David Brownell <david-b@pacbell.net>:
[openocd.git] / doc / openocd.texi
index fb459ddee82708fba48e6ca3c3f25d00e1365dcc..329a98ae2391d60996189d36e99c21dd2a092ef9 100644 (file)
@@ -1,18 +1,23 @@
-\input texinfo @c -*-texinfo-*-
+\input texinfo @c -*-texinfo-*-
 @c %**start of header
 @setfilename openocd.info
-@settitle Open On-Chip Debugger (OpenOCD)
+@settitle OpenOCD User's Guide
 @dircategory Development
 @direntry
-@paragraphindent 0
-* OpenOCD: (openocd).      Open On-Chip Debugger.
+* OpenOCD: (openocd).      OpenOCD User's Guide
 @end direntry
+@paragraphindent 0
 @c %**end of header
 
 @include version.texi
 
 @copying
 
+This User's Guide documents
+release @value{VERSION},
+dated @value{UPDATED},
+of the Open On-Chip Debugger (OpenOCD).
+
 @itemize @bullet
 @item Copyright @copyright{} 2008 The OpenOCD Project
 @item Copyright @copyright{} 2007-2008 Spencer Oliver @email{spen@@spen-soft.co.uk}
@@ -31,9 +36,12 @@ Free Documentation License''.
 @end copying
 
 @titlepage
-@title Open On-Chip Debugger (OpenOCD)
-@subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
+@titlefont{@emph{Open On-Chip Debugger:}}
+@sp 1
+@title OpenOCD User's Guide
+@subtitle for release @value{VERSION}
 @subtitle @value{UPDATED}
+
 @page
 @vskip 0pt plus 1filll
 @insertcopying
@@ -42,18 +50,17 @@ Free Documentation License''.
 @summarycontents
 @contents
 
-@node Top, About, , (dir)
-@top OpenOCD
-
-This manual documents edition @value{EDITION} of the Open On-Chip Debugger
-(OpenOCD) version @value{VERSION}, @value{UPDATED}.
+@ifnottex
+@node Top
+@top OpenOCD User's Guide
 
 @insertcopying
+@end ifnottex
 
 @menu
-* About::                            About OpenOCD.
+* About::                            About OpenOCD
 * Developers::                       OpenOCD Developers
-* Building::                         Building OpenOCD
+* Building OpenOCD::                 Building OpenOCD From SVN
 * JTAG Hardware Dongles::            JTAG Hardware Dongles
 * Running::                          Running OpenOCD
 * Simple Configuration Files::       Simple Configuration Files
@@ -62,70 +69,145 @@ This manual documents edition @value{EDITION} of the Open On-Chip Debugger
 * Daemon Configuration::             Daemon Configuration
 * Interface - Dongle Configuration:: Interface - Dongle Configuration
 * Reset Configuration::              Reset Configuration
-* Tap Creation::                     Tap Creation
-* Target Configuration::             Target Configuration
-* Flash Configuration::              Flash Configuration
+* TAP Declaration::                  TAP Declaration
+* CPU Configuration::                CPU Configuration
+* Flash Commands::                   Flash Commands
+* NAND Flash Commands::              NAND Flash Commands
 * General Commands::                 General Commands
+* Architecture and Core Commands::   Architecture and Core Commands
 * JTAG Commands::                    JTAG Commands
 * Sample Scripts::                   Sample Target Scripts
 * TFTP::                             TFTP
 * GDB and OpenOCD::                  Using GDB and OpenOCD
 * Tcl Scripting API::                Tcl Scripting API
-* Upgrading::                        Deprecated/Removed commands
+* Upgrading::                        Deprecated/Removed Commands
 * Target Library::                   Target Library
 * FAQ::                              Frequently Asked Questions
 * Tcl Crash Course::                 Tcl Crash Course
 * License::                          GNU Free Documentation License
+
 @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
 @comment case issue with ``Index.html'' and ``index.html''
 @comment Occurs when creating ``--html --no-split'' output
 @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
-* OpenOCD Index::                    Main index.
+* OpenOCD Concept Index::            Concept Index
+* Command and Driver Index::         Command and Driver Index
 @end menu
 
 @node About
 @unnumbered About
 @cindex about
 
+OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
+University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
+Since that time, the project has grown into an active open-source project,
+supported by a diverse community of software and hardware developers from
+around the world.
+
+@section What is OpenOCD?
+
 The Open On-Chip Debugger (OpenOCD) aims to provide debugging,
 in-system programming and boundary-scan testing for embedded target
 devices.
 
 @b{JTAG:} OpenOCD uses a ``hardware interface dongle'' to communicate
-with the JTAG (IEEE 1149.1) compliant taps on your target board.
+with the JTAG (IEEE 1149.1) compliant TAPs on your target board.
+A @dfn{TAP} is a ``Test Access Port'', a module which processes
+special instructions and data.  TAPs are daisy-chained within and
+between chips and boards.
 
 @b{Dongles:} OpenOCD currently supports many types of hardware dongles: USB
-Based, Parallel Port Based, and other standalone boxes that run
-OpenOCD internally. See the section titled: @xref{JTAG Hardware Dongles}.
+based, parallel port based, and other standalone boxes that run
+OpenOCD internally. @xref{JTAG Hardware Dongles}.
 
 @b{GDB Debug:} It allows ARM7 (ARM7TDMI and ARM720t), ARM9 (ARM920T,
 ARM922T, ARM926EJ--S, ARM966E--S), XScale (PXA25x, IXP42x) and
-Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be
-debugged via the GDB Protocol.
+Cortex-M3 (Stellaris LM3 and ST STM32) based cores to be
+debugged via the GDB protocol.
 
 @b{Flash Programing:} Flash writing is supported for external CFI
-compatible flashes (Intel and AMD/Spansion command set) and several
-internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3 and
-STM32x). Preliminary support for using the LPC3180's NAND flash
-controller is included.
+compatible NOR flashes (Intel and AMD/Spansion command set) and several
+internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3, and
+STM32x). Preliminary support for various NAND flash controllers
+(LPC3180, Orion, S3C24xx, more) controller is included.
+
+@section OpenOCD Web Site
+
+The OpenOCD web site provides the latest public news from the community:
+
+@uref{http://openocd.berlios.de/web/}
+
+@section Latest User's Guide:
+
+The user's guide you are now reading may not be the latest one
+available.  A version for more recent code may be available.
+Its HTML form is published irregularly at:
+
+@uref{http://openocd.berlios.de/doc/}
+
+PDF form is likewise published at:
+
+@uref{http://openocd.berlios.de/doc/pdf/}
+
+@section OpenOCD User's Forum
+
+There is an OpenOCD forum (phpBB) hosted by SparkFun:
+
+@uref{http://forum.sparkfun.com/viewforum.php?f=18}
+
 
 @node Developers
-@chapter Developers
+@chapter OpenOCD Developer Resources
 @cindex developers
 
-OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
-University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
-Others interested in improving the state of free and open debug and testing technology
-are welcome to participate.
+If you are interested in improving the state of OpenOCD's debugging and
+testing support, new contributions will be welcome.  Motivated developers
+can produce new target, flash or interface drivers, improve the
+documentation, as well as more conventional bug fixes and enhancements.
+
+The resources in this chapter are available for developers wishing to explore
+or expand the OpenOCD source code.
+
+@section OpenOCD Subversion Repository
+
+The ``Building From Source'' section provides instructions to retrieve
+and and build the latest version of the OpenOCD source code.
+@xref{Building OpenOCD}.
+
+Developers that want to contribute patches to the OpenOCD system are
+@b{strongly} encouraged to base their work off of the most recent trunk
+revision.  Patches created against older versions may require additional
+work from their submitter in order to be updated for newer releases.
+
+@section Doxygen Developer Manual
+
+During the development of the 0.2.0 release, the OpenOCD project began
+providing a Doxygen reference manual.  This document contains more
+technical information about the software internals, development
+processes, and similar documentation:
 
-Other developers have contributed support for additional targets and flashes as well
-as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors. 
+@uref{http://openocd.berlios.de/doc/doxygen/index.html}
 
-The main OpenOCD web site is available at @uref{http://openocd.berlios.de/web/}
+This document is a work-in-progress, but contributions would be welcome
+to fill in the gaps.  All of the source files are provided in-tree,
+listed in the Doxyfile configuration in the top of the repository trunk.
 
-@node Building
-@chapter Building
-@cindex building OpenOCD
+@section OpenOCD Developer Mailing List
+
+The OpenOCD Developer Mailing List provides the primary means of
+communication between developers:
+
+@uref{https://lists.berlios.de/mailman/listinfo/openocd-development}
+
+All drivers developers are enouraged to also subscribe to the list of
+SVN commits to keep pace with the ongoing changes:
+
+@uref{https://lists.berlios.de/mailman/listinfo/openocd-svn}
+
+
+@node Building OpenOCD
+@chapter Building OpenOCD
+@cindex building
 
 @section Pre-Built Tools
 If you are interested in getting actual work done rather than building
@@ -135,7 +217,7 @@ stable than SVN trunk where bleeding edge development takes place.
 
 @section Packagers Please Read!
 
-If you are a @b{PACKAGER} of OpenOCD if you
+You are a @b{PACKAGER} of OpenOCD if you
 
 @enumerate
 @item @b{Sell dongles} and include pre-built binaries
@@ -144,38 +226,42 @@ If you are a @b{PACKAGER} of OpenOCD if you
 @item @b{Build packages} i.e.: RPM files, or DEB files for a Linux Distro
 @end enumerate
 
-As a @b{PACKAGER} - you are at the top of the food chain. You solve
-problems for downstream users. What you fix or solve - solves hundreds
-if not thousands of user questions. If something does not work for you
-please let us know. That said, would also like you to follow a few
+As a @b{PACKAGER}, you will experience first reports of most issues.
+When you fix those problems for your users, your solution may help
+prevent hundreds (if not thousands) of other questions from other users.
+
+If something does not work for you, please work to inform the OpenOCD
+developers know how to improve the system or documentation to avoid
+future problems, and follow-up to help us ensure the issue will be fully
+resolved in our future releases.
+
+That said, the OpenOCD developers would also like you to follow a few
 suggestions:
 
 @enumerate
-@item @b{Always build with printer ports enabled}
-@item @b{Try to use LIBFTDI + LIBUSB where possible}. You cover more bases
+@item @b{Always build with printer ports enabled.}
+@item @b{Try to use LIBFTDI + LIBUSB where possible. You cover more bases.}
 @end enumerate
 
-It is your decision..
-
 @itemize @bullet
-@item @b{Why YES to LIBFTDI + LIBUSB}
+@item @b{Why YES to LIBFTDI + LIBUSB?}
 @itemize @bullet
 @item @b{LESS} work - libusb perhaps already there
-@item @b{LESS} work - identical code multiple platforms
+@item @b{LESS} work - identical code, multiple platforms
 @item @b{MORE} dongles are supported
 @item @b{MORE} platforms are supported
 @item @b{MORE} complete solution
 @end itemize
-@item @b{Why not LIBFTDI + LIBUSB} (i.e.: ftd2xx instead)
+@item @b{Why not LIBFTDI + LIBUSB} (i.e.: ftd2xx instead)?
 @itemize @bullet
-@item @b{LESS} Some say it is slower.
+@item @b{LESS} speed - some say it is slower
 @item @b{LESS} complex to distribute (external dependencies)
 @end itemize
 @end itemize
 
 @section Building From Source
 
-You can download the current SVN version with SVN client of your choice from the
+You can download the current SVN version with an SVN client of your choice from the
 following repositories:
 
  @uref{svn://svn.berlios.de/openocd/trunk}
@@ -192,8 +278,15 @@ current directory):
  svn checkout svn://svn.berlios.de/openocd/trunk openocd
 @end example
 
-Building OpenOCD requires a recent version of the GNU autotools.
-On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
+If you prefer GIT based tools, the @command{git-svn} package works too:
+
+@example
+ git svn clone -s svn://svn.berlios.de/openocd
+@end example
+
+Building OpenOCD from a repository requires a recent version of the
+GNU autotools (autoconf >= 2.59 and automake >= 1.9).
+For building on Windows,
 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
 paths, resulting in obscure dependency errors (This is an observation I've gathered
@@ -201,72 +294,95 @@ from the logs of one user - correct me if I'm wrong).
 
 You further need the appropriate driver files, if you want to build support for
 a FTDI FT2232 based interface:
+
 @itemize @bullet
 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
-homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID. 
+homepage (@uref{http://www.amontec.com}). The JTAGkey uses a non-standard VID/PID.
 @end itemize
 
-libftdi is supported under Windows. Do not use versions earlier then 0.14.
+libftdi is supported under Windows. Do not use versions earlier than 0.14.
 
 In general, the D2XX driver provides superior performance (several times as fast),
 but has the draw-back of being binary-only - though that isn't that bad, as it isn't
 a kernel module, only a user space library.
 
 To build OpenOCD (on both Linux and Cygwin), use the following commands:
+
 @example
  ./bootstrap 
 @end example
+
 Bootstrap generates the configure script, and prepares building on your system.
+
 @example
  ./configure [options, see below]
 @end example
+
 Configure generates the Makefiles used to build OpenOCD.
+
 @example
  make 
  make install
 @end example
+
 Make builds OpenOCD, and places the final executable in ./src/, the last step, ``make install'' is optional.
 
 The configure script takes several options, specifying which JTAG interfaces
-should be included:
+should be included (among other things):
 
 @itemize @bullet
 @item
-@option{--enable-parport} - Bit bang pc printer ports.
+@option{--enable-parport} - Enable building the PC parallel port driver.
+@item
+@option{--enable-parport_ppdev} - Enable use of ppdev (/dev/parportN) for parport.
+@item
+@option{--enable-parport_giveio} - Enable use of giveio for parport instead of ioperm.
+@item
+@option{--enable-amtjtagaccel} - Enable building the Amontec JTAG-Accelerator driver.
+@item
+@option{--enable-ecosboard} - Enable building support for eCosBoard based JTAG debugger.
 @item
-@option{--enable-parport_ppdev} - Parallel Port [see below]
+@option{--enable-ioutil} - Enable ioutil functions - useful for standalone OpenOCD implementations.
 @item
-@option{--enable-parport_giveio} - Parallel Port [see below]
+@option{--enable-httpd} - Enable builtin httpd server - useful for standalone OpenOCD implementations.
 @item
-@option{--enable-amtjtagaccel} - Parallel Port [Amontec, see below]
+@option{--enable-ep93xx} - Enable building support for EP93xx based SBCs.
 @item
-@option{--enable-ft2232_ftd2xx} - Numerous USB Type ARM JTAG dongles use the FT2232C chip from this FTDICHIP.COM chip (closed source).
+@option{--enable-at91rm9200} - Enable building support for AT91RM9200 based SBCs.
 @item
-@option{--enable-ft2232_libftdi} - An open source (free) alternate to FTDICHIP.COM ftd2xx solution (Linux, MacOS, Cygwin)
+@option{--enable-gw16012} - Enable building support for the Gateworks GW16012 JTAG programmer.
 @item
-@option{--with-ftd2xx-win32-zipdir=PATH} - If using FTDICHIP.COM ft2232c, point at the directory where the Win32 FTDICHIP.COM 'CDM' driver zip file was unpacked.
+@option{--enable-ft2232_ftd2xx} - Numerous USB type ARM JTAG dongles use the FT2232C chip from this FTDICHIP.COM chip (closed source).
 @item
-@option{--with-ftd2xx-linux-tardir=PATH} - Linux only equal of @option{--with-ftd2xx-win32-zipdir}, where you unpacked the TAR.GZ file.
+@option{--enable-ft2232_libftdi} - An open source (free) alternative to FTDICHIP.COM ftd2xx solution (Linux, MacOS, Cygwin).
 @item
-@option{--with-ftd2xx-lib=shared|static} - Linux only. Default: static, specifies how the FTDICHIP.COM libftd2xx driver should be linked. Note 'static' only works in conjunction with @option{--with-ftd2xx-linux-tardir}. Shared is supported (12/26/2008), however you must manually install the required header files and shared libraries in an appropriate place. This uses ``libusb'' internally.
+@option{--with-ftd2xx-win32-zipdir=PATH} - If using FTDICHIP.COM ft2232c driver,
+give the directory where the Win32 FTDICHIP.COM 'CDM' driver zip file was unpacked.
 @item
-@option{--enable-gw16012}
+@option{--with-ftd2xx-linux-tardir=PATH} - If using FTDICHIP.COM ft2232c driver
+on Linux, give the directory where the Linux driver's TAR.GZ file was unpacked.
 @item
-@option{--enable-usbprog}
+@option{--with-ftd2xx-lib=shared|static} - Linux only. Default: static. Specifies how the FTDICHIP.COM libftd2xx driver should be linked. Note: 'static' only works in conjunction with @option{--with-ftd2xx-linux-tardir}. The 'shared' value is supported (12/26/2008), however you must manually install the required header files and shared libraries in an appropriate place. This uses ``libusb'' internally.
 @item
-@option{--enable-presto_libftdi}
+@option{--enable-presto_libftdi} - Enable building support for ASIX Presto programmer using the libftdi driver.
 @item
-@option{--enable-presto_ftd2xx}
+@option{--enable-presto_ftd2xx} - Enable building support for ASIX Presto programmer using the FTD2XX driver.
 @item
-@option{--enable-jlink} - From SEGGER
+@option{--enable-usbprog} - Enable building support for the USBprog JTAG programmer.
 @item
-@option{--enable-vsllink}
+@option{--enable-oocd_trace} - Enable building support for the OpenOCD+trace ETM capture device.
 @item
-@option{--enable-rlink} - Raisonance.com dongle.
+@option{--enable-jlink} - Enable building support for the Segger J-Link JTAG programmer.
 @item
-@option{--enable-arm-jtag-ew} - Olimex ARM-JTAG-EW dongle.
+@option{--enable-vsllink} - Enable building support for the Versaloon-Link JTAG programmer.
+@item
+@option{--enable-rlink} - Enable building support for the Raisonance RLink JTAG programmer.
+@item
+@option{--enable-arm-jtag-ew} - Enable building support for the Olimex ARM-JTAG-EW programmer.
+@item
+@option{--enable-dummy} - Enable building the dummy port driver.
 @end itemize
 
 @section Parallel Port Dongles
@@ -276,6 +392,9 @@ both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} optio
 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
 
+The same is true for the @option{--enable-parport_giveio} option, you have to
+use both the @option{--enable-parport} AND the @option{--enable-parport_giveio} option if you want to use giveio instead of ioperm parallel port access method.
+
 @section FT2232C Based USB Dongles 
 
 There are 2 methods of using the FTD2232, either (1) using the
@@ -290,53 +409,66 @@ files ``in an appropriate place'' As a result, there are two
 
 Below is an example build process:
 
-1) Check out the latest version of ``openocd'' from SVN.
+@enumerate
+@item Check out the latest version of ``openocd'' from SVN.
 
-2) Download & Unpack either the Windows or Linux FTD2xx Drivers
-    (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
+@item If you are using the FTDICHIP.COM driver, download
+and unpack the Windows or Linux FTD2xx drivers
+(@uref{http://www.ftdichip.com/Drivers/D2XX.htm}).
+If you are using the libftdi driver, install that package
+(e.g. @command{apt-get install libftdi} on systems with APT).
 
 @example
-   /home/duane/ftd2xx.win32    => the Cygwin/Win32 ZIP file contents.
-   /home/duane/libftd2xx0.4.16 => the Linux TAR file contents.
+/home/duane/ftd2xx.win32    => the Cygwin/Win32 ZIP file contents
+/home/duane/libftd2xx0.4.16 => the Linux TAR.GZ file contents
 @end example
 
-3) Configure with these options:
+@item Configure with options resembling the following.
 
+@enumerate a
+@item Cygwin FTDICHIP solution:
 @example
-Cygwin FTCICHIP solution
-   ./configure --prefix=/home/duane/mytools \ 
-                  --enable-ft2232_ftd2xx \
-                  --with-ftd2xx-win32-zipdir=/home/duane/ftd2xx.win32
+./configure --prefix=/home/duane/mytools \
+        --enable-ft2232_ftd2xx \
+        --with-ftd2xx-win32-zipdir=/home/duane/ftd2xx.win32
+@end example
 
-Linux FTDICHIP solution
-   ./configure --prefix=/home/duane/mytools \
-                  --enable-ft2232_ftd2xx \
-                  --with-ft2xx-linux-tardir=/home/duane/libftd2xx0.4.16
+@item Linux FTDICHIP solution:
+@example
+./configure --prefix=/home/duane/mytools \
+        --enable-ft2232_ftd2xx \
+        --with-ft2xx-linux-tardir=/home/duane/libftd2xx0.4.16
+@end example
 
-Cygwin/Linux LIBFTDI solution
-    Assumes: 
-    1a) For Windows: The Windows port of LIBUSB is in place.
-    1b) For Linux: libusb has been built and is inplace.
+@item Cygwin/Linux LIBFTDI solution ... assuming that
+@itemize
+@item For Windows -- that the Windows port of LIBUSB is in place.
+@item For Linux -- that libusb has been built/installed and is in place.
+@item That libftdi has been built and installed (relies on libusb).
+@end itemize
 
-    2) And libftdi has been built and installed
-    Note: libftdi - relies upon libusb.
+Then configure the libftdi solution like this:
 
-    ./configure --prefix=/home/duane/mytools \
-                   --enable-ft2232_libftdi
-       
+@example
+./configure --prefix=/home/duane/mytools \
+        --enable-ft2232_libftdi
 @end example
+@end enumerate
 
-4) Then just type ``make'', and perhaps ``make install''.
+@item Then just type ``make'', and perhaps ``make install''.
+@end enumerate
 
 
-@section Miscellaneous configure options
+@section Miscellaneous Configure Options
 
 @itemize @bullet
 @item
-@option{--enable-gccwarnings} - enable extra gcc warnings during build.
+@option{--disable-option-checking} - Ignore unrecognized @option{--enable} and @option{--with} options.
+@item
+@option{--enable-gccwarnings} - Enable extra gcc warnings during build.
 Default is enabled.
 @item
-@option{--enable-release} - enable building of a openocd release, generally
+@option{--enable-release} - Enable building of an OpenOCD release, generally
 this is for developers. It simply omits the svn version string when the
 openocd @option{-v} is executed.
 @end itemize
@@ -357,7 +489,10 @@ an adapter .... [snip]
 In the OpenOCD case, this generally refers to @b{a small adapater} one
 attaches to your computer via USB or the Parallel Printer Port.  The
 execption being the Zylin ZY1000 which is a small box you attach via
-an ethernet cable.
+an ethernet cable. The Zylin ZY1000 has the advantage that it does not
+require any drivers to be installed on the developer PC. It also has
+a built in web interface. It supports RTCK/RCLK or adaptive clocking
+and has a built in relay to power cycle targets remotely.
 
 
 @section Choosing a Dongle
@@ -374,15 +509,19 @@ There are three things you should keep in mind when choosing a dongle.
 @section Stand alone Systems
 
 @b{ZY1000} See: @url{http://www.zylin.com/zy1000.html} Technically, not a
-dongle, but a standalone box.
+dongle, but a standalone box. The ZY1000 has the advantage that it does
+not require any drivers installed on the developer PC. It also has
+a built in web interface. It supports RTCK/RCLK or adaptive clocking
+and has a built in relay to power cycle targets remotely.
 
 @section USB FT2232 Based
 
 There are many USB JTAG dongles on the market, many of them are based
 on a chip from ``Future Technology Devices International'' (FTDI)
-known as the FTDI FT2232.
-
-See: @url{http://www.ftdichip.com} or @url{http://www.ftdichip.com/Products/FT2232H.htm}
+known as the FTDI FT2232; this is a USB full speed (12 Mbps) chip.
+See: @url{http://www.ftdichip.com} for more information.
+In summer 2009, USB high speed (480 Mbps) versions of these FTDI
+chips are starting to become available in JTAG adapters.
 
 As of 28/Nov/2008, the following are supported:
 
@@ -396,19 +535,23 @@ As of 28/Nov/2008, the following are supported:
 @item @b{signalyzer}
 @* See: @url{http://www.signalyzer.com}
 @item @b{evb_lm3s811}
-@* See: @url{http://www.luminarymicro.com} - The Luminary Micro Stellaris LM3S811 eval board has an FTD2232C chip built in.
+@* See: @url{http://www.luminarymicro.com} - The Stellaris LM3S811 eval board has an FTD2232C chip built in.
 @item @b{olimex-jtag}
 @* See: @url{http://www.olimex.com}
 @item @b{flyswatter}
 @* See: @url{http://www.tincantools.com}
 @item @b{turtelizer2}
-@* See: @url{http://www.ethernut.de}, or @url{http://www.ethernut.de/en/hardware/turtelizer/index.html}
+@* See:
+@uref{http://www.ethernut.de/en/hardware/turtelizer/index.html, Turtelizer 2}, or
+@url{http://www.ethernut.de}
 @item @b{comstick}
 @* Link: @url{http://www.hitex.com/index.php?id=383}
 @item @b{stm32stick}
 @* Link @url{http://www.hitex.com/stm32-stick}
 @item @b{axm0432_jtag}
 @* Axiom AXM-0432 Link @url{http://www.axman.com}
+@item @b{cortino}
+@* Link @url{http://www.hitex.com/index.php?id=cortino}
 @end itemize
 
 @section USB JLINK based
@@ -474,7 +617,8 @@ produced, PDF schematics are easily found and it is easy to make.
 @* Link: @url{http://www.gateworks.com/products/avila_accessories/gw16042.php}
 
 @item @b{Wiggler2}
-@* Link: @url{http://www.ccac.rwth-aachen.de/~michaels/index.php/hardware/armjtag}
+@*@uref{http://www.ccac.rwth-aachen.de/@/~michaels/@/index.php/hardware/@/armjtag,
+Improved parallel-port wiggler-style JTAG adapter}
 
 @item @b{Wiggler_ntrst_inverted}
 @* Yet another variation - See the source code, src/jtag/parport.c
@@ -492,12 +636,13 @@ produced, PDF schematics are easily found and it is easy to make.
 @* Unknown.
 
 @item @b{Lattice}
-@* ispDownload from Lattice Semiconductor @url{http://www.latticesemi.com/lit/docs/devtools/dlcable.pdf}
+@* ispDownload from Lattice Semiconductor
+@url{http://www.latticesemi.com/lit/docs/@/devtools/dlcable.pdf}
 
 @item @b{flashlink}
-@* From ST Microsystems, link:
-@url{http://www.st.com/stonline/products/literature/um/7889.pdf}
-Title: FlashLINK JTAG programing cable for PSD and uPSD
+@* From ST Microsystems;
+@uref{http://www.st.com/stonline/@/products/literature/um/7889.pdf,
+FlashLINK JTAG programing cable for PSD and uPSD}
 
 @end itemize
 
@@ -599,10 +744,6 @@ Here is an example of an openocd.cfg file for an ATMEL at91sam7x256
 @example
 source [find interface/signalyzer.cfg]
 
-# Change the default telnet port...
-telnet_port 4444
-# GDB connects here
-gdb_port 3333
 # GDB can also flash my flash!
 gdb_memory_map enable
 gdb_flash_program enable
@@ -632,7 +773,7 @@ You can use a series of ``-f filename'' options on the command line,
 OpenOCD will read each filename in sequence, for example:
 
 @example
-        openocd -f file1.cfg -f file2.cfg -f file2.cfg
+openocd -f file1.cfg -f file2.cfg -f file2.cfg
 @end example
 
 You can also intermix various commands with the ``-c'' command line
@@ -697,9 +838,12 @@ sequence to enable that external flash or SDRAM should be found in the
 board file. Boards may also contain multiple targets, i.e.: Two CPUs, or
 a CPU and an FPGA or CPLD.
 @item @b{target}
-@* Think chip. The ``target'' directory represents a JTAG tap (or
-chip) OpenOCD should control, not a board. Two common types of targets
+@* Think chip. The ``target'' directory represents the JTAG TAPs
+on a chip
+which OpenOCD should control, not a board. Two common types of targets
 are ARM chips and FPGA or CPLD chips.
+When a chip has multiple TAPs (maybe it has both ARM and DSP cores),
+the target config file defines all of them.
 @end itemize
 
 @b{If needed...} The user in their ``openocd.cfg'' file or the board
@@ -721,11 +865,6 @@ A preconfigured interface file should exist for every interface in use
 today, that said, perhaps some interfaces have only been used by the
 sole developer who created it.
 
