_write_mem(ejtag_info, source->address, 4, ARRAY_SIZE(handler_code), handler_code); /* save previous operation to speed to any consecutive read/writes */ ejtag_info->fast_access_save = write_t; } LOG_DEBUG("%s using 0x%.8" TARGET_PRIxADDR " for write handler", __func__, source->address); uint32_t jmp_code[] = { MIPS32_LUI(isa, 15, UPPER16(source->address)), /* load addr of jump in $15 */ MIPS32_ORI(isa, 15, 15, LOWER16(source->address) | isa), /* isa bit for JR instr */ mips32_cpu_support_hazard_barrier(ejtag_info) ? MIPS32_JRHB(isa, 15) : MIPS32_JR(isa, 15), /* jump to ram program */ isa ? MIPS32_XORI(isa, 15, 15, 1) : MIPS32_NOP, /* drop isa bit, needed for LW/SW instructions */ }; pracc_swap16_array(ejtag_info, jmp_code, ARRAY_SIZE(jmp_code)); /* execute jump code, with no address check */ for (unsigned i = 0; i < ARRAY_SIZE(jmp_code); i++) { int retval = wait_for_pracc_rw(ejtag_info); if (retval != ERROR_OK) return retval; mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA); mips_ejtag_drscan_32_out(ejtag_info, jmp_code[i]); /* Clear the access pending bit (let the processor eat!) */ mips32_pracc_finish(ejtag_info); } /* wait PrAcc pending bit for FASTDATA write, read address */ int retval = mips32_pracc_read_ctrl_addr(ejtag_info); if (retval != ERROR_OK) return retval; /* next fetch to dmseg should be in FASTDATA_AREA, check */ if (ejtag_info->pa_addr != MIPS32_PRACC_FASTDATA_AREA) return ERROR_FAIL; /* Send the load start address */ uint32_t val = addr; mips_ejtag_set_instr(ejtag_info, EJTAG_INST_FASTDATA); mips_ejtag_fastdata_scan(ejtag_info, 1, &val); retval = wait_for_pracc_rw(ejtag_info); if (retval != ERROR_OK) return retval; /* Send the load end address */ val = addr + (count - 1) * 4; mips_ejtag_set_instr(ejtag_info, EJTAG_INST_FASTDATA); mips_ejtag_fastdata_scan(ejtag_info, 1, &val); unsigned num_clocks = 0; /* like in legacy code */ if (ejtag_info->mode != 0) num_clocks = ((uint64_t)(ejtag_info->scan_delay) * adapter_get_speed_khz() + 500000) / 1000000; for (int i = 0; i < count; i++) { jtag_add_clocks(num_clocks); mips_ejtag_fastdata_scan(ejtag_info, write_t, buf++); } retval = jtag_execute_queue(); if (retval != ERROR_OK) { LOG_ERROR("fastdata load failed"); return retval; } retval = mips32_pracc_read_ctrl_addr(ejtag_info); if (retval != ERROR_OK) return retval; if (ejtag_info->pa_addr != MIPS32_PRACC_TEXT) LOG_ERROR("mini program did not return to start"); return mips32_pracc_fastdata_xfer_synchronize_cache(ejtag_info, addr, 4, count); }