/*************************************************************************** * Copyright (C) 2005 by Dominic Rath * * Dominic.Rath@gmx.de * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "replacements.h" #include "target.h" #include "log.h" #include "configuration.h" #include "binarybuffer.h" #include "jtag.h" #include #include #include #include #include #include #include #include #include int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv); int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_daemon_startup_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_load_binary_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_dump_binary_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); /* targets */ extern target_type_t arm7tdmi_target; extern target_type_t arm720t_target; extern target_type_t arm9tdmi_target; extern target_type_t arm920t_target; extern target_type_t arm966e_target; target_type_t *target_types[] = { &arm7tdmi_target, &arm9tdmi_target, &arm920t_target, &arm720t_target, &arm966e_target, NULL, }; target_t *targets = NULL; target_event_callback_t *target_event_callbacks = NULL; target_timer_callback_t *target_timer_callbacks = NULL; char *target_state_strings[] = { "unknown", "running", "halted", "reset", "debug_running", }; char *target_debug_reason_strings[] = { "debug request", "breakpoint", "watchpoint", "watchpoint and breakpoint", "single step", "target not halted" }; char *target_endianess_strings[] = { "big endian", "little endian", }; enum daemon_startup_mode startup_mode = DAEMON_ATTACH; static int target_continous_poll = 1; /* read a u32 from a buffer in target memory endianness */ u32 target_buffer_get_u32(target_t *target, u8 *buffer) { if (target->endianness == TARGET_LITTLE_ENDIAN) return le_to_h_u32(buffer); else return be_to_h_u32(buffer); } /* read a u16 from a buffer in target memory endianness */ u16 target_buffer_get_u16(target_t *target, u8 *buffer) { if (target->endianness == TARGET_LITTLE_ENDIAN) return le_to_h_u16(buffer); else return be_to_h_u16(buffer); } /* write a u32 to a buffer in target memory endianness */ void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value) { if (target->endianness == TARGET_LITTLE_ENDIAN) h_u32_to_le(buffer, value); else h_u32_to_be(buffer, value); } /* write a u16 to a buffer in target memory endianness */ void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value) { if (target->endianness == TARGET_LITTLE_ENDIAN) h_u16_to_le(buffer, value); else h_u16_to_be(buffer, value); } /* returns a pointer to the n-th configured target */ target_t* get_target_by_num(int num) { target_t *target = targets; int i = 0; while (target) { if (num == i) return target; target = target->next; i++; } return NULL; } int get_num_by_target(target_t *query_target) { target_t *target = targets; int i = 0; while (target) { if (target == query_target) return i; target = target->next; i++; } return -1; } target_t* get_current_target(command_context_t *cmd_ctx) { target_t *target = get_target_by_num(cmd_ctx->current_target); if (target == NULL) { ERROR("BUG: current_target out of bounds"); exit(-1); } return target; } /* Process target initialization, when target entered debug out of reset * the handler is unregistered at the end of this function, so it's only called once */ int target_init_handler(struct target_s *target, enum target_event event, void *priv) { FILE *script; struct command_context_s *cmd_ctx = priv; if ((event == TARGET_EVENT_HALTED) && (target->reset_script)) { script = fopen(target->reset_script, "r"); if (!script) { ERROR("couldn't open script file %s", target->reset_script); return ERROR_OK; } INFO("executing reset script '%s'", target->reset_script); command_run_file(cmd_ctx, script, COMMAND_EXEC); fclose(script); jtag_execute_queue(); target_unregister_event_callback(target_init_handler, priv); } return ERROR_OK; } int target_run_and_halt_handler(void *priv) { target_t *target = priv; target->type->halt(target); return ERROR_OK; } int target_process_reset(struct command_context_s *cmd_ctx) { int retval = ERROR_OK; target_t *target; target = targets; while (target) { target->type->assert_reset(target); target = target->next; } jtag_execute_queue(); /* request target halt if necessary, and schedule further action */ target = targets; while (target) { switch (target->reset_mode) { case RESET_RUN: /* nothing to do if target just wants to be run */ break; case RESET_RUN_AND_HALT: /* schedule halt */ target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target); break; case RESET_RUN_AND_INIT: /* schedule halt */ target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target); target_register_event_callback(target_init_handler, cmd_ctx); break; case RESET_HALT: target->type->halt(target); break; case RESET_INIT: target->type->halt(target); target_register_event_callback(target_init_handler, cmd_ctx); break; default: ERROR("BUG: unknown target->reset_mode"); } target = target->next; } target = targets; while (target) { target->type->deassert_reset(target); target = target->next; } jtag_execute_queue(); return retval; } int target_init(struct command_context_s *cmd_ctx) { target_t *target = targets; while (target) { if (target->type->init_target(cmd_ctx, target) != ERROR_OK) { ERROR("target '%s' init failed", target->type->name); exit(-1); } target = target->next; } if (targets) { target_register_user_commands(cmd_ctx); target_register_timer_callback(handle_target, 100, 1, NULL); } if (startup_mode == DAEMON_RESET) target_process_reset(cmd_ctx); return ERROR_OK; } int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv) { target_event_callback_t **callbacks_p = &target_event_callbacks; if (callback == NULL) { return ERROR_INVALID_ARGUMENTS; } if (*callbacks_p) { while ((*callbacks_p)->next) callbacks_p = &((*callbacks_p)->next); callbacks_p = &((*callbacks_p)->next); } (*callbacks_p) = malloc(sizeof(target_event_callback_t)); (*callbacks_p)->callback = callback; (*callbacks_p)->priv = priv; (*callbacks_p)->next = NULL; return ERROR_OK; } int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv) { target_timer_callback_t **callbacks_p = &target_timer_callbacks; struct timeval now; if (callback == NULL) { return ERROR_INVALID_ARGUMENTS; } if (*callbacks_p) { while ((*callbacks_p)->next) callbacks_p = &((*callbacks_p)->next); callbacks_p = &((*callbacks_p)->next); } (*callbacks_p) = malloc(sizeof(target_timer_callback_t)); (*callbacks_p)->callback = callback; (*callbacks_p)->periodic = periodic; (*callbacks_p)->time_ms = time_ms; gettimeofday(&now, NULL); (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000; time_ms -= (time_ms % 1000); (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000); if ((*callbacks_p)->when.tv_usec > 1000000) { (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000; (*callbacks_p)->when.tv_sec += 1; } (*callbacks_p)->priv = priv; (*callbacks_p)->next = NULL; return ERROR_OK; } int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv) { target_event_callback_t **p = &target_event_callbacks; target_event_callback_t *c = target_event_callbacks; if (callback == NULL) { return ERROR_INVALID_ARGUMENTS; } while (c) { target_event_callback_t *next = c->next; if ((c->callback == callback) && (c->priv == priv)) { *p = next; free(c); return ERROR_OK; } else p = &(c->next); c = next; } return ERROR_OK; } int target_unregister_timer_callback(int (*callback)(void *priv), void *priv) { target_timer_callback_t **p = &target_timer_callbacks; target_timer_callback_t *c = target_timer_callbacks; if (callback == NULL) { return ERROR_INVALID_ARGUMENTS; } while (c) { target_timer_callback_t *next = c->next; if ((c->callback == callback) && (c->priv == priv)) { *p = next; free(c); return ERROR_OK; } else p = &(c->next); c = next; } return ERROR_OK; } int target_call_event_callbacks(target_t *target, enum target_event event) { target_event_callback_t *callback = target_event_callbacks; target_event_callback_t *next_callback; DEBUG("target event %i", event); while (callback) { next_callback = callback->next; callback->callback(target, event, callback->priv); callback = next_callback; } return ERROR_OK; } int target_call_timer_callbacks() { target_timer_callback_t *callback = target_timer_callbacks; target_timer_callback_t *next_callback; struct timeval now; gettimeofday(&now, NULL); while (callback) { next_callback = callback->next; if (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec)) || (now.tv_sec > callback->when.tv_sec)) { callback->callback(callback->priv); if (callback->periodic) { int time_ms = callback->time_ms; callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000; time_ms -= (time_ms % 1000); callback->when.tv_sec = now.tv_sec + time_ms / 1000; if (callback->when.tv_usec > 1000000) { callback->when.tv_usec = callback->when.tv_usec - 1000000; callback->when.tv_sec += 1; } } else target_unregister_timer_callback(callback->callback, callback->priv); } callback = next_callback; } return ERROR_OK; } int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area) { working_area_t *c = target->working_areas; working_area_t *new_wa = NULL; /* only allocate multiples of 4 byte */ if (size % 4) { ERROR("BUG: code tried to allocate unaligned number of bytes, padding"); size = CEIL(size, 4); } /* see if there's already a matching working area */ while (c) { if ((c->free) && (c->size == size)) { new_wa = c; break; } c = c->next; } /* if not, allocate a new one */ if (!new_wa) { working_area_t **p = &target->working_areas; u32 first_free = target->working_area; u32 free_size = target->working_area_size; DEBUG("allocating new working area"); c = target->working_areas; while (c) { first_free += c->size; free_size -= c->size; p = &c->next; c = c->next; } if (free_size < size) { WARNING("not enough working area available"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } new_wa = malloc(sizeof(working_area_t)); new_wa->next = NULL; new_wa->size = size; new_wa->address = first_free; if (target->backup_working_area) { new_wa->backup = malloc(new_wa->size); target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup); } else { new_wa->backup = NULL; } /* put new entry in list */ *p = new_wa; } /* mark as used, and return the new (reused) area */ new_wa->free = 0; *area = new_wa; /* user pointer */ new_wa->user = area; return ERROR_OK; } int target_free_working_area(struct target_s *target, working_area_t *area) { if (area->free) return ERROR_OK; if (target->backup_working_area) target->type->write_memory(target, area->address, 4, area->size / 4, area->backup); area->free = 1; /* mark user pointer invalid */ *area->user = NULL; area->user = NULL; return ERROR_OK; } int target_free_all_working_areas(struct target_s *target) { working_area_t *c = target->working_areas; while (c) { working_area_t *next = c->next; target_free_working_area(target, c); if (c->backup) free(c->backup); free(c); c = next; } target->working_areas = NULL; return ERROR_OK; } int target_register_commands(struct command_context_s *cmd_ctx) { register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, NULL); register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL); register_command(cmd_ctx, NULL, "daemon_startup", handle_daemon_startup_command, COMMAND_CONFIG, NULL); register_command(cmd_ctx, NULL, "target_script", handle_target_script_command, COMMAND_CONFIG, NULL); register_command(cmd_ctx, NULL, "run_and_halt_time", handle_run_and_halt_time_command, COMMAND_CONFIG, NULL); register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_CONFIG, NULL); return ERROR_OK; } int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer) { int retval; DEBUG("writing buffer of %i byte at 0x%8.8x", size, address); /* handle writes of less than 4 byte */ if (size < 4) { if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK) return retval; } /* handle unaligned head bytes */ if (address % 4) { int unaligned = 4 - (address % 4); if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK) return retval; buffer += unaligned; address += unaligned; size -= unaligned; } /* handle aligned words */ if (size >= 4) { int aligned = size - (size % 4); /* use bulk writes above a certain limit. This may have to be changed */ if (aligned > 128) { if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK) return retval; } else { if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK) return retval; } buffer += aligned; address += aligned; size -= aligned; } /* handle tail writes of less than 4 bytes */ if (size > 0) { if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK) return retval; } return ERROR_OK; } int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer) { int retval; DEBUG("reading buffer of %i byte at 0x%8.8x", size, address); /* handle reads of less than 4 byte */ if (size < 4) { if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK) return retval; } /* handle