-@b{FIXME/NOTE:} We need to add support for a variable like Tcl variable
-tcl_platform(platform), it should be called jim_platform (because it
-is jim, not real tcl) and it should contain 1 of 3 words: ``linux'',
-``cygwin'' or ``mingw''
-
 Interface files should be found in @t{$(INSTALLDIR)/lib/openocd/interface}
 
 @section Board Config Files
@@ -747,10 +886,11 @@ target/FOO.cfg]} statements along with any board specific things.
 In summary the board files should contain (if present)
 
 @enumerate
-@item External flash configuration (i.e.: the flash on CS0)
+@item External flash configuration (i.e.: NOR flash on CS0, two NANDs on CS2)
 @item SDRAM configuration (size, speed, etc.
 @item Board specific IO configuration (i.e.: GPIO pins might disable a 2nd flash)
 @item Multiple TARGET source statements
+@item Reset configuration
 @item All things that are not ``inside a chip''
 @item Things inside a chip go in a 'target' file
 @end enumerate
@@ -769,9 +909,8 @@ In summary the target files should contain
 
 @enumerate 
 @item Set defaults
-@item Create taps
-@item Reset configuration
-@item Work areas
+@item Add TAPs to the scan chain
+@item Add CPU targets
 @item CPU/Chip/CPU-Core specific features
 @item On-Chip flash
 @end enumerate
@@ -796,8 +935,10 @@ error or warning like this. The hope is that this will help to pinpoint
 problems in OpenOCD configurations.
 
 @example
-Info:   JTAG tap: sam7x256.cpu tap/device found: 0x3f0f0f0f (Manufacturer: 0x787, Part: 0xf0f0, Version: 0x3)
-Error:  ERROR: Tap: sam7x256.cpu - Expected id: 0x12345678, Got: 0x3f0f0f0f
+Info:   JTAG tap: sam7x256.cpu tap/device found: 0x3f0f0f0f
+                (Manufacturer: 0x787, Part: 0xf0f0, Version: 0x3)
+Error:  ERROR: Tap: sam7x256.cpu - Expected id: 0x12345678,
+                Got: 0x3f0f0f0f
 Error:  ERROR: expected: mfg: 0x33c, part: 0x2345, ver: 0x1
 Error:  ERROR:      got: mfg: 0x787, part: 0xf0f0, ver: 0x3
 @end example
@@ -816,6 +957,8 @@ If the chip has 2 targets, use the names @b{_TARGETNAME0},
 At no time should the name ``target0'' (the default target name if
 none was specified) be used. The name ``target0'' is a hard coded name
 - the next target on the board will be some other number.
+In the same way, avoid using target numbers even when they are
+permitted; use the right target name(s) for your board.
 
 The user (or board file) should reasonably be able to:
 
@@ -849,14 +992,14 @@ used at will within a ?TARGET? configuration file.
    # variable: _TARGETNAME = network.cpu
    # other commands can refer to the "network.cpu" tap.
    $_TARGETNAME configure .... params for this CPU..
-   
+
    set ENDIAN little
    set CHIPNAME video
    source [find target/pxa270.cfg]
    # variable: _TARGETNAME = video.cpu
    # other commands can refer to the "video.cpu" tap.
    $_TARGETNAME configure .... params for this CPU..
-   
+
    unset ENDIAN
    set CHIPNAME xilinx
    source [find target/spartan3.cfg]
@@ -865,7 +1008,6 @@ used at will within a ?TARGET? configuration file.
    #  these names still work!
    network.cpu configure ... params
    video.cpu   configure ... params
-
 @end example
 
 @subsection Default Value Boiler Plate Code
@@ -874,15 +1016,15 @@ All target configuration files should start with this (or a modified form)
 
 @example
 # SIMPLE example
-if @{ [info exists CHIPNAME] @} @{     
-   set  _CHIPNAME $CHIPNAME    
-@} else @{      
+if @{ [info exists CHIPNAME] @} @{
+   set  _CHIPNAME $CHIPNAME
+@} else @{
    set  _CHIPNAME sam7x256
 @}
 
-if @{ [info exists ENDIAN] @} @{       
-   set  _ENDIAN $ENDIAN    
-@} else @{      
+if @{ [info exists ENDIAN] @} @{
+   set  _ENDIAN $ENDIAN
+@} else @{
    set  _ENDIAN little
 @}
 
@@ -891,84 +1033,73 @@ if @{ [info exists CPUTAPID ] @} @{
 @} else @{
    set _CPUTAPID 0x3f0f0f0f
 @}
-
 @end example
 
-@subsection Creating Taps
-After the ``defaults'' are choosen [see above] the taps are created.
+@subsection Adding TAPs to the Scan Chain
+After the ``defaults'' are set up,
+add the TAPs on each chip to the JTAG scan chain.
+@xref{TAP Declaration}, and the naming convention
+for taps.
 
-@b{SIMPLE example:} such as an Atmel AT91SAM7X256
+In the simplest case the chip has only one TAP,
+probably for a CPU or FPGA.
+The config file for the Atmel AT91SAM7X256
+looks (in part) like this:
 
 @example
-# for an ARM7TDMI.
-set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
-jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask 0xf -expected-id $_CPUTAPID
+jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask 0xf \
+        -expected-id $_CPUTAPID
 @end example
 
-@b{COMPLEX example:}
+A board with two such at91sam7 chips would be able
+to source such a config file twice, with different
+values for @code{CHIPNAME}, so
+it adds a different TAP each time.
 
-This is an SNIP/example for an STR912 - which has 3 internal taps. Key features shown:
+There are more complex examples too, with chips that have
+multiple TAPs.  Ones worth looking at include:
 
-@enumerate
-@item @b{Unform tap names} - See: Tap Naming Convention
-@item @b{_TARGETNAME} is created at the end where used.
-@end enumerate
-
-@example
-if @{ [info exists FLASHTAPID ] @} @{
-   set _FLASHTAPID $FLASHTAPID
-@} else @{
-   set _FLASHTAPID 0x25966041
-@}
-jtag newtap $_CHIPNAME flash -irlen 8 -ircapture 0x1 -irmask 0x1 -expected-id $_FLASHTAPID
-
-if @{ [info exists CPUTAPID ] @} @{
-   set _CPUTAPID $CPUTAPID
-@} else @{
-   set _CPUTAPID 0x25966041
-@}
-jtag newtap $_CHIPNAME cpu   -irlen 4 -ircapture 0xf -irmask 0xe -expected-id $_CPUTAPID
+@itemize
+@item @file{target/omap3530.cfg} -- with a disabled ARM, and a JRC
+(there's a DSP too, which is not listed)
+@item @file{target/str912.cfg} -- with flash, CPU, and boundary scan
+@item @file{target/ti_dm355.cfg} -- with ETM, ARM, and JRC (this JRC
+is not currently used)
+@end itemize
 
+@subsection Add CPU targets
 
-if @{ [info exists BSTAPID ] @} @{
-   set _BSTAPID $BSTAPID
-@} else @{
-   set _BSTAPID 0x1457f041
-@}
-jtag newtap $_CHIPNAME bs    -irlen 5 -ircapture 0x1 -irmask 0x1 -expected-id $_BSTAPID
+After adding a TAP for a CPU, you should set it up so that
+GDB and other commands can use it.
+@xref{CPU Configuration}.
+For the at91sam7 example above, the command can look like this:
 
-set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
+@example
+set _TARGETNAME $_CHIPNAME.cpu
+target create $_TARGETNAME arm7tdmi -chain-position $_TARGETNAME
 @end example
 
-@b{Tap Naming Convention}
-
-See the command ``jtag newtap'' for detail, but in brief the names you should use are:
+Work areas are small RAM areas associated with CPU targets.
+They are used by OpenOCD to speed up downloads,
+and to download small snippets of code to program flash chips.
+If the chip includes a form of ``on-chip-ram'' - and many do - define
+a work area if you can.
+Again using the at91sam7 as an example, this can look like:
 
-@itemize @bullet
-@item @b{tap}
-@item @b{cpu}
-@item @b{flash}
-@item @b{bs}
-@item @b{jrc}
-@item @b{unknownN} - it happens :-(
-@end itemize
+@example
+$_TARGETNAME configure -work-area-phys 0x00200000 \
+             -work-area-size 0x4000 -work-area-backup 0
+@end example
 
 @subsection Reset Configuration
 
-Some chips have specific ways the TRST and SRST signals are
-managed. If these are @b{CHIP SPECIFIC} they go here, if they are
-@b{BOARD SPECIFIC} they go in the board file.
-
-@subsection Work Areas
-
-Work areas are small RAM areas used by OpenOCD to speed up downloads,
-and to download small snippets of code to program flash chips.  
+As a rule, you should put the @command{reset_config} command
+into the board file.  Most things you think you know about a
+chip can be tweaked by the board.
 
-If the chip includes a form of ``on-chip-ram'' - and many do - define
-a reasonable work area and use the ``backup'' option.
-
-@b{PROBLEMS:} On more complex chips, this ``work area'' may become
-inaccessible if/when the application code enables or disables the MMU.
+Some chips have specific ways the TRST and SRST signals are
+managed. In the unusual case that these are @emph{chip specific}
+and can never be changed by board wiring, they could go here.
 
 @subsection ARM Core Specific Hacks
 
@@ -983,13 +1114,28 @@ helpful - for common programing errors.
 
 If present, the MMU, the MPU and the CACHE should be disabled.
 
+Some ARM cores are equipped with trace support, which permits
+examination of the instruction and data bus activity.  Trace
+activity is controlled through an ``Embedded Trace Module'' (ETM)
+on one of the core's scan chains.  The ETM emits voluminous data
+through a ``trace port''.  (@xref{ARM Tracing}.)
+If you are using an external trace port,
+configure it in your board config file.
+If you are using an on-chip ``Embedded Trace Buffer'' (ETB),
+configure it in your target config file.
+
+@example
+etm config $_TARGETNAME 16 normal full etb
+etb config $_TARGETNAME $_CHIPNAME.etb
+@end example
+
 @subsection Internal Flash Configuration
 
 This applies @b{ONLY TO MICROCONTROLLERS} that have flash built in.
 
 @b{Never ever} in the ``target configuration file'' define any type of
-flash that is external to the chip. (For example the BOOT flash on
-Chip Select 0). The BOOT flash information goes in a board file - not
+flash that is external to the chip. (For example a BOOT flash on
+Chip Select 0.) Such flash information goes in a board file - not
 the TARGET (chip) file.
 
 Examples:
@@ -1033,17 +1179,31 @@ can type a Tcl for() loop, set variables, etc.
 @* JIM-Tcl was introduced to OpenOCD in spring 2008.
 
 @item @b{Need a crash course in Tcl?}
-@* See: @xref{Tcl Crash Course}.
+@*@xref{Tcl Crash Course}.
 @end itemize
 
-
 @node Daemon Configuration
 @chapter Daemon Configuration
+@cindex initialization
 The commands here are commonly found in the openocd.cfg file and are
 used to specify what TCP/IP ports are used, and how GDB should be
 supported.
-@section init
-@cindex init
+
+@section Configuration Stage
+@cindex configuration stage
+@cindex configuration command
+
+When the OpenOCD server process starts up, it enters a
+@emph{configuration stage} which is the only time that
+certain commands, @emph{configuration commands}, may be issued.
+Those configuration commands include declaration of TAPs
+and other basic setup.
+The server must leave the configuration stage before it
+may access or activate TAPs.
+After it leaves this stage, configuration commands may no
+longer be issued.
+
+@deffn {Config Command} init
 This command terminates the configuration stage and
 enters the normal command mode. This can be useful to add commands to
 the startup scripts and commands such as resetting the target,
@@ -1058,644 +1218,898 @@ configuration files and/or command line options.
 @b{NOTE:} This command normally occurs at or near the end of your
 openocd.cfg file to force OpenOCD to ``initialize'' and make the
 targets ready. For example: If your openocd.cfg file needs to
-read/write memory on your target - the init command must occur before
-the memory read/write commands.
+read/write memory on your target, @command{init} must occur before
+the memory read/write commands.  This includes @command{nand probe}.
+@end deffn
 
 @section TCP/IP Ports
-@itemize @bullet
-@item @b{telnet_port} <@var{number}>
-@cindex telnet_port
-@*Intended for a human. Port on which to listen for incoming telnet connections.
-
-@item @b{tcl_port} <@var{number}>
-@cindex tcl_port
-@*Intended as a machine interface. Port on which to listen for
-incoming Tcl syntax. This port is intended as a simplified RPC
-connection that can be used by clients to issue commands and get the
+@cindex TCP port
+@cindex server
+@cindex port
+The OpenOCD server accepts remote commands in several syntaxes.
+Each syntax uses a different TCP/IP port, which you may specify
+only during configuration (before those ports are opened).
+
+@deffn {Command} gdb_port (number)
+@cindex GDB server
+Specify or query the first port used for incoming GDB connections.
+The GDB port for the
+first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
+When not specified during the configuration stage,
+the port @var{number} defaults to 3333.
+@end deffn
+
+@deffn {Command} tcl_port (number)
+Specify or query the port used for a simplified RPC
+connection that can be used by clients to issue TCL commands and get the
 output from the Tcl engine.
+Intended as a machine interface.
+When not specified during the configuration stage,
+the port @var{number} defaults to 6666.
+@end deffn
+
+@deffn {Command} telnet_port (number)
+Specify or query the
+port on which to listen for incoming telnet connections.
+This port is intended for interaction with one human through TCL commands.
+When not specified during the configuration stage,
+the port @var{number} defaults to 4444.
+@end deffn
+
+@anchor{GDB Configuration}
+@section GDB Configuration
+@cindex GDB
+@cindex GDB configuration
+You can reconfigure some GDB behaviors if needed.
+The ones listed here are static and global.
+@xref{Target Create}, about declaring individual targets.
+@xref{Target Events}, about configuring target-specific event handling.
 
-@item @b{gdb_port} <@var{number}>
-@cindex gdb_port
-@*First port on which to listen for incoming GDB connections. The GDB port for the
-first target will be gdb_port, the second target will listen on gdb_port + 1, and so on. 
-@end itemize
-
-@section GDB Items
-@itemize @bullet
-@item @b{gdb_breakpoint_override} <@var{hard|soft|disable}>
-@cindex gdb_breakpoint_override
 @anchor{gdb_breakpoint_override}
-@*Force breakpoint type for gdb 'break' commands.
-The raison d'etre for this option is to support GDB GUI's without 
-a hard/soft breakpoint concept where the default OpenOCD and
-GDB behaviour is not sufficient. Note that GDB will use hardware
+@deffn {Command} gdb_breakpoint_override [@option{hard}|@option{soft}|@option{disable}]
+Force breakpoint type for gdb @command{break} commands.
+This option supports GDB GUIs which don't
+distinguish hard versus soft breakpoints, if the default OpenOCD and
+GDB behaviour is not sufficient.  GDB normally uses hardware
 breakpoints if the memory map has been set up for flash regions.
+@end deffn
 
-This option replaces older arm7_9 target commands that addressed
-the same issue.
+@deffn {Config command} gdb_detach (@option{resume}|@option{reset}|@option{halt}|@option{nothing})
+Configures what OpenOCD will do when GDB detaches from the daemon.
+Default behaviour is @option{resume}.
+@end deffn
 
-@item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
-@cindex gdb_detach
-@*Configures what OpenOCD will do when GDB detaches from the daemon.
-Default behaviour is <@var{resume}>
+@anchor{gdb_flash_program}
+@deffn {Config command} gdb_flash_program (@option{enable}|@option{disable})
+Set to @option{enable} to cause OpenOCD to program the flash memory when a
+vFlash packet is received.
+The default behaviour is @option{enable}.
+@end deffn
 
-@item @b{gdb_memory_map} <@var{enable|disable}>
-@cindex gdb_memory_map
-@*Set to <@var{enable}> to cause OpenOCD to send the memory configuration to GDB when
+@deffn {Config command} gdb_memory_map (@option{enable}|@option{disable})
+Set to @option{enable} to cause OpenOCD to send the memory configuration to GDB when
 requested. GDB will then know when to set hardware breakpoints, and program flash
-using the GDB load command. @option{gdb_flash_program enable} must also be enabled 
+using the GDB load command. @command{gdb_flash_program enable} must also be enabled
 for flash programming to work.
-Default behaviour is <@var{enable}>
+Default behaviour is @option{enable}.
 @xref{gdb_flash_program}.
+@end deffn
 
-@item @b{gdb_flash_program} <@var{enable|disable}>
-@cindex gdb_flash_program
-@anchor{gdb_flash_program}
-@*Set to <@var{enable}> to cause OpenOCD to program the flash memory when a
-vFlash packet is received.
-Default behaviour is <@var{enable}>
-@comment END GDB Items
-@end itemize
+@deffn {Config command} gdb_report_data_abort (@option{enable}|@option{disable})
+Specifies whether data aborts cause an error to be reported
+by GDB memory read packets.
+The default behaviour is @option{disable};
+use @option{enable} see these errors reported.
+@end deffn
 
 @node Interface - Dongle Configuration
 @chapter Interface - Dongle Configuration
-Interface commands are normally found in an interface configuration
-file which is sourced by your openocd.cfg file. These commands tell
-OpenOCD what type of JTAG dongle you have and how to talk to it.
-@section Simple Complete Interface Examples
-@b{A Turtelizer FT2232 Based JTAG Dongle}
-@verbatim
-#interface
-interface ft2232
-ft2232_device_desc "Turtelizer JTAG/RS232 Adapter A"
-ft2232_layout turtelizer2
-ft2232_vid_pid 0x0403 0xbdc8
-@end verbatim
-@b{A SEGGER Jlink}
-@verbatim
-# jlink interface
-interface jlink
-@end verbatim
-@b{A Raisonance RLink}
-@verbatim
-# rlink interface
-interface rlink
-@end verbatim
-@b{Parallel Port}
-@verbatim
-interface parport
-parport_port 0xc8b8
-parport_cable wiggler
-jtag_speed 0
-@end verbatim
-@b{ARM-JTAG-EW}
-@verbatim
-interface arm-jtag-ew
-@end verbatim
-@section Interface Command
-
-The interface command tells OpenOCD what type of JTAG dongle you are
-using. Depending on the type of dongle, you may need to have one or
-more additional commands.
-
-@itemize @bullet
-
-@item @b{interface} <@var{name}>
-@cindex interface
-@*Use the interface driver <@var{name}> to connect to the
-target. Currently supported interfaces are
-
-@itemize @minus
-
-@item @b{parport}
-@* PC parallel port bit-banging (Wigglers, PLD download cable, ...)
-
-@item @b{amt_jtagaccel}
-@* Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
-mode parallel port
-
-@item @b{ft2232}
-@* FTDI FT2232 (USB) based devices using either the open-source libftdi or the binary only
-FTD2XX driver. The FTD2XX is superior in performance, but not available on every
-platform. The libftdi uses libusb, and should be portable to all systems that provide
-libusb.
-
-@item @b{ep93xx}
-@*Cirrus Logic EP93xx based single-board computer bit-banging (in development)
-
-@item @b{presto}
-@* ASIX PRESTO USB JTAG programmer.
-
-@item @b{usbprog}
-@* usbprog is a freely programmable USB adapter.
-
-@item @b{gw16012}
-@* Gateworks GW16012 JTAG programmer.
+JTAG Adapters/Interfaces/Dongles are normally configured
+through commands in an interface configuration
+file which is sourced by your @file{openocd.cfg} file, or
+through a command line @option{-f interface/....cfg} option.
 
-@item @b{jlink}
-@* Segger jlink USB adapter
+@example
+source [find interface/olimex-jtag-tiny.cfg]
+@end example
 
-@item @b{rlink}
-@* Raisonance RLink USB adapter
+These commands tell
+OpenOCD what type of JTAG adapter you have, and how to talk to it.
+A few cases are so simple that you only need to say what driver to use:
 
-@item @b{vsllink}
-@* vsllink is part of Versaloon which is a versatile USB programmer.
+@example
+# jlink interface
+interface jlink
+@end example
 
-@item @b{arm-jtag-ew}
-@* Olimex ARM-JTAG-EW USB adapter
-@comment - End parameters
-@end itemize
-@comment - End Interface
-@end itemize
-@subsection parport options
+Most adapters need a bit more configuration than that.
 
-@itemize @bullet
-@item @b{parport_port} <@var{number}>
-@cindex parport_port
-@*Either the address of the I/O port (default: 0x378 for LPT1) or the number of
-the @file{/dev/parport} device
 
-When using PPDEV to access the parallel port, use the number of the parallel port:
-@option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
-you may encounter a problem.
-@item @b{parport_cable} <@var{name}>
-@cindex parport_cable
-@*The layout of the parallel port cable used to connect to the target.
-Currently supported cables are 
-@itemize @minus
-@item @b{wiggler}
-@cindex wiggler
-The original Wiggler layout, also supported by several clones, such
-as the Olimex ARM-JTAG
-@item @b{wiggler2}
-@cindex wiggler2
-Same as original wiggler except an led is fitted on D5.
-@item @b{wiggler_ntrst_inverted}
-@cindex wiggler_ntrst_inverted
-Same as original wiggler except TRST is inverted.
-@item @b{old_amt_wiggler}
-@cindex old_amt_wiggler
-The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
-version available from the website uses the original Wiggler layout ('@var{wiggler}')
-@item @b{chameleon}
-@cindex chameleon
-The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to
-program the Chameleon itself, not a connected target.
-@item @b{dlc5}
-@cindex dlc5
-The Xilinx Parallel cable III.
-@item @b{triton}
-@cindex triton
-The parallel port adapter found on the 'Karo Triton 1 Development Board'.
-This is also the layout used by the HollyGates design
-(see @uref{http://www.lartmaker.nl/projects/jtag/}).
-@item @b{flashlink}
-@cindex flashlink
-The ST Parallel cable.
-@item @b{arm-jtag}
-@cindex arm-jtag
-Same as original wiggler except SRST and TRST connections reversed and
-TRST is also inverted.
-@item @b{altium}
-@cindex altium
-Altium Universal JTAG cable.
-@end itemize
-@item @b{parport_write_on_exit} <@var{on}|@var{off}>
-@cindex parport_write_on_exit
-@*This will configure the parallel driver to write a known value to the parallel
-interface on exiting OpenOCD
-@end itemize
+@section Interface Configuration
 
-@subsection amt_jtagaccel options
-@itemize @bullet
-@item @b{parport_port} <@var{number}>
-@cindex parport_port
-@*Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
-@file{/dev/parport} device 
-@end itemize
-@subsection ft2232 options
+The interface command tells OpenOCD what type of JTAG dongle you are
+using. Depending on the type of dongle, you may need to have one or
+more additional commands.
 
