Added support for STM32L4X option bytes writing.
[openocd.git] / doc / openocd.texi
index aa0bb5d3773b53d7ba156426d9e18449a0243d46..e87d8c2967507b933bfa917c7fe581ef3da02eb6 100644 (file)
@@ -66,14 +66,13 @@ Free Documentation License''.
 * Running::                          Running OpenOCD
 * OpenOCD Project Setup::            OpenOCD Project Setup
 * Config File Guidelines::           Config File Guidelines
-* Daemon Configuration::             Daemon Configuration
+* Server Configuration::             Server Configuration
 * Debug Adapter Configuration::      Debug Adapter Configuration
 * Reset Configuration::              Reset Configuration
 * TAP Declaration::                  TAP Declaration
 * CPU Configuration::                CPU Configuration
 * Flash Commands::                   Flash Commands
 * Flash Programming::                Flash Programming
-* NAND Flash Commands::              NAND Flash Commands
 * PLD/FPGA Commands::                PLD/FPGA Commands
 * General Commands::                 General Commands
 * Architecture and Core Commands::   Architecture and Core Commands
@@ -99,8 +98,8 @@ Free Documentation License''.
 @unnumbered About
 @cindex about
 
-OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
-University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
+OpenOCD was created by Dominic Rath as part of a 2005 diploma thesis written
+at the University of Applied Sciences Augsburg (@uref{http://www.hs-augsburg.de}).
 Since that time, the project has grown into an active open-source project,
 supported by a diverse community of software and hardware developers from
 around the world.
@@ -129,7 +128,7 @@ they are called. (There are also product naming differences.)
 These adapters are sometimes packaged as discrete dongles, which
 may generically be called @dfn{hardware interface dongles}.
 Some development boards also integrate them directly, which may
-let the development board can be directly connected to the debug
+let the development board connect directly to the debug
 host over USB (and sometimes also to power it over USB).
 
 For example, a @dfn{JTAG Adapter} supports JTAG
@@ -142,7 +141,7 @@ scan operations.
 
 There are also @dfn{SWD Adapters} that support Serial Wire Debug (SWD)
 signaling to communicate with some newer ARM cores, as well as debug
-adapters which support both JTAG and SWD transports. SWD only supports
+adapters which support both JTAG and SWD transports. SWD supports only
 debugging, whereas JTAG also supports boundary scan operations.
 
 For some chips, there are also @dfn{Programming Adapters} supporting
@@ -151,26 +150,26 @@ support for on-chip debugging or boundary scan.
 (At this writing, OpenOCD does not support such non-debug adapters.)
 
 
-@b{Dongles:} OpenOCD currently supports many types of hardware dongles: USB
-based, parallel port based, and other standalone boxes that run
+@b{Dongles:} OpenOCD currently supports many types of hardware dongles:
+USB-based, parallel port-based, and other standalone boxes that run
 OpenOCD internally. @xref{Debug Adapter Hardware}.
 
 @b{GDB Debug:} It allows ARM7 (ARM7TDMI and ARM720t), ARM9 (ARM920T,
-ARM922T, ARM926EJ--S, ARM966E--S), XScale (PXA25x, IXP42x) and
-Cortex-M3 (Stellaris LM3, ST STM32 and Energy Micro EFM32) based cores to be
-debugged via the GDB protocol.
+ARM922T, ARM926EJ--S, ARM966E--S), XScale (PXA25x, IXP42x), Cortex-M3
+(Stellaris LM3, ST STM32 and Energy Micro EFM32) and Intel Quark (x10xx)
+based cores to be debugged via the GDB protocol.
 
-@b{Flash Programing:} Flash writing is supported for external CFI
-compatible NOR flashes (Intel and AMD/Spansion command set) and several
+@b{Flash Programming:} Flash writing is supported for external
+CFI-compatible NOR flashes (Intel and AMD/Spansion command set) and several
 internal flashes (LPC1700, LPC1800, LPC2000, LPC4300, AT91SAM7, AT91SAM3U,
 STR7x, STR9x, LM3, STM32x and EFM32). Preliminary support for various NAND flash
-controllers (LPC3180, Orion, S3C24xx, more) controller is included.
+controllers (LPC3180, Orion, S3C24xx, more) is included.
 
 @section OpenOCD Web Site
 
 The OpenOCD web site provides the latest public news from the community:
 
-@uref{http://openocd.sourceforge.net/}
+@uref{http://openocd.org/}
 
 @section Latest User's Guide:
 
@@ -178,11 +177,11 @@ The user's guide you are now reading may not be the latest one
 available. A version for more recent code may be available.
 Its HTML form is published regularly at:
 
-@uref{http://openocd.sourceforge.net/doc/html/index.html}
+@uref{http://openocd.org/doc/html/index.html}
 
 PDF form is likewise published at:
 
-@uref{http://openocd.sourceforge.net/doc/pdf/openocd.pdf}
+@uref{http://openocd.org/doc/pdf/openocd.pdf}
 
 @section OpenOCD User's Forum
 
@@ -218,10 +217,10 @@ documentation, as well as more conventional bug fixes and enhancements.
 The resources in this chapter are available for developers wishing to explore
 or expand the OpenOCD source code.
 
-@section OpenOCD GIT Repository
+@section OpenOCD Git Repository
 
 During the 0.3.x release cycle, OpenOCD switched from Subversion to
-a GIT repository hosted at SourceForge. The repository URL is:
+a Git repository hosted at SourceForge. The repository URL is:
 
 @uref{git://git.code.sf.net/p/openocd/code}
 
@@ -233,11 +232,11 @@ You may prefer to use a mirror and the HTTP protocol:
 
 @uref{http://repo.or.cz/r/openocd.git}
 
-With standard GIT tools, use @command{git clone} to initialize
+With standard Git tools, use @command{git clone} to initialize
 a local repository, and @command{git pull} to update it.
 There are also gitweb pages letting you browse the repository
 with a web browser, or download arbitrary snapshots without
-needing a GIT client:
+needing a Git client:
 
 @uref{http://repo.or.cz/w/openocd.git}
 
@@ -256,11 +255,30 @@ providing a Doxygen reference manual. This document contains more
 technical information about the software internals, development
 processes, and similar documentation:
 
-@uref{http://openocd.sourceforge.net/doc/doxygen/html/index.html}
+@uref{http://openocd.org/doc/doxygen/html/index.html}
 
 This document is a work-in-progress, but contributions would be welcome
 to fill in the gaps. All of the source files are provided in-tree,
-listed in the Doxyfile configuration in the top of the source tree.
+listed in the Doxyfile configuration at the top of the source tree.
+
+@section Gerrit Review System
+
+All changes in the OpenOCD Git repository go through the web-based Gerrit
+Code Review System:
+
+@uref{http://openocd.zylin.com/}
+
+After a one-time registration and repository setup, anyone can push commits
+from their local Git repository directly into Gerrit.
+All users and developers are encouraged to review, test, discuss and vote
+for changes in Gerrit. The feedback provides the basis for a maintainer to
+eventually submit the change to the main Git repository.
+
+The @file{HACKING} file, also available as the Patch Guide in the Doxygen
+Developer Manual, contains basic information about how to connect a
+repository to Gerrit, prepare and push patches. Patch authors are expected to
+maintain their changes while they're in Gerrit, respond to feedback and if
+necessary rework and push improved versions of the change.
 
