/*************************************************************************** * Copyright (C) 2008 by Spencer Oliver * * spen@spen-soft.co.uk * * * * Copyright (C) 2008 by David T.L. Wong * * * * Copyright (C) 2009 by David N. Claffey * * * * Copyright (C) 2011 by Drasko DRASKOVIC * * drasko.draskovic@gmail.com * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ /* * This version has optimized assembly routines for 32 bit operations: * - read word * - write word * - write array of words * * One thing to be aware of is that the MIPS32 cpu will execute the * instruction after a branch instruction (one delay slot). * * For example: * LW $2, ($5 +10) * B foo * LW $1, ($2 +100) * * The LW $1, ($2 +100) instruction is also executed. If this is * not wanted a NOP can be inserted: * * LW $2, ($5 +10) * B foo * NOP * LW $1, ($2 +100) * * or the code can be changed to: * * B foo * LW $2, ($5 +10) * LW $1, ($2 +100) * * The original code contained NOPs. I have removed these and moved * the branches. * * I also moved the PRACC_STACK to 0xFF204000. This allows * the use of 16 bits offsets to get pointers to the input * and output area relative to the stack. Note that the stack * isn't really a stack (the stack pointer is not 'moving') * but a FIFO simulated in software. * * These changes result in a 35% speed increase when programming an * external flash. * * More improvement could be gained if the registers do no need * to be preserved but in that case the routines should be aware * OpenOCD is used as a flash programmer or as a debug tool. * * Nico Coesel */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include "mips32.h" #include "mips32_pracc.h" struct mips32_pracc_context { uint32_t *local_iparam; int num_iparam; uint32_t *local_oparam; int num_oparam; const uint32_t *code; int code_len; uint32_t stack[32]; int stack_offset; struct mips_ejtag *ejtag_info; }; static int mips32_pracc_read_mem8(struct mips_ejtag *ejtag_info, uint32_t addr, int count, uint8_t *buf); static int mips32_pracc_read_mem16(struct mips_ejtag *ejtag_info, uint32_t addr, int count, uint16_t *buf); static int mips32_pracc_read_mem32(struct mips_ejtag *ejtag_info, uint32_t addr, int count, uint32_t *buf); static int mips32_pracc_read_u32(struct mips_ejtag *ejtag_info, uint32_t addr, uint32_t *buf); static int mips32_pracc_write_mem8(struct mips_ejtag *ejtag_info, uint32_t addr, int count, uint8_t *buf); static int mips32_pracc_write_mem16(struct mips_ejtag *ejtag_info, uint32_t addr, int count, uint16_t *buf); static int mips32_pracc_write_mem32(struct mips_ejtag *ejtag_info, uint32_t addr, int count, uint32_t *buf); static int mips32_pracc_write_u32(struct mips_ejtag *ejtag_info, uint32_t addr, uint32_t *buf); static int mips32_pracc_sync_cache(struct mips_ejtag *ejtag_info, uint32_t start_addr, uint32_t end_addr); static int mips32_pracc_clean_invalidate_cache(struct mips_ejtag *ejtag_info, uint32_t start_addr, uint32_t end_addr); static int wait_for_pracc_rw(struct mips_ejtag *ejtag_info, uint32_t *ctrl) { uint32_t ejtag_ctrl; long long then = timeval_ms(); int timeout; int retval; /* wait for the PrAcc to become "1" */ mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL); ejtag_ctrl = ejtag_info->ejtag_ctrl; while (1) { retval = mips_ejtag_drscan_32(ejtag_info, &ejtag_ctrl); if (retval != ERROR_OK) return retval; if (ejtag_ctrl & EJTAG_CTRL_PRACC) break; timeout = timeval_ms() - then; if (timeout > 1000) { LOG_DEBUG("DEBUGMODULE: No memory access in progress!"); return ERROR_JTAG_DEVICE_ERROR; } } *ctrl = ejtag_ctrl; return ERROR_OK; } static int mips32_pracc_exec_read(struct mips32_pracc_context *ctx, uint32_t address) { struct mips_ejtag *ejtag_info = ctx->ejtag_info; int offset; uint32_t ejtag_ctrl, data; if ((address >= MIPS32_PRACC_PARAM_IN) && (address <= MIPS32_PRACC_PARAM_IN + ctx->num_iparam * 4)) { offset = (address - MIPS32_PRACC_PARAM_IN) / 4; data = ctx->local_iparam[offset]; } else if ((address >= MIPS32_PRACC_PARAM_OUT) && (address <= MIPS32_PRACC_PARAM_OUT + ctx->num_oparam * 4)) { offset = (address - MIPS32_PRACC_PARAM_OUT) / 4; data = ctx->local_oparam[offset]; } else if ((address >= MIPS32_PRACC_TEXT) && (address <= MIPS32_PRACC_TEXT + ctx->code_len * 4)) { offset = (address - MIPS32_PRACC_TEXT) / 4; data = ctx->code[offset]; } else if (address == MIPS32_PRACC_STACK) { /* save to our debug stack */ data = ctx->stack[--ctx->stack_offset]; } else { /* TODO: send JMP 0xFF200000 instruction. Hopefully processor jump back * to start of debug vector */ LOG_ERROR("Error reading unexpected address 0x%8.8" PRIx32 "", address); return ERROR_JTAG_DEVICE_ERROR; } /* Send the data out */ mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_DATA); mips_ejtag_drscan_32_out(ctx->ejtag_info, data); /* Clear the access pending bit (let the processor eat!) */ ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC; mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_CONTROL); mips_ejtag_drscan_32_out(ctx->ejtag_info, ejtag_ctrl); return jtag_execute_queue(); } static int mips32_pracc_exec_write(struct mips32_pracc_context *ctx, uint32_t address) { uint32_t ejtag_ctrl, data; int offset; struct mips_ejtag *ejtag_info = ctx->ejtag_info; int