-@itemize @bullet
-@item @b{ft2232_device_desc} <@var{description}>
-@cindex ft2232_device_desc
-@*The USB device description of the FTDI FT2232 device. If not
+@deffn {Config Command} {interface} name
+Use the interface driver @var{name} to connect to the
+target.
+@end deffn
+
+@deffn Command {jtag interface}
+Returns the name of the interface driver being used.
+@end deffn
+
+@section Interface Drivers
+
+Each of the interface drivers listed here must be explicitly
+enabled when OpenOCD is configured, in order to be made
+available at run time.
+
+@deffn {Interface Driver} {amt_jtagaccel}
+Amontec Chameleon in its JTAG Accelerator configuration,
+connected to a PC's EPP mode parallel port.
+This defines some driver-specific commands:
+
+@deffn {Config Command} {parport_port} number
+Specifies either the address of the I/O port (default: 0x378 for LPT1) or
+the number of the @file{/dev/parport} device.
+@end deffn
+
+@deffn {Config Command} rtck [@option{enable}|@option{disable}]
+Displays status of RTCK option.
+Optionally sets that option first.
+@end deffn
+@end deffn
+
+@deffn {Interface Driver} {arm-jtag-ew}
+Olimex ARM-JTAG-EW USB adapter
+This has one driver-specific command:
+
+@deffn Command {armjtagew_info}
+Logs some status
+@end deffn
+@end deffn
+
+@deffn {Interface Driver} {at91rm9200}
+Supports bitbanged JTAG from the local system,
+presuming that system is an Atmel AT91rm9200
+and a specific set of GPIOs is used.
+@c command:    at91rm9200_device NAME
+@c chooses among list of bit configs ... only one option
+@end deffn
+
+@deffn {Interface Driver} {dummy}
+A dummy software-only driver for debugging.
+@end deffn
+
+@deffn {Interface Driver} {ep93xx}
+Cirrus Logic EP93xx based single-board computer bit-banging (in development)
+@end deffn
+
+@deffn {Interface Driver} {ft2232}
+FTDI FT2232 (USB) based devices over one of the userspace libraries.
+These interfaces have several commands, used to configure the driver
+before initializing the JTAG scan chain:
+
+@deffn {Config Command} {ft2232_device_desc} description
+Provides the USB device description (the @emph{iProduct string})
+of the FTDI FT2232 device. If not
 specified, the FTDI default value is used. This setting is only valid
 if compiled with FTD2XX support.
-
-@b{TODO:} Confirm the following: On Windows the name needs to end with
-a ``space A''? Or not? It has to do with the FTD2xx driver. When must
-this be added and when must it not be added? Why can't the code in the
-interface or in OpenOCD automatically add this if needed? -- Duane.
-
-@item @b{ft2232_serial} <@var{serial-number}>
-@cindex ft2232_serial
-@*The serial number of the FTDI FT2232 device. If not specified, the FTDI default 
-values are used.
-@item @b{ft2232_layout} <@var{name}>
-@cindex ft2232_layout
-@*The layout of the FT2232 GPIO signals used to control output-enables and reset
-signals. Valid layouts are
+@end deffn
+
+@deffn {Config Command} {ft2232_serial} serial-number
+Specifies the @var{serial-number} of the FTDI FT2232 device to use,
+in case the vendor provides unique IDs and more than one FT2232 device
+is connected to the host.
+If not specified, serial numbers are not considered.
+@end deffn
+
+@deffn {Config Command} {ft2232_layout} name
+Each vendor's FT2232 device can use different GPIO signals
+to control output-enables, reset signals, and LEDs.
+Currently valid layout @var{name} values include:
 @itemize @minus
-@item @b{usbjtag}
-"USBJTAG-1" layout described in the original OpenOCD diploma thesis
-@item @b{jtagkey}
-Amontec JTAGkey and JTAGkey-Tiny
-@item @b{signalyzer}
-Signalyzer
-@item @b{olimex-jtag}
-Olimex ARM-USB-OCD
-@item @b{m5960}
-American Microsystems M5960
-@item @b{evb_lm3s811}
-Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
-SRST signals on external connector
-@item @b{comstick}
-Hitex STR9 comstick 
-@item @b{stm32stick}
-Hitex STM32 Performance Stick
-@item @b{flyswatter}
-Tin Can Tools Flyswatter
-@item @b{turtelizer2}
-egnite Software turtelizer2
-@item @b{oocdlink}
-OOCDLink
-@item @b{axm0432_jtag}
-Axiom AXM-0432
+@item @b{axm0432_jtag} Axiom AXM-0432
+@item @b{comstick} Hitex STR9 comstick
+@item @b{cortino} Hitex Cortino JTAG interface
+@item @b{evb_lm3s811} Luminary Micro EVB_LM3S811 as a JTAG interface
+(bypassing onboard processor), no TRST or SRST signals on external connector
+@item @b{flyswatter} Tin Can Tools Flyswatter
+@item @b{icebear} ICEbear JTAG adapter from Section 5
+@item @b{jtagkey} Amontec JTAGkey and JTAGkey-Tiny (and compatibles)
+@item @b{m5960} American Microsystems M5960
+@item @b{olimex-jtag} Olimex ARM-USB-OCD and ARM-USB-Tiny
+@item @b{oocdlink} OOCDLink
+@c oocdlink ~= jtagkey_prototype_v1
+@item @b{sheevaplug} Marvell Sheevaplug development kit
+@item @b{signalyzer} Xverve Signalyzer
+@item @b{stm32stick} Hitex STM32 Performance Stick
+@item @b{turtelizer2} egnite Software turtelizer2
+@item @b{usbjtag} "USBJTAG-1" layout described in the OpenOCD diploma thesis
 @end itemize
+@end deffn
 
-@item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
-@*The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
-default values are used. Multiple <@var{vid}>, <@var{pid}> pairs may be given, e.g.
+@deffn {Config Command} {ft2232_vid_pid} [vid pid]+
+The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
+default values are used.
+Currently, up to eight [@var{vid}, @var{pid}] pairs may be given, e.g.
 @example
 ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
 @end example
-@item @b{ft2232_latency} <@var{ms}>
-@*On some systems using FT2232 based JTAG interfaces the FT_Read function call in
+@end deffn
+
+@deffn {Config Command} {ft2232_latency} ms
+On some systems using FT2232 based JTAG interfaces the FT_Read function call in
 ft2232_read() fails to return the expected number of bytes. This can be caused by
 USB communication delays and has proved hard to reproduce and debug. Setting the
 FT2232 latency timer to a larger value increases delays for short USB packets but it
 also reduces the risk of timeouts before receiving the expected number of bytes.
 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
-@end itemize
+@end deffn
 
-@subsection ep93xx options
-@cindex ep93xx options
-Currently, there are no options available for the ep93xx interface.
+For example, the interface config file for a
+Turtelizer JTAG Adapter looks something like this:
 
-@section JTAG Speed
-@itemize @bullet
-@item @b{jtag_khz} <@var{reset speed kHz}>
-@cindex jtag_khz
+@example
+interface ft2232
+ft2232_device_desc "Turtelizer JTAG/RS232 Adapter"
+ft2232_layout turtelizer2
+ft2232_vid_pid 0x0403 0xbdc8
+@end example
+@end deffn
+
+@deffn {Interface Driver} {gw16012}
+Gateworks GW16012 JTAG programmer.
+This has one driver-specific command:
+
+@deffn {Config Command} {parport_port} number
+Specifies either the address of the I/O port (default: 0x378 for LPT1) or
+the number of the @file{/dev/parport} device.
+@end deffn
+@end deffn
+
+@deffn {Interface Driver} {jlink}
+Segger jlink USB adapter
+@c command:    jlink_info
+@c     dumps status
+@c command:    jlink_hw_jtag (2|3)
+@c     sets version 2 or 3
+@end deffn
+
+@deffn {Interface Driver} {parport}
+Supports PC parallel port bit-banging cables:
+Wigglers, PLD download cable, and more.
+These interfaces have several commands, used to configure the driver
+before initializing the JTAG scan chain:
+
+@deffn {Config Command} {parport_cable} name
+The layout of the parallel port cable used to connect to the target.
+Currently valid cable @var{name} values include:
 
-It is debatable if this command belongs here - or in a board
-configuration file. In fact, in some situations the JTAG speed is
-changed during the target initialisation process (i.e.: (1) slow at
-reset, (2) program the CPU clocks, (3) run fast)
+@itemize @minus
+@item @b{altium} Altium Universal JTAG cable.
+@item @b{arm-jtag} Same as original wiggler except SRST and
+TRST connections reversed and TRST is also inverted.
+@item @b{chameleon} The Amontec Chameleon's CPLD when operated
+in configuration mode. This is only used to
+program the Chameleon itself, not a connected target.
+@item @b{dlc5} The Xilinx Parallel cable III.
+@item @b{flashlink} The ST Parallel cable.
+@item @b{lattice} Lattice ispDOWNLOAD Cable
+@item @b{old_amt_wiggler} The Wiggler configuration that comes with
+some versions of
+Amontec's Chameleon Programmer. The new version available from
+the website uses the original Wiggler layout ('@var{wiggler}')
+@item @b{triton} The parallel port adapter found on the
+``Karo Triton 1 Development Board''.
+This is also the layout used by the HollyGates design
+(see @uref{http://www.lartmaker.nl/projects/jtag/}).
+@item @b{wiggler} The original Wiggler layout, also supported by
+several clones, such as the Olimex ARM-JTAG
+@item @b{wiggler2} Same as original wiggler except an led is fitted on D5.
+@item @b{wiggler_ntrst_inverted} Same as original wiggler except TRST is inverted.
+@end itemize
+@end deffn
 
-Speed 0 (khz) selects RTCK method. A non-zero speed is in KHZ. Hence: 3000 is 3mhz. 
+@deffn {Config Command} {parport_port} number
+Either the address of the I/O port (default: 0x378 for LPT1) or the number of
+the @file{/dev/parport} device
 
-Not all interfaces support ``rtck''. If the interface device can not
-support the rate asked for, or can not translate from kHz to
-jtag_speed, then an error is returned.
+When using PPDEV to access the parallel port, use the number of the parallel port:
+@option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
+you may encounter a problem.
+@end deffn
 
-Make sure the JTAG clock is no more than @math{1/6th  CPU-Clock}. This is
-especially true for synthesized cores (-S). Also see RTCK.
+@deffn {Config Command} {parport_write_on_exit} (on|off)
+This will configure the parallel driver to write a known
+cable-specific value to the parallel interface on exiting OpenOCD
+@end deffn
 
-@b{NOTE: Script writers} If the target chip requires/uses RTCK -
-please use the command: 'jtag_rclk FREQ'. This Tcl proc (in
-startup.tcl) attempts to enable RTCK, if that fails it falls back to
-the specified frequency.
+For example, the interface configuration file for a
+classic ``Wiggler'' cable might look something like this:
 
 @example
-    # Fall back to 3mhz if RCLK is not supported
-    jtag_rclk 3000
+interface parport
+parport_port 0xc8b8
+parport_cable wiggler
 @end example
+@end deffn
 
-@item @b{DEPRECATED} @b{jtag_speed} - please use jtag_khz above.
-@cindex jtag_speed
-@*Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
-speed. The actual effect of this option depends on the JTAG interface used. 
+@deffn {Interface Driver} {presto}
+ASIX PRESTO USB JTAG programmer.
+@c command:    presto_serial str
+@c     sets serial number
+@end deffn
 
-The speed used during reset can be adjusted using setting jtag_speed during
-pre_reset and post_reset events.
-@itemize @minus
+@deffn {Interface Driver} {rlink}
+Raisonance RLink USB adapter
+@end deffn
 
-@item wiggler: maximum speed / @var{number}
-@item ft2232: 6MHz / (@var{number}+1)
-@item amt jtagaccel: 8 / 2**@var{number}
-@item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
-@item rlink: 24MHz / @var{number}, but only for certain values of @var{number}
-@comment end speed list.
-@end itemize
+@deffn {Interface Driver} {usbprog}
+usbprog is a freely programmable USB adapter.
+@end deffn
 
-@comment END command list
-@end itemize
+@deffn {Interface Driver} {vsllink}
+vsllink is part of Versaloon which is a versatile USB programmer.
+
+@quotation Note
+This defines quite a few driver-specific commands,
+which are not currently documented here.
+@end quotation
+@end deffn
+
+@deffn {Interface Driver} {ZY1000}
+This is the Zylin ZY1000 JTAG debugger.
+
+@quotation Note
+This defines some driver-specific commands,
+which are not currently documented here.
+@end quotation
+
+@deffn Command power [@option{on}|@option{off}]
+Turn power switch to target on/off.
+No arguments: print status.
+@end deffn
+
+@end deffn
+
+@anchor{JTAG Speed}
+@section JTAG Speed
+JTAG clock setup is part of system setup.
+It @emph{does not belong with interface setup} since any interface
+only knows a few of the constraints for the JTAG clock speed.
+Sometimes the JTAG speed is
+changed during the target initialization process: (1) slow at
+reset, (2) program the CPU clocks, (3) run fast.
+Both the "slow" and "fast" clock rates are functions of the
+oscillators used, the chip, the board design, and sometimes
+power management software that may be active.
+
+The speed used during reset can be adjusted using pre_reset
+and post_reset event handlers.
+@xref{Target Events}.
+
+If your system supports adaptive clocking (RTCK), configuring
+JTAG to use that is probably the most robust approach.
+However, it introduces delays to synchronize clocks; so it
+may not be the fastest solution.
+
+@b{NOTE:} Script writers should consider using @command{jtag_rclk}
+instead of @command{jtag_khz}.
+
+@deffn {Command} jtag_khz max_speed_kHz
+A non-zero speed is in KHZ. Hence: 3000 is 3mhz.
+JTAG interfaces usually support a limited number of
+speeds.  The speed actually used won't be faster
+than the speed specified.
+
+As a rule of thumb, if you specify a clock rate make
+sure the JTAG clock is no more than @math{1/6th CPU-Clock}.
+This is especially true for synthesized cores (ARMxxx-S).
+
+Speed 0 (khz) selects RTCK method.
+@xref{FAQ RTCK}.
+If your system uses RTCK, you won't need to change the
+JTAG clocking after setup.
+Not all interfaces, boards, or targets support ``rtck''.
+If the interface device can not
+support it, an error is returned when you try to use RTCK.
+@end deffn
+
+@defun jtag_rclk fallback_speed_kHz
+@cindex RTCK
+This Tcl proc (defined in startup.tcl) attempts to enable RTCK/RCLK.
+If that fails (maybe the interface, board, or target doesn't
+support it), falls back to the specified frequency.
+@example
+# Fall back to 3mhz if RTCK is not supported
+jtag_rclk 3000
+@end example
+@end defun
 
 @node Reset Configuration
 @chapter Reset Configuration
 @cindex Reset Configuration
 
 Every system configuration may require a different reset
-configuration. This can also be quite confusing. Please see the
-various board files for example.
-
-@section jtag_nsrst_delay <@var{ms}>
-@cindex jtag_nsrst_delay
-@*How long (in milliseconds) OpenOCD should wait after deasserting
-nSRST before starting new JTAG operations.
-
-@section jtag_ntrst_delay <@var{ms}>
-@cindex jtag_ntrst_delay
-@*Same @b{jtag_nsrst_delay}, but for nTRST  
-
-The jtag_n[st]rst_delay options are useful if reset circuitry (like a
-big resistor/capacitor, reset supervisor, or on-chip features). This
-keeps the signal asserted for some time after the external reset got
-deasserted.
-
-@section reset_config
-
-@b{Note:} To maintainers and integrators: Where exactly the
-``reset configuration'' goes is a good question. It touches several
-things at once. In the end, if you have a board file - the board file
-should define it and assume 100% that the DONGLE supports
-anything. However, that does not mean the target should not also make
-not of something the silicon vendor has done inside the
-chip. @i{Grr.... nothing is every pretty.}
-
-@* @b{Problems:} 
-@enumerate
-@item Every JTAG Dongle is slightly different, some dongles implement reset differently.
-@item Every board is also slightly different; some boards tie TRST and SRST together.
-@item Every chip is slightly different; some chips internally tie the two signals together.
-@item Some may not implement all of the signals the same way.
-@item Some signals might be push-pull, others open-drain/collector.
-@end enumerate
-@b{Best Case:} OpenOCD can hold the SRST (push-button-reset), then
-reset the TAP via TRST and send commands through the JTAG tap to halt
-the CPU at the reset vector before the 1st instruction is executed,
-and finally release the SRST signal.
-@*Depending on your board vendor, chip vendor, etc., these
-signals may have slightly different names. 
-
-OpenOCD defines these signals in these terms:
+configuration. This can also be quite confusing.
+Resets also interact with @var{reset-init} event handlers,
+which do things like setting up clocks and DRAM, and
+JTAG clock rates.  (@xref{JTAG Speed}.)
+Please see the various board files for examples.
+
+@quotation Note
+To maintainers and integrators:
+Reset configuration touches several things at once.
+Normally the board configuration file
+should define it and assume that the JTAG adapter supports
+everything that's wired up to the board's JTAG connector.
+However, the target configuration file could also make note
+of something the silicon vendor has done inside the chip,
+which will be true for most (or all) boards using that chip.
+And when the JTAG adapter doesn't support everything, the
+system configuration file will need to override parts of
+the reset configuration provided by other files.
+@end quotation
+
+@section Types of Reset
+
+There are many kinds of reset possible through JTAG, but
+they may not all work with a given board and adapter.
+That's part of why reset configuration can be error prone.
+
 @itemize @bullet
-@item @b{TRST} - is Tap Reset - and should reset only the TAP.
-@item @b{SRST} - is System Reset - typically equal to a reset push button.
+@item
+@emph{System Reset} ... the @emph{SRST} hardware signal
+resets all chips connected to the JTAG adapter, such as processors,
+power management chips, and I/O controllers.  Normally resets triggered
+with this signal behave exactly like pressing a RESET button.
+@item
+@emph{JTAG TAP Reset} ... the @emph{TRST} hardware signal resets
+just the TAP controllers connected to the JTAG adapter.
+Such resets should not be visible to the rest of the system; resetting a
+device's the TAP controller just puts that controller into a known state.
+@item
+@emph{Emulation Reset} ... many devices can be reset through JTAG
+commands.  These resets are often distinguishable from system
+resets, either explicitly (a "reset reason" register says so)
+or implicitly (not all parts of the chip get reset).
+@item
+@emph{Other Resets} ... system-on-chip devices often support
+several other types of reset.
+You may need to arrange that a watchdog timer stops
+while debugging, preventing a watchdog reset.
+There may be individual module resets.
 @end itemize
 
-The Command:
+In the best case, OpenOCD can hold SRST, then reset
+the TAPs via TRST and send commands through JTAG to halt the
+CPU at the reset vector before the 1st instruction is executed.
+Then when it finally releases the SRST signal, the system is
+halted under debugger control before any code has executed.
+This is the behavior required to support the @command{reset halt}
+and @command{reset init} commands; after @command{reset init} a
+board-specific script might do things like setting up DRAM.
+(@xref{Reset Command}.)
+
+@section SRST and TRST Issues
+
+Because SRST and TRST are hardware signals, they can have a
+variety of system-specific constraints.  Some of the most
+common issues are:
 
 @itemize @bullet
-@item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
-@cindex reset_config
-@* The @t{reset_config} command tells OpenOCD the reset configuration
-of your combination of Dongle, Board, and Chips.
-If the JTAG interface provides SRST, but the target doesn't connect
-that signal properly, then OpenOCD can't use it. <@var{signals}> can
-be @option{none}, @option{trst_only}, @option{srst_only} or
-@option{trst_and_srst}.
-
-[@var{combination}] is an optional value specifying broken reset
-signal implementations.  @option{srst_pulls_trst} states that the
+
+@item @emph{Signal not available} ... Some boards don't wire
+SRST or TRST to the JTAG connector.  Some JTAG adapters don't
+support such signals even if they are wired up.
+Use the @command{reset_config} @var{signals} options to say
+when one of those signals is not connected.
+When SRST is not available, your code might not be able to rely
+on controllers having been fully reset during code startup.
+
+@item @emph{Signals shorted} ... Sometimes a chip, board, or
+adapter will connect SRST to TRST, instead of keeping them separate.
+Use the @command{reset_config} @var{combination} options to say
+when those signals aren't properly independent.
+
+@item @emph{Timing} ... Reset circuitry like a resistor/capacitor
+delay circuit, reset supervisor, or on-chip features can extend
+the effect of a JTAG adapter's reset for some time after the adapter
+stops issuing the reset.  For example, there may be chip or board
+requirements that all reset pulses last for at least a
+certain amount of time; and reset buttons commonly have
+hardware debouncing.
+Use the @command{jtag_nsrst_delay} and @command{jtag_ntrst_delay}
+commands to say when extra delays are needed.
+
+@item @emph{Drive type} ... Reset lines often have a pullup
+resistor, letting the JTAG interface treat them as open-drain
+signals.  But that's not a requirement, so the adapter may need
+to use push/pull output drivers.
+Also, with weak pullups it may be advisable to drive
+signals to both levels (push/pull) to minimize rise times.
+Use the @command{reset_config} @var{trst_type} and
+@var{srst_type} parameters to say how to drive reset signals.
+
+@item @emph{Special initialization} ...  Targets sometimes need
+special JTAG initialization sequences to handle chip-specific
+issues (not limited to errata).
+For example, certain JTAG commands might need to be issued while
+the system as a whole is in a reset state (SRST active)
+but the JTAG scan chain is usable (TRST inactive).
+(@xref{JTAG Commands}, where the @command{jtag_reset}
+command is presented.)
+@end itemize
+
+There can also be other issues.
+Some devices don't fully conform to the JTAG specifications.
+Trivial system-specific differences are common, such as
+SRST and TRST using slightly different names.
+There are also vendors who distribute key JTAG documentation for
+their chips only to developers who have signed a Non-Disclosure
+Agreement (NDA).
+
+Sometimes there are chip-specific extensions like a requirement to use
+the normally-optional TRST signal (precluding use of JTAG adapters which
+don't pass TRST through), or needing extra steps to complete a TAP reset.
+
+In short, SRST and especially TRST handling may be very finicky,
+needing to cope with both architecture and board specific constraints.
+
+@section Commands for Handling Resets
+
+@deffn {Command} jtag_nsrst_delay milliseconds
+How long (in milliseconds) OpenOCD should wait after deasserting
+nSRST (active-low system reset) before starting new JTAG operations.
+When a board has a reset button connected to SRST line it will
+probably have hardware debouncing, implying you should use this.
+@end deffn
+
+@deffn {Command} jtag_ntrst_delay milliseconds
+How long (in milliseconds) OpenOCD should wait after deasserting
+nTRST (active-low JTAG TAP reset) before starting new JTAG operations.
+@end deffn
+
+@deffn {Command} reset_config mode_flag ...
+This command tells OpenOCD the reset configuration
+of your combination of JTAG board and target in target
+configuration scripts.
+
+If you have an interface that does not support SRST and
+TRST(unlikely), then you may be able to work around that
+problem by using a reset_config command to override any
+settings in the target configuration script.
+
+SRST and TRST has a fairly well understood definition and
+behaviour in the JTAG specification, but vendors take
+liberties to achieve various more or less clearly understood
+goals. Sometimes documentation is available, other times it
+is not. OpenOCD has the reset_config command to allow OpenOCD
+to deal with the various common cases.
+
+The @var{mode_flag} options can be specified in any order, but only one
+of each type -- @var{signals}, @var{combination}, @var{trst_type},
+and @var{srst_type} -- may be specified at a time.
+If you don't provide a new value for a given type, its previous
+value (perhaps the default) is unchanged.
+For example, this means that you don't need to say anything at all about
+TRST just to declare that if the JTAG adapter should want to drive SRST,
+it must explicitly be driven high (@option{srst_push_pull}).
+
+@var{signals} can specify which of the reset signals are connected.
+For example, If the JTAG interface provides SRST, but the board doesn't
+connect that signal properly, then OpenOCD can't use it.
+Possible values are @option{none} (the default), @option{trst_only},
+@option{srst_only} and @option{trst_and_srst}.
+
+@quotation Tip
+If your board provides SRST or TRST through the JTAG connector,
+you must declare that or else those signals will not be used.
+@end quotation
+
+The @var{combination} is an optional value specifying broken reset
+signal implementations.
+The default behaviour if no option given is @option{separate},
+indicating everything behaves normally.
+@option{srst_pulls_trst} states that the
 test logic is reset together with the reset of the system (e.g. Philips
 LPC2000, "broken" board layout), @option{trst_pulls_srst} says that
 the system is reset together with the test logic (only hypothetical, I
 haven't seen hardware with such a bug, and can be worked around).
 @option{combined} implies both @option{srst_pulls_trst} and
-@option{trst_pulls_srst}.  The default behaviour if no option given is
-@option{separate}.
-
-The [@var{trst_type}] and [@var{srst_type}] parameters allow the
-driver type of the reset lines to be specified. Possible values are
-@option{trst_push_pull} (default) and @option{trst_open_drain} for the
-test reset signal, and @option{srst_open_drain} (default) and
-@option{srst_push_pull} for the system reset. These values only affect
-JTAG interfaces with support for different drivers, like the Amontec
-JTAGkey and JTAGAccelerator.
-
-@comment - end command
-@end itemize
+@option{trst_pulls_srst}.
 
+The optional @var{trst_type} and @var{srst_type} parameters allow the
+driver mode of each reset line to be specified.  These values only affect
+JTAG interfaces with support for different driver modes, like the Amontec
+JTAGkey and JTAGAccelerator.  Also, they are necessarily ignored if the
+relevant signal (TRST or SRST) is not connected.
 
+Possible @var{trst_type} driver modes for the test reset signal (TRST)
+are @option{trst_push_pull} (default) and @option{trst_open_drain}.
+Most boards connect this signal to a pulldown, so the JTAG TAPs
+never leave reset unless they are hooked up to a JTAG adapter.
 
-@node Tap Creation
-@chapter Tap Creation
-@cindex tap creation
-@cindex tap configuration
+Possible @var{srst_type} driver modes for the system reset signal (SRST)
+are the default @option{srst_open_drain}, and @option{srst_push_pull}.
+Most boards connect this signal to a pullup, and allow the
+signal to be pulled low by various events including system
+powerup and pressing a reset button.
+@end deffn
 
-In order for OpenOCD to control a target, a JTAG tap must be
-defined/created.
 
-Commands to create taps are normally found in a configuration file and
-are not normally typed by a human.
+@node TAP Declaration
+@chapter TAP Declaration
+@cindex TAP declaration
+@cindex TAP configuration
 
-When a tap is created a @b{dotted.name} is created for the tap. Other
-commands use that dotted.name to manipulate or refer to the tap.
+@emph{Test Access Ports} (TAPs) are the core of JTAG.
+TAPs serve many roles, including:
 
-Tap Uses:
 @itemize @bullet
-@item @b{Debug Target} A tap can be used by a GDB debug target
-@item @b{Flash Programing} Some chips program the flash via JTAG
-@item @b{Boundry Scan} Some chips support boundary scan.
+@item @b{Debug Target} A CPU TAP can be used as a GDB debug target
+@item @b{Flash Programing} Some chips program the flash directly via JTAG.
+Others do it indirectly, making a CPU do it.
+@item @b{Program Download} Using the same CPU support GDB uses,
+you can initialize a DRAM controller, download code to DRAM, and then
+start running that code.
+@item @b{Boundary Scan} Most chips support boundary scan, which
+helps test for board assembly problems like solder bridges
+and missing connections
 @end itemize
 
+OpenOCD must know about the active TAPs on your board(s).
+Setting up the TAPs is the core task of your configuration files.
+Once those TAPs are set up, you can pass their names to code
+which sets up CPUs and exports them as GDB targets,
+probes flash memory, performs low-level JTAG operations, and more.
+
+@section Scan Chains
+
+OpenOCD uses a JTAG adapter (interface) to talk to your board,
+which has a daisy chain of TAPs.
+That daisy chain is called a @dfn{scan chain}.
+Simple configurations may have a single TAP in the scan chain,
+perhaps for a microcontroller.
+Complex configurations might have a dozen or more TAPs:
+several in one chip, more in the next, and connecting
+to other boards with their own chips and TAPs.
+
+Unfortunately those TAPs can't always be autoconfigured,
+because not all devices provide good support for that.
+(JTAG doesn't require supporting IDCODE instructions.)
+The configuration mechanism currently supported by OpenOCD
+requires explicit configuration of all TAP devices using
+@command{jtag newtap} commands.
+One like this would declare a tap and name it @code{chip1.cpu}:
 
-@section jtag newtap
-@b{@t{jtag newtap CHIPNAME TAPNAME  configparams ....}}
-@cindex jtag_device
-@cindex jtag newtap
-@cindex tap
-@cindex tap order
-@cindex tap geometry
-
-@comment START options
-@itemize @bullet
-@item @b{CHIPNAME}
-@* is a symbolic name of the chip. 
-@item @b{TAPNAME}
-@* is a symbol name of a tap present on the chip.
-@item @b{Required configparams}
-@* Every tap has 3 required configparams, and several ``optional
-parameters'', the required parameters are:
-@comment START REQUIRED
-@itemize @bullet
-@item @b{-irlen NUMBER} - the length in bits of the instruction register, mostly 4 or 5 bits.
-@item @b{-ircapture NUMBER} - the IDCODE capture command, usually 0x01.
-@item @b{-irmask NUMBER} - the corresponding mask for the IR register. For
-some devices, there are bits in the IR that aren't used.  This lets you mask
-them off when doing comparisons.  In general, this should just be all ones for
-the size of the IR.
-@comment END REQUIRED
-@end itemize
-An example of a FOOBAR Tap
 @example
-jtag newtap foobar tap -irlen 7 -ircapture 0x42 -irmask 0x55
+jtag newtap chip1 cpu -irlen 7 -ircapture 0x01 -irmask 0x55
 @end example
-Creates the tap ``foobar.tap'' with the instruction register (IR) is 7
-bits long, during Capture-IR 0x42 is loaded into the IR, and bits
-[6,4,2,0] are checked.
 