 @section OpenOCD Developer Mailing List
 
@@ -269,16 +287,11 @@ communication between developers:
 
 @uref{https://lists.sourceforge.net/mailman/listinfo/openocd-devel}
 
-Discuss and submit patches to this list.
-The @file{HACKING} file contains basic information about how
-to prepare patches.
-
-@section OpenOCD Bug Database
+@section OpenOCD Bug Tracker
 
-During the 0.4.x release cycle the OpenOCD project team began
-using Trac for its bug database:
+The OpenOCD Bug Tracker is hosted on SourceForge:
 
-@uref{https://sourceforge.net/apps/trac/openocd}
+@uref{http://bugs.openocd.org/}
 
 
 @node Debug Adapter Hardware
@@ -291,16 +304,16 @@ using Trac for its bug database:
 @cindex USB Adapter
 @cindex RTCK
 
-Defined: @b{dongle}: A small device that plugins into a computer and serves as
+Defined: @b{dongle}: A small device that plugs into a computer and serves as
 an adapter .... [snip]
 
 In the OpenOCD case, this generally refers to @b{a small adapter} that
-attaches to your computer via USB or the Parallel Printer Port. One
-exception is the Zylin ZY1000, packaged as a small box you attach via
-an ethernet cable. The Zylin ZY1000 has the advantage that it does not
+attaches to your computer via USB or the parallel port. One
+exception is the Ultimate Solutions ZY1000, packaged as a small box you
+attach via an ethernet cable. The ZY1000 has the advantage that it does not
 require any drivers to be installed on the developer PC. It also has
 a built in web interface. It supports RTCK/RCLK or adaptive clocking
-and has a built in relay to power cycle targets remotely.
+and has a built-in relay to power cycle targets remotely.
 
 
 @section Choosing a Dongle
@@ -316,17 +329,17 @@ Does your dongle support it? You might need a level converter.
 @item @b{Pinout} What pinout does your target board use?
 Does your dongle support it? You may be able to use jumper
 wires, or an "octopus" connector, to convert pinouts.
-@item @b{Connection} Does your computer have the USB, printer, or
+@item @b{Connection} Does your computer have the USB, parallel, or
 Ethernet port needed?
 @item @b{RTCK} Do you expect to use it with ARM chips and boards with
-RTCK support? Also known as ``adaptive clocking''
+RTCK support (also known as ``adaptive clocking'')?
 @end enumerate
 
 @section Stand-alone JTAG Probe
 
 The ZY1000 from Ultimate Solutions is technically not a dongle but a
-stand-alone JTAG probe that unlikemost dongles doesn’t require any drivers
-running on the developers host computer.
+stand-alone JTAG probe that, unlike most dongles, doesn't require any drivers
+running on the developer's host computer.
 Once installed on a network using DHCP or a static IP assignment, users can
 access the ZY1000 probe locally or remotely from any host with access to the
 IP address assigned to the probe.
@@ -340,16 +353,16 @@ to power cycle the target remotely.
 
 For more information, visit:
 
-@b{ZY1000} See: @url{http://www.ultsol.com/index.php/component/content/article/8/33-zylin-zy1000-jtag-probe}
+@b{ZY1000} See: @url{http://www.ultsol.com/index.php/component/content/article/8/210-zylin-zy1000-main}
 
 @section USB FT2232 Based
 
-There are many USB JTAG dongles on the market, many of them are based
+There are many USB JTAG dongles on the market, many of them based
 on a chip from ``Future Technology Devices International'' (FTDI)
 known as the FTDI FT2232; this is a USB full speed (12 Mbps) chip.
 See: @url{http://www.ftdichip.com} for more information.
 In summer 2009, USB high speed (480 Mbps) versions of these FTDI
-chips are starting to become available in JTAG adapters. Around 2012 a new
+chips started to become available in JTAG adapters. Around 2012, a new
 variant appeared - FT232H - this is a single-channel version of FT2232H.
 (Adapters using those high speed FT2232H or FT232H chips may support adaptive
 clocking.)
@@ -361,7 +374,7 @@ and one can be used for a UART adapter at the same time the
 other one is used to provide a debug adapter.
 
 Also, some development boards integrate an FT2232 chip to serve as
-a built-in low cost debug adapter and usb-to-serial solution.
+a built-in low-cost debug adapter and USB-to-serial solution.
 
 @itemize @bullet
 @item @b{usbjtag}
@@ -423,7 +436,7 @@ These devices also show up as FTDI devices, but are not
 protocol-compatible with the FT2232 devices. They are, however,
 protocol-compatible among themselves. USB-JTAG devices typically consist
 of a FT245 followed by a CPLD that understands a particular protocol,
-or emulate this protocol using some other hardware.
+or emulates this protocol using some other hardware.
 
 They may appear under different USB VID/PID depending on the particular
 product. The driver can be configured to search for any VID/PID pair
@@ -436,18 +449,17 @@ product. The driver can be configured to search for any VID/PID pair
 @* Link: @url{http://www.altera.com/literature/ug/ug_usb_blstr.pdf}
 @end itemize
 
-@section USB JLINK based
-There are several OEM versions of the Segger @b{JLINK} adapter. It is
-an example of a micro controller based JTAG adapter, it uses an
+@section USB J-Link based
+There are several OEM versions of the SEGGER @b{J-Link} adapter. It is
+an example of a microcontroller based JTAG adapter, it uses an
 AT91SAM764 internally.
 
 @itemize @bullet
-@item @b{ATMEL SAMICE} Only works with ATMEL chips!
-@* Link: @url{http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3892}
-@item @b{SEGGER JLINK}
+@item @b{SEGGER J-Link}
 @* Link: @url{http://www.segger.com/jlink.html}
+@item @b{Atmel SAM-ICE} (Only works with Atmel chips!)
+@* Link: @url{http://www.atmel.com/tools/atmelsam-ice.aspx}
 @item @b{IAR J-Link}
-@* Link: @url{http://www.iar.com/en/products/hardware-debug-probes/iar-j-link/}
 @end itemize
 
 @section USB RLINK based
@@ -457,7 +469,7 @@ SWD and not JTAG, thus not supported.
 
 @itemize @bullet
 @item @b{Raisonance RLink}
-@* Link: @url{http://www.mcu-raisonance.com/~rlink-debugger-programmer__microcontrollers__tool~tool__T018:4cn9ziz4bnx6.html}
+@* Link: @url{http://www.mcu-raisonance.com/~rlink-debugger-programmer__@/microcontrollers__tool~tool__T018:4cn9ziz4bnx6.html}
 @item @b{STM32 Primer}
 @* Link: @url{http://www.stm32circle.com/resources/stm32primer.php}
 @item @b{STM32 Primer2}
@@ -477,9 +489,9 @@ They only work with ST Micro chips, notably STM32 and STM8.
 @* Link: @url{http://www.st.com/internet/evalboard/product/251168.jsp}
 @end itemize
 
-For info the original ST-LINK enumerates using the mass storage usb class, however
-it's implementation is completely broken. The result is this causes issues under linux.
-The simplest solution is to get linux to ignore the ST-LINK using one of the following methods:
+For info the original ST-LINK enumerates using the mass storage usb class; however,
+its implementation is completely broken. The result is this causes issues under Linux.
+The simplest solution is to get Linux to ignore the ST-LINK using one of the following methods:
 @itemize @bullet
 @item modprobe -r usb-storage && modprobe usb-storage quirks=483:3744:i
 @item add "options usb-storage quirks=483:3744:i" to /etc/modprobe.conf
@@ -490,6 +502,10 @@ Texas Instruments has an adapter called @b{ICDI}.
 It is not to be confused with the FTDI based adapters that were originally fitted to their
 evaluation boards. This is the adapter fitted to the Stellaris LaunchPad.
 
+@section USB CMSIS-DAP based
+ARM has released a interface standard called CMSIS-DAP that simplifies connecting
+debuggers to ARM Cortex based targets @url{http://www.keil.com/support/man/docs/dapdebug/dapdebug_introduction.htm}.
+
 @section USB Other
 @itemize @bullet
 @item @b{USBprog}
@@ -515,11 +531,17 @@ evaluation boards. This is the adapter fitted to the Stellaris LaunchPad.
 