retval; mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_DATA); retval = mips_ejtag_drscan_32(ctx->ejtag_info, &data); if (retval != ERROR_OK) return retval; /* Clear access pending bit */ ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC; mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_CONTROL); mips_ejtag_drscan_32_out(ctx->ejtag_info, ejtag_ctrl); retval = jtag_execute_queue(); if (retval != ERROR_OK) return retval; if ((address >= MIPS32_PRACC_PARAM_IN) && (address <= MIPS32_PRACC_PARAM_IN + ctx->num_iparam * 4)) { offset = (address - MIPS32_PRACC_PARAM_IN) / 4; ctx->local_iparam[offset] = data; } else if ((address >= MIPS32_PRACC_PARAM_OUT) && (address <= MIPS32_PRACC_PARAM_OUT + ctx->num_oparam * 4)) { offset = (address - MIPS32_PRACC_PARAM_OUT) / 4; ctx->local_oparam[offset] = data; } else if (address == MIPS32_PRACC_STACK) { /* save data onto our stack */ ctx->stack[ctx->stack_offset++] = data; } else { LOG_ERROR("Error writing unexpected address 0x%8.8" PRIx32 "", address); return ERROR_JTAG_DEVICE_ERROR; } return ERROR_OK; } int mips32_pracc_exec(struct mips_ejtag *ejtag_info, int code_len, const uint32_t *code, int num_param_in, uint32_t *param_in, int num_param_out, uint32_t *param_out, int cycle) { uint32_t ejtag_ctrl; uint32_t address, data; struct mips32_pracc_context ctx; int retval; int pass = 0; ctx.local_iparam = param_in; ctx.local_oparam = param_out; ctx.num_iparam = num_param_in; ctx.num_oparam = num_param_out; ctx.code = code; ctx.code_len = code_len; ctx.ejtag_info = ejtag_info; ctx.stack_offset = 0; while (1) { retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl); if (retval != ERROR_OK) return retval; address = data = 0; mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS); retval = mips_ejtag_drscan_32(ejtag_info, &address); if (retval != ERROR_OK) return retval; /* Check for read or write */ if (ejtag_ctrl & EJTAG_CTRL_PRNW) { retval = mips32_pracc_exec_write(&ctx, address); if (retval != ERROR_OK) return retval; } else { /* Check to see if its reading at the debug vector. The first pass through * the module is always read at the vector, so the first one we allow. When * the second read from the vector occurs we are done and just exit. */ if ((address == MIPS32_PRACC_TEXT) && (pass++)) break; retval = mips32_pracc_exec_read(&ctx, address); if (retval != ERROR_OK) return retval; } if (cycle == 0) break; } /* stack sanity check */ if (ctx.stack_offset != 0) LOG_DEBUG("Pracc Stack not zero"); return ERROR_OK; } int mips32_pracc_read_mem(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, void *buf) { switch (size) { case 1: return mips32_pracc_read_mem8(ejtag_info, addr, count, (uint8_t *)buf); case 2: return mips32_pracc_read_mem16(ejtag_info, addr, count, (uint16_t *)buf); case 4: if (count == 1) return mips32_pracc_read_u32(ejtag_info, addr, (uint32_t *)buf); else return mips32_pracc_read_mem32(ejtag_info, addr, count, (uint32_t *)buf); } return ERROR_OK; } static int mips32_pracc_read_mem32(struct mips_ejtag *ejtag_info, uint32_t addr, int count, uint32_t *buf) { static const uint32_t code[] = { /* start: */ MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */ MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */ MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)), MIPS32_SW(8, 0, 15), /* sw $8,($15) */ MIPS32_SW(9, 0, 15), /* sw $9,($15) */ MIPS32_SW(10, 0, 15), /* sw $10,($15) */ MIPS32_SW(11, 0, 15), /* sw $11,($15) */ MIPS32_LUI(8, UPPER16(MIPS32_PRACC_PARAM_IN)), /* $8 = MIPS32_PRACC_PARAM_IN */ MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_PARAM_IN)), MIPS32_LW(9, 0, 8), /* $9 = mem[$8]; read addr */ MIPS32_LW(10, 4, 8), /* $10 = mem[$8 + 4]; read count */ MIPS32_LUI(11, UPPER16(MIPS32_PRACC_PARAM_OUT)), /* $11 = MIPS32_PRACC_PARAM_OUT */ MIPS32_ORI(11, 11, LOWER16(MIPS32_PRACC_PARAM_OUT)), /* loop: */ MIPS32_BEQ(0, 10, 8), /* beq 0, $10, end */ MIPS32_NOP, MIPS32_LW(8, 0, 9), /* lw $8,0($9), Load $8 with the word @mem[$9] */ MIPS32_SW(8, 0, 11), /* sw $8,0($11) */ MIPS32_ADDI(10, 10, NEG16(1)), /* $10-- */ MIPS32_ADDI(9, 9, 4), /* $1 += 4 */ MIPS32_ADDI(11, 11, 4), /* $11 += 4 */ MIPS32_B(NEG16(8)), /* b loop */ MIPS32_NOP, /* end: */ MIPS32_LW(11, 0, 15), /* lw $11,($15) */ MIPS32_LW(10, 0, 15), /* lw $10,($15) */ MIPS32_LW(9, 0, 15), /* lw $9,($15) */ MIPS32_LW(8, 0, 15), /* lw $8,($15) */ MIPS32_B(NEG16(27)), /* b start */ MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */ }; int retval = ERROR_OK; int blocksize; int bytesread; uint32_t param_in[2]; bytesread = 0; while (count > 0) { blocksize = count; if (count > 0x400) blocksize = 0x400; param_in[0] = addr; param_in[1] = blocksize; retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, ARRAY_SIZE(param_in), param_in, blocksize, &buf[bytesread], 1); if (retval != ERROR_OK) return retval; count -= blocksize; addr += blocksize; bytesread += blocksize; } return retval; } static int mips32_pracc_read_u32(struct mips_ejtag *ejtag_info, uint32_t addr, uint32_t *buf) { static const uint32_t code[] = { /* start: */ MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */ MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */ MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)), MIPS32_SW(8, 0, 15), /* sw $8,($15) */ MIPS32_LW(8, NEG16(MIPS32_PRACC_STACK-MIPS32_PRACC_PARAM_IN), 15), /* load R8 @ param_in[0] = address */ MIPS32_LW(8, 0, 8), /* lw $8,0($8), Load $8 with the word @mem[$8] */ MIPS32_SW(8, NEG16(MIPS32_PRACC_STACK - MIPS32_PRACC_PARAM_OUT), 15), /* store R8 @ param_out[0] */ MIPS32_LW(8, 0, 15), /* lw $8,($15) */ MIPS32_B(NEG16(9)), /* b start */ MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */ }; int retval = ERROR_OK; uint32_t param_in[1]; param_in[0] = addr; retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, ARRAY_SIZE(param_in), param_in, 1, buf, 1); if (retval != ERROR_OK) return retval; return retval; } static int mips32_pracc_read_mem16(struct mips_ejtag *ejtag_info, uint32_t addr, int count, uint16_t *buf) { static const uint32_t code[] = { /* start: */ MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */ MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */ MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)), MIPS32_SW(8, 0, 15), /* sw $8,($15) */ MIPS32_SW(9, 0, 15), /* sw $9,($15) */ MIPS32_SW(10, 0, 15), /* sw $10,($15) */ MIPS32_SW(11, 0, 15), /* sw $11,($15) */ MIPS32_LUI(8, UPPER16(MIPS32_PRACC_PARAM_IN)), /* $8 = MIPS32_PRACC_PARAM_IN */ MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_PARAM_IN)), MIPS32_LW(9, 0, 8), /* $9 = mem[$8]; read addr */ MIPS32_LW(10, 4, 8), /* $10 = mem[$8 + 4]; read count */ MIPS32_LUI(11, UPPER16(MIPS32_PRACC_PARAM_OUT)), /* $11 = MIPS32_PRACC_PARAM_OUT */ MIPS32_ORI(11, 11, LOWER16(MIPS32_PRACC_PARAM_OUT)), /* loop: */ MIPS32_BEQ(0, 10, 8), /* beq 0, $10, end */ MIPS32_NOP, MIPS32_LHU(8, 0, 9), /* lw $8,0($9), Load $8 with the halfword @mem[$9] */ MIPS32_SW(8, 0, 11), /* sw $8,0($11) */ MIPS32_ADDI(10, 10, NEG16(1)), /* $10-- */ MIPS32_ADDI(9, 9, 2), /* $9 += 2 */ MIPS32_ADDI(11, 11, 4), /* $11 += 4 */ MIPS32_B(NEG16(8)), /* b loop */ MIPS32_NOP, /* end: */ MIPS32_LW(11, 0, 15), /* lw $11,($15) */ MIPS32_LW(10, 0, 15), /* lw $10,($15) */ MIPS32_LW(9, 0, 15), /* lw $9,($15) */ MIPS32_LW(8, 0, 15), /* lw $8,($15) */ MIPS32_B(NEG16(27)), /* b start */ MIPS32_MFC0(15, 30, 0), /* move COP0 DeSave to $15 */ }; /* TODO remove array */ uint32_t *param_out = malloc(count * sizeof(uint32_t)); int i; int retval = ERROR_OK; int blocksize; uint32_t param_in[2]; /*while (count > 0) */ { blocksize = count; if (count > 0x400) blocksize = 0x400; param_in[0] = addr; param_in[1] = blocksize; retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, ARRAY_SIZE(param_in), param_in, count, param_out, 1); /* count -= blocksize; */ /* addr += blocksize; */ } for (i = 0; i < count; i++) buf[i] = param_out[i]; free(param_out); return retval; } static int mips32_pracc_read_mem8(struct mips_ejtag *ejtag_info, uint32_t addr, int count, uint8_t *buf) { static const uint32_t code[] = { /* start: */ MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */ MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */ MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)), MIPS32_SW(8, 0, 15), /* sw $8,($15) */ MIPS32_SW(9, 0, 15), /* sw $9,($15) */ MIPS32_SW(10, 0, 15), /* sw $10,($15) */ MIPS32_SW(11, 0, 15), /* sw $11,($15) */ MIPS32_LUI(8, UPPER16(MIPS32_PRACC_PARAM_IN)), /* $8 = MIPS32_PRACC_PARAM_IN */ MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_PARAM_IN)), MIPS32_LW(9, 0, 8), /* $9 = mem[$8]; read addr */ MIPS32_LW(10, 4, 8), /* $10 = mem[$8 + 4]; read count */ MIPS32_LUI(11, UPPER16(MIPS32_PRACC_PARAM_OUT)), /* $11 = MIPS32_PRACC_PARAM_OUT */ MIPS32_ORI(11, 11, LOWER16(MIPS32_PRACC_PARAM_OUT)), /* loop: */ MIPS32_BEQ(0, 10, 8), /* beq 0, $10, end */ MIPS32_NOP, MIPS32_LBU(8, 0, 9), /* lw $8,0($9), Load t4 with the byte @mem[t1] */ MIPS32_SW(8, 0, 11), /* sw $8,0($11) */ MIPS32_ADDI(10, 10, NEG16(1)), /* $10-- */ MIPS32_ADDI(9, 9, 1), /* $9 += 1 */ MIPS32_ADDI(11, 11, 4), /* $11 += 4 */ MIPS32_B(NEG16(8)), /* b loop */ MIPS32_NOP, /* end: */ MIPS32_LW(11, 0, 15), /* lw $11,($15) */ MIPS32_LW(10, 0, 15), /* lw $10,($15) */ MIPS32_LW(9, 0, 15), /* lw $9,($15) */ MIPS32_LW(8, 0, 15), /* lw $8,($15) */ MIPS32_B(NEG16(27)), /* b start */ MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */ }; /* TODO remove array */ uint32_t *param_out = malloc(count * sizeof(uint32_t)); int i; int retval = ERROR_OK; int blocksize; uint32_t param_in[2]; /* while (count > 0) */ { blocksize = count; if (count > 0x400) blocksize = 0x400; param_in[0] = addr; param_in[1] = blocksize; retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, ARRAY_SIZE(param_in), param_in, count, param_out, 1); /* count -= blocksize; */ /* addr += blocksize; */ } for (i = 0; i < count; i++) buf[i] = param_out[i]; free(param_out); return retval; } int mips32_cp0_read(struct mips_ejtag *ejtag_info, uint32_t *val, uint32_t cp0_reg, uint32_t cp0_sel) { /** * Do not make this code static, but regenerate it every time, * as 5th element has to be changed to add parameters */ uint32_t code[] = { /* start: */ MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */ MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */ MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)), MIPS32_SW(8, 0, 15), /* sw $8,($15) */ MIPS32_SW(9, 0, 15), /* sw $9,($15) */ /* 5 */ MIPS32_MFC0(8, 0, 0), /* move COP0 [cp0_reg