-@item @b{Optional configparams}
-@comment START Optional
-@itemize @bullet
-@item @b{-expected-id NUMBER}
-@* By default it is zero. If non-zero represents the
-expected tap ID used when the JTAG chain is examined. See below.
-@item @b{-disable}
-@item @b{-enable}
-@* By default not specified the tap is enabled. Some chips have a
-JTAG route controller (JRC) that is used to enable and/or disable
-specific JTAG taps. You can later enable or disable any JTAG tap via
-the command @b{jtag tapenable DOTTED.NAME} or @b{jtag tapdisable 
-DOTTED.NAME}
-@comment END Optional
-@end itemize
-
-@comment END OPTIONS
-@end itemize
-@b{Notes:}
-@comment START NOTES
-@itemize @bullet
-@item @b{Technically}
-@* newtap is a sub command of the ``jtag'' command
-@item @b{Big Picture Background}
-@*GDB Talks to OpenOCD using the GDB protocol via
-TCP/IP. OpenOCD then uses the JTAG interface (the dongle) to
-control the JTAG chain on your board. Your board has one or more chips
-in a @i{daisy chain configuration}. Each chip may have one or more
-JTAG taps. GDB ends up talking via OpenOCD to one of the taps.
-@item @b{NAME Rules}
-@*Names follow ``C'' symbol name rules (start with alpha ...)
-@item @b{TAPNAME - Conventions}
-@itemize @bullet
-@item @b{tap} - should be used only FPGA or CPLD like devices with a single tap.
-@item @b{cpu} - the main CPU of the chip, alternatively @b{foo.arm} and @b{foo.dsp}
-@item @b{flash} - if the chip has a flash tap, example: str912.flash
-@item @b{bs} - for boundary scan if this is a seperate tap.
-@item @b{jrc} - for JTAG route controller (example: OMAP3530 found on Beagleboards)
-@item @b{unknownN} - where N is a number if you have no idea what the tap is for
-@item @b{Other names} - Freescale IMX31 has a SDMA (smart dma) with a JTAG tap, that tap should be called the ``sdma'' tap.
-@item @b{When in doubt} - use the chip maker's name in their data sheet.
-@end itemize
-@item @b{DOTTED.NAME}
-@* @b{CHIPNAME}.@b{TAPNAME} creates the tap name, aka: the
-@b{Dotted.Name} is the @b{CHIPNAME} and @b{TAPNAME} combined with a
-dot (period); for example: @b{xilinx.tap}, @b{str912.flash},
-@b{omap3530.jrc}, or @b{stm32.cpu} The @b{dotted.name} is used in
-numerous other places to refer to various taps.
-@item @b{ORDER}
-@* The order this command appears via the config files is
-important.
-@item @b{Multi Tap Example}
-@* This example is based on the ST Microsystems STR912. See the ST
-document titled: @b{STR91xFAxxx, Section 3.15 Jtag Interface, Page:
+Each target configuration file lists the TAPs provided
+by a given chip.
+Board configuration files combine all the targets on a board,
+and so forth.
+Note that @emph{the order in which TAPs are declared is very important.}
+It must match the order in the JTAG scan chain, both inside
+a single chip and between them.
+@xref{FAQ TAP Order}.
+
+For example, the ST Microsystems STR912 chip has
+three separate TAPs@footnote{See the ST
+document titled: @emph{STR91xFAxxx, Section 3.15 Jtag Interface, Page:
 28/102, Figure 3: JTAG chaining inside the STR91xFA}.
-
-@url{http://eu.st.com/stonline/products/literature/ds/13495.pdf}
-@*@b{checked: 28/nov/2008}
-
-The diagram shows that the TDO pin connects to the flash tap, flash TDI
-connects to the CPU debug tap, CPU TDI connects to the boundary scan
-tap which then connects to the TDI pin.
+@url{http://eu.st.com/stonline/products/literature/ds/13495.pdf}}.
+To configure those taps, @file{target/str912.cfg}
+includes commands something like this:
 
 @example
-   # The order is...
-   # create tap: 'str912.flash'
-   jtag newtap str912 flash  ... params ...
-   # create tap: 'str912.cpu'
-   jtag newtap str912 cpu  ... params ...
-   # create tap: 'str912.bs'
-   jtag newtap str912 bs  ... params ...
+jtag newtap str912 flash ... params ...
+jtag newtap str912 cpu ... params ...
+jtag newtap str912 bs ... params ...
 @end example
 
-@item @b{Note: Deprecated} - Index Numbers
-@* Prior to 28/nov/2008, JTAG taps where numbered from 0..N this
-feature is still present, however its use is highly discouraged and
+Actual config files use a variable instead of literals like
+@option{str912}, to support more than one chip of each type.
+@xref{Config File Guidelines}.
+
+@section TAP Names
+
+When TAP objects are declared with @command{jtag newtap},
+a @dfn{dotted.name} is created for the TAP, combining the
+name of a module (usually a chip) and a label for the TAP.
+For example: @code{xilinx.tap}, @code{str912.flash},
+@code{omap3530.jrc}, @code{dm6446.dsp}, or @code{stm32.cpu}.
+Many other commands use that dotted.name to manipulate or
+refer to the TAP.  For example, CPU configuration uses the
+name, as does declaration of NAND or NOR flash banks.
+
+The components of a dotted name should follow ``C'' symbol
+name rules:  start with an alphabetic character, then numbers
+and underscores are OK; while others (including dots!) are not.
+
+@quotation Tip
+In older code, JTAG TAPs were numbered from 0..N.
+This feature is still present.
+However its use is highly discouraged, and
 should not be counted upon.
-@item @b{Multiple chips}
-@* If your board has multiple chips, you should be
-able to @b{source} two configuration files, in the proper order, and
-have the taps created in the proper order.
-@comment END NOTES
+Update all of your scripts to use TAP names rather than numbers.
+Using TAP numbers in target configuration scripts prevents
+reusing on boards with multiple targets.
+@end quotation
+
+@section TAP Declaration Commands
+
+@c shouldn't this be(come) a {Config Command}?
+@anchor{jtag newtap}
+@deffn Command {jtag newtap} chipname tapname configparams...
+Declares a new TAP with the dotted name @var{chipname}.@var{tapname},
+and configured according to the various @var{configparams}.
+
+The @var{chipname} is a symbolic name for the chip.
+Conventionally target config files use @code{$_CHIPNAME},
+defaulting to the model name given by the chip vendor but
+overridable.
+
+@cindex TAP naming convention
+The @var{tapname} reflects the role of that TAP,
+and should follow this convention:
+
+@itemize @bullet
+@item @code{bs} -- For boundary scan if this is a seperate TAP;
+@item @code{cpu} -- The main CPU of the chip, alternatively
+@code{arm} and @code{dsp} on chips with both ARM and DSP CPUs,
+@code{arm1} and @code{arm2} on chips two ARMs, and so forth;
+@item @code{etb} -- For an embedded trace buffer (example: an ARM ETB11);
+@item @code{flash} -- If the chip has a flash TAP, like the str912;
+@item @code{jrc} -- For JTAG route controller (example: the ICEpick modules
+on many Texas Instruments chips, like the OMAP3530 on Beagleboards);
+@item @code{tap} -- Should be used only FPGA or CPLD like devices
+with a single TAP;
+@item @code{unknownN} -- If you have no idea what the TAP is for (N is a number);
+@item @emph{when in doubt} -- Use the chip maker's name in their data sheet.
+For example, the Freescale IMX31 has a SDMA (Smart DMA) with
+a JTAG TAP; that TAP should be named @code{sdma}.
 @end itemize
-@comment at command level
-@comment DOCUMENT old command
-@section jtag_device - REMOVED
-@example
-@b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
-@end example
-@cindex jtag_device
 
-@* @b{Removed: 28/nov/2008} This command has been removed and replaced
-by the ``jtag newtap'' command. The documentation remains here so that
-one can easily convert the old syntax to the new syntax. About the old
-syntax: The old syntax is positional, i.e.: The 3rd parameter is the
-``irmask''. The new syntax requires named prefixes, and supports
-additional options, for example ``-expected-id 0x3f0f0f0f''. Please refer to the
-@b{jtag newtap} command for details.
-@example
-OLD: jtag_device 8 0x01 0xe3 0xfe
-NEW: jtag newtap CHIPNAME TAPNAME -irlen 8 -ircapture 0x01 -irmask 0xe3
-@end example
+Every TAP requires at least the following @var{configparams}:
 
-@section Enable/Disable Taps
-@b{Note:} These commands are intended to be used as a machine/script
-interface. Humans might find the ``scan_chain'' command more helpful
-when querying the state of the JTAG taps.
+@itemize @bullet
+@item @code{-ircapture} @var{NUMBER}
+@*The IDCODE capture command, such as 0x01.
+@item @code{-irlen} @var{NUMBER}
+@*The length in bits of the
+instruction register, such as 4 or 5 bits.
+@item @code{-irmask} @var{NUMBER}
+@*A mask for the IR register.
+For some devices, there are bits in the IR that aren't used.
+This lets OpenOCD mask them off when doing IDCODE comparisons.
+In general, this should just be all ones for the size of the IR.
+@end itemize
 
-@b{By default, all taps are enabled}
+A TAP may also provide optional @var{configparams}:
 
 @itemize @bullet
-@item @b{jtag tapenable} @var{DOTTED.NAME}
-@item @b{jtag tapdisable} @var{DOTTED.NAME}
-@item @b{jtag tapisenabled} @var{DOTTED.NAME}
+@item @code{-disable} (or @code{-enable})
+@*Use the @code{-disable} paramater to flag a TAP which is not
+linked in to the scan chain when it is declared.
+You may use @code{-enable} to highlight the default state
+(the TAP is linked in).
+@xref{Enabling and Disabling TAPs}.
+@item @code{-expected-id} @var{number}
+@*A non-zero value represents the expected 32-bit IDCODE
+found when the JTAG chain is examined.
+These codes are not required by all JTAG devices.
+@emph{Repeat the option} as many times as required if more than one
+ID code could appear (for example, multiple versions).
 @end itemize
-@cindex tap enable
-@cindex tap disable
-@cindex JRC
-@cindex route controller
+@end deffn
 
-These commands are used when your target has a JTAG route controller
-that effectively adds or removes a tap from the JTAG chain in a
-non-standard way.
+@c @deffn Command {jtag arp_init-reset}
+@c ... more or less "init" ?
 
-The ``standard way'' to remove a tap would be to place the tap in
-bypass mode. But with the advent of modern chips, this is not always a
-good solution. Some taps operate slowly, others operate fast, and
-there are other JTAG clock synchronisation problems one must face. To
-solve that problem, the JTAG route controller was introduced. Rather
-than ``bypass'' the tap, the tap is completely removed from the
-circuit and skipped.
+@anchor{Enabling and Disabling TAPs}
+@section Enabling and Disabling TAPs
+@cindex TAP events
 
+In some systems, a @dfn{JTAG Route Controller} (JRC)
+is used to enable and/or disable specific JTAG TAPs.
+Many ARM based chips from Texas Instruments include
+an ``ICEpick'' module, which is a JRC.
+Such chips include DaVinci and OMAP3 processors.
 
-From OpenOCD's point of view, a JTAG tap is in one of 3 states:
+A given TAP may not be visible until the JRC has been
+told to link it into the scan chain; and if the JRC
+has been told to unlink that TAP, it will no longer
+be visible.
+Such routers address problems that JTAG ``bypass mode''
+ignores, such as:
 
-@itemize @bullet
-@item @b{Enabled - Not In ByPass} and has a variable bit length
-@item @b{Enabled - In ByPass} and has a length of exactly 1 bit.
-@item @b{Disabled} and has a length of ZERO and is removed from the circuit.
+@itemize
+@item The scan chain can only go as fast as its slowest TAP.
+@item Having many TAPs slows instruction scans, since all
+TAPs receive new instructions.
+@item TAPs in the scan chain must be powered up, which wastes
+power and prevents debugging some power management mechanisms.
 @end itemize
 
-The IEEE JTAG definition has no concept of a ``disabled'' tap.
-@b{Historical note:} this feature was added 28/nov/2008
+The IEEE 1149.1 JTAG standard has no concept of a ``disabled'' tap,
+as implied by the existence of JTAG routers.
+However, the upcoming IEEE 1149.7 framework (layered on top of JTAG)
+does include a kind of JTAG router functionality.
 
-@b{jtag tapisenabled DOTTED.NAME}
+@c (a) currently the event handlers don't seem to be able to
+@c     fail in a way that could lead to no-change-of-state.
+@c (b) eventually non-event configuration should be possible,
+@c     in which case some this documentation must move.
 
-This command returns 1 if the named tap is currently enabled, 0 if not.
-This command exists so that scripts that manipulate a JRC (like the
-OMAP3530 has) can determine if OpenOCD thinks a tap is presently
-enabled or disabled.
+@deffn Command {jtag cget} dotted.name @option{-event} name
+@deffnx Command {jtag configure} dotted.name @option{-event} name string
+At this writing this mechanism is used only for event handling,
+and the only two events relate to TAP enabling and disabling.
 
-@page
-@node Target Configuration
-@chapter Target Configuration
+The @code{configure} subcommand assigns an event handler,
+a TCL string which is evaluated when the event is triggered.
+The @code{cget} subcommand returns that handler.
+The two possible values for an event @var{name}
+are @option{tap-disable} and @option{tap-enable}.
 
-This chapter discusses how to create a GDB debug target.  Before
-creating a ``target'' a JTAG tap DOTTED.NAME must exist first.
+So for example, when defining a TAP for a CPU connected to
+a JTAG router, you should define TAP event handlers using
+code that looks something like this:
+
+@example
+jtag configure CHIP.cpu -event tap-enable @{
+  echo "Enabling CPU TAP"
+  ... jtag operations using CHIP.jrc
+@}
+jtag configure CHIP.cpu -event tap-disable @{
+  echo "Disabling CPU TAP"
+  ... jtag operations using CHIP.jrc
+@}
+@end example
+@end deffn
+
+@deffn Command {jtag tapdisable} dotted.name
+@deffnx Command {jtag tapenable} dotted.name
+@deffnx Command {jtag tapisenabled} dotted.name
+These three commands all return the string "1" if the tap
+specified by @var{dotted.name} is enabled,
+and "0" if it is disbabled.
+The @command{tapenable} variant first enables the tap
+by sending it a @option{tap-enable} event.
+The @command{tapdisable} variant first disables the tap
+by sending it a @option{tap-disable} event.
+
+@quotation Note
+Humans will find the @command{scan_chain} command more helpful
+than the script-oriented @command{tapisenabled}
+for querying the state of the JTAG taps.
+@end quotation
+@end deffn
+
+@node CPU Configuration
+@chapter CPU Configuration
+@cindex GDB target
+
+This chapter discusses how to create a GDB debug target for a CPU.
+You can also access these targets without GDB
+(@pxref{Architecture and Core Commands}) and, where relevant,
+through various kinds of NAND and NOR flash commands.
+Also, if you have multiple CPUs you can have multiple such targets.
+
+Before creating a ``target'', you must have added its TAP to the scan chain.
+When you've added that TAP, you will have a @code{dotted.name}
+which is used to set up the CPU support.
+The chip-specific configuration file will normally configure its CPU(s)
+right after it adds all of the chip's TAPs to the scan chain.
 
 @section targets [NAME]
-@b{Note:} This command name is PLURAL - not singular.  
+@b{Note:} This command name is PLURAL - not singular.
 
 With NO parameter, this plural @b{targets} command lists all known
 targets in a human friendly form.
@@ -1706,7 +2120,7 @@ target to the given name. (i.e.: If there are multiple debug targets)
 Example:
 @verbatim
 (gdb) mon targets
-      CmdName     Type     Endian    ChainPos   State     
+      CmdName     Type     Endian    ChainPos   State
 --  ---------- ---------- ---------- -------- ----------
     0: target0  arm7tdmi   little        0      halted
 @end verbatim
@@ -1726,7 +2140,7 @@ The TARGET command accepts these sub-commands:
 @* Lists all supported target types (perhaps some are not yet in this document).
 @item @b{names}
 @* Lists all current debug target names, for example: 'str912.cpu' or 'pxa27.cpu' example usage:
-@verbatim  
+@verbatim
        foreach t [target names] {
            puts [format "Target: %s\n" $t]
        }
@@ -1758,7 +2172,7 @@ Example:
 @section TARGETNAME (object) commands
 @b{Use:} Once a target is created, an ``object name'' that represents the
 target is created. By convention, the target name is identical to the
-tap name. In a multiple target system, one can preceed many common
+tap name. In a multiple target system, one can precede many common
 commands with a specific target name and effect only that target.
 @example
     str912.cpu    mww 0x1234 0x42
@@ -1781,7 +2195,7 @@ configure it like this:
     # Report
     puts [format "The button is %s" $x]
 @end example
-    
+
 In OpenOCD's terms, the ``target'' is an object just like a Tcl/Tk
 button. Commands available as a ``target object'' are:
 
@@ -1828,7 +2242,9 @@ with odd reset situations and are not documented here.
 @* Invokes the specific event manually for the target
 @end itemize
 
+@anchor{Target Events}
 @section Target Events
+@cindex events
 At various times, certain things can happen, or you want them to happen.
 
 Examples:
@@ -1857,7 +2273,10 @@ creates and invokes small procedure. The second inlines the procedure.
        reset halt
    @}
    mychip.cpu configure -event gdb-attach my_attach_proc 
-   mychip.cpu configure -event gdb-attach @{ puts "Reset..." ; reset halt @}
+   mychip.cpu configure -event gdb-attach @{
+       puts "Reset..."
+       reset halt
+   @}
 @end example
 
 @section Current Events
@@ -1896,23 +2315,33 @@ The following events are available:
 @item @b{old-pre_resume}
 @* DO NOT USE THIS: Used internally
 @item @b{reset-assert-pre}
-@* Before reset is asserted on the tap.
+@* Issued as part of @command{reset} processing
+after SRST and/or TRST were activated and deactivated,
+but before reset is asserted on the tap.
 @item @b{reset-assert-post}
-@* Reset is now asserted on the tap.
+@* Issued as part of @command{reset} processing
+when reset is asserted on the tap.
 @item @b{reset-deassert-pre}
-@* Reset is about to be released on the tap
+@* Issued as part of @command{reset} processing
+when reset is about to be released on the tap.
 @item @b{reset-deassert-post}
-@* Reset has been released on the tap
+@* Issued as part of @command{reset} processing
+when reset has been released on the tap.
 @item @b{reset-end}
-@* Currently not used.
+@* Issued as the final step in @command{reset} processing.
 @item @b{reset-halt-post}
 @* Currently not usd
 @item @b{reset-halt-pre}
 @* Currently not used
 @item @b{reset-init}
-@* Currently not used
+@* Used by @b{reset init} command for board-specific initialization.
+This event fires after @emph{reset-deassert-post}.
+This is where you would configure PLLs and clocking, set up DRAM so
+you can download programs that don't fit in on-chip SRAM, set up pin
+multiplexing, and so on.
 @item @b{reset-start}
-@* Currently not used
+@* Issued as part of @command{reset} processing
+before either SRST or TRST are activated.
 @item @b{reset-wait-pos}
 @* Currently not used
 @item @b{reset-wait-pre}
@@ -1924,26 +2353,11 @@ The following events are available:
 @item @b{resume-ok}
 @* Success
 @item @b{resumed}
-@* Target has resumed
-@item @b{tap-enable}
-@* Executed by @b{jtag tapenable DOTTED.NAME} command. Example:
-@example
-jtag configure DOTTED.NAME -event tap-enable @{
-  puts "Enabling CPU"
-  ...
-@}
-@end example
-@item @b{tap-disable}
-@*Executed by @b{jtag tapdisable DOTTED.NAME} command. Example:
-@example
-jtag configure DOTTED.NAME -event tap-disable @{
-  puts "Disabling CPU"
-  ...
-@}
-@end example
+@* Target has resumed
 @end itemize
 
-@section target create
+@anchor{Target Create}
+@section Target Create
 @cindex target
 @cindex target creation
 
@@ -1955,8 +2369,8 @@ jtag configure DOTTED.NAME -event tap-disable @{
 @itemize @bullet
 @item @b{NAME}
 @* Is the name of the debug target. By convention it should be the tap
-DOTTED.NAME, this name is also used to create the target object
-command.
+DOTTED.NAME.  This name is also used to create the target object
+command, and in other places the target needs to be identified.
 @item @b{TYPE}
 @* Specifies the target type, i.e.: ARM7TDMI, or Cortex-M3. Currently supported targets are:
 @comment START types
@@ -1989,13 +2403,23 @@ command.
 @section Target Config/Cget Options
 These options can be specified when the target is created, or later
 via the configure option or to query the target via cget.
+
+You should specify a working area if you can; typically it uses some
+on-chip SRAM.  Such a working area can speed up many things, including bulk
+writes to target memory; flash operations like checking to see if memory needs
+to be erased; GDB memory checksumming; and may help perform otherwise
+unavailable operations (like some coprocessor operations on ARM7/9 systems).
 @itemize @bullet
 @item @b{-type} - returns the target type
 @item @b{-event NAME BODY} see Target events
-@item @b{-work-area-virt [ADDRESS]} specify/set the work area
-@item @b{-work-area-phys [ADDRESS]} specify/set the work area
+@item @b{-work-area-virt [ADDRESS]} specify/set the work area base address
+which will be used when an MMU is active.
+@item @b{-work-area-phys [ADDRESS]} specify/set the work area base address
+which will be used when an MMU is inactive.
 @item @b{-work-area-size [ADDRESS]} specify/set the work area
-@item @b{-work-area-backup [0|1]} does the work area get backed up
+@item @b{-work-area-backup [0|1]} does the work area get backed up;
+by default, it doesn't.  When possible, use a working_area that doesn't
+need to be backed up, since performing a backup slows down operations.
 @item @b{-endian  [big|little]} 
 @item @b{-variant [NAME]} some chips have variants OpenOCD needs to know about
 @item @b{-chain-position DOTTED.NAME} the tap name this target refers to.
@@ -2010,29 +2434,23 @@ Example:
   @}
 @end example
 
+@b{PROBLEM:} On more complex chips, the work area can become
+inaccessible when application code enables or disables the MMU.
+For example, the MMU context used to acess the virtual address
+will probably matter.
+
 @section Target Variants
 @itemize @bullet
-@item @b{arm7tdmi}
-@* Unknown (please write me)
-@item @b{arm720t}
-@* Unknown (please write me) (similar to arm7tdmi)
-@item @b{arm9tdmi}
-@* Variants: @option{arm920t}, @option{arm922t} and @option{arm940t}
-This enables the hardware single-stepping support found on these
-cores.
-@item @b{arm920t}
-@* None.
-@item @b{arm966e}
-@* None (this is also used as the ARM946)
 @item @b{cortex_m3}
-@* use variant <@var{-variant lm3s}> when debugging Luminary lm3s targets. This will cause
-OpenOCD to use a software reset rather than asserting SRST to avoid a issue with clearing
-the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will
+@* Use variant @option{lm3s} when debugging older Stellaris LM3S targets.
+This will cause OpenOCD to use a software reset rather than asserting
+SRST, to avoid a issue with clearing the debug registers.
+This is fixed in Fury Rev B, DustDevil Rev B, Tempest; these revisions will
 be detected and the normal reset behaviour used.
 @item @b{xscale}
-@* Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},@option{pxa250}, @option{pxa255}, @option{pxa26x}.
-@item @b{arm11}
-@* Supported variants are @option{arm1136}, @option{arm1156}, @option{arm1176}
+@*Supported variants are
+@option{ixp42x}, @option{ixp45x}, @option{ixp46x},
+@option{pxa250}, @option{pxa255}, @option{pxa26x}.
 @item @b{mips_m4k}
 @* Use variant @option{ejtag_srst} when debugging targets that do not
 provide a functional SRST line on the EJTAG connector.  This causes
@@ -2041,293 +2459,519 @@ processor.  You still need to enable @option{srst} on the reset
 configuration command to enable OpenOCD hardware reset functionality.
 @comment END variants
 @end itemize
-@section working_area - Command Removed
-@cindex working_area
-@*@b{Please use the ``$_TARGETNAME configure -work-area-... parameters instead}
-@* This documentation remains because there are existing scripts that
-still use this that need to be converted.
-@example
-  working_area target# address  size backup| [virtualaddress]
-@end example
-@* The target# is a the 0 based target numerical index.
-
-This command specifies a working area for the debugger to use. This
-may be used to speed-up downloads to target memory and flash
-operations, or to perform otherwise unavailable operations (some
-coprocessor operations on ARM7/9 systems, for example). The last
-parameter decides whether the memory should be preserved
-(<@var{backup}>) or can simply be overwritten (<@var{nobackup}>). If
-possible, use a working_area that doesn't need to be backed up, as
-performing a backup slows down operation.
-
-@node Flash Configuration
-@chapter Flash programming
-@cindex Flash Configuration
-
-@b{Note:} As of 28/nov/2008 OpenOCD does not know how to program a SPI
+
+@node Flash Commands
+@chapter Flash Commands
+
+OpenOCD has different commands for NOR and NAND flash;
+the ``flash'' command works with NOR flash, while
+the ``nand'' command works with NAND flash.
+This partially reflects different hardware technologies:
+NOR flash usually supports direct CPU instruction and data bus access,
+while data from a NAND flash must be copied to memory before it can be
+used.  (SPI flash must also be copied to memory before use.)
+However, the documentation also uses ``flash'' as a generic term;
+for example, ``Put flash configuration in board-specific files''.
+
+@quotation Note
+As of 28-nov-2008 OpenOCD does not know how to program a SPI
 flash that a micro may boot from. Perhaps you, the reader, would like to
 contribute support for this.
+@end quotation
 
 Flash Steps:
 @enumerate
-@item Configure via the command @b{flash bank} 
-@* Normally this is done in a configuration file.
-@item Operate on the flash via @b{flash SOMECOMMAND}
+@item Configure via the command @command{flash bank}
+@* Do this in a board-specific configuration file,
+passing parameters as needed by the driver.
+@item Operate on the flash via @command{flash subcommand}
 @* Often commands to manipulate the flash are typed by a human, or run
-via a script in some automated way. For example: To program the boot
-flash on your board.
+via a script in some automated way.  Common tasks include writing a
+boot loader, operating system, or other data.
 @item GDB Flashing
 @* Flashing via GDB requires the flash be configured via ``flash
-bank'', and the GDB flash features be enabled. See the daemon
-configuration section for more details.
+bank'', and the GDB flash features be enabled.
+@xref{GDB Configuration}.
 @end enumerate
 
-@section Flash commands
-@cindex Flash commands
-@subsection flash banks
-@b{flash banks}
-@cindex flash banks
-@*List configured flash banks 
-@*@b{NOTE:} the singular form: 'flash bank' is used to configure the flash banks.
-@subsection flash info
-@b{flash info} <@var{num}>
-@cindex flash info
-@*Print info about flash bank <@option{num}> 
-@subsection flash probe
-@b{flash probe} <@var{num}>
-@cindex flash probe
-@*Identify the flash, or validate the parameters of the configured flash. Operation
-depends on the flash type. 
-@subsection flash erase_check
-@b{flash erase_check} <@var{num}>
-@cindex flash erase_check
-@*Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
-updates the erase state information displayed by @option{flash info}. That means you have
-to issue an @option{erase_check} command after erasing or programming the device to get
-updated information. 
-@subsection flash protect_check
-@b{flash protect_check} <@var{num}>
-@cindex flash protect_check
-@*Check protection state of sectors in flash bank <num>. 
-@option{flash erase_sector} using the same syntax. 
-@subsection flash erase_sector
-@b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
-@cindex flash erase_sector
-@anchor{flash erase_sector}
-@*Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
-<@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may
-require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
-the CFI driver).
-@subsection flash erase_address
-@b{flash erase_address} <@var{address}> <@var{length}>
-@cindex flash erase_address
-@*Erase sectors starting at <@var{address}> for <@var{length}> bytes
-@subsection flash write_bank
-@b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
-@cindex flash write_bank
-@anchor{flash write_bank}
-@*Write the binary <@var{file}> to flash bank <@var{num}>, starting at
-<@option{offset}> bytes from the beginning of the bank.
-@subsection flash write_image
-@b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
-@cindex flash write_image
-@anchor{flash write_image}
-@*Write the image <@var{file}> to the current target's flash bank(s). A relocation
-[@var{offset}] can be specified and the file [@var{type}] can be specified
-explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
-(ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
-if the @option{erase} parameter is given.
-@subsection flash protect
-@b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
-@cindex flash protect
-@*Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
-<@var{last}> of @option{flash bank} <@var{num}>.
+Many CPUs have the ablity to ``boot'' from the first flash bank.
+This means that misprograming that bank can ``brick'' a system,
+so that it can't boot.
+JTAG tools, like OpenOCD, are often then used to ``de-brick'' the
+board by (re)installing working boot firmware.
+
+@section Flash Configuration Commands
+@cindex flash configuration
+
+@deffn {Config Command} {flash bank} driver base size chip_width bus_width target [driver_options]
+Configures a flash bank which provides persistent storage
+for addresses from @math{base} to @math{base + size - 1}.
+These banks will often be visible to GDB through the target's memory map.
+In some cases, configuring a flash bank will activate extra commands;
+see the driver-specific documentation.
 