 @item @b{Keil ULINK v1}
 @* Link: @url{http://www.keil.com/ulink1/}
+
+@item @b{TI XDS110 Debug Probe}
+@* The XDS110 is included as the embedded debug probe on many Texas Instruments
+LaunchPad evaluation boards.
+@* Link: @url{http://processors.wiki.ti.com/index.php/XDS110}
+@* Link: @url{http://processors.wiki.ti.com/index.php/XDS_Emulation_Software_Package#XDS110_Support_Utilities}
 @end itemize
 
 @section IBM PC Parallel Printer Port Based
 
-The two well known ``JTAG Parallel Ports'' cables are the Xilnx DLC5
+The two well-known ``JTAG Parallel Ports'' cables are the Xilinx DLC5
 and the Macraigor Wiggler. There are many clones and variations of
 these on the market.
 
@@ -562,7 +584,7 @@ produced, PDF schematics are easily found and it is easy to make.
 @url{http://www.latticesemi.com/lit/docs/@/devtools/dlcable.pdf}
 
 @item @b{flashlink}
-@* From ST Microsystems;
+@* From STMicroelectronics;
 @* Link: @url{http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATA_BRIEF/DM00039500.pdf}
 
 @end itemize
@@ -579,6 +601,9 @@ produced, PDF schematics are easily found and it is easy to make.
 @item @b{bcm2835gpio}
 @* A BCM2835-based board (e.g. Raspberry Pi) using the GPIO pins of the expansion header.
 
+@item @b{imx_gpio}
+@* A NXP i.MX-based board (e.g. Wandboard) using the GPIO pins (should work on any i.MX processor).
+
 @item @b{jtag_vpi}
 @* A JTAG driver acting as a client for the JTAG VPI server interface.
 @* Link: @url{http://github.com/fjullien/jtag_vpi}
@@ -597,9 +622,9 @@ command interpreter.
 All commands presented in this Guide are extensions to Jim-Tcl.
 You can use them as simple commands, without needing to learn
 much of anything about Tcl.
-Alternatively, can write Tcl programs with them.
+Alternatively, you can write Tcl programs with them.
 
-You can learn more about Jim at its website, @url{http://jim.berlios.de}.
+You can learn more about Jim at its website, @url{http://jim.tcl.tk}.
 There is an active and responsive community, get on the mailing list
 if you have any questions. Jim-Tcl maintainers also lurk on the
 OpenOCD mailing list.
@@ -621,7 +646,7 @@ enabled in OpenOCD.
 @item @b{Scripts}
 @* OpenOCD configuration scripts are Jim-Tcl Scripts. OpenOCD's
 command interpreter today is a mixture of (newer)
-Jim-Tcl commands, and (older) the orginal command interpreter.
+Jim-Tcl commands, and the (older) original command interpreter.
 
 @item @b{Commands}
 @* At the OpenOCD telnet command line (or via the GDB monitor command) one
@@ -631,9 +656,9 @@ as Tcl scripts, from a @file{startup.tcl} file internal to the server.
 
 @item @b{Historical Note}
 @* Jim-Tcl was introduced to OpenOCD in spring 2008. Fall 2010,
-before OpenOCD 0.5 release OpenOCD switched to using Jim Tcl
-as a git submodule, which greatly simplified upgrading Jim Tcl
-to benefit from new features and bugfixes in Jim Tcl.
+before OpenOCD 0.5 release, OpenOCD switched to using Jim-Tcl
+as a Git submodule, which greatly simplified upgrading Jim-Tcl
+to benefit from new features and bugfixes in Jim-Tcl.
 
 @item @b{Need a crash course in Tcl?}
 @*@xref{Tcl Crash Course}.
@@ -647,7 +672,9 @@ to benefit from new features and bugfixes in Jim Tcl.
 
 Properly installing OpenOCD sets up your operating system to grant it access
 to the debug adapters. On Linux, this usually involves installing a file
-in @file{/etc/udev/rules.d,} so OpenOCD has permissions. MS-Windows needs
+in @file{/etc/udev/rules.d,} so OpenOCD has permissions. An example rules file
+that works for many common adapters is shipped with OpenOCD in the
+@file{contrib} directory. MS-Windows needs
 complex and confusing driver configuration for every peripheral. Such issues
 are unique to each operating system, and are not detailed in this User's Guide.
 
@@ -661,7 +688,8 @@ bash$ openocd --help
 --version    | -v       display OpenOCD version
 --file       | -f       use configuration file <name>
 --search     | -s       dir to search for config files and scripts
---debug      | -d       set debug level <0-3>
+--debug      | -d       set debug level to 3
+             | -d<n>    set debug level to <level>
 --log_output | -l       redirect log output to file <name>
 --command    | -c       run <command>
 @end verbatim
@@ -681,6 +709,7 @@ Configuration files and scripts are searched for in
 @item any search dir specified on the command line using the @option{-s} option,
 @item any search dir specified using the @command{add_script_search_dir} command,
 @item @file{$HOME/.openocd} (not on Windows),
+@item a directory in the @env{OPENOCD_SCRIPTS} environment variable (if set),
 @item the site wide script library @file{$pkgdatadir/site} and
 @item the OpenOCD-supplied script library @file{$pkgdatadir/scripts}.
 @end enumerate
@@ -701,10 +730,11 @@ customization even if this works. @xref{OpenOCD Project Setup}.
 
 If you find a script for your JTAG adapter, and for your board or
 target, you may be able to hook up your JTAG adapter then start
-the server like:
+the server with some variation of one of the following:
 
 @example
 openocd -f interface/ADAPTER.cfg -f board/MYBOARD.cfg
+openocd -f interface/ftdi/ADAPTER.cfg -f board/MYBOARD.cfg
 @end example
 
 You might also need to configure which reset signals are present,
@@ -714,7 +744,7 @@ If all goes well you'll see output something like
 @example
 Open On-Chip Debugger 0.4.0 (2010-01-14-15:06)
 For bug reports, read
-        http://openocd.sourceforge.net/doc/doxygen/bugs.html
+        http://openocd.org/doc/doxygen/bugs.html
 Info : JTAG tap: lm3s.cpu tap/device found: 0x3ba00477
        (mfg: 0x23b, part: 0xba00, ver: 0x3)
 @end example
@@ -732,13 +762,13 @@ on the command line or, if there were no @option{-c command} or
 At the end of the configuration stage it verifies the JTAG scan
 chain defined using those commands; your configuration should
 ensure that this always succeeds.
-Normally, OpenOCD then starts running as a daemon.
+Normally, OpenOCD then starts running as a server.
 Alternatively, commands may be used to terminate the configuration
 stage early, perform work (such as updating some flash memory),
-and then shut down without acting as a daemon.
+and then shut down without acting as a server.
 
-Once OpenOCD starts running as a daemon, it waits for connections from
-clients (Telnet, GDB, Other) and processes the commands issued through
+Once OpenOCD starts running as a server, it waits for connections from
+clients (Telnet, GDB, RPC) and processes the commands issued through
 those channels.
 
 If you are having problems, you can enable internal debug messages via
@@ -755,7 +785,7 @@ informational messages, warnings and errors. You can also change this
 setting from within a telnet or gdb session using @command{debug_level<n>}
 (@pxref{debuglevel,,debug_level}).
 
-You can redirect all output from the daemon to a file using the
+You can redirect all output from the server to a file using the
 @option{-l <logfile>} switch.
 
 Note! OpenOCD will launch the GDB & telnet server even if it can not
@@ -767,10 +797,10 @@ correctly via e.g. GDB monitor commands in a GDB init script.
 @chapter OpenOCD Project Setup
 
 To use OpenOCD with your development projects, you need to do more than
-just connecting the JTAG adapter hardware (dongle) to your development board
-and then starting the OpenOCD server.
-You also need to configure that server so that it knows
-about that adapter and board, and helps your work.
+just connect the JTAG adapter hardware (dongle) to your development board
+and start the OpenOCD server.
+You also need to configure your OpenOCD server so that it knows
+about your adapter and board, and helps your work.
 You may also want to connect OpenOCD to GDB, possibly
 using Eclipse or some other GUI.
 