select] to $8 */ MIPS32_LUI(9, UPPER16(MIPS32_PRACC_PARAM_OUT)), /* $11 = MIPS32_PRACC_PARAM_OUT */ MIPS32_ORI(9, 9, LOWER16(MIPS32_PRACC_PARAM_OUT)), MIPS32_SW(8, 0, 9), /* sw $8,0($9) */ MIPS32_LW(9, 0, 15), /* lw $9,($15) */ MIPS32_LW(8, 0, 15), /* lw $8,($15) */ MIPS32_B(NEG16(12)), /* b start */ MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */ }; /** * Note that our input parametes cp0_reg and cp0_sel * are numbers (not gprs) which make part of mfc0 instruction opcode. * * These are not fix, but can be different for each mips32_cp0_read() function call, * and that is why we must insert them directly into opcode, * i.e. we can not pass it on EJTAG microprogram stack (via param_in), * and put them into the gprs later from MIPS32_PRACC_STACK * because mfc0 do not use gpr as a parameter for the cp0_reg and select part, * but plain (immediate) number. * * MIPS32_MTC0 is implemented via MIPS32_R_INST macro. * In order to insert our parameters, we must change rd and funct fields. */ code[5] |= (cp0_reg << 11) | cp0_sel; /* change rd and funct of MIPS32_R_INST macro */ /* TODO remove array */ uint32_t *param_out = val; int retval; retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 0, NULL, 1, param_out, 1); return retval; } int mips32_cp0_write(struct mips_ejtag *ejtag_info, uint32_t val, uint32_t cp0_reg, uint32_t cp0_sel) { uint32_t code[] = { /* start: */ MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */ MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */ MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)), MIPS32_SW(8, 0, 15), /* sw $8,($15) */ MIPS32_SW(9, 0, 15), /* sw $9,($15) */ MIPS32_LUI(8, UPPER16(MIPS32_PRACC_PARAM_IN)), /* $8 = MIPS32_PRACC_PARAM_IN */ MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_PARAM_IN)), MIPS32_LW(9, 0, 8), /* Load write val to $9 */ /* 8 */ MIPS32_MTC0(9, 0, 0), /* move $9 to COP0 [cp0_reg select] */ MIPS32_LW(9, 0, 15), /* lw $9,($15) */ MIPS32_LW(8, 0, 15), /* lw $8,($15) */ MIPS32_B(NEG16(12)), /* b start */ MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */ }; /** * Note that MIPS32_MTC0 macro is implemented via MIPS32_R_INST macro. * In order to insert our parameters, we must change rd and funct fields. */ code[8] |= (cp0_reg << 11) | cp0_sel; /* change rd and funct fields of MIPS32_R_INST macro */ /* TODO remove array */ uint32_t *param_in = malloc(1 * sizeof(uint32_t)); int retval; param_in[0] = val; retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 1, param_in, 0, NULL, 1); free(param_in); return retval; } /** * \b mips32_pracc_sync_cache * * Synchronize Caches to Make Instruction Writes Effective * (ref. doc. MIPS32 Architecture For Programmers Volume II: The MIPS32 Instruction Set, * Document Number: MD00086, Revision 2.00, June 9, 2003) * * When the instruction stream is written, the SYNCI instruction should be used * in conjunction with other instructions to make the newly-written instructions effective. * * Explanation : * A program that loads another program into memory is actually writing the D- side cache. * The instructions it has loaded can't be executed until they reach the I-cache. * * After the instructions have been written, the loader should arrange * to write back any containing D-cache line and invalidate any locations * already in the I-cache. * * You can do that with cache instructions, but those instructions are only available in kernel mode, * and a loader writing instructions for the use of its own process need not be privileged software. * * In the latest MIPS32/64 CPUs, MIPS provides the synci instruction, * which does the whole job for a cache-line-sized chunk of the memory you just loaded: * That is, it arranges a D-cache write-back and an I-cache invalidate. * * To employ synci at user level, you need to know the size of a cache line, * and that can be obtained with a rdhwr SYNCI_Step * from one of the standard “hardware registers”. */ static int mips32_pracc_sync_cache(struct mips_ejtag *ejtag_info, uint32_t start_addr, uint32_t end_addr) { static const uint32_t code[] = { /* start: */ MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */ MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */ MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)), MIPS32_SW(8, 0, 15), /* sw $8,($15) */ MIPS32_SW(9, 0, 15), /* sw $9,($15) */ MIPS32_SW(10, 0, 15), /* sw $10,($15) */ MIPS32_SW(11, 0, 15), /* sw $11,($15) */ MIPS32_LUI(8, UPPER16(MIPS32_PRACC_PARAM_IN)), /* $8 = MIPS32_PRACC_PARAM_IN */ MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_PARAM_IN)), MIPS32_LW(9, 0, 8), /* Load write start_addr to $9 */ MIPS32_LW(10, 4, 8), /* Load write end_addr to $10 */ MIPS32_RDHWR(11, MIPS32_SYNCI_STEP), /* $11 = MIPS32_SYNCI_STEP */ MIPS32_BEQ(11, 0, 6), /* beq $11, $0, end */ MIPS32_NOP, /* synci_loop : */ MIPS32_SYNCI(0, 9), /* synci 0($9) */ MIPS32_SLTU(8, 10, 9), /* sltu $8, $10, $9 # $8 = $10 < $9 ? 