-@subsection mFlash commands
-@cindex mFlash commands
 @itemize @bullet
-@item @b{mflash probe} 
-@cindex mflash probe
-Probe mflash.
-@item @b{mflash write} <@var{num}> <@var{file}> <@var{offset}>
-@cindex mflash write
-Write the binary <@var{file}> to mflash bank <@var{num}>, starting at
-<@var{offset}> bytes from the beginning of the bank.
-@item @b{mflash dump} <@var{num}> <@var{file}> <@var{offset}> <@var{size}>
-@cindex mflash dump
-Dump <size> bytes, starting at <@var{offset}> bytes from the beginning of the <@var{num}> bank 
-to a <@var{file}>.
+@item @var{driver} ... identifies the controller driver
+associated with the flash bank being declared.
+This is usually @code{cfi} for external flash, or else
+the name of a microcontroller with embedded flash memory.
+@xref{Flash Driver List}.
+@item @var{base} ... Base address of the flash chip.
+@item @var{size} ... Size of the chip, in bytes.
+For some drivers, this value is detected from the hardware.
+@item @var{chip_width} ... Width of the flash chip, in bytes;
+ignored for most microcontroller drivers.
+@item @var{bus_width} ... Width of the data bus used to access the
+chip, in bytes; ignored for most microcontroller drivers.
+@item @var{target} ... Names the target used to issue
+commands to the flash controller.
+@comment Actually, it's currently a controller-specific parameter...
+@item @var{driver_options} ... drivers may support, or require,
+additional parameters.  See the driver-specific documentation
+for more information.
 @end itemize
+@quotation Note
+This command is not available after OpenOCD initialization has completed.
+Use it in board specific configuration files, not interactively.
+@end quotation
+@end deffn
+
+@comment the REAL name for this command is "ocd_flash_banks"
+@comment less confusing would be:  "flash list" (like "nand list")
+@deffn Command {flash banks}
+Prints a one-line summary of each device declared
+using @command{flash bank}, numbered from zero.
+Note that this is the @emph{plural} form;
+the @emph{singular} form is a very different command.
+@end deffn
+
+@deffn Command {flash probe} num
+Identify the flash, or validate the parameters of the configured flash. Operation
+depends on the flash type.
+The @var{num} parameter is a value shown by @command{flash banks}.
+Most flash commands will implicitly @emph{autoprobe} the bank;
+flash drivers can distinguish between probing and autoprobing,
+but most don't bother.
+@end deffn
+
+@section Erasing, Reading, Writing to Flash
+@cindex flash erasing
+@cindex flash reading
+@cindex flash writing
+@cindex flash programming
+
+One feature distinguishing NOR flash from NAND or serial flash technologies
+is that for read access, it acts exactly like any other addressible memory.
+This means you can use normal memory read commands like @command{mdw} or
+@command{dump_image} with it, with no special @command{flash} subcommands.
+@xref{Memory access}, and @ref{Image access}.
+
+Write access works differently.  Flash memory normally needs to be erased
+before it's written.  Erasing a sector turns all of its bits to ones, and
+writing can turn ones into zeroes.  This is why there are special commands
+for interactive erasing and writing, and why GDB needs to know which parts
+of the address space hold NOR flash memory.
+
+@quotation Note
+Most of these erase and write commands leverage the fact that NOR flash
+chips consume target address space.  They implicitly refer to the current
+JTAG target, and map from an address in that target's address space
+back to a flash bank.
+@comment In May 2009, those mappings may fail if any bank associated
+@comment with that target doesn't succesfuly autoprobe ... bug worth fixing?
+A few commands use abstract addressing based on bank and sector numbers,
+and don't depend on searching the current target and its address space.
+Avoid confusing the two command models.
+@end quotation
 
-@section flash bank command
-The @b{flash bank} command is used to configure one or more flash chips (or banks in OpenOCD terms)
+Some flash chips implement software protection against accidental writes,
+since such buggy writes could in some cases ``brick'' a system.
+For such systems, erasing and writing may require sector protection to be
+disabled first.
+Examples include CFI flash such as ``Intel Advanced Bootblock flash'',
+and AT91SAM7 on-chip flash.
+@xref{flash protect}.
 
-@example
-@b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
-<@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
-@end example
-@cindex flash bank
-@*Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
-and <@var{bus_width}> bytes using the selected flash <driver>.
+@anchor{flash erase_sector}
+@deffn Command {flash erase_sector} num first last
+Erase sectors in bank @var{num}, starting at sector @var{first} up to and including
+@var{last}. Sector numbering starts at 0.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+
+@deffn Command {flash erase_address} address length
+Erase sectors starting at @var{address} for @var{length} bytes.
+The flash bank to use is inferred from the @var{address}, and
+the specified length must stay within that bank.
+As a special case, when @var{length} is zero and @var{address} is
+the start of the bank, the whole flash is erased.
+@end deffn
+
+@deffn Command {flash fillw} address word length
+@deffnx Command {flash fillh} address halfword length
+@deffnx Command {flash fillb} address byte length
+Fills flash memory with the specified @var{word} (32 bits),
+@var{halfword} (16 bits), or @var{byte} (8-bit) pattern,
+starting at @var{address} and continuing
+for @var{length} units (word/halfword/byte).
+No erasure is done before writing; when needed, that must be done
+before issuing this command.
+Writes are done in blocks of up to 1024 bytes, and each write is
+verified by reading back the data and comparing it to what was written.
+The flash bank to use is inferred from the @var{address} of
+each block, and the specified length must stay within that bank.
+@end deffn
+@comment no current checks for errors if fill blocks touch multiple banks!
 
-@subsection External Flash - cfi options
-@cindex cfi options
-CFI flashes are external flash chips - often they are connected to a
-specific chip select on the CPU. By default, at hard reset, most
-CPUs have the ablity to ``boot'' from some flash chip - typically
-attached to the CPU's CS0 pin.
+@anchor{flash write_bank}
+@deffn Command {flash write_bank} num filename offset
+Write the binary @file{filename} to flash bank @var{num},
+starting at @var{offset} bytes from the beginning of the bank.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
 
-For other chip selects: OpenOCD does not know how to configure, or
-access a specific chip select. Instead you, the human, might need to 
-configure additional chip selects via other commands (like: mww) , or
+@anchor{flash write_image}
+@deffn Command {flash write_image} [erase] filename [offset] [type]
+Write the image @file{filename} to the current target's flash bank(s).
+A relocation @var{offset} may be specified, in which case it is added
+to the base address for each section in the image.
+The file [@var{type}] can be specified
+explicitly as @option{bin} (binary), @option{ihex} (Intel hex),
+@option{elf} (ELF file), @option{s19} (Motorola s19).
+@option{mem}, or @option{builder}.
+The relevant flash sectors will be erased prior to programming
+if the @option{erase} parameter is given.
+The flash bank to use is inferred from the @var{address} of
+each image segment.
+@end deffn
+
+@section Other Flash commands
+@cindex flash protection
+
+@deffn Command {flash erase_check} num
+Check erase state of sectors in flash bank @var{num},
+and display that status.
+The @var{num} parameter is a value shown by @command{flash banks}.
+This is the only operation that
+updates the erase state information displayed by @option{flash info}. That means you have
+to issue an @command{flash erase_check} command after erasing or programming the device
+to get updated information.
+(Code execution may have invalidated any state records kept by OpenOCD.)
+@end deffn
+
+@deffn Command {flash info} num
+Print info about flash bank @var{num}
+The @var{num} parameter is a value shown by @command{flash banks}.
+The information includes per-sector protect status.
+@end deffn
+
+@anchor{flash protect}
+@deffn Command {flash protect} num first last (on|off)
+Enable (@var{on}) or disable (@var{off}) protection of flash sectors
+@var{first} to @var{last} of flash bank @var{num}.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+
+@deffn Command {flash protect_check} num
+Check protection state of sectors in flash bank @var{num}.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@comment @option{flash erase_sector} using the same syntax.
+@end deffn
+
+@anchor{Flash Driver List}
+@section Flash Drivers, Options, and Commands
+As noted above, the @command{flash bank} command requires a driver name,
+and allows driver-specific options and behaviors.
+Some drivers also activate driver-specific commands.
+
+@subsection External Flash
+
+@deffn {Flash Driver} cfi
+@cindex Common Flash Interface
+@cindex CFI
+The ``Common Flash Interface'' (CFI) is the main standard for
+external NOR flash chips, each of which connects to a
+specific external chip select on the CPU.
+Frequently the first such chip is used to boot the system.
+Your board's @code{reset-init} handler might need to
+configure additional chip selects using other commands (like: @command{mww} to
+configure a bus and its timings) , or
 perhaps configure a GPIO pin that controls the ``write protect'' pin
 on the flash chip.
+The CFI driver can use a target-specific working area to significantly
+speed up operation.
 
-@b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
-<@var{target#}> [@var{jedec_probe}|@var{x16_as_x8}]
-@*CFI flashes require the number of the target they're connected to as an additional
-argument. The CFI driver makes use of a working area (specified for the target)
-to significantly speed up operation. 
+The CFI driver can accept the following optional parameters, in any order:
 
-@var{chip_width} and @var{bus_width} are specified in bytes.
+@itemize
+@item @var{jedec_probe} ... is used to detect certain non-CFI flash ROMs,
+like AM29LV010 and similar types.
+@item @var{x16_as_x8} ... when a 16-bit flash is hooked up to an 8-bit bus.
+@end itemize
 
-The @var{jedec_probe} option is used to detect certain non-CFI flash ROMs, like AM29LV010 and similar types.
+To configure two adjacent banks of 16 MBytes each, both sixteen bits (two bytes)
+wide on a sixteen bit bus:
 
-@var{x16_as_x8} ???
+@example
+flash bank cfi 0x00000000 0x01000000 2 2 $_TARGETNAME
+flash bank cfi 0x01000000 0x01000000 2 2 $_TARGETNAME
+@end example
+@end deffn
 
 @subsection Internal Flash (Microcontrollers)
-@subsubsection lpc2000 options
-@cindex lpc2000 options
 
-@b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
-<@var{clock}> [@var{calc_checksum}]
-@*LPC flashes don't require the chip and bus width to be specified. Additional
-parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
-or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
-of the target this flash belongs to (first is 0), the frequency at which the core
-is currently running (in kHz - must be an integral number), and the optional keyword
-@var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
-vector table. 
+@deffn {Flash Driver} aduc702x
+The ADUC702x analog microcontrollers from ST Micro
+include internal flash and use ARM7TDMI cores.
+The aduc702x flash driver works with models ADUC7019 through ADUC7028.
+The setup command only requires the @var{target} argument
+since all devices in this family have the same memory layout.
+
+@example
+flash bank aduc702x 0 0 0 0 $_TARGETNAME
+@end example
+@end deffn
+
+@deffn {Flash Driver} at91sam7
+All members of the AT91SAM7 microcontroller family from Atmel
+include internal flash and use ARM7TDMI cores.
+The driver automatically recognizes a number of these chips using
+the chip identification register, and autoconfigures itself.
 
+@example
+flash bank at91sam7 0 0 0 0 $_TARGETNAME
+@end example
 
-@subsubsection at91sam7 options
-@cindex at91sam7 options
+For chips which are not recognized by the controller driver, you must
+provide additional parameters in the following order:
 
-@b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
-@*AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
-reading the chip-id and type. 
+@itemize
+@item @var{chip_model} ... label used with @command{flash info}
+@item @var{banks}
+@item @var{sectors_per_bank}
+@item @var{pages_per_sector}
+@item @var{pages_size}
+@item @var{num_nvm_bits}
+@item @var{freq_khz} ... required if an external clock is provided,
+optional (but recommended) when the oscillator frequency is known
+@end itemize
 
-@subsubsection str7 options
-@cindex str7 options
+It is recommended that you provide zeroes for all of those values
+except the clock frequency, so that everything except that frequency
+will be autoconfigured.
+Knowing the frequency helps ensure correct timings for flash access.
+
+The flash controller handles erases automatically on a page (128/256 byte)
+basis, so explicit erase commands are not necessary for flash programming.
+However, there is an ``EraseAll`` command that can erase an entire flash
+plane (of up to 256KB), and it will be used automatically when you issue
+@command{flash erase_sector} or @command{flash erase_address} commands.
+
+@deffn Command {at91sam7 gpnvm} bitnum (set|clear)
+Set or clear a ``General Purpose Non-Volatle Memory'' (GPNVM)
+bit for the processor.   Each processor has a number of such bits,
+used for controlling features such as brownout detection (so they
+are not truly general purpose).
+@quotation Note
+This assumes that the first flash bank (number 0) is associated with
+the appropriate at91sam7 target.
+@end quotation
+@end deffn
+@end deffn
+
+@deffn {Flash Driver} avr
+The AVR 8-bit microcontrollers from Atmel integrate flash memory.
+@emph{The current implementation is incomplete.}
+@comment - defines mass_erase ... pointless given flash_erase_address
+@end deffn
+
+@deffn {Flash Driver} ecosflash
+@emph{No idea what this is...}
+The @var{ecosflash} driver defines one mandatory parameter,
+the name of a modules of target code which is downloaded
+and executed.
+@end deffn
+
+@deffn {Flash Driver} lpc2000
+Most members of the LPC2000 microcontroller family from NXP
+include internal flash and use ARM7TDMI cores.
+The @var{lpc2000} driver defines two mandatory and one optional parameters,
+which must appear in the following order:
 
-@b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
-@*variant can be either STR71x, STR73x or STR75x. 
+@itemize
+@item @var{variant} ... required, may be
+@var{lpc2000_v1} (older LPC21xx and LPC22xx)
+or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx)
+@item @var{clock_kHz} ... the frequency, in kiloHertz,
+at which the core is running
+@item @var{calc_checksum} ... optional (but you probably want to provide this!),
+telling the driver to calculate a valid checksum for the exception vector table.
+@end itemize
 
-@subsubsection str9 options
-@cindex str9 options
+LPC flashes don't require the chip and bus width to be specified.
 
-@b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
-@*The str9 needs the flash controller to be configured prior to Flash programming, e.g.
 @example
-str9x flash_config 0 4 2 0 0x80000
+flash bank lpc2000 0x0 0x7d000 0 0 $_TARGETNAME \
+      lpc2000_v2 14765 calc_checksum
 @end example
-This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively. 
+@end deffn
 
-@subsubsection str9 options (str9xpec driver)
+@deffn {Flash Driver} lpc288x
+The LPC2888 microcontroller from NXP needs slightly different flash
+support from its lpc2000 siblings.
+The @var{lpc288x} driver defines one mandatory parameter,
+the programming clock rate in Hz.
+LPC flashes don't require the chip and bus width to be specified.
+
+@example
+flash bank lpc288x 0 0 0 0 $_TARGETNAME 12000000
+@end example
+@end deffn
 
-@b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
-@*Before using the flash commands the turbo mode must be enabled using str9xpec
-@option{enable_turbo} <@var{num>.}
+@deffn {Flash Driver} ocl
+@emph{No idea what this is, other than using some arm7/arm9 core.}
 
-Only use this driver for locking/unlocking the device or configuring the option bytes.
-Use the standard str9 driver for programming. @xref{STR9 specific commands}.
+@example
+flash bank ocl 0 0 0 0 $_TARGETNAME
+@end example
+@end deffn
 
-@subsubsection Stellaris (LM3Sxxx) options
-@cindex Stellaris (LM3Sxxx) options
+@deffn {Flash Driver} pic32mx
+The PIC32MX microcontrollers are based on the MIPS 4K cores,
+and integrate flash memory.
+@emph{The current implementation is incomplete.}
 
-@b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
-@*Stellaris flash plugin only require the @var{target#}. 
+@example
+flash bank pix32mx 0 0 0 0 $_TARGETNAME
+@end example
 
-@subsubsection stm32x options
-@cindex stm32x options
+@comment numerous *disabled* commands are defined:
+@comment - chip_erase ... pointless given flash_erase_address
+@comment - lock, unlock ... pointless given protect on/off (yes?)
+@comment - pgm_word ... shouldn't bank be deduced from address??
+Some pic32mx-specific commands are defined:
+@deffn Command {pic32mx pgm_word} address value bank
+Programs the specified 32-bit @var{value} at the given @var{address}
+in the specified chip @var{bank}.
+@end deffn
+@end deffn
+
+@deffn {Flash Driver} stellaris
+All members of the Stellaris LM3Sxxx microcontroller family from
+Texas Instruments
+include internal flash and use ARM Cortex M3 cores.
+The driver automatically recognizes a number of these chips using
+the chip identification register, and autoconfigures itself.
+@footnote{Currently there is a @command{stellaris mass_erase} command.
+That seems pointless since the same effect can be had using the
+standard @command{flash erase_address} command.}
 
-@b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
-@*stm32x flash plugin only require the @var{target#}. 
+@example
+flash bank stellaris 0 0 0 0 $_TARGETNAME
+@end example
+@end deffn
 
-@subsubsection aduc702x options
-@cindex aduc702x options
+@deffn {Flash Driver} stm32x
+All members of the STM32 microcontroller family from ST Microelectronics
+include internal flash and use ARM Cortex M3 cores.
+The driver automatically recognizes a number of these chips using
+the chip identification register, and autoconfigures itself.
 
-@b{flash bank aduc702x} 0 0 0 0 <@var{target#}>
-@*The aduc702x flash plugin works with Analog Devices model numbers ADUC7019 through ADUC7028.  The setup command only requires the @var{target#} argument (all devices in this family have the same memory layout).
+@example
+flash bank stm32x 0 0 0 0 $_TARGETNAME
+@end example
 
-@subsection mFlash Configuration
-@cindex mFlash Configuration
-@b{mflash bank} <@var{soc}> <@var{base}> <@var{chip_width}> <@var{bus_width}>
-<@var{RST pin}> <@var{WP pin}> <@var{DPD pin}> <@var{target #}>
-@cindex mflash bank
-@*Configures a mflash for <@var{soc}> host bank at
-<@var{base}>. <@var{chip_width}> and <@var{bus_width}> are bytes
-order. Pin number format is dependent on host GPIO calling convention.
-If WP or DPD pin was not used, write -1. Currently, mflash bank
-support s3c2440 and pxa270.
+Some stm32x-specific commands
+@footnote{Currently there is a @command{stm32x mass_erase} command.
+That seems pointless since the same effect can be had using the
+standard @command{flash erase_address} command.}
+are defined:
+
+@deffn Command {stm32x lock} num
+Locks the entire stm32 device.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+
+@deffn Command {stm32x unlock} num
+Unlocks the entire stm32 device.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+
+@deffn Command {stm32x options_read} num
+Read and display the stm32 option bytes written by
+the @command{stm32x options_write} command.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+
+@deffn Command {stm32x options_write} num (SWWDG|HWWDG) (RSTSTNDBY|NORSTSTNDBY) (RSTSTOP|NORSTSTOP)
+Writes the stm32 option byte with the specified values.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+@end deffn
+
+@deffn {Flash Driver} str7x
+All members of the STR7 microcontroller family from ST Microelectronics
+include internal flash and use ARM7TDMI cores.
+The @var{str7x} driver defines one mandatory parameter, @var{variant},
+which is either @code{STR71x}, @code{STR73x} or @code{STR75x}.
 
-(ex. of s3c2440) mflash <@var{RST pin}> is GPIO B1, <@var{WP pin}> and <@var{DPD pin}> are not used.
 @example
-mflash bank s3c2440 0x10000000 2 2 1b -1 -1 0
+flash bank str7x 0x40000000 0x00040000 0 0 $_TARGETNAME STR71x
 @end example
-(ex. of pxa270) mflash <@var{RST pin}> is GPIO 43, <@var{DPD pin}> is not used and <@var{DPD pin}> is GPIO 51.
+@end deffn
+
+@deffn {Flash Driver} str9x
+Most members of the STR9 microcontroller family from ST Microelectronics
+include internal flash and use ARM966E cores.
+The str9 needs the flash controller to be configured using
+the @command{str9x flash_config} command prior to Flash programming.
+
 @example
-mflash bank pxa270 0x08000000 2 2 43 -1 51 0  
+flash bank str9x 0x40000000 0x00040000 0 0 $_TARGETNAME
+str9x flash_config 0 4 2 0 0x80000
 @end example
 
-@section Microcontroller specific Flash Commands
+@deffn Command {str9x flash_config} num bbsr nbbsr bbadr nbbadr
+Configures the str9 flash controller.
+The @var{num} parameter is a value shown by @command{flash banks}.
 
-@subsection AT91SAM7 specific commands
-@cindex AT91SAM7 specific commands
-The flash configuration is deduced from the chip identification register. The flash
-controller handles erases automatically on a page (128/265 byte) basis, so erase is
-not necessary for flash programming. AT91SAM7 processors with less than 512K flash
-only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
-that can be erased separatly. Only an EraseAll command is supported by the controller
-for each flash plane and this is called with
 @itemize @bullet
-@item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
-@*bulk erase flash planes first_plane to last_plane. 
-@item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
-@cindex at91sam7 gpnvm
-@*set or clear a gpnvm bit for the processor 
+@item @var{bbsr} - Boot Bank Size register
+@item @var{nbbsr} - Non Boot Bank Size register
+@item @var{bbadr} - Boot Bank Start Address register
+@item @var{nbbadr} - Boot Bank Start Address register
 @end itemize
+@end deffn
 
-@subsection STR9 specific commands
-@cindex STR9 specific commands
-@anchor{STR9 specific commands}
-These are flash specific commands when using the str9xpec driver.
-@itemize @bullet
-@item @b{str9xpec enable_turbo} <@var{num}>
-@cindex str9xpec enable_turbo
-@*enable turbo mode, will simply remove the str9 from the chain and talk
-directly to the embedded flash controller. 
-@item @b{str9xpec disable_turbo} <@var{num}>
-@cindex str9xpec disable_turbo
-@*restore the str9 into JTAG chain. 
-@item @b{str9xpec lock} <@var{num}>
-@cindex str9xpec lock
-@*lock str9 device. The str9 will only respond to an unlock command that will
-erase the device. 
-@item @b{str9xpec unlock} <@var{num}>
-@cindex str9xpec unlock
-@*unlock str9 device. 
-@item @b{str9xpec options_read} <@var{num}>
-@cindex str9xpec options_read
-@*read str9 option bytes. 
-@item @b{str9xpec options_write} <@var{num}>
-@cindex str9xpec options_write
-@*write str9 option bytes. 
-@end itemize
+@end deffn
+
+@deffn {Flash Driver} tms470
+Most members of the TMS470 microcontroller family from Texas Instruments
+include internal flash and use ARM7TDMI cores.
+This driver doesn't require the chip and bus width to be specified.
+
+Some tms470-specific commands are defined:
+
+@deffn Command {tms470 flash_keyset} key0 key1 key2 key3
+Saves programming keys in a register, to enable flash erase and write commands.
+@end deffn
 
-Note: Before using the str9xpec driver here is some background info to help
-you better understand how the drivers works. OpenOCD has two flash drivers for
-the str9.
+@deffn Command {tms470 osc_mhz} clock_mhz
+Reports the clock speed, which is used to calculate timings.
+@end deffn
+
+@deffn Command {tms470 plldis} (0|1)
+Disables (@var{1}) or enables (@var{0}) use of the PLL to speed up
+the flash clock.
+@end deffn
+@end deffn
+
+@subsection str9xpec driver
+@cindex str9xpec
+
+Here is some background info to help
+you better understand how this driver works. OpenOCD has two flash drivers for
+the str9:
 @enumerate
 @item
 Standard driver @option{str9x} programmed via the str9 core. Normally used for
@@ -2362,72 +3006,454 @@ When performing a unlock remember that you will not be able to halt the str9 - i
 has been locked. Halting the core is not required for the @option{str9xpec} driver
 as mentioned above, just issue the commands above manually or from a telnet prompt.
 