@@ -828,8 +858,9 @@ A USB, parallel, or serial port connector will go to the host which
 you are using to run OpenOCD.
 For Ethernet, consult the documentation and your network administrator.
 
-For USB based JTAG adapters you have an easy sanity check at this point:
-does the host operating system see the JTAG adapter? If that host is an
+For USB-based JTAG adapters you have an easy sanity check at this point:
+does the host operating system see the JTAG adapter? If you're running
+Linux, try the @command{lsusb} command. If that host is an
 MS-Windows host, you'll need to install a driver before OpenOCD works.
 
 @item @emph{Connect the adapter's power supply, if needed.}
@@ -877,7 +908,7 @@ using a Signalyzer FT2232-based JTAG adapter to talk to
 a board with an Atmel AT91SAM7X256 microcontroller:
 
 @example
-source [find interface/signalyzer.cfg]
+source [find interface/ftdi/signalyzer.cfg]
 
 # GDB can also flash my flash!
 gdb_memory_map enable
@@ -889,7 +920,7 @@ source [find target/sam7x256.cfg]
 Here is the command line equivalent of that configuration:
 
 @example
-openocd -f interface/signalyzer.cfg \
+openocd -f interface/ftdi/signalyzer.cfg \
         -c "gdb_memory_map enable" \
         -c "gdb_flash_program enable" \
         -f target/sam7x256.cfg
@@ -974,7 +1005,7 @@ For example, there may be configuration files for your JTAG adapter
 and target chip, but you need a new board-specific config file
 giving access to your particular flash chips.
 Or you might need to write another target chip configuration file
-for a new chip built around the Cortex M3 core.
+for a new chip built around the Cortex-M3 core.
 
 @quotation Note
 When you write new configuration files, please submit
@@ -986,7 +1017,7 @@ will help support users of any board using that chip.
 
 @item
 You may may need to write some C code.
-It may be as simple as a supporting a new ft2232 or parport
+It may be as simple as supporting a new FT2232 or parport
 based adapter; a bit more involved, like a NAND or NOR flash
 controller driver; or a big piece of work like supporting
 a new chip architecture.
@@ -1011,7 +1042,7 @@ that the @code{reset-init} event handler does.
 Likewise, the @command{arm9 vector_catch} command (or
 @cindex vector_catch
 its siblings @command{xscale vector_catch}
-and @command{cortex_m vector_catch}) can be a timesaver
+and @command{cortex_m vector_catch}) can be a time-saver
 during some debug sessions, but don't make everyone use that either.
 Keep those kinds of debugging aids in your user config file,
 along with messaging and tracing setup.
@@ -1102,7 +1133,7 @@ handling issues like:
 @itemize @bullet
 
 @item @b{Watchdog Timers}...
-Watchog timers are typically used to automatically reset systems if
+Watchdog timers are typically used to automatically reset systems if
 some application task doesn't periodically reset the timer. (The
 assumption is that the system has locked up if the task can't run.)
 When a JTAG debugger halts the system, that task won't be able to run
@@ -1274,65 +1305,17 @@ including developers and integrators of OpenOCD and any user who
 needs to get a new board working smoothly.
 It provides guidelines for creating those files.
 