unaligned head bytes */ if (address % 4) { int unaligned = 4 - (address % 4); if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK) return retval; buffer += unaligned; address += unaligned; size -= unaligned; } /* handle aligned words */ if (size >= 4) { int aligned = size - (size % 4); if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK) return retval; buffer += aligned; address += aligned; size -= aligned; } /* handle tail writes of less than 4 bytes */ if (size > 0) { if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK) return retval; } return ERROR_OK; } int target_register_user_commands(struct command_context_s *cmd_ctx) { register_command(cmd_ctx, NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL); register_command(cmd_ctx, NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state"); register_command(cmd_ctx, NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt"); register_command(cmd_ctx, NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target"); register_command(cmd_ctx, NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]"); register_command(cmd_ctx, NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction"); register_command(cmd_ctx, NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init|run_and_halt|run_and_init]"); register_command(cmd_ctx, NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset"); register_command(cmd_ctx, NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words [count]"); register_command(cmd_ctx, NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words [count]"); register_command(cmd_ctx, NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes [count]"); register_command(cmd_ctx, NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word "); register_command(cmd_ctx, NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word "); register_command(cmd_ctx, NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte "); register_command(cmd_ctx, NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint
[hw]"); register_command(cmd_ctx, NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint "); register_command(cmd_ctx, NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint
[value] [mask]"); register_command(cmd_ctx, NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint "); register_command(cmd_ctx, NULL, "load_binary", handle_load_binary_command, COMMAND_EXEC, "load binary
"); register_command(cmd_ctx, NULL, "dump_binary", handle_dump_binary_command, COMMAND_EXEC, "dump binary
"); return ERROR_OK; } int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = targets; int count = 0; if (argc == 1) { int num = strtoul(args[0], NULL, 0); while (target) { count++; target = target->next; } if (num < count) cmd_ctx->current_target = num; else command_print(cmd_ctx, "%i is out of bounds, only %i targets are configured", num, count); return ERROR_OK; } while (target) { command_print(cmd_ctx, "%i: %s (%s), state: %s", count++, target->type->name, target_endianess_strings[target->endianness], target_state_strings[target->state]); target = target->next; } return ERROR_OK; } int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { int i; int found = 0; if (argc < 3) { ERROR("target command requires at least three arguments: "); exit(-1); } /* search for the specified target */ if (args[0] && (args[0][0] != 0)) { for (i = 0; target_types[i]; i++) { if (strcmp(args[0], target_types[i]->name) == 0) { target_t **last_target_p = &targets; /* register target specific commands */ if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK) { ERROR("couldn't register '%s' commands", args[0]); exit(-1); } if (*last_target_p) { while ((*last_target_p)->next) last_target_p = &((*last_target_p)->next); last_target_p = &((*last_target_p)->next); } *last_target_p = malloc(sizeof(target_t)); (*last_target_p)->type = target_types[i]; if (strcmp(args[1], "big") == 0) (*last_target_p)->endianness = TARGET_BIG_ENDIAN; else if (strcmp(args[1], "little") == 0) (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN; else { ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]); exit(-1); } /* what to do on a target reset */ if (strcmp(args[2], "reset_halt") == 0) (*last_target_p)->reset_mode = RESET_HALT; else if (strcmp(args[2], "reset_run") == 0) (*last_target_p)->reset_mode = RESET_RUN; else if (strcmp(args[2], "reset_init") == 0) (*last_target_p)->reset_mode = RESET_INIT; else if (strcmp(args[2], "run_and_halt") == 0) (*last_target_p)->reset_mode = RESET_RUN_AND_HALT; else if (strcmp(args[2], "run_and_init") == 0) (*last_target_p)->reset_mode = RESET_RUN_AND_INIT; else { ERROR("unknown target startup mode %s", args[2]); exit(-1); } (*last_target_p)->run_and_halt_time = 1000; /* default 1s */ (*last_target_p)->reset_script = NULL; (*last_target_p)->post_halt_script = NULL; (*last_target_p)->pre_resume_script = NULL; (*last_target_p)->working_area = 0x0; (*last_target_p)->working_area_size = 0x0; (*last_target_p)->working_areas = NULL; (*last_target_p)->backup_working_area = 0; (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN; (*last_target_p)->state = TARGET_UNKNOWN; (*last_target_p)->reg_cache = NULL; (*last_target_p)->breakpoints = NULL; (*last_target_p)->watchpoints = NULL; (*last_target_p)->next = NULL; (*last_target_p)->arch_info = NULL; (*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p); found = 1; break; } } } /* no matching target found */ if (!found) { ERROR("target '%s' not found", args[0]); exit(-1); } return ERROR_OK; } /* usage: target_script */ int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = NULL; if (argc < 3) { ERROR("incomplete target_script command"); exit(-1); } target = get_target_by_num(strtoul(args[0], NULL, 0)); if (!target) { ERROR("target number '%s' not defined", args[0]); exit(-1); } if (strcmp(args[1], "reset") == 0) { if (target->reset_script) free(target->reset_script); target->reset_script = strdup(args[2]); } else if (strcmp(args[1], "post_halt") == 0) { if (target->post_halt_script) free(target->post_halt_script); target->post_halt_script = strdup(args[2]); } else if (strcmp(args[1], "pre_resume") == 0) { if (target->pre_resume_script) free(target->pre_resume_script); target->pre_resume_script = strdup(args[2]); } else { ERROR("unknown event type: '%s", args[1]); exit(-1); } return ERROR_OK; } int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = NULL; if (argc < 2) { ERROR("incomplete run_and_halt_time command"); exit(-1); } target = get_target_by_num(strtoul(args[0], NULL, 0)); if (!target) { ERROR("target number '%s' not defined", args[0]); exit(-1); } target->run_and_halt_time = strtoul(args[1], NULL, 0); return ERROR_OK; } int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = NULL; if (argc < 4) { ERROR("incomplete working_area command. usage: working_area
<'backup'|'nobackup'>"); exit(-1); } target = get_target_by_num(strtoul(args[0], NULL, 0)); if (!target) { ERROR("target number '%s' not defined", args[0]); exit(-1); } target->working_area = strtoul(args[1], NULL, 0); target->working_area_size = strtoul(args[2], NULL, 0); if (strcmp(args[3], "backup") == 0) { target->backup_working_area = 1; } else if (strcmp(args[3], "nobackup") == 0) { target->backup_working_area = 0; } else { ERROR("unrecognized argument (%s)", args[3]); exit(-1); } return ERROR_OK; } /* process target state changes */ int handle_target(void *priv) { int retval; target_t *target = targets; while (target) { /* only poll if target isn't already halted */ if (target->state != TARGET_HALTED) { if (target_continous_poll) if ((retval = target->type->poll(target)) < 0) { ERROR("couldn't poll target, exiting"); exit(-1); } } target = target->next; } return ERROR_OK; } int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target; reg_t *reg = NULL; int count = 0; char *value; DEBUG(""); target = get_current_target(cmd_ctx); /* list all available registers for the current target */ if (argc == 0) { reg_cache_t *cache = target->reg_cache; count = 0; while(cache) { int i; for (i = 0; i < cache->num_regs; i++) { value = buf_to_char(cache->reg_list[i].value, cache->reg_list[i].size); command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid); free(value); } cache = cache->next; } return ERROR_OK; } /* access a single register by its ordinal number */ if ((args[0][0] >= '0') && (args[0][0] <= '9')) { int num = strtoul(args[0], NULL, 0); reg_cache_t *cache = target->reg_cache; count = 0; while(cache) { int i; for (i = 0; i < cache->num_regs; i++) { if (count++ == num) { reg = &cache->reg_list[i]; break; } } if (reg) break; cache = cache->next; } if (!reg) { command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1); return ERROR_OK; } } else /* access a single register by its name */ { reg = register_get_by_name(target->reg_cache, args[0], 1); if (!reg) { command_print(cmd_ctx, "register %s not found in current target", args[0]); return ERROR_OK; } } /* display a register */ if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9')))) { if ((argc == 2) && (strcmp(args[1], "force") == 0)) reg->valid = 0; if (reg->valid == 0) { reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type); if (arch_type == NULL) { ERROR("BUG: encountered unregistered arch type"); return ERROR_OK; } arch_type->get(reg); } value = buf_to_char(reg->value, reg->size); command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value); free(value); return ERROR_OK; } /* set register value */ if (argc == 2) { u32 new_value = strtoul(args[1], NULL, 0); reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type); if (arch_type == NULL) { ERROR("BUG: encountered unregistered arch type"); return ERROR_OK; } arch_type->set(reg, new_value); value = buf_to_char(reg->value, reg->size); command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value); free(value); return ERROR_OK; } command_print(cmd_ctx, "usage: reg <#|name> [value]"); return ERROR_OK; } int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = get_current_target(cmd_ctx); char buffer[512]; if (argc == 0) { command_print(cmd_ctx, "target state: %s", target_state_strings[target->type->poll(target)]); if (target->state == TARGET_HALTED) { target->type->arch_state(target, buffer, 512); buffer[511] = 0; command_print(cmd_ctx, "%s", buffer); } } else { if (strcmp(args[0], "on") == 0) { target_continous_poll = 1; } else if (strcmp(args[0], "off") == 0) { target_continous_poll = 0; } } return ERROR_OK; } int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = get_current_target(cmd_ctx); struct timeval timeout, now; gettimeofday(&timeout, NULL); timeval_add_time(&timeout, 5, 0); command_print(cmd_ctx, "waiting for target halted..."); while(target->type->poll(target)) { if (target->state == TARGET_HALTED) { command_print(cmd_ctx, "target halted"); break; } target_call_timer_callbacks(); gettimeofday(&now, NULL); if ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)) { command_print(cmd_ctx, "timed out while waiting for target halt"); ERROR("timed out while waiting for target halt"); break; } } return ERROR_OK; } int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { int retval; target_t *target = get_current_target(cmd_ctx); DEBUG(""); command_print(cmd_ctx, "requesting target halt..."); if ((retval = target->type->halt(target)) != ERROR_OK) { switch (retval) { case ERROR_TARGET_ALREADY_HALTED: command_print(cmd_ctx, "target already halted"); break; case ERROR_TARGET_TIMEOUT: command_print(cmd_ctx, "target timed out... shutting down"); exit(-1); default: command_print(cmd_ctx, "unknown error... shutting down"); exit(-1); } } return ERROR_OK; } /* what to do on daemon startup */ int handle_daemon_startup_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { if (argc == 1) { if (strcmp(args[0], "attach") == 0) { startup_mode = DAEMON_ATTACH; return ERROR_OK; } else if (strcmp(args[0], "reset") == 0) { startup_mode = DAEMON_RESET; return ERROR_OK; } } WARNING("invalid daemon_startup configuration directive: %s", args[0]); return ERROR_OK; } int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = get_current_target(cmd_ctx); int retval; command_print(cmd_ctx, "requesting target halt and executing a soft reset"); if ((retval = target->type->soft_reset_halt(target)) != ERROR_OK) { switch (retval) { case ERROR_TARGET_TIMEOUT: command_print(cmd_ctx, "target timed out... shutting down"); exit(-1); default: command_print(cmd_ctx, "unknown error... shutting down"); exit(-1); } } return ERROR_OK; } int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = get_current_target(cmd_ctx); enum target_reset_mode reset_mode = RESET_RUN; DEBUG(""); if (argc >= 1) { if (strcmp("run", args[0]) == 0) reset_mode = RESET_RUN; else if (strcmp("halt", args[0]) == 0) reset_mode = RESET_HALT; else if (strcmp("init", args[0]) == 0) reset_mode = RESET_INIT; else if (strcmp("run_and_halt", args[0]) == 0) { reset_mode = RESET_RUN_AND_HALT; if (argc >= 2) { target->run_and_halt_time = strtoul(args[1], NULL, 0); } } else if (strcmp("run_and_init", args[0]) == 0) { reset_mode = RESET_RUN_AND_INIT; if (argc >= 2) { target->run_and_halt_time = strtoul(args[1], NULL, 0); } } else { command_print(cmd_ctx, "usage: reset ['run', 'halt', 'init', 'run_and_halt', 'run_and_init]"); return ERROR_OK; } target->reset_mode = reset_mode; } target_process_reset(cmd_ctx); return ERROR_OK; } int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { int retval; target_t *target = get_current_target(cmd_ctx); DEBUG(""); if (argc == 0) retval = target->type->resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */ else if (argc == 1) retval = target->type->resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */ else { command_print(cmd_ctx, "usage: resume [address]"); return ERROR_OK; } if (retval != ERROR_OK) { switch (retval) { case ERROR_TARGET_NOT_HALTED: command_print(cmd_ctx, "target not halted"); break; default: command_print(cmd_ctx, "unknown error... shutting down"); exit(-1); } } return ERROR_OK; } int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = get_current_target(cmd_ctx); DEBUG(""); if (argc == 0) target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */ if (argc == 1) target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */ return ERROR_OK; } int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { int count = 1; int size = 4; u32 address = 0; int i; char output[128]; int output_len; int retval; u8 *buffer; target_t *target = get_current_target(cmd_ctx); if (argc < 1) return ERROR_OK; if (argc == 2) count = strtoul(args[1], NULL, 0); address = strtoul(args[0], NULL, 0); switch (cmd[2]) { case 'w': size = 4; break; case 'h': size = 2; break; case 'b': size = 1; break; default: return ERROR_OK; } buffer = calloc(count, size); if ((retval = target->type->read_memory(target, address, size, count, buffer)) != ERROR_OK) { switch (retval) { case ERROR_TARGET_UNALIGNED_ACCESS: command_print(cmd_ctx, "error: address not aligned"); break; case ERROR_TARGET_NOT_HALTED: command_print(cmd_ctx, "error: target must be halted for memory accesses"); break; case ERROR_TARGET_DATA_ABORT: command_print(cmd_ctx, "error: access caused data abort, system possibly corrupted"); break; default: command_print(cmd_ctx, "error: unknown error"); break; } } output_len = 0; for (i = 0; i < count; i++) { if (i%8 == 0) output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size)); switch (size) { case 4: output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", ((u32*)buffer)[i]); break; case 2: output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", ((u16*)buffer)[i]); break; case 1: output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", ((u8*)buffer)[i]); break; } if ((i%8 == 7) || (i == count - 1)) { command_print(cmd_ctx, output); output_len = 0; } } free(buffer); return ERROR_OK; } int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { u32 address = 0; u32 value = 0; int retval; target_t *target = get_current_target(cmd_ctx); if (argc < 2) return ERROR_OK; address = strtoul(args[0], NULL, 0); value = strtoul(args[1], NULL, 0); switch (cmd[2]) { case 'w': retval = target->type->write_memory(target, address, 4, 1, (u8*)&value); break; case 'h': retval = target->type->write_memory(target, address, 2, 1, (u8*)&value); break; case 'b': retval = target->type->write_memory(target, address, 1, 1, (u8*)&value); break; default: return ERROR_OK; } switch (retval) { case ERROR_TARGET_UNALIGNED_ACCESS: command_print(cmd_ctx, "error: address not aligned"); break; case ERROR_TARGET_DATA_ABORT: command_print(cmd_ctx, "error: access caused data abort, system possibly corrupted"); break; case ERROR_TARGET_NOT_HALTED: command_print(cmd_ctx, "error: target must be halted for memory accesses"); break; case ERROR_OK: break; default: command_print(cmd_ctx, "error: unknown error"); break; } return ERROR_OK; } int handle_load_binary_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { FILE *binary; u32 address; struct stat binary_stat; u32 binary_size; u8 *buffer; u32 buf_cnt; struct timeval start, end, duration; target_t *target = get_current_target(cmd_ctx); if (argc != 2) { command_print(cmd_ctx, "usage: load_binary