-@subsection STR9 configuration
-@cindex STR9 configuration
-@itemize @bullet
-@item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
-<@var{BBADR}> <@var{NBBADR}>
-@cindex str9x flash_config
-@*Configure str9 flash controller.
-@example
-e.g. str9x flash_config 0 4 2 0 0x80000
-This will setup
-BBSR - Boot Bank Size register
-NBBSR - Non Boot Bank Size register
-BBADR - Boot Bank Start Address register
-NBBADR - Boot Bank Start Address register
+@deffn {Flash Driver} str9xpec
+Only use this driver for locking/unlocking the device or configuring the option bytes.
+Use the standard str9 driver for programming.
+Before using the flash commands the turbo mode must be enabled using the
+@command{str9xpec enable_turbo} command.
+
+Several str9xpec-specific commands are defined:
+
+@deffn Command {str9xpec disable_turbo} num
+Restore the str9 into JTAG chain.
+@end deffn
+
+@deffn Command {str9xpec enable_turbo} num
+Enable turbo mode, will simply remove the str9 from the chain and talk
+directly to the embedded flash controller.
+@end deffn
+
+@deffn Command {str9xpec lock} num
+Lock str9 device. The str9 will only respond to an unlock command that will
+erase the device.
+@end deffn
+
+@deffn Command {str9xpec part_id} num
+Prints the part identifier for bank @var{num}.
+@end deffn
+
+@deffn Command {str9xpec options_cmap} num (@option{bank0}|@option{bank1})
+Configure str9 boot bank.
+@end deffn
+
+@deffn Command {str9xpec options_lvdsel} num (@option{vdd}|@option{vdd_vddq})
+Configure str9 lvd source.
+@end deffn
+
+@deffn Command {str9xpec options_lvdthd} num (@option{2.4v}|@option{2.7v})
+Configure str9 lvd threshold.
+@end deffn
+
+@deffn Command {str9xpec options_lvdwarn} bank (@option{vdd}|@option{vdd_vddq})
+Configure str9 lvd reset warning source.
+@end deffn
+
+@deffn Command {str9xpec options_read} num
+Read str9 option bytes.
+@end deffn
+
+@deffn Command {str9xpec options_write} num
+Write str9 option bytes.
+@end deffn
+
+@deffn Command {str9xpec unlock} num
+unlock str9 device.
+@end deffn
+
+@end deffn
+
+
+@section mFlash
+
+@subsection mFlash Configuration
+@cindex mFlash Configuration
+
+@deffn {Config Command} {mflash bank} soc base RST_pin target
+Configures a mflash for @var{soc} host bank at
+address @var{base}.
+The pin number format depends on the host GPIO naming convention.
+Currently, the mflash driver supports s3c2440 and pxa270.
+
+Example for s3c2440 mflash where @var{RST pin} is GPIO B1:
+
+@example
+mflash bank s3c2440 0x10000000 1b 0
 @end example
-@end itemize
 
-@subsection STR9 option byte configuration
-@cindex STR9 option byte configuration
+Example for pxa270 mflash where @var{RST pin} is GPIO 43:
+
+@example
+mflash bank pxa270 0x08000000 43 0
+@end example
+@end deffn
+
+@subsection mFlash commands
+@cindex mFlash commands
+
+@deffn Command {mflash config pll} frequency
+Configure mflash PLL.
+The @var{frequency} is the mflash input frequency, in Hz.
+Issuing this command will erase mflash's whole internal nand and write new pll.
+After this command, mflash needs power-on-reset for normal operation.
+If pll was newly configured, storage and boot(optional) info also need to be update.
+@end deffn
+
+@deffn Command {mflash config boot}
+Configure bootable option.
+If bootable option is set, mflash offer the first 8 sectors
+(4kB) for boot.
+@end deffn
+
+@deffn Command {mflash config storage}
+Configure storage information.
+For the normal storage operation, this information must be
+written.
+@end deffn
+
+@deffn Command {mflash dump} num filename offset size
+Dump @var{size} bytes, starting at @var{offset} bytes from the
+beginning of the bank @var{num}, to the file named @var{filename}.
+@end deffn
+
+@deffn Command {mflash probe}
+Probe mflash.
+@end deffn
+
+@deffn Command {mflash write} num filename offset
+Write the binary file @var{filename} to mflash bank @var{num}, starting at
+@var{offset} bytes from the beginning of the bank.
+@end deffn
+
+@node NAND Flash Commands
+@chapter NAND Flash Commands
+@cindex NAND
+
+Compared to NOR or SPI flash, NAND devices are inexpensive
+and high density.  Today's NAND chips, and multi-chip modules,
+commonly hold multiple GigaBytes of data.
+
+NAND chips consist of a number of ``erase blocks'' of a given
+size (such as 128 KBytes), each of which is divided into a
+number of pages (of perhaps 512 or 2048 bytes each).  Each
+page of a NAND flash has an ``out of band'' (OOB) area to hold
+Error Correcting Code (ECC) and other metadata, usually 16 bytes
+of OOB for every 512 bytes of page data.
+
+One key characteristic of NAND flash is that its error rate
+is higher than that of NOR flash.  In normal operation, that
+ECC is used to correct and detect errors.  However, NAND
+blocks can also wear out and become unusable; those blocks
+are then marked "bad".  NAND chips are even shipped from the
+manufacturer with a few bad blocks.  The highest density chips
+use a technology (MLC) that wears out more quickly, so ECC
+support is increasingly important as a way to detect blocks
+that have begun to fail, and help to preserve data integrity
+with techniques such as wear leveling.
+
+Software is used to manage the ECC.  Some controllers don't
+support ECC directly; in those cases, software ECC is used.
+Other controllers speed up the ECC calculations with hardware.
+Single-bit error correction hardware is routine.  Controllers
+geared for newer MLC chips may correct 4 or more errors for
+every 512 bytes of data.
+
+You will need to make sure that any data you write using
+OpenOCD includes the apppropriate kind of ECC.  For example,
+that may mean passing the @code{oob_softecc} flag when
+writing NAND data, or ensuring that the correct hardware
+ECC mode is used.
+
+The basic steps for using NAND devices include:
+@enumerate
+@item Declare via the command @command{nand device}
+@* Do this in a board-specific configuration file,
+passing parameters as needed by the controller.
+@item Configure each device using @command{nand probe}.
+@* Do this only after the associated target is set up,
+such as in its reset-init script or in procures defined
+to access that device.
+@item Operate on the flash via @command{nand subcommand}
+@* Often commands to manipulate the flash are typed by a human, or run
+via a script in some automated way.  Common task include writing a
+boot loader, operating system, or other data needed to initialize or
+de-brick a board.
+@end enumerate
+
+@b{NOTE:} At the time this text was written, the largest NAND
+flash fully supported by OpenOCD is 2 GiBytes (16 GiBits).
+This is because the variables used to hold offsets and lengths
+are only 32 bits wide.
+(Larger chips may work in some cases, unless an offset or length
+is larger than 0xffffffff, the largest 32-bit unsigned integer.)
+Some larger devices will work, since they are actually multi-chip
+modules with two smaller chips and individual chipselect lines.
+
+@section NAND Configuration Commands
+@cindex NAND configuration
+
+NAND chips must be declared in configuration scripts,
+plus some additional configuration that's done after
+OpenOCD has initialized.
+
+@deffn {Config Command} {nand device} controller target [configparams...]
+Declares a NAND device, which can be read and written to
+after it has been configured through @command{nand probe}.
+In OpenOCD, devices are single chips; this is unlike some
+operating systems, which may manage multiple chips as if
+they were a single (larger) device.
+In some cases, configuring a device will activate extra
+commands; see the controller-specific documentation.
+
+@b{NOTE:} This command is not available after OpenOCD
+initialization has completed.  Use it in board specific
+configuration files, not interactively.
+
 @itemize @bullet
-@item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
-@cindex str9xpec options_cmap
-@*configure str9 boot bank. 
-@item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
-@cindex str9xpec options_lvdthd
-@*configure str9 lvd threshold. 
-@item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
-@cindex str9xpec options_lvdsel
-@*configure str9 lvd source. 
-@item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
-@cindex str9xpec options_lvdwarn
-@*configure str9 lvd reset warning source. 
+@item @var{controller} ... identifies the controller driver
+associated with the NAND device being declared.
+@xref{NAND Driver List}.
+@item @var{target} ... names the target used when issuing
+commands to the NAND controller.
+@comment Actually, it's currently a controller-specific parameter...
+@item @var{configparams} ... controllers may support, or require,
+additional parameters.  See the controller-specific documentation
+for more information.
 @end itemize
-
-@subsection STM32x specific commands
-@cindex STM32x specific commands
-These are flash specific commands when using the stm32x driver.
+@end deffn
+
+@deffn Command {nand list}
+Prints a one-line summary of each device declared
+using @command{nand device}, numbered from zero.
+Note that un-probed devices show no details.
+@end deffn
+
+@deffn Command {nand probe} num
+Probes the specified device to determine key characteristics
+like its page and block sizes, and how many blocks it has.
+The @var{num} parameter is the value shown by @command{nand list}.
+You must (successfully) probe a device before you can use
+it with most other NAND commands.
+@end deffn
+
+@section Erasing, Reading, Writing to NAND Flash
+
+@deffn Command {nand dump} num filename offset length [oob_option]
+@cindex NAND reading
+Reads binary data from the NAND device and writes it to the file,
+starting at the specified offset.
+The @var{num} parameter is the value shown by @command{nand list}.
+
+Use a complete path name for @var{filename}, so you don't depend
+on the directory used to start the OpenOCD server.
+
+The @var{offset} and @var{length} must be exact multiples of the
+device's page size.  They describe a data region; the OOB data
+associated with each such page may also be accessed.
+
+@b{NOTE:} At the time this text was written, no error correction
+was done on the data that's read, unless raw access was disabled
+and the underlying NAND controller driver had a @code{read_page}
+method which handled that error correction.
+
+By default, only page data is saved to the specified file.
+Use an @var{oob_option} parameter to save OOB data:
 @itemize @bullet
-@item @b{stm32x lock} <@var{num}>
-@cindex stm32x lock
-@*lock stm32 device. 
-@item @b{stm32x unlock} <@var{num}>
-@cindex stm32x unlock
-@*unlock stm32 device. 
-@item @b{stm32x options_read} <@var{num}>
-@cindex stm32x options_read
-@*read stm32 option bytes. 
-@item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
-<@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
-@cindex stm32x options_write
-@*write stm32 option bytes. 
-@item @b{stm32x mass_erase} <@var{num}>
-@cindex stm32x mass_erase
-@*mass erase flash memory. 
+@item no oob_* parameter
+@*Output file holds only page data; OOB is discarded.
+@item @code{oob_raw}
+@*Output file interleaves page data and OOB data;
+the file will be longer than "length" by the size of the
+spare areas associated with each data page.
+Note that this kind of "raw" access is different from
+what's implied by @command{nand raw_access}, which just
+controls whether a hardware-aware access method is used.
+@item @code{oob_only}
+@*Output file has only raw OOB data, and will
+be smaller than "length" since it will contain only the
+spare areas associated with each data page.
 @end itemize
-
-@subsection Stellaris specific commands
-@cindex Stellaris specific commands
-These are flash specific commands when using the Stellaris driver.
+@end deffn
+
+@deffn Command {nand erase} num offset length
+@cindex NAND erasing
+@cindex NAND programming
+Erases blocks on the specified NAND device, starting at the
+specified @var{offset} and continuing for @var{length} bytes.
+Both of those values must be exact multiples of the device's
+block size, and the region they specify must fit entirely in the chip.
+The @var{num} parameter is the value shown by @command{nand list}.
+
+@b{NOTE:} This command will try to erase bad blocks, when told
+to do so, which will probably invalidate the manufacturer's bad
+block marker.
+For the remainder of the current server session, @command{nand info}
+will still report that the block ``is'' bad.
+@end deffn
+
+@deffn Command {nand write} num filename offset [option...]
+@cindex NAND writing
+@cindex NAND programming
+Writes binary data from the file into the specified NAND device,
+starting at the specified offset.  Those pages should already
+have been erased; you can't change zero bits to one bits.
+The @var{num} parameter is the value shown by @command{nand list}.
+
+Use a complete path name for @var{filename}, so you don't depend
+on the directory used to start the OpenOCD server.
+
+The @var{offset} must be an exact multiple of the device's page size.
+All data in the file will be written, assuming it doesn't run
+past the end of the device.
+Only full pages are written, and any extra space in the last
+page will be filled with 0xff bytes.  (That includes OOB data,
+if that's being written.)
+
+@b{NOTE:} At the time this text was written, bad blocks are
+ignored.  That is, this routine will not skip bad blocks,
+but will instead try to write them.  This can cause problems.
+
+Provide at most one @var{option} parameter.  With some
+NAND drivers, the meanings of these parameters may change
+if @command{nand raw_access} was used to disable hardware ECC.
 @itemize @bullet
-@item @b{stellaris mass_erase} <@var{num}>
-@cindex stellaris mass_erase
-@*mass erase flash memory. 
+@item no oob_* parameter
+@*File has only page data, which is written.
+If raw acccess is in use, the OOB area will not be written.
+Otherwise, if the underlying NAND controller driver has
+a @code{write_page} routine, that routine may write the OOB
+with hardware-computed ECC data.
+@item @code{oob_only}
+@*File has only raw OOB data, which is written to the OOB area.
+Each page's data area stays untouched.  @i{This can be a dangerous
+option}, since it can invalidate the ECC data.
+You may need to force raw access to use this mode.
+@item @code{oob_raw}
+@*File interleaves data and OOB data, both of which are written
+If raw access is enabled, the data is written first, then the
+un-altered OOB.
+Otherwise, if the underlying NAND controller driver has
+a @code{write_page} routine, that routine may modify the OOB
+before it's written, to include hardware-computed ECC data.
+@item @code{oob_softecc}
+@*File has only page data, which is written.
+The OOB area is filled with 0xff, except for a standard 1-bit
+software ECC code stored in conventional locations.
+You might need to force raw access to use this mode, to prevent
+the underlying driver from applying hardware ECC.
+@item @code{oob_softecc_kw}
+@*File has only page data, which is written.
+The OOB area is filled with 0xff, except for a 4-bit software ECC
+specific to the boot ROM in Marvell Kirkwood SoCs.
+You might need to force raw access to use this mode, to prevent
+the underlying driver from applying hardware ECC.
 @end itemize
+@end deffn
+
+@section Other NAND commands
+@cindex NAND other commands
+
+@deffn Command {nand check_bad_blocks} [offset length]
+Checks for manufacturer bad block markers on the specified NAND
+device.  If no parameters are provided, checks the whole
+device; otherwise, starts at the specified @var{offset} and
+continues for @var{length} bytes.
+Both of those values must be exact multiples of the device's
+block size, and the region they specify must fit entirely in the chip.
+The @var{num} parameter is the value shown by @command{nand list}.
+
+@b{NOTE:} Before using this command you should force raw access
+with @command{nand raw_access enable} to ensure that the underlying
+driver will not try to apply hardware ECC.
+@end deffn
+
+@deffn Command {nand info} num
+The @var{num} parameter is the value shown by @command{nand list}.
+This prints the one-line summary from "nand list", plus for
+devices which have been probed this also prints any known
+status for each block.
+@end deffn
+
+@deffn Command {nand raw_access} num (@option{enable}|@option{disable})
+Sets or clears an flag affecting how page I/O is done.
+The @var{num} parameter is the value shown by @command{nand list}.
+
+This flag is cleared (disabled) by default, but changing that
+value won't affect all NAND devices.  The key factor is whether
+the underlying driver provides @code{read_page} or @code{write_page}
+methods.  If it doesn't provide those methods, the setting of
+this flag is irrelevant; all access is effectively ``raw''.
+
+When those methods exist, they are normally used when reading
+data (@command{nand dump} or reading bad block markers) or
+writing it (@command{nand write}).  However, enabling
+raw access (setting the flag) prevents use of those methods,
+bypassing hardware ECC logic.
+@i{This can be a dangerous option}, since writing blocks
+with the wrong ECC data can cause them to be marked as bad.
+@end deffn
+
+@anchor{NAND Driver List}
+@section NAND Drivers, Options, and Commands
+As noted above, the @command{nand device} command allows
+driver-specific options and behaviors.
+Some controllers also activate controller-specific commands.
+
+@deffn {NAND Driver} davinci
+This driver handles the NAND controllers found on DaVinci family
+chips from Texas Instruments.
+It takes three extra parameters:
+address of the NAND chip;
+hardware ECC mode to use (hwecc1, hwecc4, hwecc4_infix);
+address of the AEMIF controller on this processor.
+@example
+nand device davinci dm355.arm 0x02000000 hwecc4 0x01e10000
+@end example
+All DaVinci processors support the single-bit ECC hardware,
+and newer ones also support the four-bit ECC hardware.
+The @code{write_page} and @code{read_page} methods are used
+to implement those ECC modes, unless they are disabled using
+the @command{nand raw_access} command.
+@end deffn
+
+@deffn {NAND Driver} lpc3180
+These controllers require an extra @command{nand device}
+parameter:  the clock rate used by the controller.
+@deffn Command {lpc3180 select} num [mlc|slc]
+Configures use of the MLC or SLC controller mode.
+MLC implies use of hardware ECC.
+The @var{num} parameter is the value shown by @command{nand list}.
+@end deffn
+
+At this writing, this driver includes @code{write_page}
+and @code{read_page} methods.  Using @command{nand raw_access}
+to disable those methods will prevent use of hardware ECC
+in the MLC controller mode, but won't change SLC behavior.
+@end deffn
+@comment current lpc3180 code won't issue 5-byte address cycles
+
+@deffn {NAND Driver} orion
+These controllers require an extra @command{nand device}
+parameter:  the address of the controller.
+@example
+nand device orion 0xd8000000
+@end example
+These controllers don't define any specialized commands.
+At this writing, their drivers don't include @code{write_page}
+or @code{read_page} methods, so @command{nand raw_access} won't
+change any behavior.
+@end deffn
+
+@deffn {NAND Driver} s3c2410
+@deffnx {NAND Driver} s3c2412
+@deffnx {NAND Driver} s3c2440
+@deffnx {NAND Driver} s3c2443
+These S3C24xx family controllers don't have any special
+@command{nand device} options, and don't define any
+specialized commands.
+At this writing, their drivers don't include @code{write_page}
+or @code{read_page} methods, so @command{nand raw_access} won't
+change any behavior.
+@end deffn
 
 @node General Commands
 @chapter General Commands
@@ -2445,8 +3471,8 @@ elsewhere) or typed manually by a human or supplied programatically,
 or via one of several TCP/IP Ports.
 
 @item @b{From the human}
-@* A human should interact with the telnet interface (default port: 4444,
-or via GDB, default port 3333)
+@* A human should interact with the telnet interface (default port: 4444)
+or via GDB (default port 3333).
 
 To issue commands from within a GDB session, use the @option{monitor}
 command, e.g. use @option{monitor poll} to issue the @option{poll}
@@ -2460,27 +3486,37 @@ port is 5555.
 
 @section Daemon Commands
 
-@subsection sleep [@var{msec}]
-@cindex sleep
-@*Wait for n milliseconds before resuming. Useful in connection with script files
-(@var{script} command and @var{target_script} configuration). 
+@deffn Command sleep msec [@option{busy}]
+Wait for at least @var{msec} milliseconds before resuming.
+If @option{busy} is passed, busy-wait instead of sleeping.
+(This option is strongly discouraged.)
+Useful in connection with script files
+(@command{script} command and @command{target_name} configuration).
+@end deffn
 
-@subsection shutdown
-@cindex shutdown
-@*Close the OpenOCD daemon, disconnecting all clients (GDB, telnet, other). 
+@deffn Command shutdown
+Close the OpenOCD daemon, disconnecting all clients (GDB, telnet, other).
+@end deffn
 
-@subsection debug_level [@var{n}]
-@cindex debug_level
 @anchor{debug_level}
-@*Display or adjust debug level to n<0-3> 
-
-@subsection fast [@var{enable|disable}]
-@cindex fast
-@*Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
-downloads and fast memory access will work if the JTAG interface isn't too fast and
-the core doesn't run at a too low frequency. Note that this option only changes the default
-and that the indvidual options, like DCC memory downloads, can be enabled and disabled
-individually. 
+@deffn Command debug_level [n]
+@cindex message level
+Display debug level.
+If @var{n} (from 0..3) is provided, then set it to that level.
+This affects the kind of messages sent to the server log.
+Level 0 is error messages only;
+level 1 adds warnings;
+level 2 (the default) adds informational messages;
+and level 3 adds debugging messages.
+@end deffn
+
+@deffn Command fast (@option{enable}|@option{disable})
+Default disabled.
+Set default behaviour of OpenOCD to be "fast and dangerous".
+
+At this writing, this only affects the defaults for two ARM7/ARM9 parameters:
+fast memory access, and DCC downloads.  Those parameters may still be
+individually overridden.
 
 The target specific "dangerous" optimisation tweaking options may come and go
 as more robust and user friendly ways are found to ensure maximum throughput
@@ -2491,451 +3527,1067 @@ Typically the "fast enable" is specified first on the command line:
 @example
 openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
 @end example
+@end deffn
+
+@deffn Command echo message
+Logs a message at "user" priority.
+Output @var{message} to stdout.
+@example
+echo "Downloading kernel -- please wait"
+@end example
+@end deffn
 
-@subsection log_output <@var{file}>
-@cindex log_output
-@*Redirect logging to <file> (default: stderr) 
+@deffn Command log_output [filename]
+Redirect logging to @var{filename};
+the initial log output channel is stderr.
+@end deffn
 
-@subsection script <@var{file}>
-@cindex script
-@*Execute commands from <file> 
-See also: ``source [find FILENAME]''
+@section Target State handling
+@cindex reset
+@cindex halt
+@cindex target initialization
 
-@section Target state handling
-@subsection power <@var{on}|@var{off}>
-@cindex reg
-@*Turn power switch to target on/off. 
-No arguments: print status.
-Not all interfaces support this.
-
-@subsection reg [@option{#}|@option{name}] [value]
-@cindex reg
-@*Access a single register by its number[@option{#}] or by its [@option{name}].
-No arguments: list all available registers for the current target.
-Number or name argument: display a register.
-Number or name and value arguments: set register value.
-
-@subsection poll [@option{on}|@option{off}]
-@cindex poll
-@*Poll the target for its current state. If the target is in debug mode, architecture
+In this section ``target'' refers to a CPU configured as
+shown earlier (@pxref{CPU Configuration}).
+These commands, like many, implicitly refer to
+a @dfn{current target} which is used to perform the
+various operations.  The current target may be changed
+by using @command{targets} command with the name of the
+target which should become current.
+
+@deffn Command reg [(number|name) [value]]
+Access a single register by @var{number} or by its @var{name}.
+
+@emph{With no arguments}:
+list all available registers for the current target,
+showing number, name, size, value, and cache status.
+
+@emph{With number/name}: display that register's value.
+
+@emph{With both number/name and value}: set register's value.
+
+Cores may have surprisingly many registers in their
+Debug and trace infrastructure:
+
+@example
+> reg
+(0) r0 (/32): 0x0000D3C2 (dirty: 1, valid: 1)
+(1) r1 (/32): 0xFD61F31C (dirty: 0, valid: 1)
+(2) r2 (/32): 0x00022551 (dirty: 0, valid: 1)
+...
+(164) ETM_CONTEXTID_COMPARATOR_MASK (/32): \
+              0x00000000 (dirty: 0, valid: 0)
+>
+@end example
+@end deffn
+
+@deffn Command poll [@option{on}|@option{off}]
+Poll the current target for its current state.
+If that target is in debug mode, architecture
 specific information about the current state is printed. An optional parameter
 allows continuous polling to be enabled and disabled.
 
-@subsection halt [@option{ms}]
-@cindex halt
-@*Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds.
-Default [@option{ms}] is 5 seconds if no arg given.
-Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
-will stop OpenOCD from waiting.
-
-@subsection wait_halt [@option{ms}]
-@cindex wait_halt
-@*Wait for the target to enter debug mode. Optional [@option{ms}] is
-a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
-arg is given.
-
-@subsection resume [@var{address}]
-@cindex resume
-@*Resume the target at its current code position, or at an optional address.
+@example
+> poll
+target state: halted
+target halted in ARM state due to debug-request, \
+               current mode: Supervisor
+cpsr: 0x800000d3 pc: 0x11081bfc
+MMU: disabled, D-Cache: disabled, I-Cache: enabled
+>
+@end example
+@end deffn
+
+@deffn Command halt [ms]
+@deffnx Command wait_halt [ms]
+The @command{halt} command first sends a halt request to the target,
+which @command{wait_halt} doesn't.
+Otherwise these behave the same:  wait up to @var{ms} milliseconds,
+or 5 seconds if there is no parameter, for the target to halt
+(and enter debug mode).
+Using 0 as the @var{ms} parameter prevents OpenOCD from waiting.
+@end deffn
+
+@deffn Command resume [address]
+Resume the target at its current code position,
+or the optional @var{address} if it is provided.
 OpenOCD will wait 5 seconds for the target to resume.
+@end deffn
+
+@deffn Command step [address]
+Single-step the target at its current code position,
+or the optional @var{address} if it is provided.
+@end deffn
+
+@anchor{Reset Command}
+@deffn Command reset
+@deffnx Command {reset run}
+@deffnx Command {reset halt}
+@deffnx Command {reset init}
+Perform as hard a reset as possible, using SRST if possible.
+@emph{All defined targets will be reset, and target
+events will fire during the reset sequence.}
+
+The optional parameter specifies what should
+happen after the reset.
+If there is no parameter, a @command{reset run} is executed.
+The other options will not work on all systems.
+@xref{Reset Configuration}.
 
-@subsection step [@var{address}]
-@cindex step
-@*Single-step the target at its current code position, or at an optional address. 
-
-@subsection reset [@option{run}|@option{halt}|@option{init}]
-@cindex reset
-@*Perform a hard-reset. The optional parameter specifies what should happen after the reset.
-
-With no arguments a "reset run" is executed
 @itemize @minus
-@item @b{run}
-@cindex reset run
-@*Let the target run.
-@item @b{halt}
-@cindex reset halt
-@*Immediately halt the target (works only with certain configurations).
-@item @b{init}
-@cindex reset init
-@*Immediately halt the target, and execute the reset script (works only with certain
-configurations)
+@item @b{run} Let the target run
+@item @b{halt} Immediately halt the target
+@item @b{init} Immediately halt the target, and execute the reset-init script
 @end itemize
+@end deffn
 
-@subsection soft_reset_halt
-@cindex reset
-@*Requesting target halt and executing a soft reset. This is often used
+@deffn Command soft_reset_halt
+Requesting target halt and executing a soft reset. This is often used
 when a target cannot be reset and halted. The target, after reset is
 released begins to execute code. OpenOCD attempts to stop the CPU and
 then sets the program counter back to the reset vector. Unfortunately
 the code that was executed may have left the hardware in an unknown
 state.
+@end deffn
+
+@section I/O Utilities
+
+These commands are available when
+OpenOCD is built with @option{--enable-ioutil}.
+They are mainly useful on embedded targets;
+PC type hosts have complimentary tools.
 
+@emph{Note:} there are several more such commands.
 
+@deffn Command  meminfo
+Display available RAM memory on OpenOCD host.
+Used in OpenOCD regression testing scripts.
+@end deffn
+
+@anchor{Memory access}
 @section Memory access commands
-@subsection meminfo
-display available RAM memory.
-@subsection Memory peek/poke type commands
+@cindex memory access
+
 These commands allow accesses of a specific size to the memory
 system. Often these are used to configure the current target in some
-special way. For example - one may need to write certian values to the
+special way. For example - one may need to write certain values to the
 SDRAM controller to enable SDRAM.
 