-You should find the following directories under @t{$(INSTALLDIR)/scripts},
-with files including the ones listed here.
-Use them as-is where you can; or as models for new files.
+You should find the following directories under
+@t{$(INSTALLDIR)/scripts}, with config files maintained upstream. Use
+them as-is where you can; or as models for new files.
 @itemize @bullet
 @item @file{interface} ...
-These are for debug adapters.
-Files that configure JTAG adapters go here.
-@example
-$ ls interface -R
-interface/:
-altera-usb-blaster.cfg    hilscher_nxhx50_re.cfg     openocd-usb-hs.cfg
-arm-jtag-ew.cfg           hitex_str9-comstick.cfg    openrd.cfg
-at91rm9200.cfg            icebear.cfg                osbdm.cfg
-axm0432.cfg               jlink.cfg                  parport.cfg
-busblaster.cfg            jtagkey2.cfg               parport_dlc5.cfg
-buspirate.cfg             jtagkey2p.cfg              redbee-econotag.cfg
-calao-usb-a9260-c01.cfg   jtagkey.cfg                redbee-usb.cfg
-calao-usb-a9260-c02.cfg   jtagkey-tiny.cfg           rlink.cfg
-calao-usb-a9260.cfg       jtag-lock-pick_tiny_2.cfg  sheevaplug.cfg
-chameleon.cfg             kt-link.cfg                signalyzer.cfg
-cortino.cfg               lisa-l.cfg                 signalyzer-h2.cfg
-digilent-hs1.cfg          luminary.cfg               signalyzer-h4.cfg
-dlp-usb1232h.cfg          luminary-icdi.cfg          signalyzer-lite.cfg
-dummy.cfg                 luminary-lm3s811.cfg       stlink-v1.cfg
-estick.cfg                minimodule.cfg             stlink-v2.cfg
-flashlink.cfg             neodb.cfg                  stm32-stick.cfg
-flossjtag.cfg             ngxtech.cfg                sysfsgpio-raspberrypi.cfg
-flossjtag-noeeprom.cfg    olimex-arm-usb-ocd.cfg     ti-icdi.cfg
-flyswatter2.cfg           olimex-arm-usb-ocd-h.cfg   turtelizer2.cfg
-flyswatter.cfg            olimex-arm-usb-tiny-h.cfg  ulink.cfg
-ftdi                      olimex-jtag-tiny.cfg       usb-jtag.cfg
-hilscher_nxhx10_etm.cfg   oocdlink.cfg               usbprog.cfg
-hilscher_nxhx500_etm.cfg  opendous.cfg               vpaclink.cfg
-hilscher_nxhx500_re.cfg   opendous_ftdi.cfg          vsllink.cfg
-hilscher_nxhx50_etm.cfg   openocd-usb.cfg            xds100v2.cfg
-
-interface/ftdi:
-axm0432.cfg               hitex_str9-comstick.cfg    olimex-jtag-tiny.cfg
-calao-usb-a9260-c01.cfg   icebear.cfg                oocdlink.cfg
-calao-usb-a9260-c02.cfg   jtagkey2.cfg               opendous_ftdi.cfg
-cortino.cfg               jtagkey2p.cfg              openocd-usb.cfg
-dlp-usb1232h.cfg          jtagkey.cfg                openocd-usb-hs.cfg
-dp_busblaster.cfg         jtag-lock-pick_tiny_2.cfg  openrd.cfg
-flossjtag.cfg             kt-link.cfg                redbee-econotag.cfg
-flossjtag-noeeprom.cfg    lisa-l.cfg                 redbee-usb.cfg
-flyswatter2.cfg           luminary.cfg               sheevaplug.cfg
-flyswatter.cfg            luminary-icdi.cfg          signalyzer.cfg
-gw16042.cfg               luminary-lm3s811.cfg       signalyzer-lite.cfg
-hilscher_nxhx10_etm.cfg   minimodule.cfg             stm32-stick.cfg
-hilscher_nxhx500_etm.cfg  neodb.cfg                  turtelizer2-revB.cfg
-hilscher_nxhx500_re.cfg   ngxtech.cfg                turtelizer2-revC.cfg
-hilscher_nxhx50_etm.cfg   olimex-arm-usb-ocd.cfg     vpaclink.cfg
-hilscher_nxhx50_re.cfg    olimex-arm-usb-ocd-h.cfg   xds100v2.cfg
-hitex_lpc1768stick.cfg    olimex-arm-usb-tiny-h.cfg
-$
-@end example
+These are for debug adapters. Files that specify configuration to use
+specific JTAG, SWD and other adapters go here.
 @item @file{board} ...
-think Circuit Board, PWA, PCB, they go by many names. Board files
+Think Circuit Board, PWA, PCB, they go by many names. Board files
 contain initialization items that are specific to a board.
+
 They reuse target configuration files, since the same
 microprocessor chips are used on many boards,
 but support for external parts varies widely. For
@@ -1341,168 +1324,13 @@ of external flash and what address it uses. Any initialization
 sequence to enable that external flash or SDRAM should be found in the
 board file. Boards may also contain multiple targets: two CPUs; or
 a CPU and an FPGA.
-@example
-$ ls board
-actux3.cfg                        lpc1850_spifi_generic.cfg
-am3517evm.cfg                     lpc4350_spifi_generic.cfg
-arm_evaluator7t.cfg               lubbock.cfg
-at91cap7a-stk-sdram.cfg           mcb1700.cfg
-at91eb40a.cfg                     microchip_explorer16.cfg
-at91rm9200-dk.cfg                 mini2440.cfg
-at91rm9200-ek.cfg                 mini6410.cfg
-at91sam9261-ek.cfg                netgear-dg834v3.cfg
-at91sam9263-ek.cfg                olimex_LPC2378STK.cfg
-at91sam9g20-ek.cfg                olimex_lpc_h2148.cfg
-atmel_at91sam7s-ek.cfg            olimex_sam7_ex256.cfg
-atmel_at91sam9260-ek.cfg          olimex_sam9_l9260.cfg
-atmel_at91sam9rl-ek.cfg           olimex_stm32_h103.cfg
-atmel_sam3n_ek.cfg                olimex_stm32_h107.cfg
-atmel_sam3s_ek.cfg                olimex_stm32_p107.cfg
-atmel_sam3u_ek.cfg                omap2420_h4.cfg
-atmel_sam3x_ek.cfg                open-bldc.cfg
-atmel_sam4s_ek.cfg                openrd.cfg
-balloon3-cpu.cfg                  osk5912.cfg
-colibri.cfg                       phone_se_j100i.cfg
-crossbow_tech_imote2.cfg          phytec_lpc3250.cfg
-csb337.cfg                        pic-p32mx.cfg
-csb732.cfg                        propox_mmnet1001.cfg
-da850evm.cfg                      pxa255_sst.cfg
-digi_connectcore_wi-9c.cfg        redbee.cfg
-diolan_lpc4350-db1.cfg            rsc-w910.cfg
-dm355evm.cfg                      sheevaplug.cfg
-dm365evm.cfg                      smdk6410.cfg
-dm6446evm.cfg                     spear300evb.cfg
-efikamx.cfg                       spear300evb_mod.cfg
-eir.cfg                           spear310evb20.cfg
-ek-lm3s1968.cfg                   spear310evb20_mod.cfg
-ek-lm3s3748.cfg                   spear320cpu.cfg
-ek-lm3s6965.cfg                   spear320cpu_mod.cfg
-ek-lm3s811.cfg                    steval_pcc010.cfg
-ek-lm3s811-revb.cfg               stm320518_eval_stlink.cfg
-ek-lm3s8962.cfg                   stm32100b_eval.cfg
-ek-lm3s9b9x.cfg                   stm3210b_eval.cfg
-ek-lm3s9d92.cfg                   stm3210c_eval.cfg
-ek-lm4f120xl.cfg                  stm3210e_eval.cfg
-ek-lm4f232.cfg                    stm3220g_eval.cfg
-embedded-artists_lpc2478-32.cfg   stm3220g_eval_stlink.cfg
-ethernut3.cfg                     stm3241g_eval.cfg
-glyn_tonga2.cfg                   stm3241g_eval_stlink.cfg
-hammer.cfg                        stm32f0discovery.cfg
-hilscher_nxdb500sys.cfg           stm32f3discovery.cfg
-hilscher_nxeb500hmi.cfg           stm32f4discovery.cfg
-hilscher_nxhx10.cfg               stm32ldiscovery.cfg
-hilscher_nxhx500.cfg              stm32vldiscovery.cfg
-hilscher_nxhx50.cfg               str910-eval.cfg
-hilscher_nxsb100.cfg              telo.cfg
-hitex_lpc1768stick.cfg            ti_am335xevm.cfg
-hitex_lpc2929.cfg                 ti_beagleboard.cfg
-hitex_stm32-performancestick.cfg  ti_beagleboard_xm.cfg
-hitex_str9-comstick.cfg           ti_beaglebone.cfg
-iar_lpc1768.cfg                   ti_blaze.cfg
-iar_str912_sk.cfg                 ti_pandaboard.cfg
-icnova_imx53_sodimm.cfg           ti_pandaboard_es.cfg
-icnova_sam9g45_sodimm.cfg         topas910.cfg
-imx27ads.cfg                      topasa900.cfg
-imx27lnst.cfg                     twr-k60f120m.cfg
-imx28evk.cfg                      twr-k60n512.cfg
-imx31pdk.cfg                      tx25_stk5.cfg
-imx35pdk.cfg                      tx27_stk5.cfg
-imx53loco.cfg                     unknown_at91sam9260.cfg
-keil_mcb1700.cfg                  uptech_2410.cfg
-keil_mcb2140.cfg                  verdex.cfg
-kwikstik.cfg                      voipac.cfg
-linksys_nslu2.cfg                 voltcraft_dso-3062c.cfg
-lisa-l.cfg                        x300t.cfg
-logicpd_imx27.cfg                 zy1000.cfg
-$
-@end example
 @item @file{target} ...
-think chip. The ``target'' directory represents the JTAG TAPs
+Think chip. The ``target'' directory represents the JTAG TAPs
 on a chip
 which OpenOCD should control, not a board. Two common types of targets
 are ARM chips and FPGA or CPLD chips.
 When a chip has multiple TAPs (maybe it has both ARM and DSP cores),
 the target config file defines all of them.
-@example
-$ ls target
-aduc702x.cfg                       lpc1763.cfg
-am335x.cfg                         lpc1764.cfg
-amdm37x.cfg                        lpc1765.cfg
-ar71xx.cfg                         lpc1766.cfg
-at32ap7000.cfg                     lpc1767.cfg
-at91r40008.cfg                     lpc1768.cfg
-at91rm9200.cfg                     lpc1769.cfg
-at91sam3ax_4x.cfg                  lpc1788.cfg
-at91sam3ax_8x.cfg                  lpc17xx.cfg
-at91sam3ax_xx.cfg                  lpc1850.cfg
-at91sam3nXX.cfg                    lpc2103.cfg
-at91sam3sXX.cfg                    lpc2124.cfg
-at91sam3u1c.cfg                    lpc2129.cfg
-at91sam3u1e.cfg                    lpc2148.cfg
-at91sam3u2c.cfg                    lpc2294.cfg
-at91sam3u2e.cfg                    lpc2378.cfg
-at91sam3u4c.cfg                    lpc2460.cfg
-at91sam3u4e.cfg                    lpc2478.cfg
-at91sam3uxx.cfg                    lpc2900.cfg
-at91sam3XXX.cfg                    lpc2xxx.cfg
-at91sam4sd32x.cfg                  lpc3131.cfg
-at91sam4sXX.cfg                    lpc3250.cfg
-at91sam4XXX.cfg                    lpc4350.cfg
-at91sam7se512.cfg                  lpc4350.cfg.orig
-at91sam7sx.cfg                     mc13224v.cfg
-at91sam7x256.cfg                   nuc910.cfg
-at91sam7x512.cfg                   omap2420.cfg
-at91sam9260.cfg                    omap3530.cfg
-at91sam9260_ext_RAM_ext_flash.cfg  omap4430.cfg
-at91sam9261.cfg                    omap4460.cfg
-at91sam9263.cfg                    omap5912.cfg
-at91sam9.cfg                       omapl138.cfg
-at91sam9g10.cfg                    pic32mx.cfg
-at91sam9g20.cfg                    pxa255.cfg
-at91sam9g45.cfg                    pxa270.cfg
-at91sam9rl.cfg                     pxa3xx.cfg
-atmega128.cfg                      readme.txt
-avr32.cfg                          samsung_s3c2410.cfg
-c100.cfg                           samsung_s3c2440.cfg
-c100config.tcl                     samsung_s3c2450.cfg
-c100helper.tcl                     samsung_s3c4510.cfg
-c100regs.tcl                       samsung_s3c6410.cfg
-cs351x.cfg                         sharp_lh79532.cfg
-davinci.cfg                        smp8634.cfg
-dragonite.cfg                      spear3xx.cfg
-dsp56321.cfg                       stellaris.cfg
-dsp568013.cfg                      stellaris_icdi.cfg
-dsp568037.cfg                      stm32f0x_stlink.cfg
-efm32_stlink.cfg                   stm32f1x.cfg
-epc9301.cfg                        stm32f1x_stlink.cfg
-faux.cfg                           stm32f2x.cfg
-feroceon.cfg                       stm32f2x_stlink.cfg
-fm3.cfg                            stm32f3x.cfg
-hilscher_netx10.cfg                stm32f3x_stlink.cfg
-hilscher_netx500.cfg               stm32f4x.cfg
-hilscher_netx50.cfg                stm32f4x_stlink.cfg
-icepick.cfg                        stm32l.cfg
-imx21.cfg                          stm32lx_dual_bank.cfg
-imx25.cfg                          stm32lx_stlink.cfg
-imx27.cfg                          stm32_stlink.cfg
-imx28.cfg                          stm32w108_stlink.cfg
-imx31.cfg                          stm32xl.cfg
-imx35.cfg                          str710.cfg
-imx51.cfg                          str730.cfg
-imx53.cfg                          str750.cfg
-imx6.cfg                           str912.cfg
-imx.cfg                            swj-dp.tcl
-is5114.cfg                         test_reset_syntax_error.cfg
-ixp42x.cfg                         test_syntax_error.cfg
-k40.cfg                            ti-ar7.cfg
-k60.cfg                            ti_calypso.cfg
-lpc1751.cfg                        ti_dm355.cfg
-lpc1752.cfg                        ti_dm365.cfg
-lpc1754.cfg                        ti_dm6446.cfg
-lpc1756.cfg                        tmpa900.cfg
-lpc1758.cfg                        tmpa910.cfg
-lpc1759.cfg                        u8500.cfg
-@end example
 @item @emph{more} ... browse for other library files which may be useful.
 For example, there are various generic and CPU-specific utilities.
 @end itemize
@@ -1548,7 +1376,7 @@ about a given board that user config files need to know.
 In summary the board files should contain (if present)
 