1 : 0 */ MIPS32_BNE(8, 0, NEG16(3)), /* bne $8, $0, synci_loop */ MIPS32_ADDU(9, 9, 11), /* $9 += MIPS32_SYNCI_STEP */ MIPS32_SYNC, /* end: */ MIPS32_LW(11, 0, 15), /* lw $11,($15) */ MIPS32_LW(10, 0, 15), /* lw $10,($15) */ MIPS32_LW(9, 0, 15), /* lw $9,($15) */ MIPS32_LW(8, 0, 15), /* lw $8,($15) */ MIPS32_B(NEG16(24)), /* b start */ MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */ }; /* TODO remove array */ uint32_t *param_in = malloc(2 * sizeof(uint32_t)); int retval; param_in[0] = start_addr; param_in[1] = end_addr; retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 2, param_in, 0, NULL, 1); free(param_in); return retval; } /** * \b mips32_pracc_clean_invalidate_cache * * Writeback D$ and Invalidate I$ * so that the instructions written can be visible to CPU */ static int mips32_pracc_clean_invalidate_cache(struct mips_ejtag *ejtag_info, uint32_t start_addr, uint32_t end_addr) { static const uint32_t code[] = { /* start: */ MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */ MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */ MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)), MIPS32_SW(8, 0, 15), /* sw $8,($15) */ MIPS32_SW(9, 0, 15), /* sw $9,($15) */ MIPS32_SW(10, 0, 15), /* sw $10,($15) */ MIPS32_SW(11, 0, 15), /* sw $11,($15) */ MIPS32_LUI(8, UPPER16(MIPS32_PRACC_PARAM_IN)), /* $8 = MIPS32_PRACC_PARAM_IN */ MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_PARAM_IN)), MIPS32_LW(9, 0, 8), /* Load write start_addr to $9 */ MIPS32_LW(10, 4, 8), /* Load write end_addr to $10 */ MIPS32_LW(11, 8, 8), /* Load write clsiz to $11 */ /* cache_loop: */ MIPS32_SLTU(8, 10, 9), /* sltu $8, $10, $9 : $8 <- $10 < $9 ? */ MIPS32_BGTZ(8, 6), /* bgtz $8, end */ MIPS32_NOP, MIPS32_CACHE(MIPS32_CACHE_D_HIT_WRITEBACK, 0, 9), /* cache Hit_Writeback_D, 0($9) */ MIPS32_CACHE(MIPS32_CACHE_I_HIT_INVALIDATE, 0, 9), /* cache Hit_Invalidate_I, 0($9) */ MIPS32_ADDU(9, 9, 11), /* $9 += $11 */ MIPS32_B(NEG16(7)), /* b cache_loop */ MIPS32_NOP, /* end: */ MIPS32_LW(11, 0, 15), /* lw $11,($15) */ MIPS32_LW(10, 0, 15), /* lw $10,($15) */ MIPS32_LW(9, 0, 15), /* lw $9,($15) */ MIPS32_LW(8, 0, 15), /* lw $8,($15) */ MIPS32_B(NEG16(25)), /* b start */ MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */ }; /** * Find cache line size in bytes */ uint32_t conf; uint32_t dl, clsiz; mips32_cp0_read(ejtag_info, &conf, 16, 1); dl = (conf & MIPS32_CONFIG1_DL_MASK) >> MIPS32_CONFIG1_DL_SHIFT; /* dl encoding : dl=1 => 4 bytes, dl=2 => 8 bytes, etc... */ clsiz = 0x2 << dl; /* TODO remove array */ uint32_t *param_in = malloc(3 * sizeof(uint32_t)); int retval; param_in[0] = start_addr; param_in[1] = end_addr; param_in[2] = clsiz; retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 3, param_in, 0, NULL, 1); free(param_in); return retval; } int mips32_pracc_write_mem(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, void *buf) { int retval; switch (size) { case 1: retval = mips32_pracc_write_mem8(ejtag_info, addr, count, (uint8_t *)buf); break; case 2: retval = mips32_pracc_write_mem16(ejtag_info, addr, count, (uint16_t *)buf); break; case 4: if (count == 1) retval = mips32_pracc_write_u32(ejtag_info, addr, (uint32_t *)buf); else retval = mips32_pracc_write_mem32(ejtag_info, addr, count, (uint32_t *)buf); break; default: retval = ERROR_FAIL; } /** * If we are in the cachable regoion and cache is activated, * we must clean D$ + invalidate I$ after we did the write, * so that changes do not continue to live only in D$, but to be * replicated in I$ also (maybe we wrote the istructions) */ uint32_t conf = 0; int cached = 0; mips32_cp0_read(ejtag_info, &conf, 16, 0); switch (KSEGX(addr)) { case KUSEG: cached = (conf & MIPS32_CONFIG0_KU_MASK) >> MIPS32_CONFIG0_KU_SHIFT; break; case KSEG0: cached = (conf & MIPS32_CONFIG0_K0_MASK) >> MIPS32_CONFIG0_K0_SHIFT; break; case KSEG1: /* uncachable segment - nothing to do */ break; case KSEG2: case KSEG3: cached = (conf & MIPS32_CONFIG0_K23_MASK) >> MIPS32_CONFIG0_K23_SHIFT; break; default: /* what ? */ break; } /** * Check cachablitiy bits coherency algorithm - * is the region cacheable or uncached. * If cacheable we have to synchronize the cache */ if (cached == 0x3) { uint32_t start_addr, end_addr; uint32_t rel; start_addr = addr; end_addr = addr + count * size; /** select cache synchronisation mechanism based on Architecture Release */ rel = (conf & MIPS32_CONFIG0_AR_MASK) >> MIPS32_CONFIG0_AR_SHIFT; switch (rel) { case MIPS32_ARCH_REL1: /* MIPS32/64 Release 1 - we must use cache instruction */ mips32_pracc_clean_invalidate_cache(ejtag_info, start_addr, end_addr); break; case MIPS32_ARCH_REL2: /* MIPS32/64 Release 2 - we can use synci instruction */ mips32_pracc_sync_cache(ejtag_info, start_addr, end_addr); break; default: /* what ? */ break; } } return retval; } static int mips32_pracc_write_mem32(struct mips_ejtag *ejtag_info, uint32_t addr, int count, uint32_t *buf) { static const uint32_t code[] = { /* start: */ MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */ MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */ MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)), MIPS32_SW(8, 0, 15), /* sw $8,($15) */ MIPS32_SW(9, 0, 15), /* sw $9,($15) */ MIPS32_SW(10, 0, 15), /* sw $10,($15) */ MIPS32_SW(11, 0, 15), /* sw $11,($15) */ MIPS32_ADDI(8, 15, NEG16(MIPS32_PRACC_STACK-MIPS32_PRACC_PARAM_IN)), /* $8= MIPS32_PRACC_PARAM_IN */ MIPS32_LW(9, 0, 8), /* Load write addr to $9 */ MIPS32_LW(10, 4, 8), /* Load write count to $10 */ MIPS32_ADDI(8, 8, 8), /* $8 += 8 beginning of data */ /* loop: */ MIPS32_LW(11, 0, 8), /* lw $11,0($8), Load $11 with the word @mem[$8] */ MIPS32_SW(11, 0, 9), /* sw $11,0($9) */ MIPS32_ADDI(9, 9, 4), /* $9 += 4 */ MIPS32_BNE(10, 9, NEG16(4)), /* bne $10, $9, loop */ MIPS32_ADDI(8, 8, 4), /* $8 += 4 */ /* end: */ MIPS32_LW(11, 0, 15), /* lw $11,($15) */ MIPS32_LW(10, 0, 15), /* lw $10,($15) */ MIPS32_LW(9, 0, 15), /* lw $9,($15) */ MIPS32_LW(8, 0, 15), /* lw $8,($15) */ MIPS32_B(NEG16(21)), /* b start */ MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */ }; /* TODO remove array */ uint32_t *param_in = malloc((count + 2) * sizeof(uint32_t)); param_in[0] = addr; param_in[1] = addr + (count * sizeof(uint32_t)); /* last address */ memcpy(¶m_in[2], buf, count * sizeof(uint32_t)); int retval; retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, count + 2, param_in, 0, NULL, 1); free(param_in); return retval; } static int mips32_pracc_write_u32(struct mips_ejtag *ejtag_info, uint32_t addr, uint32_t *buf) { static const uint32_t code[] = { /* start: */ MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */ MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */ MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)), MIPS32_SW(8, 0, 15), /* sw $8,($15) */ MIPS32_SW(9, 0, 15), /* sw $9,($15) */ MIPS32_LW(8, NEG16((MIPS32_PRACC_STACK-MIPS32_PRACC_PARAM_IN)-4), 15), /* load R8 @ param_in[1] = data */ MIPS32_LW(9, NEG16(MIPS32_PRACC_STACK-MIPS32_PRACC_PARAM_IN), 15), /* load R9 @ param_in[0] = address */ MIPS32_SW(8, 0, 9), /* sw $8,0($9) */ MIPS32_LW(9, 0, 15), /* lw $9,($15) */ MIPS32_LW(8, 0, 15), /* lw $8,($15) */ MIPS32_B(NEG16(11)), /* b start */ MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */ }; /* TODO remove array */ uint32_t param_in[1 + 1]; param_in[0] = addr; param_in[1] = *buf; return mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, ARRAY_SIZE(param_in), param_in, 0, NULL, 1); } static int mips32_pracc_write_mem16(struct mips_ejtag *ejtag_info, uint32_t addr, int count, uint16_t *buf) { static const uint32_t code[] = { /* start: */ MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */ MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */ MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)), MIPS32_SW(8, 0, 15), /* sw $8,($15) */ MIPS32_SW(9, 0, 15), /* sw $9,($15) */ MIPS32_SW(10, 0, 15), /* sw $10,($15) */ MIPS32_SW(11, 0, 15), /* sw $11,($15) */ MIPS32_LUI(8, UPPER16(MIPS32_PRACC_PARAM_IN)), /* $8 = MIPS32_PRACC_PARAM_IN */ MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_PARAM_IN)), MIPS32_LW(9, 0, 8), /* Load write addr to $9 */ MIPS32_LW(10, 4, 8), /* Load write count to $10 */ MIPS32_ADDI(8, 8, 8), /* $8 += 8 */ /* loop: */ MIPS32_BEQ(0, 10, 8), /* beq $0, $10, end */ MIPS32_NOP, MIPS32_LW(11, 0, 8), /* lw $11,0($8), Load $11 with the word @mem[$8] */ MIPS32_SH(11, 0, 9), /* sh $11,0($9) */ MIPS32_ADDI(10, 10, NEG16(1)), /* $10-- */ MIPS32_ADDI(9, 9, 2), /* $9 += 2 */ MIPS32_ADDI(8, 8, 4), /* $8 += 4 */ MIPS32_B(NEG16(8)), /* b loop */ MIPS32_NOP, /* end: */ MIPS32_LW(11, 0, 15), /* lw $11,($15) */ MIPS32_LW(10, 0, 15), /* lw $10,($15) */ MIPS32_LW(9, 0, 15), /* lw $9,($15) */ MIPS32_LW(8, 0, 15), /* lw $8,($15) */ MIPS32_B(NEG16(26)), /* b start */ MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */ }; /* TODO remove array */ uint32_t *param_in = malloc((count + 2) * sizeof(uint32_t)); int i; param_in[0] = addr; param_in[1] = count; for (i = 0; i < count; i++) param_in[i + 2] = buf[i]; int retval; retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, count + 2, param_in, 0, NULL, 1); free(param_in); return retval; } static int mips32_pracc_write_mem8(struct mips_ejtag *ejtag_info, uint32_t addr, int count, uint8_t *buf) { static const uint32_t code[] = { /* start: */ MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */ MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */ MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)), MIPS32_SW(8, 0, 15), /* sw $8,($15) */ MIPS32_SW(9, 0, 15), /* sw $9,($15) */ MIPS32_SW(10, 0, 15), /* sw $10,($15) */ MIPS32_SW(11, 0, 15), /* sw $11,($15) */ MIPS32_LUI(8, UPPER16(MIPS32_PRACC_PARAM_IN)), /* $8 = MIPS32_PRACC_PARAM_IN */ MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_PARAM_IN)), MIPS32_LW(9, 0, 8), /* Load write addr to $9 */ MIPS32_LW(10, 4, 8), /* Load write count to $10 */ MIPS32_ADDI(8, 8, 8), /* $8 += 8 */ /* loop: */ MIPS32_BEQ(0, 10, 8), /* beq $0, $10, end */ MIPS32_NOP, MIPS32_LW(11, 0, 8), /* lw $11,0($8), Load $11 with the word @mem[$8] */ MIPS32_SB(11, 0, 9), /* sb $11,0($9) */ MIPS32_ADDI(10, 10, NEG16(1)), /* $10-- */ MIPS32_ADDI(9, 9, 1), /* $9 += 1 */ MIPS32_ADDI(8, 8, 4), /* $8 += 4 */ MIPS32_B(NEG16(8)), /* b loop */ MIPS32_NOP, /* end: */ MIPS32_LW(11, 0, 15), /* lw $11,($15) */ MIPS32_LW(10, 0, 15), /* lw $10,($15) */ MIPS32_LW(9, 0, 15), /* lw $9,($15) */ MIPS32_LW(8, 0, 15), /* lw $8,($15) */ MIPS32_B(NEG16(26)), /* b start */ MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */ }; /* TODO remove array */ uint32_t *param_in = malloc((count + 2) * sizeof(uint32_t)); int retval; int i; param_in[0] = addr; param_in[1] = count; for (i = 0; i < count; i++) param_in[i + 2] = buf[i]; retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, count + 2, param_in, 