 @enumerate
-@item To change the current target see the ``targets'' (plural) command
-@item In system level scripts these commands are deprecated, please use the TARGET object versions.
+@item Use the @command{targets} (plural) command
+to change the current target.
+@item In system level scripts these commands are deprecated.
+Please use their TARGET object siblings to avoid making assumptions
+about what TAP is the current target, or about MMU configuration.
 @end enumerate
 
-@itemize @bullet
-@item @b{mdw} <@var{addr}> [@var{count}]
-@cindex mdw
-@*display memory words (32bit)
-@item @b{mdh} <@var{addr}> [@var{count}]
-@cindex mdh
-@*display memory half-words (16bit)
-@item @b{mdb} <@var{addr}> [@var{count}]
-@cindex mdb
-@*display memory bytes (8bit)
-@item @b{mww} <@var{addr}> <@var{value}>
-@cindex mww
-@*write memory word (32bit)
-@item @b{mwh} <@var{addr}> <@var{value}>
-@cindex mwh
-@*write memory half-word (16bit)
-@item @b{mwb} <@var{addr}> <@var{value}>
-@cindex mwb
-@*write memory byte (8bit)
-@end itemize
-
+@deffn Command mdw addr [count]
+@deffnx Command mdh addr [count]
+@deffnx Command mdb addr [count]
+Display contents of address @var{addr}, as
+32-bit words (@command{mdw}), 16-bit halfwords (@command{mdh}),
+or 8-bit bytes (@command{mdb}).
+If @var{count} is specified, displays that many units.
+@end deffn
+
+@deffn Command mww addr word
+@deffnx Command mwh addr halfword
+@deffnx Command mwb addr byte
+Writes the specified @var{word} (32 bits),
+@var{halfword} (16 bits), or @var{byte} (8-bit) pattern,
+at the specified address @var{addr}.
+@end deffn
+
+
+@anchor{Image access}
 @section Image loading commands
-@subsection load_image
-@b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
-@cindex load_image
-@anchor{load_image}
-@*Load image <@var{file}> to target memory at <@var{address}> 
-@subsection fast_load_image
-@b{fast_load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
-@cindex fast_load_image
-@anchor{fast_load_image}
-@*Normally you should be using @b{load_image} or GDB load. However, for
+@cindex image loading
+@cindex image dumping
+
+@anchor{dump_image}
+@deffn Command {dump_image} filename address size
+Dump @var{size} bytes of target memory starting at @var{address} to the
+binary file named @var{filename}.
+@end deffn
+
+@deffn Command {fast_load}
+Loads an image stored in memory by @command{fast_load_image} to the
+current target. Must be preceeded by fast_load_image.
+@end deffn
+
+@deffn Command {fast_load_image} filename address [@option{bin}|@option{ihex}|@option{elf}]
+Normally you should be using @command{load_image} or GDB load. However, for
 testing purposes or when I/O overhead is significant(OpenOCD running on an embedded
 host), storing the image in memory and uploading the image to the target
 can be a way to upload e.g. multiple debug sessions when the binary does not change.
-Arguments are the same as @b{load_image}, but the image is stored in OpenOCD host
+Arguments are the same as @command{load_image}, but the image is stored in OpenOCD host
 memory, i.e. does not affect target.  This approach is also useful when profiling
 target programming performance as I/O and target programming can easily be profiled
 separately.
-@subsection fast_load
-@b{fast_load}
-@cindex fast_image
-@anchor{fast_image}
-@*Loads an image stored in memory by @b{fast_load_image} to the current target. Must be preceeded by fast_load_image.
-@subsection dump_image
-@b{dump_image} <@var{file}> <@var{address}> <@var{size}>
-@cindex dump_image
-@anchor{dump_image}
-@*Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
-(binary) <@var{file}>.
-@subsection verify_image
-@b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
-@cindex verify_image
-@*Verify <@var{file}> against target memory starting at <@var{address}>.
+@end deffn
+
+@anchor{load_image}
+@deffn Command {load_image} filename address [@option{bin}|@option{ihex}|@option{elf}]
+Load image from file @var{filename} to target memory at @var{address}.
+The file format may optionally be specified
+(@option{bin}, @option{ihex}, or @option{elf})
+@end deffn
+
+@deffn Command {verify_image} filename address [@option{bin}|@option{ihex}|@option{elf}]
+Verify @var{filename} against target memory starting at @var{address}.
+The file format may optionally be specified
+(@option{bin}, @option{ihex}, or @option{elf})
 This will first attempt a comparison using a CRC checksum, if this fails it will try a binary compare.
+@end deffn
+
+
+@section Breakpoint and Watchpoint commands
+@cindex breakpoint
+@cindex watchpoint
+
+CPUs often make debug modules accessible through JTAG, with
+hardware support for a handful of code breakpoints and data
+watchpoints.
+In addition, CPUs almost always support software breakpoints.
+
+@deffn Command {bp} [address len [@option{hw}]]
+With no parameters, lists all active breakpoints.
+Else sets a breakpoint on code execution starting
+at @var{address} for @var{length} bytes.
+This is a software breakpoint, unless @option{hw} is specified
+in which case it will be a hardware breakpoint.
+@end deffn
+
+@deffn Command {rbp} address
+Remove the breakpoint at @var{address}.
+@end deffn
+
+@deffn Command {rwp} address
+Remove data watchpoint on @var{address}
+@end deffn
+
+@deffn Command {wp} [address len [(@option{r}|@option{w}|@option{a}) [value [mask]]]
+With no parameters, lists all active watchpoints.
+Else sets a data watchpoint on data from @var{address} for @var{length} bytes.
+The watch point is an "access" watchpoint unless
+the @option{r} or @option{w} parameter is provided,
+defining it as respectively a read or write watchpoint.
+If a @var{value} is provided, that value is used when determining if
+the watchpoint should trigger.  The value may be first be masked
+using @var{mask} to mark ``don't care'' fields.
+@end deffn
 
+@section Misc Commands
+@cindex profiling
 
-@section Breakpoint commands
-@cindex Breakpoint commands
-@itemize @bullet
-@item @b{bp} <@var{addr}> <@var{len}> [@var{hw}]
-@cindex bp
-@*set breakpoint <address> <length> [hw]
-@item @b{rbp} <@var{addr}>
-@cindex rbp
-@*remove breakpoint <adress>
-@item @b{wp} <@var{addr}> <@var{len}> <@var{r}|@var{w}|@var{a}> [@var{value}] [@var{mask}]
-@cindex wp
-@*set watchpoint <address> <length> <r/w/a> [value] [mask]
-@item @b{rwp} <@var{addr}>
-@cindex rwp
-@*remove watchpoint <adress>
-@end itemize
+@deffn Command {profile} seconds filename
+Profiling samples the CPU's program counter as quickly as possible,
+which is useful for non-intrusive stochastic profiling.
+Saves up to 10000 sampines in @file{filename} using ``gmon.out'' format.
+@end deffn
 
-@section Misc Commands
-@cindex Other Target Commands
-@itemize
-@item @b{profile} <@var{seconds}> <@var{gmon.out}>
+@node Architecture and Core Commands
+@chapter Architecture and Core Commands
+@cindex Architecture Specific Commands
+@cindex Core Specific Commands
+
+Most CPUs have specialized JTAG operations to support debugging.
+OpenOCD packages most such operations in its standard command framework.
+Some of those operations don't fit well in that framework, so they are
+exposed here as architecture or implementation (core) specific commands.
 
-Profiling samples the CPU's program counter as quickly as possible, which is useful for non-intrusive stochastic profiling.
+@anchor{ARM Tracing}
+@section ARM Tracing
+@cindex ETM
+@cindex ETB
 
+CPUs based on ARM cores may include standard tracing interfaces,
+based on an ``Embedded Trace Module'' (ETM) which sends voluminous
+address and data bus trace records to a ``Trace Port''.
+
+@itemize
+@item
+Development-oriented boards will sometimes provide a high speed
+trace connector for collecting that data, when the particular CPU
+supports such an interface.
+(The standard connector is a 38-pin Mictor, with both JTAG
+and trace port support.)
+Those trace connectors are supported by higher end JTAG adapters
+and some logic analyzer modules; frequently those modules can
+buffer several megabytes of trace data.
+Configuring an ETM coupled to such an external trace port belongs
+in the board-specific configuration file.
+@item
+If the CPU doesn't provide an external interface, it probably
+has an ``Embedded Trace Buffer'' (ETB) on the chip, which is a
+dedicated SRAM.  4KBytes is one common ETB size.
+Configuring an ETM coupled only to an ETB belongs in the CPU-specific
+(target) configuration file, since it works the same on all boards.
 @end itemize
 
-@section Target Specific Commands
-@cindex Target Specific Commands
+ETM support in OpenOCD doesn't seem to be widely used yet.
+
+@quotation Issues
+ETM support may be buggy, and at least some @command{etm config}
+parameters should be detected by asking the ETM for them.
+It seems like a GDB hookup should be possible,
+as well as triggering trace on specific events
+(perhaps @emph{handling IRQ 23} or @emph{calls foo()}).
+There should be GUI tools to manipulate saved trace data and help
+analyse it in conjunction with the source code.
+It's unclear how much of a common interface is shared
+with the current XScale trace support, or should be
+shared with eventual Nexus-style trace module support.
+@end quotation
 
+@subsection ETM Configuration
+ETM setup is coupled with the trace port driver configuration.
 
-@page
-@section Architecture Specific Commands
-@cindex Architecture Specific Commands
+@deffn {Config Command} {etm config} target width mode clocking driver
+Declares the ETM associated with @var{target}, and associates it
+with a given trace port @var{driver}.  @xref{Trace Port Drivers}.
 
-@subsection ARMV4/5 specific commands
-@cindex ARMV4/5 specific commands
+Several of the parameters must reflect the trace port configuration.
+The @var{width} must be either 4, 8, or 16.
+The @var{mode} must be @option{normal}, @option{multiplexted},
+or @option{demultiplexted}.
+The @var{clocking} must be @option{half} or @option{full}.
 
-These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
-or Intel XScale (XScale isn't supported yet).
-@itemize @bullet
-@item @b{armv4_5 reg}
-@cindex armv4_5 reg
-@*Display a list of all banked core registers, fetching the current value from every
+@quotation Note
+You can see the ETM registers using the @command{reg} command, although
+not all of those possible registers are present in every ETM.
+@end quotation
+@end deffn
+
+@deffn Command {etm info}
+Displays information about the current target's ETM.
+@end deffn
+
+@deffn Command {etm status}
+Displays status of the current target's ETM:
+is the ETM idle, or is it collecting data?
+Did trace data overflow?
+Was it triggered?
+@end deffn
+
+@deffn Command {etm tracemode} [type context_id_bits cycle_accurate branch_output]
+Displays what data that ETM will collect.
+If arguments are provided, first configures that data.
+When the configuration changes, tracing is stopped
+and any buffered trace data is invalidated.
+
+@itemize
+@item @var{type} ... one of
+@option{none} (save nothing),
+@option{data} (save data),
+@option{address} (save addresses),
+@option{all} (save data and addresses)
+@item @var{context_id_bits} ... 0, 8, 16, or 32
+@item @var{cycle_accurate} ...  @option{enable} or @option{disable}
+@item @var{branch_output} ...  @option{enable} or @option{disable}
+@end itemize
+@end deffn
+
+@deffn Command {etm trigger_percent} percent
+@emph{Buggy and effectively a NOP ... @var{percent} from 2..100}
+@end deffn
+
+@subsection ETM Trace Operation
+
+After setting up the ETM, you can use it to collect data.
+That data can be exported to files for later analysis.
+It can also be parsed with OpenOCD, for basic sanity checking.
+
+@deffn Command {etm analyze}
+Reads trace data into memory, if it wasn't already present.
+Decodes and prints the data that was collected.
+@end deffn
+
+@deffn Command {etm dump} filename
+Stores the captured trace data in @file{filename}.
+@end deffn
+
+@deffn Command {etm image} filename [base_address] [type]
+Opens an image file.
+@end deffn
+
+@deffn Command {etm load} filename
+Loads captured trace data from @file{filename}.
+@end deffn
+
+@deffn Command {etm start}
+Starts trace data collection.
+@end deffn
+
+@deffn Command {etm stop}
+Stops trace data collection.
+@end deffn
+
+@anchor{Trace Port Drivers}
+@subsection Trace Port Drivers
+
+To use an ETM trace port it must be associated with a driver.
+
+@deffn {Trace Port Driver} dummy
+Use the @option{dummy} driver if you are configuring an ETM that's
+not connected to anything (on-chip ETB or off-chip trace connector).
+@emph{This driver lets OpenOCD talk to the ETM, but it does not expose
+any trace data collection.}
+@deffn {Config Command} {etm_dummy config} target
+Associates the ETM for @var{target} with a dummy driver.
+@end deffn
+@end deffn
+
+@deffn {Trace Port Driver} etb
+Use the @option{etb} driver if you are configuring an ETM
+to use on-chip ETB memory.
+@deffn {Config Command} {etb config} target etb_tap
+Associates the ETM for @var{target} with the ETB at @var{etb_tap}.
+You can see the ETB registers using the @command{reg} command.
+@end deffn
+@end deffn
+
+@deffn {Trace Port Driver} oocd_trace
+This driver isn't available unless OpenOCD was explicitly configured
+with the @option{--enable-oocd_trace} option.  You probably don't want
+to configure it unless you've built the appropriate prototype hardware;
+it's @emph{proof-of-concept} software.
+
+Use the @option{oocd_trace} driver if you are configuring an ETM that's
+connected to an off-chip trace connector.
+
+@deffn {Config Command} {oocd_trace config} target tty
+Associates the ETM for @var{target} with a trace driver which
+collects data through the serial port @var{tty}.
+@end deffn
+
+@deffn Command {oocd_trace resync}
+Re-synchronizes with the capture clock.
+@end deffn
+
+@deffn Command {oocd_trace status}
+Reports whether the capture clock is locked or not.
+@end deffn
+@end deffn
+
+
+@section ARMv4 and ARMv5 Architecture
+@cindex ARMv4
+@cindex ARMv5
+
+These commands are specific to ARM architecture v4 and v5,
+including all ARM7 or ARM9 systems and Intel XScale.
+They are available in addition to other core-specific
+commands that may be available.
+
+@deffn Command {armv4_5 core_state} [@option{arm}|@option{thumb}]
+Displays the core_state, optionally changing it to process
+either @option{arm} or @option{thumb} instructions.
+The target may later be resumed in the currently set core_state.
+(Processors may also support the Jazelle state, but
+that is not currently supported in OpenOCD.)
+@end deffn
+
+@deffn Command {armv4_5 disassemble} address count [thumb]
+@cindex disassemble
+Disassembles @var{count} instructions starting at @var{address}.
+If @option{thumb} is specified, Thumb (16-bit) instructions are used;
+else ARM (32-bit) instructions are used.
+(Processors may also support the Jazelle state, but
+those instructions are not currently understood by OpenOCD.)
+@end deffn
+
+@deffn Command {armv4_5 reg}
+Display a table of all banked core registers, fetching the current value from every
 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
 register value. 
-@item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
-@cindex armv4_5 core_mode
-@*Displays the core_mode, optionally changing it to either ARM or Thumb mode.
-The target is resumed in the currently set @option{core_mode}. 
-@end itemize
+@end deffn
 
-@subsection ARM7/9 specific commands
-@cindex ARM7/9 specific commands
+@subsection ARM7 and ARM9 specific commands
+@cindex ARM7
+@cindex ARM9
 
-These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
-ARM920T or ARM926EJ-S.
-@itemize @bullet
-@item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
-@cindex arm7_9 dbgrq
-@*Enable use of the DBGRQ bit to force entry into debug mode. This should be
+These commands are specific to ARM7 and ARM9 cores, like ARM7TDMI, ARM720T,
+ARM9TDMI, ARM920T or ARM926EJ-S.
+They are available in addition to the ARMv4/5 commands,
+and any other core-specific commands that may be available.
+
+@deffn Command {arm7_9 dbgrq} (@option{enable}|@option{disable})
+Control use of the EmbeddedIce DBGRQ signal to force entry into debug mode,
+instead of breakpoints.  This should be
 safe for all but ARM7TDMI--S cores (like Philips LPC). 
-@item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
-@cindex arm7_9 fast_memory_access
+@end deffn
+
+@deffn Command {arm7_9 dcc_downloads} (@option{enable}|@option{disable})
+@cindex DCC
+Control the use of the debug communications channel (DCC) to write larger (>128 byte)
+amounts of memory. DCC downloads offer a huge speed increase, but might be
+unsafe, especially with targets running at very low speeds. This command was introduced
+with OpenOCD rev. 60, and requires a few bytes of working area.
+@end deffn
+
 @anchor{arm7_9 fast_memory_access}
-@*Allow OpenOCD to read and write memory without checking completion of
+@deffn Command {arm7_9 fast_memory_access} (@option{enable}|@option{disable})
+Enable or disable memory writes and reads that don't check completion of
 the operation. This provides a huge speed increase, especially with USB JTAG
 cables (FT2232), but might be unsafe if used with targets running at very low
 speeds, like the 32kHz startup clock of an AT91RM9200. 
-@item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
-@cindex arm7_9 dcc_downloads
-@*Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
-amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
-unsafe, especially with targets running at very low speeds. This command was introduced
-with OpenOCD rev. 60. 
-@end itemize
+@end deffn
+
+@deffn {Debug Command} {arm7_9 write_core_reg} num mode word
+@emph{This is intended for use while debugging OpenOCD; you probably
+shouldn't use it.}
+
+Writes a 32-bit @var{word} to register @var{num} (from 0 to 16)
+as used in the specified @var{mode}
+(where e.g. mode 16 is "user" and mode 19 is "supervisor";
+the M4..M0 bits of the PSR).
+Registers 0..15 are the normal CPU registers such as r0(0), r1(1) ... pc(15).
+Register 16 is the mode-specific SPSR,
+unless the specified mode is 0xffffffff (32-bit all-ones)
+in which case register 16 is the CPSR.
+The write goes directly to the CPU, bypassing the register cache.
+@end deffn
+
+@deffn {Debug Command} {arm7_9 write_xpsr} word (@option{0}|@option{1})
+@emph{This is intended for use while debugging OpenOCD; you probably
+shouldn't use it.}
+
+If the second parameter is zero, writes @var{word} to the
+Current Program Status register (CPSR).
+Else writes @var{word} to the current mode's Saved PSR (SPSR).
+In both cases, this bypasses the register cache.
+@end deffn
+
+@deffn {Debug Command} {arm7_9 write_xpsr_im8} byte rotate (@option{0}|@option{1})
+@emph{This is intended for use while debugging OpenOCD; you probably
+shouldn't use it.}
+
+Writes eight bits to the CPSR or SPSR,
+first rotating them by @math{2*rotate} bits,
+and bypassing the register cache.
+This has lower JTAG overhead than writing the entire CPSR or SPSR
+with @command{arm7_9 write_xpsr}.
+@end deffn
 
 @subsection ARM720T specific commands
-@cindex ARM720T specific commands
-
-@itemize @bullet
-@item @b{arm720t cp15} <@var{num}> [@var{value}]
-@cindex arm720t cp15
-@*display/modify cp15 register <@option{num}> [@option{value}].
-@item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
-@cindex arm720t md<bhw>_phys
-@*Display memory at physical address addr. 
-@item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
-@cindex arm720t mw<bhw>_phys
-@*Write memory at physical address addr.
-@item @b{arm720t virt2phys} <@var{va}>
-@cindex arm720t virt2phys
-@*Translate a virtual address to a physical address. 
-@end itemize
+@cindex ARM720T
+
+These commands are available to ARM720T based CPUs,
+which are implementations of the ARMv4T architecture
+based on the ARM7TDMI-S integer core.
+They are available in addition to the ARMv4/5 and ARM7/ARM9 commands.
+
+@deffn Command {arm720t cp15} regnum [value]
+Display cp15 register @var{regnum};
+else if a @var{value} is provided, that value is written to that register.
+@end deffn
+
+@deffn Command {arm720t mdw_phys} addr [count]
+@deffnx Command {arm720t mdh_phys} addr [count]
+@deffnx Command {arm720t mdb_phys} addr [count]
+Display contents of physical address @var{addr}, as
+32-bit words (@command{mdw_phys}), 16-bit halfwords (@command{mdh_phys}),
+or 8-bit bytes (@command{mdb_phys}).
+If @var{count} is specified, displays that many units.
+@end deffn
+
+@deffn Command {arm720t mww_phys} addr word
+@deffnx Command {arm720t mwh_phys} addr halfword
+@deffnx Command {arm720t mwb_phys} addr byte
+Writes the specified @var{word} (32 bits),
+@var{halfword} (16 bits), or @var{byte} (8-bit) pattern,
+at the specified physical address @var{addr}.
+@end deffn
+
+@deffn Command {arm720t virt2phys} va
+Translate a virtual address @var{va} to a physical address
+and display the result.
+@end deffn
 
 @subsection ARM9TDMI specific commands
-@cindex ARM9TDMI specific commands
+@cindex ARM9TDMI
 
-@itemize @bullet
-@item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
-@cindex arm9tdmi vector_catch
-@*Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
+Many ARM9-family CPUs are built around ARM9TDMI integer cores,
+or processors resembling ARM9TDMI, and can use these commands.
+Such cores include the ARM920T, ARM926EJ-S, and ARM966.
+
+@deffn Command {arm9tdmi vector_catch} (@option{all}|@option{none}|list)
+Catch arm9 interrupt vectors, can be @option{all}, @option{none},
+or a list with one or more of the following:
 @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
 @option{irq} @option{fiq}.
-
-Can also be used on other ARM9 based cores such as ARM966, ARM920T and ARM926EJ-S.
-@end itemize
-
-@subsection ARM966E specific commands
-@cindex ARM966E specific commands
-
-@itemize @bullet
-@item @b{arm966e cp15} <@var{num}> [@var{value}]
-@cindex arm966e cp15
-@*display/modify cp15 register <@option{num}> [@option{value}].
-@end itemize
+@end deffn
 
 @subsection ARM920T specific commands
-@cindex ARM920T specific commands
+@cindex ARM920T
+
+These commands are available to ARM920T based CPUs,
+which are implementations of the ARMv4T architecture
+built using the ARM9TDMI integer core.
+They are available in addition to the ARMv4/5, ARM7/ARM9,
+and ARM9TDMI commands.
+
+@deffn Command {arm920t cache_info}
+Print information about the caches found. This allows to see whether your target
+is an ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
+@end deffn
+
+@deffn Command {arm920t cp15} regnum [value]
+Display cp15 register @var{regnum};
+else if a @var{value} is provided, that value is written to that register.
+@end deffn
+
+@deffn Command {arm920t cp15i} opcode [value [address]]
+Interpreted access using cp15 @var{opcode}.
+If no @var{value} is provided, the result is displayed.
+Else if that value is written using the specified @var{address},
+or using zero if no other address is not provided.
+@end deffn
+
+@deffn Command {arm920t mdw_phys} addr [count]
+@deffnx Command {arm920t mdh_phys} addr [count]
+@deffnx Command {arm920t mdb_phys} addr [count]
+Display contents of physical address @var{addr}, as
+32-bit words (@command{mdw_phys}), 16-bit halfwords (@command{mdh_phys}),
+or 8-bit bytes (@command{mdb_phys}).
+If @var{count} is specified, displays that many units.
+@end deffn
+
+@deffn Command {arm920t mww_phys} addr word
+@deffnx Command {arm920t mwh_phys} addr halfword
+@deffnx Command {arm920t mwb_phys} addr byte
+Writes the specified @var{word} (32 bits),
+@var{halfword} (16 bits), or @var{byte} (8-bit) pattern,
+at the specified physical address @var{addr}.
+@end deffn
+
+@deffn Command {arm920t read_cache} filename
+Dump the content of ICache and DCache to a file named @file{filename}.
+@end deffn
+
+@deffn Command {arm920t read_mmu} filename
+Dump the content of the ITLB and DTLB to a file named @file{filename}.
+@end deffn
+
+@deffn Command {arm920t virt2phys} va
+Translate a virtual address @var{va} to a physical address
+and display the result.
+@end deffn
+
+@subsection ARM926ej-s specific commands
+@cindex ARM926ej-s
+
+These commands are available to ARM926ej-s based CPUs,
+which are implementations of the ARMv5TEJ architecture
+based on the ARM9EJ-S integer core.
+They are available in addition to the ARMv4/5, ARM7/ARM9,
+and ARM9TDMI commands.
+
+@deffn Command {arm926ejs cache_info}
+Print information about the caches found.
+@end deffn
+
+@deffn Command {arm926ejs cp15} opcode1 opcode2 CRn CRm regnum [value]
+Accesses cp15 register @var{regnum} using
+@var{opcode1}, @var{opcode2}, @var{CRn}, and @var{CRm}.
+If a @var{value} is provided, that value is written to that register.
+Else that register is read and displayed.
+@end deffn
+
+@deffn Command {arm926ejs mdw_phys} addr [count]
+@deffnx Command {arm926ejs mdh_phys} addr [count]
+@deffnx Command {arm926ejs mdb_phys} addr [count]
+Display contents of physical address @var{addr}, as
+32-bit words (@command{mdw_phys}), 16-bit halfwords (@command{mdh_phys}),
+or 8-bit bytes (@command{mdb_phys}).
+If @var{count} is specified, displays that many units.
+@end deffn
+
+@deffn Command {arm926ejs mww_phys} addr word
+@deffnx Command {arm926ejs mwh_phys} addr halfword
+@deffnx Command {arm926ejs mwb_phys} addr byte
+Writes the specified @var{word} (32 bits),
+@var{halfword} (16 bits), or @var{byte} (8-bit) pattern,
+at the specified physical address @var{addr}.
+@end deffn
+
+@deffn Command {arm926ejs virt2phys} va
+Translate a virtual address @var{va} to a physical address
+and display the result.
+@end deffn
 
-@itemize @bullet
-@item @b{arm920t cp15} <@var{num}> [@var{value}]
-@cindex arm920t cp15
-@*display/modify cp15 register <@option{num}> [@option{value}].
-@item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
-@cindex arm920t cp15i
-@*display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
-@item @b{arm920t cache_info}
-@cindex arm920t cache_info
-@*Print information about the caches found. This allows to see whether your target
-is an ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache). 
-@item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
-@cindex arm920t md<bhw>_phys
-@*Display memory at physical address addr. 
-@item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
-@cindex arm920t mw<bhw>_phys
-@*Write memory at physical address addr. 
-@item @b{arm920t read_cache} <@var{filename}>
-@cindex arm920t read_cache
-@*Dump the content of ICache and DCache to a file. 
-@item @b{arm920t read_mmu} <@var{filename}>
-@cindex arm920t read_mmu
-@*Dump the content of the ITLB and DTLB to a file. 
-@item @b{arm920t virt2phys} <@var{va}>
-@cindex arm920t virt2phys
-@*Translate a virtual address to a physical address. 
-@end itemize
+@subsection ARM966E specific commands
+@cindex ARM966E
+
+These commands are available to ARM966 based CPUs,
+which are implementations of the ARMv5TE architecture.
+They are available in addition to the ARMv4/5, ARM7/ARM9,
+and ARM9TDMI commands.
+
+@deffn Command {arm966e cp15} regnum [value]
+Display cp15 register @var{regnum};
+else if a @var{value} is provided, that value is written to that register.
+@end deffn
+
+@subsection XScale specific commands
+@cindex XScale
+
+These commands are available to XScale based CPUs,
+which are implementations of the ARMv5TE architecture.
+
+@deffn Command {xscale analyze_trace}
+Displays the contents of the trace buffer.
+@end deffn
+
+@deffn Command {xscale cache_clean_address} address
+Changes the address used when cleaning the data cache.
+@end deffn
+
+@deffn Command {xscale cache_info}
+Displays information about the CPU caches.
+@end deffn
+
+@deffn Command {xscale cp15} regnum [value]
+Display cp15 register @var{regnum};
+else if a @var{value} is provided, that value is written to that register.
+@end deffn
+
+@deffn Command {xscale debug_handler} target address
+Changes the address used for the specified target's debug handler.
+@end deffn
+
+@deffn Command {xscale dcache} (@option{enable}|@option{disable})
+Enables or disable the CPU's data cache.
+@end deffn
+
+@deffn Command {xscale dump_trace} filename
+Dumps the raw contents of the trace buffer to @file{filename}.
+@end deffn
+
+@deffn Command {xscale icache} (@option{enable}|@option{disable})
+Enables or disable the CPU's instruction cache.
+@end deffn
+
+@deffn Command {xscale mmu} (@option{enable}|@option{disable})
+Enables or disable the CPU's memory management unit.
+@end deffn
+
+@deffn Command {xscale trace_buffer} (@option{enable}|@option{disable}) [@option{fill} [n] | @option{wrap}]
+Enables or disables the trace buffer,
+and controls how it is emptied.
+@end deffn
+
+@deffn Command {xscale trace_image} filename [offset [type]]
+Opens a trace image from @file{filename}, optionally rebasing
+its segment addresses by @var{offset}.
+The image @var{type} may be one of
+@option{bin} (binary), @option{ihex} (Intel hex),
+@option{elf} (ELF file), @option{s19} (Motorola s19),
+@option{mem}, or @option{builder}.
+@end deffn
+
+@deffn Command {xscale vector_catch} mask
+Provide a bitmask showing the vectors to catch.
+@end deffn
+
+@section ARMv6 Architecture
+@cindex ARMv6
+
+@subsection ARM11 specific commands
+@cindex ARM11
+
+@deffn Command {arm11 mcr} p1 p2 p3 p4 p5
+Read coprocessor register
+@end deffn
+
+@deffn Command {arm11 memwrite burst} [value]
+Displays the value of the memwrite burst-enable flag,
+which is enabled by default.
+If @var{value} is defined, first assigns that.
+@end deffn
+
+@deffn Command {arm11 memwrite error_fatal} [value]
+Displays the value of the memwrite error_fatal flag,
+which is enabled by default.
+If @var{value} is defined, first assigns that.
+@end deffn
+
+@deffn Command {arm11 mrc} p1 p2 p3 p4 p5 value
+Write coprocessor register
+@end deffn
+
+@deffn Command {arm11 no_increment}  [value]
+Displays the value of the flag controlling whether
+some read or write operations increment the pointer
+(the default behavior) or not (acting like a FIFO).
+If @var{value} is defined, first assigns that.
+@end deffn
+
+@deffn Command {arm11 step_irq_enable}  [value]
+Displays the value of the flag controlling whether
+IRQs are enabled during single stepping;
+they is disabled by default.
+If @var{value} is defined, first assigns that.
+@end deffn
+
+@section ARMv7 Architecture
+@cindex ARMv7
+
+@subsection ARMv7 Debug Access Port (DAP) specific commands
+@cindex Debug Access Port
+@cindex DAP
+These commands are specific to ARM architecture v7 Debug Access Port (DAP),
+included on cortex-m3 and cortex-a8 systems.
+They are available in addition to other core-specific commands that may be available.
+
+@deffn Command {dap info} [num]
+Displays dap info for ap @var{num}, defaulting to the currently selected AP.
+@end deffn
+
+@deffn Command {dap apsel} [num]
+Select AP @var{num}, defaulting to 0.
+@end deffn
+
+@deffn Command {dap apid} [num]
+Displays id register from AP @var{num},
+defaulting to the currently selected AP.
+@end deffn
+
+@deffn Command {dap baseaddr} [num]
+Displays debug base address from AP @var{num},
+defaulting to the currently selected AP.
+@end deffn
+
+@deffn Command {dap memaccess} [value]
+Displays the number of extra tck for mem-ap memory bus access [0-255].
+If @var{value} is defined, first assigns that.
+@end deffn
+
+@subsection Cortex-M3 specific commands
+@cindex Cortex-M3
+
+@deffn Command {cortex_m3 maskisr} (@option{on}|@option{off})
+Control masking (disabling) interrupts during target step/resume.
+@end deffn
+
+@section Target DCC Requests
+@cindex Linux-ARM DCC support
+@cindex libdcc
+@cindex DCC
+OpenOCD can handle certain target requests; currently debugmsgs
+@command{target_request debugmsgs}
+are only supported for arm7_9 and cortex_m3.
 