 @enumerate
-@item One or more @command{source [target/...cfg]} statements
+@item One or more @command{source [find target/...cfg]} statements
 @item NOR flash configuration (@pxref{norconfiguration,,NOR Configuration})
 @item NAND flash configuration (@pxref{nandconfiguration,,NAND Configuration})
 @item Target @code{reset} handlers for SDRAM and I/O configuration
@@ -1642,7 +1470,7 @@ While the default is normally provided by the chip manufacturer,
 board files may need to distinguish between instances of a chip.
 @item @code{ENDIAN} ...
 By default @option{little} - although chips may hard-wire @option{big}.
-Chips that can't change endianness don't need to use this variable.
+Chips that can't change endianess don't need to use this variable.
 @item @code{CPUTAPID} ...
 When OpenOCD examines the JTAG chain, it can be told verify the
 chips against the JTAG IDCODE register.
@@ -1746,16 +1574,16 @@ The concept of @code{init_board} procedure is very similar to @code{init_targets
 (@xref{theinittargetsprocedure,,The init_targets procedure}.) - it's a replacement of ``linear''
 configuration scripts. This procedure is meant to be executed when OpenOCD enters run stage
 (@xref{enteringtherunstage,,Entering the Run Stage},) after @code{init_targets}. The idea to have
-spearate @code{init_targets} and @code{init_board} procedures is to allow the first one to configure
+separate @code{init_targets} and @code{init_board} procedures is to allow the first one to configure
 everything target specific (internal flash, internal RAM, etc.) and the second one to configure
 everything board specific (reset signals, chip frequency, reset-init event handler, external memory, etc.).
 Additionally ``linear'' board config file will most likely fail when target config file uses
 @code{init_targets} scheme (``linear'' script is executed before @code{init} and @code{init_targets} - after),
 so separating these two configuration stages is very convenient, as the easiest way to overcome this
 problem is to convert board config file to use @code{init_board} procedure. Board config scripts don't
-need to override @code{init_targets} defined in target config files when they only need to to add some specifics.
+need to override @code{init_targets} defined in target config files when they only need to add some specifics.
 
-Just as @code{init_targets}, the @code{init_board} procedure can be overriden by ``next level'' script (which sources
+Just as @code{init_targets}, the @code{init_board} procedure can be overridden by ``next level'' script (which sources
 the original), allowing greater code reuse.
 
 @example
@@ -1773,8 +1601,11 @@ proc enable_fast_clock @{@} @{
 proc init_board @{@} @{
     reset_config trst_and_srst trst_pulls_srst
 
+    $_TARGETNAME configure -event reset-start @{
+        adapter_khz 100
+    @}
+
     $_TARGETNAME configure -event reset-init @{
-        adapter_khz 1
         enable_fast_clock
         adapter_khz 10000
     @}
@@ -2050,9 +1881,9 @@ Target config files can either be ``linear'' (script executed line-by-line when
 configuration stage, @xref{configurationstage,,Configuration Stage},) or they can contain a special
 procedure called @code{init_targets}, which will be executed when entering run stage
 (after parsing all config files or after @code{init} command, @xref{enteringtherunstage,,Entering the Run Stage}.)
-Such procedure can be overriden by ``next level'' script (which sources the original).
-This concept faciliates code reuse when basic target config files provide generic configuration
-procedures and @code{init_targets} procedure, which can then be sourced and enchanced or changed in
+Such procedure can be overridden by ``next level'' script (which sources the original).
+This concept facilitates code reuse when basic target config files provide generic configuration
+procedures and @code{init_targets} procedure, which can then be sourced and enhanced or changed in
 a ``more specific'' target config file. This is not possible with ``linear'' config scripts,
 because sourcing them executes every initialization commands they provide.
 
@@ -2086,6 +1917,17 @@ For an example of this scheme see LPC2000 target config files.
 The @code{init_boards} procedure is a similar concept concerning board config files
 (@xref{theinitboardprocedure,,The init_board procedure}.)
 
+@anchor{theinittargeteventsprocedure}
+@subsection The init_target_events procedure
+@cindex init_target_events procedure
+
+A special procedure called @code{init_target_events} is run just after
+@code{init_targets} (@xref{theinittargetsprocedure,,The init_targets
+procedure}.) and before @code{init_board}
+(@xref{theinitboardprocedure,,The init_board procedure}.) It is used
+to set up default target events for the targets that do not have those
+events already assigned.
+
 @subsection ARM Core Specific Hacks
 
 If the chip has a DCC, enable it. If the chip is an ARM9 with some
@@ -2130,7 +1972,7 @@ Examples:
 @cindex translation
 If you have a configuration file for another hardware debugger
 or toolset (Abatron, BDI2000, BDI3000, CCS,
-Lauterbach, Segger, Macraigor, etc.), translating
+Lauterbach, SEGGER, Macraigor, etc.), translating
 it into OpenOCD syntax is often quite straightforward. The most tricky
 part of creating a configuration script is oftentimes the reset init
 sequence where e.g. PLLs, DRAM and the like is set up.
@@ -2165,8 +2007,8 @@ proc setc15 @{regs value@} @{
 
 
 
-@node Daemon Configuration
-@chapter Daemon Configuration
+@node Server Configuration
+@chapter Server Configuration
 @cindex initialization
 The commands here are commonly found in the openocd.cfg file and are
 used to specify what TCP/IP ports are used, and how GDB should be
@@ -2217,7 +2059,7 @@ Once OpenOCD has entered the run stage, a number of commands
 become available.
 A number of these relate to the debug targets you may have declared.
 For example, the @command{mww} command will not be available until
-a target has been successfuly instantiated.
+a target has been successfully instantiated.
 If you want to use those commands, you may need to force
 entry to the run stage.
 