0, NULL, 1); free(param_in); return retval; } int mips32_pracc_write_regs(struct mips_ejtag *ejtag_info, uint32_t *regs) { static const uint32_t code[] = { /* start: */ MIPS32_LUI(2, UPPER16(MIPS32_PRACC_PARAM_IN)), /* $2 = MIPS32_PRACC_PARAM_IN */ MIPS32_ORI(2, 2, LOWER16(MIPS32_PRACC_PARAM_IN)), MIPS32_LW(1, 1*4, 2), /* lw $1,1*4($2) */ MIPS32_LW(15, 15*4, 2), /* lw $15,15*4($2) */ MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */ MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */ MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)), MIPS32_SW(1, 0, 15), /* sw $1,($15) */ MIPS32_LUI(1, UPPER16(MIPS32_PRACC_PARAM_IN)), /* $1 = MIPS32_PRACC_PARAM_IN */ MIPS32_ORI(1, 1, LOWER16(MIPS32_PRACC_PARAM_IN)), MIPS32_LW(3, 3*4, 1), /* lw $3,3*4($1) */ MIPS32_LW(4, 4*4, 1), /* lw $4,4*4($1) */ MIPS32_LW(5, 5*4, 1), /* lw $5,5*4($1) */ MIPS32_LW(6, 6*4, 1), /* lw $6,6*4($1) */ MIPS32_LW(7, 7*4, 1), /* lw $7,7*4($1) */ MIPS32_LW(8, 8*4, 1), /* lw $8,8*4($1) */ MIPS32_LW(9, 9*4, 1), /* lw $9,9*4($1) */ MIPS32_LW(10, 10*4, 1), /* lw $10,10*4($1) */ MIPS32_LW(11, 11*4, 1), /* lw $11,11*4($1) */ MIPS32_LW(12, 12*4, 1), /* lw $12,12*4($1) */ MIPS32_LW(13, 13*4, 1), /* lw $13,13*4($1) */ MIPS32_LW(14, 14*4, 1), /* lw $14,14*4($1) */ MIPS32_LW(16, 16*4, 1), /* lw $16,16*4($1) */ MIPS32_LW(17, 17*4, 1), /* lw $17,17*4($1) */ MIPS32_LW(18, 18*4, 1), /* lw $18,18*4($1) */ MIPS32_LW(19, 19*4, 1), /* lw $19,19*4($1) */ MIPS32_LW(20, 20*4, 1), /* lw $20,20*4($1) */ MIPS32_LW(21, 21*4, 1), /* lw $21,21*4($1) */ MIPS32_LW(22, 22*4, 1), /* lw $22,22*4($1) */ MIPS32_LW(23, 23*4, 1), /* lw $23,23*4($1) */ MIPS32_LW(24, 24*4, 1), /* lw $24,24*4($1) */ MIPS32_LW(25, 25*4, 1), /* lw $25,25*4($1) */ MIPS32_LW(26, 26*4, 1), /* lw $26,26*4($1) */ MIPS32_LW(27, 27*4, 1), /* lw $27,27*4($1) */ MIPS32_LW(28, 28*4, 1), /* lw $28,28*4($1) */ MIPS32_LW(29, 29*4, 1), /* lw $29,29*4($1) */ MIPS32_LW(30, 30*4, 1), /* lw $30,30*4($1) */ MIPS32_LW(31, 31*4, 1), /* lw $31,31*4($1) */ MIPS32_LW(2, 32*4, 1), /* lw $2,32*4($1) */ MIPS32_MTC0(2, 12, 0), /* move $2 to status */ MIPS32_LW(2, 33*4, 1), /* lw $2,33*4($1) */ MIPS32_MTLO(2), /* move $2 to lo */ MIPS32_LW(2, 34*4, 1), /* lw $2,34*4($1) */ MIPS32_MTHI(2), /* move $2 to hi */ MIPS32_LW(2, 35*4, 1), /* lw $2,35*4($1) */ MIPS32_MTC0(2, 8, 0), /* move $2 to badvaddr */ MIPS32_LW(2, 36*4, 1), /* lw $2,36*4($1) */ MIPS32_MTC0(2, 13, 0), /* move $2 to cause*/ MIPS32_LW(2, 37*4, 1), /* lw $2,37*4($1) */ MIPS32_MTC0(2, 24, 0), /* move $2 to depc (pc) */ MIPS32_LW(2, 2*4, 1), /* lw $2,2*4($1) */ MIPS32_LW(1, 0, 15), /* lw $1,($15) */ MIPS32_B(NEG16(53)), /* b start */ MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */ }; int retval; retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, MIPS32NUMCOREREGS, regs, 0, NULL, 1); return retval; } int mips32_pracc_read_regs(struct mips_ejtag *ejtag_info, uint32_t *regs) { static const uint32_t code[] = { /* start: */ MIPS32_MTC0(2, 31, 0), /* move $2 to COP0 DeSave */ MIPS32_LUI(2, UPPER16(MIPS32_PRACC_PARAM_OUT)), /* $2 = MIPS32_PRACC_PARAM_OUT */ MIPS32_ORI(2, 2, LOWER16(MIPS32_PRACC_PARAM_OUT)), MIPS32_SW(0, 0*4, 2), /* sw $0,0*4($2) */ MIPS32_SW(1, 1*4, 2), /* sw $1,1*4($2) */ MIPS32_SW(15, 15*4, 2), /* sw $15,15*4($2) */ MIPS32_MFC0(2, 31, 0), /* move COP0 DeSave to $2 */ MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */ MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */ MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)), MIPS32_SW(1, 0, 15), /* sw $1,($15) */ MIPS32_SW(2, 0, 15), /* sw $2,($15) */ MIPS32_LUI(1, UPPER16(MIPS32_PRACC_PARAM_OUT)), /* $1 = MIPS32_PRACC_PARAM_OUT */ MIPS32_ORI(1, 1, LOWER16(MIPS32_PRACC_PARAM_OUT)), MIPS32_SW(2, 2*4, 1), /* sw $2,2*4($1) */ MIPS32_SW(3, 3*4, 1), /* sw $3,3*4($1) */ MIPS32_SW(4, 4*4, 1), /* sw $4,4*4($1) */ MIPS32_SW(5, 5*4, 1), /* sw $5,5*4($1) */ MIPS32_SW(6, 6*4, 1), /* sw $6,6*4($1) */ MIPS32_SW(7, 7*4, 1), /* sw $7,7*4($1) */ MIPS32_SW(8, 8*4, 1), /* sw $8,8*4($1) */ MIPS32_SW(9, 9*4, 1), /* sw $9,9*4($1) */ MIPS32_SW(10, 10*4, 1), /* sw $10,10*4($1) */ MIPS32_SW(11, 11*4, 1), /* sw $11,11*4($1) */ MIPS32_SW(12, 12*4, 1), /* sw $12,12*4($1) */ MIPS32_SW(13, 13*4, 1), /* sw $13,13*4($1) */ MIPS32_SW(14, 14*4, 1), /* sw $14,14*4($1) */ MIPS32_SW(16, 16*4, 1), /* sw $16,16*4($1) */ MIPS32_SW(17, 17*4, 1), /* sw $17,17*4($1) */ MIPS32_SW(18, 18*4, 1), /* sw $18,18*4($1) */ MIPS32_SW(19, 19*4, 1), /* sw $19,19*4($1) */ MIPS32_SW(20, 20*4, 1), /* sw $20,20*4($1) */ MIPS32_SW(21, 21*4, 1), /* sw $21,21*4($1) */ MIPS32_SW(22, 22*4, 1), /* sw $22,22*4($1) */ MIPS32_SW(23, 23*4, 1), /* sw $23,23*4($1) */ MIPS32_SW(24, 24*4, 1), /* sw $24,24*4($1) */ MIPS32_SW(25, 25*4, 1), /* sw $25,25*4($1) */ MIPS32_SW(26, 26*4, 1), /* sw $26,26*4($1) */ MIPS32_SW(27, 27*4, 1), /* sw $27,27*4($1) */ MIPS32_SW(28, 28*4, 1), /* sw $28,28*4($1) */ MIPS32_SW(29, 29*4, 1), /* sw $29,29*4($1) */ MIPS32_SW(30, 30*4, 1), /* sw $30,30*4($1) */ MIPS32_SW(31, 31*4, 1), /* sw $31,31*4($1) */ MIPS32_MFC0(2, 12, 0), /* move status to $2 */ MIPS32_SW(2, 32*4, 1), /* sw $2,32*4($1) */ MIPS32_MFLO(2), /* move lo to $2 */ MIPS32_SW(2, 33*4, 1), /* sw $2,33*4($1) */ MIPS32_MFHI(2), /* move hi to $2 */ MIPS32_SW(2, 34*4, 1), /* sw $2,34*4($1) */ MIPS32_MFC0(2, 8, 0), /* move badvaddr to $2 */ MIPS32_SW(2, 35*4, 1), /* sw $2,35*4($1) */ MIPS32_MFC0(2, 13, 0), /* move cause to $2 */ MIPS32_SW(2, 36*4, 1), /* sw $2,36*4($1) */ MIPS32_MFC0(2, 24, 0), /* move depc (pc) to $2 */ MIPS32_SW(2, 37*4, 1), /* sw $2,37*4($1) */ MIPS32_LW(2, 0, 15), /* lw $2,($15) */ MIPS32_LW(1, 0, 15), /* lw $1,($15) */ MIPS32_B(NEG16(58)), /* b start */ MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */ }; int retval; retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 0, NULL, MIPS32NUMCOREREGS, regs, 1); return retval; } /* fastdata upload/download requires an initialized working area * to load the download code; it should not be called otherwise * fetch order from the fastdata area * 1. start addr * 2. end addr * 3. data ... */ int mips32_pracc_fastdata_xfer(struct mips_ejtag *ejtag_info, struct working_area *source, int write_t, uint32_t addr, int count, uint32_t *buf) { uint32_t handler_code[] = { /* caution when editing, table is modified below */ /* r15 points to the start of this code */ MIPS32_SW(8, MIPS32_FASTDATA_HANDLER_SIZE - 4, 15), MIPS32_SW(9, MIPS32_FASTDATA_HANDLER_SIZE - 8, 15), MIPS32_SW(10, MIPS32_FASTDATA_HANDLER_SIZE - 12, 15), MIPS32_SW(11, MIPS32_FASTDATA_HANDLER_SIZE - 16, 15), /* start of fastdata area in t0 */ MIPS32_LUI(8, UPPER16(MIPS32_PRACC_FASTDATA_AREA)), MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_FASTDATA_AREA)), MIPS32_LW(9, 0, 8), /* start addr in t1 */ MIPS32_LW(10, 0, 8), /* end addr to t2 */ /* loop: */ /* 8 */ MIPS32_LW(11, 0, 0), /* lw t3,[t8 | r9] */ /* 9 */ MIPS32_SW(11, 0, 0), /* sw t3,[r9 | r8] */ MIPS32_BNE(10, 9, NEG16(3)), /* bne $t2,t1,loop */ MIPS32_ADDI(9, 9, 4), /* addi t1,t1,4 */ MIPS32_LW(8, MIPS32_FASTDATA_HANDLER_SIZE - 4, 15), MIPS32_LW(9, MIPS32_FASTDATA_HANDLER_SIZE - 8, 15), MIPS32_LW(10, MIPS32_FASTDATA_HANDLER_SIZE - 12, 15), MIPS32_LW(11, MIPS32_FASTDATA_HANDLER_SIZE - 16, 15), MIPS32_LUI(15, UPPER16(MIPS32_PRACC_TEXT)), MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_TEXT)), MIPS32_JR(15), /* jr start */ MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */ }; uint32_t jmp_code[] = { MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */ /* 1 */ MIPS32_LUI(15, 0), /* addr of working area added below */ /* 2 */ MIPS32_ORI(15, 15, 0), /* addr of working area added below */ MIPS32_JR(15), /* jump to ram program */ MIPS32_NOP, }; int retval, i; uint32_t val, ejtag_ctrl, address; if (source->size < MIPS32_FASTDATA_HANDLER_SIZE) return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; if (write_t) { handler_code[8] = MIPS32_LW(11, 0, 8); /* load data from probe at fastdata area */ handler_code[9] = MIPS32_SW(11, 0, 9); /* store data to RAM @ r9 */ } else { handler_code[8] = MIPS32_LW(11, 0, 9); /* load data from RAM @ r9 */ handler_code[9] = MIPS32_SW(11, 0, 8); /* store data to probe at fastdata area */ } /* write program into RAM */ if (write_t != ejtag_info->fast_access_save) { mips32_pracc_write_mem32(ejtag_info, source->address, ARRAY_SIZE(handler_code), handler_code); /* save previous operation to speed to any consecutive read/writes */ ejtag_info->fast_access_save = write_t; } LOG_DEBUG("%s using 0x%.8" PRIx32 " for write handler", __func__, source->address); jmp_code[1] |= UPPER16(source->address); jmp_code[2] |= LOWER16(source->address); for (i = 0; i < (int) ARRAY_SIZE(jmp_code); i++) { retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl); if (retval != ERROR_OK) return retval; mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA); mips_ejtag_drscan_32_out(ejtag_info, jmp_code[i]); /* Clear the access pending bit (let the processor eat!) */ ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC; mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL); mips_ejtag_drscan_32_out(ejtag_info, ejtag_ctrl); } retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl); if (retval != ERROR_OK) return retval; /* next fetch to dmseg should be in FASTDATA_AREA, check */ address = 0; mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS); retval = mips_ejtag_drscan_32(ejtag_info, &address); if (retval != ERROR_OK) return retval; if (address != MIPS32_PRACC_FASTDATA_AREA) return ERROR_FAIL; /* wait PrAcc pending bit for FASTDATA write */ retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl); if (retval != ERROR_OK) return retval; /* Send the load start address */ val = addr; mips_ejtag_set_instr(ejtag_info, EJTAG_INST_FASTDATA); mips_ejtag_fastdata_scan(ejtag_info, 1, &val); /* Send the load end address */ val = addr + (count - 1) * 4; mips_ejtag_fastdata_scan(ejtag_info, 1, &val); for (i = 0; i < count; i++) { retval = mips_ejtag_fastdata_scan(ejtag_info, write_t, buf++); if (retval != ERROR_OK) return retval; } retval = jtag_execute_queue(); if (retval != ERROR_OK) { LOG_ERROR("fastdata load failed"); return retval; } retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl); if (retval != ERROR_OK) return retval; address = 0; mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS); retval = mips_ejtag_drscan_32(ejtag_info, &address); if (retval != ERROR_OK) return retval; if (address != MIPS32_PRACC_TEXT) LOG_ERROR("mini program did not return to start"); return retval; }