-@subsection ARM926EJ-S specific commands
-@cindex ARM926EJ-S specific commands
+See libdcc in the contrib dir for more details.
+Linux-ARM kernels have a ``Kernel low-level debugging
+via EmbeddedICE DCC channel'' option (CONFIG_DEBUG_ICEDCC,
+depends on CONFIG_DEBUG_LL) which uses this mechanism to
+deliver messages before a serial console can be activated.
+
+@deffn Command {target_request debugmsgs} [@option{enable}|@option{disable}|@option{charmsg}]
+Displays current handling of target DCC message requests.
+These messages may be sent to the debugger while the target is running.
+The optional @option{enable} and @option{charmsg} parameters
+both enable the messages, while @option{disable} disables them.
+With @option{charmsg} the DCC words each contain one character,
+as used by Linux with CONFIG_DEBUG_ICEDCC;
+otherwise the libdcc format is used.
+@end deffn
 
-@itemize @bullet
-@item @b{arm926ejs cp15} <@var{num}> [@var{value}]
-@cindex arm926ejs cp15
-@*display/modify cp15 register <@option{num}> [@option{value}].
-@item @b{arm926ejs cache_info}
-@cindex arm926ejs cache_info
-@*Print information about the caches found.
-@item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
-@cindex arm926ejs md<bhw>_phys
-@*Display memory at physical address addr. 
-@item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
-@cindex arm926ejs mw<bhw>_phys
-@*Write memory at physical address addr. 
-@item @b{arm926ejs virt2phys} <@var{va}>
-@cindex arm926ejs virt2phys
-@*Translate a virtual address to a physical address. 
-@end itemize
+@node JTAG Commands
+@chapter JTAG Commands
+@cindex JTAG Commands
+Most general purpose JTAG commands have been presented earlier.
+(@xref{JTAG Speed}, @ref{Reset Configuration}, and @ref{TAP Declaration}.)
+Lower level JTAG commands, as presented here,
+may be needed to work with targets which require special
+attention during operations such as reset or initialization.
 
-@subsection CORTEX_M3 specific commands
-@cindex CORTEX_M3 specific commands
+To use these commands you will need to understand some
+of the basics of JTAG, including:
 
 @itemize @bullet
-@item @b{cortex_m3 maskisr} <@var{on}|@var{off}>
-@cindex cortex_m3 maskisr
-@*Enable masking (disabling) interrupts during target step/resume.
+@item A JTAG scan chain consists of a sequence of individual TAP
+devices such as a CPUs.
+@item Control operations involve moving each TAP through the same
+standard state machine (in parallel)
+using their shared TMS and clock signals.
+@item Data transfer involves shifting data through the chain of
+instruction or data registers of each TAP, writing new register values
+while the reading previous ones.
+@item Data register sizes are a function of the instruction active in
+a given TAP, while instruction register sizes are fixed for each TAP.
+All TAPs support a BYPASS instruction with a single bit data register.
+@item The way OpenOCD differentiates between TAP devices is by
+shifting different instructions into (and out of) their instruction
+registers.
 @end itemize
 
-@page
-@section Debug commands
-@cindex Debug commands
-The following commands give direct access to the core, and are most likely
-only useful while debugging OpenOCD.
-@itemize @bullet
-@item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
-@cindex arm7_9 write_xpsr
-@*Immediately write either the current program status register (CPSR) or the saved
-program status register (SPSR), without changing the register cache (as displayed
-by the @option{reg} and @option{armv4_5 reg} commands). 
-@item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
-<@var{0=cpsr},@var{1=spsr}>
-@cindex arm7_9 write_xpsr_im8
-@*Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
-operation (similar to @option{write_xpsr}). 
-@item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
-@cindex arm7_9 write_core_reg
-@*Write a core register, without changing the register cache (as displayed by the
-@option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
-encoding of the [M4:M0] bits of the PSR. 
-@end itemize
+@section Low Level JTAG Commands
+
+These commands are used by developers who need to access
+JTAG instruction or data registers, possibly controlling
+the order of TAP state transitions.
+If you're not debugging OpenOCD internals, or bringing up a
+new JTAG adapter or a new type of TAP device (like a CPU or
+JTAG router), you probably won't need to use these commands.
+
+@deffn Command {drscan} tap [numbits value]+ [@option{-endstate} tap_state]
+Loads the data register of @var{tap} with a series of bit fields
+that specify the entire register.
+Each field is @var{numbits} bits long with
+a numeric @var{value} (hexadecimal encouraged).
+The return value holds the original value of each
+of those fields.
+
+For example, a 38 bit number might be specified as one
+field of 32 bits then one of 6 bits.
+@emph{For portability, never pass fields which are more
+than 32 bits long.  Many OpenOCD implementations do not
+support 64-bit (or larger) integer values.}
+
+All TAPs other than @var{tap} must be in BYPASS mode.
+The single bit in their data registers does not matter.
+
+When @var{tap_state} is specified, the JTAG state machine is left
+in that state.
+For example @sc{drpause} might be specified, so that more
+instructions can be issued before re-entering the @sc{run/idle} state.
+If the end state is not specified, the @sc{run/idle} state is entered.
+
+@quotation Warning
+OpenOCD does not record information about data register lengths,
+so @emph{it is important that you get the bit field lengths right}.
+Remember that different JTAG instructions refer to different
+data registers, which may have different lengths.
+Moreover, those lengths may not be fixed;
+the SCAN_N instruction can change the length of
+the register accessed by the INTEST instruction
+(by connecting a different scan chain).
+@end quotation
+@end deffn
+
+@deffn Command {flush_count}
+Returns the number of times the JTAG queue has been flushed.
+This may be used for performance tuning.
+
+For example, flushing a queue over USB involves a
+minimum latency, often several milliseconds, which does
+not change with the amount of data which is written.
+You may be able to identify performance problems by finding
+tasks which waste bandwidth by flushing small transfers too often,
+instead of batching them into larger operations.
+@end deffn
+
+@deffn Command {irscan} [tap instruction]+ [@option{-endstate} tap_state]
+For each @var{tap} listed, loads the instruction register
+with its associated numeric @var{instruction}.
+(The number of bits in that instruction may be displayed
+using the @command{scan_chain} command.)
+For other TAPs, a BYPASS instruction is loaded.
+
+When @var{tap_state} is specified, the JTAG state machine is left
+in that state.
+For example @sc{irpause} might be specified, so the data register
+can be loaded before re-entering the @sc{run/idle} state.
+If the end state is not specified, the @sc{run/idle} state is entered.
+
+@quotation Note
+OpenOCD currently supports only a single field for instruction
+register values, unlike data register values.
+For TAPs where the instruction register length is more than 32 bits,
+portable scripts currently must issue only BYPASS instructions.
+@end quotation
+@end deffn
+
+@deffn Command {jtag_reset} trst srst
+Set values of reset signals.
+The @var{trst} and @var{srst} parameter values may be
+@option{0}, indicating that reset is inactive (pulled or driven high),
+or @option{1}, indicating it is active (pulled or driven low).
+The @command{reset_config} command should already have been used
+to configure how the board and JTAG adapter treat these two
+signals, and to say if either signal is even present.
+@xref{Reset Configuration}.
+@end deffn
+
+@deffn Command {runtest} @var{num_cycles}
+Move to the @sc{run/idle} state, and execute at least
+@var{num_cycles} of the JTAG clock (TCK).
+Instructions often need some time
+to execute before they take effect.
+@end deffn
+
+@deffn Command {scan_chain}
+Displays the TAPs in the scan chain configuration,
+and their status.
+The set of TAPs listed by this command is fixed by
+exiting the OpenOCD configuration stage,
+but systems with a JTAG router can
+enable or disable TAPs dynamically.
+In addition to the enable/disable status, the contents of
+each TAP's instruction register can also change.
+@end deffn
+
+@c tms_sequence (short|long)
+@c ... temporary, debug-only, probably gone before 0.2 ships
+
+@deffn Command {verify_ircapture} (@option{enable}|@option{disable})
+Verify values captured during @sc{ircapture} and returned
+during IR scans.  Default is enabled, but this can be
+overridden by @command{verify_jtag}.
+@end deffn
+
+@deffn Command {verify_jtag} (@option{enable}|@option{disable})
+Enables verification of DR and IR scans, to help detect
+programming errors.  For IR scans, @command{verify_ircapture}
+must also be enabled.
+Default is enabled.
+@end deffn
 
-@section Target Requests
-@cindex Target Requests
-OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
-See libdcc in the contrib dir for more details.
-@itemize @bullet
-@item @b{target_request debugmsgs} <@var{enable}|@var{disable}>
-@cindex target_request debugmsgs
-@*Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running.
-@end itemize
+@section TAP state names
+@cindex TAP state names
 
-@node JTAG Commands
-@chapter JTAG Commands
-@cindex JTAG Commands
-Generally most people will not use the bulk of these commands. They
-are mostly used by the OpenOCD developers or those who need to
-directly manipulate the JTAG taps.
-
-In general these commands control JTAG taps at a very low level. For
-example if you need to control a JTAG Route Controller (i.e.: the
-OMAP3530 on the Beagle Board has one) you might use these commands in
-a script or an event procedure.
-@section Commands
-@cindex Commands
-@itemize @bullet
-@item @b{scan_chain}
-@cindex scan_chain
-@*Print current scan chain configuration. 
-@item @b{jtag_reset} <@var{trst}> <@var{srst}>
-@cindex jtag_reset
-@*Toggle reset lines. 
-@item @b{endstate} <@var{tap_state}>
-@cindex endstate
-@*Finish JTAG operations in <@var{tap_state}>. 
-@item @b{runtest} <@var{num_cycles}>
-@cindex runtest
-@*Move to Run-Test/Idle, and execute <@var{num_cycles}> 
-@item @b{statemove} [@var{tap_state}]
-@cindex statemove
-@*Move to current endstate or [@var{tap_state}] 
-@item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
-@cindex irscan
-@*Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ... 
-@item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
-@cindex drscan
-@*Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ... 
-@item @b{verify_ircapture} <@option{enable}|@option{disable}>
-@cindex verify_ircapture
-@*Verify value captured during Capture-IR. Default is enabled.
-@item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ... 
-@cindex var
-@*Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ... 
-@item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
-@cindex field
-Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
-@end itemize
+The @var{tap_state} names used by OpenOCD in the @command{drscan},
+and @command{irscan} commands are:
 
-@section Tap states
-@cindex Tap states
-Available tap_states are:
 @itemize @bullet
-@item @b{RESET}
-@cindex RESET
-@item @b{IDLE}
-@cindex IDLE
+@item @b{RESET} ... should act as if TRST were active
+@item @b{RUN/IDLE} ... don't assume this always means IDLE
 @item @b{DRSELECT}
-@cindex DRSELECT
 @item @b{DRCAPTURE}
-@cindex DRCAPTURE
-@item @b{DRSHIFT}
-@cindex DRSHIFT
+@item @b{DRSHIFT} ... TDI/TDO shifting through the data register
 @item @b{DREXIT1}
-@cindex DREXIT1
-@item @b{DRPAUSE}
-@cindex DRPAUSE
+@item @b{DRPAUSE} ... data register ready for update or more shifting
 @item @b{DREXIT2}
-@cindex DREXIT2
 @item @b{DRUPDATE}
-@cindex DRUPDATE
 @item @b{IRSELECT}
-@cindex IRSELECT
 @item @b{IRCAPTURE}
-@cindex IRCAPTURE
-@item @b{IRSHIFT}
-@cindex IRSHIFT
+@item @b{IRSHIFT} ... TDI/TDO shifting through the instruction register
 @item @b{IREXIT1}
-@cindex IREXIT1
-@item @b{IRPAUSE}
-@cindex IRPAUSE
+@item @b{IRPAUSE} ... instruction register ready for update or more shifting
 @item @b{IREXIT2}
-@cindex IREXIT2
 @item @b{IRUPDATE}
-@cindex IRUPDATE
 @end itemize
 
+Note that only six of those states are fully ``stable'' in the
+face of TMS fixed (usually low)
+and a free-running JTAG clock.  For all the
+others, the next TCK transition changes to a new state.
+
+@itemize @bullet
+@item From @sc{drshift} and @sc{irshift}, clock transitions will
+produce side effects by changing register contents.  The values
+to be latched in upcoming @sc{drupdate} or @sc{irupdate} states
+may not be as expected.
+@item @sc{run/idle}, @sc{drpause}, and @sc{irpause} are reasonable
+choices after @command{drscan} or @command{irscan} commands,
+since they are free of JTAG side effects.
+However, @sc{run/idle} may have side effects that appear at other
+levels, such as advancing the ARM9E-S instruction pipeline.
+Consult the documentation for the TAP(s) you are working with.
+@end itemize
 
 @node TFTP
 @chapter TFTP
@@ -2945,8 +4597,13 @@ be used to access files on PCs (either the developer's PC or some other PC).
 
 The way this works on the ZY1000 is to prefix a filename by
 "/tftp/ip/" and append the TFTP path on the TFTP
-server (tftpd). E.g. "load_image /tftp/10.0.0.96/c:\temp\abc.elf" will
-load c:\temp\abc.elf from the developer pc (10.0.0.96) into memory as
+server (tftpd). For example,
+
+@example
+load_image /tftp/10.0.0.96/c:\temp\abc.elf
+@end example
+
+will load c:\temp\abc.elf from the developer pc (10.0.0.96) into memory as
 if the file was hosted on the embedded host.
 
 In order to achieve decent performance, you must choose a TFTP server
@@ -2976,25 +4633,27 @@ Detailed information about each section can be found at OpenOCD configuration.
 To start OpenOCD with a target script for the AT91R40008 CPU and reset
 the CPU upon startup of the OpenOCD daemon.
 @example
-openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset 
+openocd -f interface/parport.cfg -f target/at91r40008.cfg \
+        -c "init" -c "reset"
 @end example
 
 
 @node GDB and OpenOCD
 @chapter GDB and OpenOCD
-@cindex GDB and OpenOCD
+@cindex GDB
 OpenOCD complies with the remote gdbserver protocol, and as such can be used
 to debug remote targets.
 
+@anchor{Connecting to GDB}
 @section Connecting to GDB
 @cindex Connecting to GDB
-@anchor{Connecting to GDB}
 Use GDB 6.7 or newer with OpenOCD if you run into trouble. For
 instance GDB 6.3 has a known bug that produces bogus memory access
 errors, which has since been fixed: look up 1836 in
 @url{http://sourceware.org/cgi-bin/gnatsweb.pl?database=gdb}
 
-@*OpenOCD can communicate with GDB in two ways:
+OpenOCD can communicate with GDB in two ways:
+
 @enumerate
 @item
 A socket (TCP/IP) connection is typically started as follows:
@@ -3012,7 +4671,7 @@ Using this method has the advantage of GDB starting/stopping OpenOCD for the deb
 session.
 @end enumerate
 
-@*To see a list of available OpenOCD commands type @option{monitor help} on the
+To list the available OpenOCD commands type @command{monitor help} on the
 GDB command line.
 
 OpenOCD supports the gdb @option{qSupported} packet, this enables information
@@ -3043,7 +4702,7 @@ working area.
 
 Informing GDB of the memory map of the target will enable GDB to protect any
 flash areas of the target and use hardware breakpoints by default. This means
-that the OpenOCD option @option{gdb_breakpoint_override} is not required when
+that the OpenOCD option @command{gdb_breakpoint_override} is not required when
 using a memory map. @xref{gdb_breakpoint_override}.
 
 To view the configured memory map in GDB, use the GDB command @option{info mem}
@@ -3055,7 +4714,7 @@ This can be changed to the old behaviour by using the following GDB command
 set mem inaccessible-by-default off
 @end example
 
-If @option{gdb_flash_program enable} is also used, GDB will be able to
+If @command{gdb_flash_program enable} is also used, GDB will be able to
 program any flash memory using the vFlash interface.
 
 GDB will look at the target memory map when a load command is given, if any
@@ -3116,8 +4775,9 @@ should be passed in to the proc in question.
 
 By low-level, the intent is a human would not directly use these commands.
 
-Low-level commands are (should be) prefixed with "openocd_", e.g. openocd_flash_banks
-is the low level API upon which "flash banks" is implemented.
+Low-level commands are (should be) prefixed with "ocd_", e.g.
+@command{ocd_flash_banks}
+is the low level API upon which @command{flash banks} is implemented.
 
 @itemize @bullet
 @item @b{ocd_mem2array} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
@@ -3154,48 +4814,83 @@ holds one of the following values:
 
 Note: 'winxx' was choosen because today (March-2009) no distinction is made between Win32 and Win64.
 
+@quotation Note
+We should add support for a variable like Tcl variable
+@code{tcl_platform(platform)}, it should be called
+@code{jim_platform} (because it
+is jim, not real tcl).
+@end quotation
+
 @node Upgrading
 @chapter Deprecated/Removed Commands
 @cindex Deprecated/Removed Commands
-Certain OpenOCD commands have been deprecated/removed during the various revisions.
+Certain OpenOCD commands have been deprecated or
+removed during the various revisions.
+
+Upgrade your scripts as soon as possible.
+These descriptions for old commands may be removed
+a year after the command itself was removed.
+This means that in January 2010 this chapter may
+become much shorter.
 
 @itemize @bullet
 @item @b{arm7_9 fast_writes}
 @cindex arm7_9 fast_writes
-@*use @option{arm7_9 fast_memory_access} command with same args. @xref{arm7_9 fast_memory_access}.
+@*Use @command{arm7_9 fast_memory_access} instead.
+@item @b{endstate}
+@cindex endstate
+@*An buggy old command that would not really work since background polling would wipe out the global endstate
+@xref{arm7_9 fast_memory_access}.
 @item @b{arm7_9 force_hw_bkpts}
-@cindex arm7_9 force_hw_bkpts
-@*Use @option{gdb_breakpoint_override} instead. Note that GDB will use hardware breakpoints
+@*Use @command{gdb_breakpoint_override} instead. Note that GDB will use hardware breakpoints
 for flash if the GDB memory map has been set up(default when flash is declared in
 target configuration). @xref{gdb_breakpoint_override}.
 @item @b{arm7_9 sw_bkpts}
-@cindex arm7_9 sw_bkpts
-@*On by default. See also @option{gdb_breakpoint_override}. @xref{gdb_breakpoint_override}.
+@*On by default. @xref{gdb_breakpoint_override}.
 @item @b{daemon_startup}
-@cindex daemon_startup
 @*this config option has been removed, simply adding @option{init} and @option{reset halt} to
 the end of your config script will give the same behaviour as using @option{daemon_startup reset}
 and @option{target cortex_m3 little reset_halt 0}.
 @item @b{dump_binary}
-@cindex dump_binary
 @*use @option{dump_image} command with same args. @xref{dump_image}.
 @item @b{flash erase}
-@cindex flash erase
 @*use @option{flash erase_sector} command with same args. @xref{flash erase_sector}.
 @item @b{flash write}
-@cindex flash write
 @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
 @item @b{flash write_binary}
-@cindex flash write_binary
 @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
 @item @b{flash auto_erase}
-@cindex flash auto_erase
 @*use @option{flash write_image} command passing @option{erase} as the first parameter. @xref{flash write_image}.
+
+@item @b{jtag_device}
+@*use the @command{jtag newtap} command, converting from positional syntax
+to named prefixes, and naming the TAP.
+@xref{jtag newtap}.
+Note that if you try to use the old command, a message will tell you the
+right new command to use; and that the fourth parameter in the old syntax
+was never actually used.
+@example
+OLD: jtag_device 8 0x01 0xe3 0xfe
+NEW: jtag newtap CHIPNAME TAPNAME \
+           -irlen 8 -ircapture 0x01 -irmask 0xe3
+@end example
+
+@item @b{jtag_speed} value
+@*@xref{JTAG Speed}.
+Usually, a value of zero means maximum
+speed. The actual effect of this option depends on the JTAG interface used.
+@itemize @minus
+@item wiggler: maximum speed / @var{number}
+@item ft2232: 6MHz / (@var{number}+1)
+@item amt jtagaccel: 8 / 2**@var{number}
+@item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
+@item rlink: 24MHz / @var{number}, but only for certain values of @var{number}
+@comment end speed list.
+@end itemize
+
 @item @b{load_binary}
-@cindex load_binary
 @*use @option{load_image} command with same args. @xref{load_image}.
 @item @b{run_and_halt_time}
-@cindex run_and_halt_time
 @*This command has been removed for simpler reset behaviour, it can be simulated with the
 following commands:
 @smallexample
@@ -3204,13 +4899,10 @@ sleep 100
 halt
 @end smallexample
 @item @b{target} <@var{type}> <@var{endian}> <@var{jtag-position}>
-@cindex target
 @*use the create subcommand of @option{target}.
 @item @b{target_script} <@var{target#}> <@var{eventname}> <@var{scriptname}>
-@cindex target_script
 @*use <@var{target_name}> configure -event <@var{eventname}> "script <@var{scriptname}>"
 @item @b{working_area}
-@cindex working_area
 @*use the @option{configure} subcommand of @option{target} to set the work-area-virt, work-area-phy, work-area-size, and work-area-backup properties of the target.
 @end itemize
 
@@ -3218,6 +4910,7 @@ halt
 @chapter FAQ
 @cindex faq
 @enumerate
+@anchor{FAQ RTCK}
 @item @b{RTCK, also known as: Adaptive Clocking - What is it?}
 @cindex RTCK
 @cindex adaptive clocking
@@ -3322,7 +5015,7 @@ arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not e
 
 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720T or ARM920T,
-software breakpoints consume one of the two available hardware breakpoints.  
+software breakpoints consume one of the two available hardware breakpoints.
 
 @item @b{LPC2000 Flash} When erasing or writing LPC2000 on-chip flash, the operation fails at random.
 
@@ -3430,17 +5123,27 @@ references a jtag newtap and a flash bank references a target).
 
 You can use the ``scan_chain'' command to verify and display the tap order.
 
-@item @b{JTAG Tap Order} JTAG tap order - command order
+Also, some commands can't execute until after @command{init} has been
+processed.  Such commands include @command{nand probe} and everything
+else that needs to write to controller registers, perhaps for setting
+up DRAM and loading it with code.
+
+@anchor{FAQ TAP Order}
+@item @b{JTAG TAP Order} Do I have to declare the TAPS in some
+particular order?
+
+Yes; whenever you have more than one, you must declare them in
+the same order used by the hardware.
 
-Many newer devices have multiple JTAG taps. For example: ST
-Microsystems STM32 chips have two taps, a ``boundary scan tap'' and
-``Cortex-M3'' tap.  Example: The STM32 reference manual, Document ID:
+Many newer devices have multiple JTAG TAPs. For example: ST
+Microsystems STM32 chips have two TAPs, a ``boundary scan TAP'' and
+``Cortex-M3'' TAP.  Example: The STM32 reference manual, Document ID:
 RM0008, Section 26.5, Figure 259, page 651/681, the ``TDI'' pin is
-connected to the boundary scan tap, which then connects to the
-Cortex-M3 tap, which then connects to the TDO pin.
+connected to the boundary scan TAP, which then connects to the
+Cortex-M3 TAP, which then connects to the TDO pin.
 
 Thus, the proper order for the STM32 chip is: (1) The Cortex-M3, then
-(2) The boundary scan tap. If your board includes an additional JTAG
+(2) The boundary scan TAP. If your board includes an additional JTAG
 chip in the scan chain (for example a Xilinx CPLD or FPGA) you could
 place it before or after the STM32 chip in the chain. For example:
 
@@ -3468,7 +5171,7 @@ log file, I can see these error messages: Error: arm7_9_common.c:561
 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
 
 TODO.
-                                                       
+
 @end enumerate
 
 @node Tcl Crash Course
@@ -3685,7 +5388,7 @@ MyForCommand( void *interp,
        SetResult( interp, "WRONG number of parameters");
        return ERROR;
    @}
-   
+
    // argv[0] = the ascii string just like C
 
    // Execute the start statement.
@@ -3708,7 +5411,7 @@ MyForCommand( void *interp,
     SetResult( interp, "" );
     return SUCCESS;
 @}
-@end example        
+@end example
 
 Every other command IF, WHILE, FORMAT, PUTS, EXPR, everything works
 in the same basic way.
@@ -3728,7 +5431,7 @@ substituted on the orginal command line.
 @* SOURCE reads a file and executes as a script.
 @end enumerate
 @subsection format command
-@b{Where:} Generally occurs in numerous places.  
+@b{Where:} Generally occurs in numerous places.
 @* Tcl has no command like @b{printf()}, instead it has @b{format}, which is really more like
 @b{sprintf()}.
 @b{Example}
@@ -3840,7 +5543,8 @@ finally issues the init and reset commands. The communication speed
 is set to 10kHz for reset and 8MHz for post reset.
 
 @example
-openocd -f interface/parport.cfg -f target/str710.cfg -c "init" -c "reset"
+openocd -f interface/parport.cfg -f target/str710.cfg \
+        -c "init" -c "reset"
 @end example
 
 To list the target scripts available:
@@ -3856,13 +5560,17 @@ at91sam9260.cfg  nslu2.cfg     sam7x256.cfg    wi-9c.cfg
 
 @include fdl.texi
 
-@node OpenOCD Index
+@node OpenOCD Concept Index
 @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
 @comment case issue with ``Index.html'' and ``index.html''
 @comment Occurs when creating ``--html --no-split'' output
 @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
-@unnumbered OpenOCD Index
+@unnumbered OpenOCD Concept Index
 
 @printindex cp
 
+@node Command and Driver Index
+@unnumbered Command and Driver Index
+@printindex fn
+
 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)