@@ -2268,10 +2110,11 @@ only during configuration (before those ports are opened).
 
 For reasons including security, you may wish to prevent remote
 access using one or more of these ports.
-In such cases, just specify the relevant port number as zero.
+In such cases, just specify the relevant port number as "disabled".
 If you disable all access through TCP/IP, you will need to
 use the command line @option{-pipe} option.
 
+@anchor{gdb_port}
 @deffn {Command} gdb_port [number]
 @cindex GDB server
 Normally gdb listens to a TCP/IP port, but GDB can also
@@ -2280,7 +2123,7 @@ communicate via pipes(stdin/out or named pipes). The name
 the normal use cases.
 
 No arguments reports GDB port. "pipe" means listen to stdin
-output to stdout, an integer is base port number, "disable"
+output to stdout, an integer is base port number, "disabled"
 disables the gdb server.
 
 When using "pipe", also use log_output to redirect the log
@@ -2297,6 +2140,15 @@ The GDB port for the first target will be the base port, the
 second target will listen on gdb_port + 1, and so on.
 When not specified during the configuration stage,
 the port @var{number} defaults to 3333.
+When @var{number} is not a numeric value, incrementing it to compute
+the next port number does not work. In this case, specify the proper
+@var{number} for each target by using the option @code{-gdb-port} of the
+commands @command{target create} or @command{$target_name configure}.
+@xref{gdbportoverride,,option -gdb-port}.
+
+Note: when using "gdb_port pipe", increasing the default remote timeout in
+gdb (with 'set remotetimeout') is recommended. An insufficient timeout may
+cause initialization to fail with "Unknown remote qXfer reply: OK".
 @end deffn
 
 @deffn {Command} tcl_port [number]
@@ -2306,7 +2158,7 @@ output from the Tcl engine.
 Intended as a machine interface.
 When not specified during the configuration stage,
 the port @var{number} defaults to 6666.
-
+When specified as "disabled", this service is not activated.
 @end deffn
 
 @deffn {Command} telnet_port [number]
@@ -2315,7 +2167,7 @@ port on which to listen for incoming telnet connections.
 This port is intended for interaction with one human through TCL commands.
 When not specified during the configuration stage,
 the port @var{number} defaults to 4444.
-When specified as zero, this port is not activated.
+When specified as "disabled", this service is not activated.
 @end deffn
 
 @anchor{gdbconfiguration}
@@ -2359,13 +2211,20 @@ The default behaviour is @option{disable};
 use @option{enable} see these errors reported.
 @end deffn
 
+@deffn {Config Command} gdb_report_register_access_error (@option{enable}|@option{disable})
+Specifies whether register accesses requested by GDB register read/write
+packets report errors or not.
+The default behaviour is @option{disable};
+use @option{enable} see these errors reported.
+@end deffn
+
 @deffn {Config Command} gdb_target_description (@option{enable}|@option{disable})
 Set to @option{enable} to cause OpenOCD to send the target descriptions to gdb via qXfer:features:read packet.
-The default behaviour is @option{disable}.
+The default behaviour is @option{enable}.
 @end deffn
 
 @deffn {Command} gdb_save_tdesc
-Saves the target descripton file to the local file system.
+Saves the target description file to the local file system.
 
 The file name is @i{target_name}.xml.
 @end deffn
@@ -2539,127 +2398,58 @@ and a specific set of GPIOs is used.
 @c chooses among list of bit configs ... only one option
 @end deffn
 
-@deffn {Interface Driver} {dummy}
-A dummy software-only driver for debugging.
-@end deffn
-
-@deffn {Interface Driver} {ep93xx}
-Cirrus Logic EP93xx based single-board computer bit-banging (in development)
-@end deffn
-
-@deffn {Interface Driver} {ft2232}
-FTDI FT2232 (USB) based devices over one of the userspace libraries.
-
-Note that this driver has several flaws and the @command{ftdi} driver is
-recommended as its replacement.
-
-These interfaces have several commands, used to configure the driver
-before initializing the JTAG scan chain:
-
-@deffn {Config Command} {ft2232_device_desc} description
-Provides the USB device description (the @emph{iProduct string})
-of the FTDI FT2232 device. If not
-specified, the FTDI default value is used. This setting is only valid
-if compiled with FTD2XX support.
-@end deffn
-
-@deffn {Config Command} {ft2232_serial} serial-number
-Specifies the @var{serial-number} of the FTDI FT2232 device to use,
-in case the vendor provides unique IDs and more than one FT2232 device
-is connected to the host.
-If not specified, serial numbers are not considered.
-(Note that USB serial numbers can be arbitrary Unicode strings,
-and are not restricted to containing only decimal digits.)
-@end deffn
-
-@deffn {Config Command} {ft2232_layout} name
-Each vendor's FT2232 device can use different GPIO signals
-to control output-enables, reset signals, and LEDs.
-Currently valid layout @var{name} values include:
-@itemize @minus
-@item @b{axm0432_jtag} Axiom AXM-0432
-@item @b{comstick} Hitex STR9 comstick
-@item @b{cortino} Hitex Cortino JTAG interface
-@item @b{evb_lm3s811} TI/Luminary Micro EVB_LM3S811 as a JTAG interface,
-either for the local Cortex-M3 (SRST only)
-or in a passthrough mode (neither SRST nor TRST)
-This layout can not support the SWO trace mechanism, and should be
-used only for older boards (before rev C).
-@item @b{luminary_icdi} This layout should be used with most TI/Luminary
-eval boards, including Rev C LM3S811 eval boards and the eponymous
-ICDI boards, to debug either the local Cortex-M3 or in passthrough mode
-to debug some other target. It can support the SWO trace mechanism.
-@item @b{flyswatter} Tin Can Tools Flyswatter
-@item @b{icebear} ICEbear JTAG adapter from Section 5
-@item @b{jtagkey} Amontec JTAGkey and JTAGkey-Tiny (and compatibles)
-@item @b{jtagkey2} Amontec JTAGkey2 (and compatibles)
-@item @b{m5960} American Microsystems M5960
-@item @b{olimex-jtag} Olimex ARM-USB-OCD and ARM-USB-Tiny
-@item @b{oocdlink} OOCDLink
-@c oocdlink ~= jtagkey_prototype_v1
-@item @b{redbee-econotag} Integrated with a Redbee development board.
-@item @b{redbee-usb} Integrated with a Redbee USB-stick development board.
-@item @b{sheevaplug} Marvell Sheevaplug development kit
-@item @b{signalyzer} Xverve Signalyzer
-@item @b{stm32stick} Hitex STM32 Performance Stick
-@item @b{turtelizer2} egnite Software turtelizer2
-@item @b{usbjtag} "USBJTAG-1" layout described in the OpenOCD diploma thesis
-@end itemize
-@end deffn
+@deffn {Interface Driver} {cmsis-dap}
+ARM CMSIS-DAP compliant based adapter.
 