"); return ERROR_OK; } address = strtoul(args[1], NULL, 0); if (stat(args[0], &binary_stat) == -1) { ERROR("couldn't stat() %s: %s", args[0], strerror(errno)); command_print(cmd_ctx, "error accessing file %s", args[0]); return ERROR_OK; } if (!(binary = fopen(args[0], "rb"))) { ERROR("couldn't open %s: %s", args[0], strerror(errno)); command_print(cmd_ctx, "error accessing file %s", args[0]); return ERROR_OK; } buffer = malloc(128 * 1024); gettimeofday(&start, NULL); binary_size = binary_stat.st_size; while (binary_size > 0) { buf_cnt = fread(buffer, 1, 128*1024, binary); target_write_buffer(target, address, buf_cnt, buffer); address += buf_cnt; binary_size -= buf_cnt; } gettimeofday(&end, NULL); free(buffer); timeval_subtract(&duration, &end, &start); command_print(cmd_ctx, "downloaded %lli byte in %is %ius", (long long) binary_stat.st_size, duration.tv_sec, duration.tv_usec); fclose(binary); return ERROR_OK; } int handle_dump_binary_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { FILE *binary; u32 address; u32 size; u8 buffer[560]; target_t *target = get_current_target(cmd_ctx); if (argc != 3) { command_print(cmd_ctx, "usage: dump_binary
"); return ERROR_OK; } address = strtoul(args[1], NULL, 0); size = strtoul(args[2], NULL, 0); if (!(binary = fopen(args[0], "wb"))) { ERROR("couldn't open %s for writing: %s", args[0], strerror(errno)); command_print(cmd_ctx, "error accessing file %s", args[0]); return ERROR_OK; } if ((address & 3) || (size & 3)) { command_print(cmd_ctx, "only 32-bit aligned address and size are supported"); return ERROR_OK; } while (size > 0) { u32 this_run_size = (size > 560) ? 560 : size; target->type->read_memory(target, address, 4, this_run_size / 4, buffer); fwrite(buffer, 1, this_run_size, binary); size -= this_run_size; address += this_run_size; } fclose(binary); return ERROR_OK; } int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { int retval; target_t *target = get_current_target(cmd_ctx); if (argc == 0) { breakpoint_t *breakpoint = target->breakpoints; while (breakpoint) { if (breakpoint->type == BKPT_SOFT) { char* buf = buf_to_char(breakpoint->orig_instr, breakpoint->length); command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf); free(buf); } else { command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set); } breakpoint = breakpoint->next; } } else if (argc >= 2) { int hw = BKPT_SOFT; u32 length = 0; length = strtoul(args[1], NULL, 0); if (argc >= 3) if (strcmp(args[2], "hw") == 0) hw = BKPT_HARD; if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK) { switch (retval) { case ERROR_TARGET_NOT_HALTED: command_print(cmd_ctx, "target must be halted to set breakpoints"); break; case ERROR_TARGET_RESOURCE_NOT_AVAILABLE: command_print(cmd_ctx, "no more breakpoints available"); break; default: command_print(cmd_ctx, "unknown error, breakpoint not set"); break; } } else { command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0)); } } else { command_print(cmd_ctx, "usage: bp
['hw']"); } return ERROR_OK; } int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = get_current_target(cmd_ctx); if (argc > 0) breakpoint_remove(target, strtoul(args[0], NULL, 0)); return ERROR_OK; } int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = get_current_target(cmd_ctx); if (argc == 0) { watchpoint_t *watchpoint = target->watchpoints; while (watchpoint) { command_print(cmd_ctx, "address: 0x%8.8x, mask: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask); watchpoint = watchpoint->next; } } else if (argc >= 2) { enum watchpoint_rw type = WPT_ACCESS; u32 data_value = 0x0; u32 data_mask = 0xffffffff; if (argc >= 3) { switch(args[2][0]) { case 'r': type = WPT_READ; break; case 'w': type = WPT_WRITE; break; case 'a': type = WPT_ACCESS; break; default: command_print(cmd_ctx, "usage: wp
[r/w/a] [value] [mask]"); return ERROR_OK; } } if (argc >= 4) { data_value = strtoul(args[3], NULL, 0); } if (argc >= 5) { data_mask = strtoul(args[4], NULL, 0); } watchpoint_add(target, strtoul(args[0], NULL, 0), strtoul(args[1], NULL, 0), type, data_value, data_mask); } else { command_print(cmd_ctx, "usage: wp
[r/w/a] [value] [mask]"); } return ERROR_OK; } int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { target_t *target = get_current_target(cmd_ctx); if (argc > 0) watchpoint_remove(target, strtoul(args[0], NULL, 0)); return ERROR_OK; }