-@deffn {Config Command} {ft2232_vid_pid} [vid pid]+
-The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
-default values are used.
+@deffn {Config Command} {cmsis_dap_vid_pid} [vid pid]+
+The vendor ID and product ID of the CMSIS-DAP device. If not specified
+the driver will attempt to auto detect the CMSIS-DAP device.
 Currently, up to eight [@var{vid}, @var{pid}] pairs may be given, e.g.
 @example
-ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
+cmsis_dap_vid_pid 0xc251 0xf001 0x0d28 0x0204
 @end example
 @end deffn
 
-@deffn {Config Command} {ft2232_latency} ms
-On some systems using FT2232 based JTAG interfaces the FT_Read function call in
-ft2232_read() fails to return the expected number of bytes. This can be caused by
-USB communication delays and has proved hard to reproduce and debug. Setting the
-FT2232 latency timer to a larger value increases delays for short USB packets but it
-also reduces the risk of timeouts before receiving the expected number of bytes.
-The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
+@deffn {Config Command} {cmsis_dap_serial} [serial]
+Specifies the @var{serial} of the CMSIS-DAP device to use.
+If not specified, serial numbers are not considered.
 @end deffn
 
-@deffn {Config Command} {ft2232_channel} channel
-Used to select the channel of the ft2232 chip to use (between 1 and 4).
-The default value is 1.
+@deffn {Command} {cmsis-dap info}
+Display various device information, like hardware version, firmware version, current bus status.
+@end deffn
 @end deffn
 
-For example, the interface config file for a
-Turtelizer JTAG Adapter looks something like this:
+@deffn {Interface Driver} {dummy}
+A dummy software-only driver for debugging.
+@end deffn
 
-@example
-interface ft2232
-ft2232_device_desc "Turtelizer JTAG/RS232 Adapter"
-ft2232_layout turtelizer2
-ft2232_vid_pid 0x0403 0xbdc8
-@end example
+@deffn {Interface Driver} {ep93xx}
+Cirrus Logic EP93xx based single-board computer bit-banging (in development)
 @end deffn
 
 @deffn {Interface Driver} {ftdi}
 This driver is for adapters using the MPSSE (Multi-Protocol Synchronous Serial
 Engine) mode built into many FTDI chips, such as the FT2232, FT4232 and FT232H.
-It is a complete rewrite to address a large number of problems with the ft2232
-interface driver.
 
 The driver is using libusb-1.0 in asynchronous mode to talk to the FTDI device,
-bypassing intermediate libraries like libftdi of D2XX. Performance-wise it is
-consistently faster than the ft2232 driver, sometimes several times faster.
+bypassing intermediate libraries like libftdi or D2XX.
 
-A major improvement of this driver is that support for new FTDI based adapters
-can be added competely through configuration files, without the need to patch
-and rebuild OpenOCD.
+Support for new FTDI based adapters can be added completely through
+configuration files, without the need to patch and rebuild OpenOCD.
 
 The driver uses a signal abstraction to enable Tcl configuration files to
 define outputs for one or several FTDI GPIO. These outputs can then be
 controlled using the @command{ftdi_set_signal} command. Special signal names
 are reserved for nTRST, nSRST and LED (for blink) so that they, if defined,
-will be used for their customary purpose.
+will be used for their customary purpose. Inputs can be read using the
+@command{ftdi_get_signal} command.
+
+To support SWD, a signal named SWD_EN must be defined. It is set to 1 when the
+SWD protocol is selected. When set, the adapter should route the SWDIO pin to
+the data input. An SWDIO_OE signal, if defined, will be set to 1 or 0 as
+required by the protocol, to tell the adapter to drive the data output onto
+the SWDIO pin or keep the SWDIO pin Hi-Z, respectively.
 
 Depending on the type of buffer attached to the FTDI GPIO, the outputs have to
 be controlled differently. In order to support tristateable signals such as
@@ -2679,9 +2469,8 @@ These interfaces have several commands, used to configure the driver
 before initializing the JTAG scan chain:
 
 @deffn {Config Command} {ftdi_vid_pid} [vid pid]+
-The vendor ID and product ID of the adapter. If not specified, the FTDI
-default values are used.
-Currently, up to eight [@var{vid}, @var{pid}] pairs may be given, e.g.
+The vendor ID and product ID of the adapter. Up to eight
+[@var{vid}, @var{pid}] pairs may be given, e.g.
 @example
 ftdi_vid_pid 0x0403 0xcff8 0x15ba 0x0003
 @end example
@@ -2702,6 +2491,16 @@ If not specified, serial numbers are not considered.
 and are not restricted to containing only decimal digits.)
 @end deffn
 
+@deffn {Config Command} {ftdi_location} <bus>:<port>[,<port>]...
+Specifies the physical USB port of the adapter to use. The path
+roots at @var{bus} and walks down the physical ports, with each
+@var{port} option specifying a deeper level in the bus topology, the last
+@var{port} denoting where the target adapter is actually plugged.
+The USB bus topology can be queried with the command @emph{lsusb -t}.
+
+This command is only available if your libusb1 is at least version 1.0.16.
+@end deffn
+
 @deffn {Config Command} {ftdi_channel} channel
 Selects the channel of the FTDI device to use for MPSSE operations. Most
 adapters use the default, channel 0, but there are exceptions.
@@ -2716,7 +2515,7 @@ minimal impact on the target system. Avoid floating inputs, conflicting outputs
 and initially asserted reset signals.
 @end deffn
 
-@deffn {Config Command} {ftdi_layout_signal} name [@option{-data}|@option{-ndata} data_mask] [@option{-oe}|@option{-noe} oe_mask]
+@deffn {Config Command} {ftdi_layout_signal} name [@option{-data}|@option{-ndata} data_mask] [@option{-input}|@option{-ninput} input_mask] [@option{-oe}|@option{-noe} oe_mask] [@option{-alias}|@option{-nalias} name]
 Creates a signal with the specified @var{name}, controlled by one or more FTDI
 GPIO pins via a range of possible buffer connections. The masks are FTDI GPIO
 register bitmasks to tell the driver the connection and type of the output
@@ -2724,7 +2523,9 @@ buffer driving the respective signal. @var{data_mask} is the bitmask for the
 pin(s) connected to the data input of the output buffer. @option{-ndata} is
 used with inverting data inputs and @option{-data} with non-inverting inputs.
 The @option{-oe} (or @option{-noe}) option tells where the output-enable (or
-not-output-enable) input to the output buffer is connected.
+not-output-enable) input to the output buffer is connected. The options
+@option{-input} and @option{-ninput} specify the bitmask for pins to be read
+with the method @command{ftdi_get_signal}.
 
 Both @var{data_mask} and @var{oe_mask} need not be specified. For example, a
 simple open-collector transistor driver would be specified with @option{-oe}
@@ -2739,6 +2540,10 @@ target without any buffer. The FTDI pin is then switched between output and
 input as necessary to provide the full set of low, high and Hi-Z
 characteristics. In all other cases, the pins specified in a signal definition
 are always driven by the FTDI.
+
+If @option{-alias} or @option{-nalias} is used, the signal is created
+identical (or with data inverted) to an already specified signal
+@var{name}.
 @end deffn
 
 @deffn {Command} {ftdi_set_signal} name @option{0}|@option{1}|@option{z}
@@ -2750,8 +2555,56 @@ Set a previously defined signal to the specified level.
 @end itemize
 @end deffn
 
+@deffn {Command} {ftdi_get_signal} name
+Get the value of a previously defined signal.
+@end deffn
+
+@deffn {Command} {ftdi_tdo_sample_edge} @option{rising}|@option{falling}
+Configure TCK edge at which the adapter samples the value of the TDO signal
+
+Due to signal propagation delays, sampling TDO on rising TCK can become quite
+peculiar at high JTAG clock speeds. However, FTDI chips offer a possibility to sample
+TDO on falling edge of TCK. With some board/adapter configurations, this may increase
+stability at higher JTAG clocks.
+@itemize @minus
+@item @option{rising}, sample TDO on rising edge of TCK - this is the default
+@item @option{falling}, sample TDO on falling edge of TCK
+@end itemize
+@end deffn
+
 For example adapter definitions, see the configuration files shipped in the
 @file{interface/ftdi} directory.
+
+@end deffn
+
+@deffn {Interface Driver} {ft232r}
+This driver is implementing synchronous bitbang mode of an FTDI FT232R
+USB UART bridge IC.
+
+List of connections (pin numbers for SSOP):
+@itemize @minus
+@item RXD(5) - TDI
+@item TXD(1) - TCK
+@item RTS(3) - TDO
+@item CTS(11) - TMS
+@item DTR(2) - TRST
+@item DCD(10) - SRST
+@end itemize
+
+These interfaces have several commands, used to configure the driver
+before initializing the JTAG scan chain:
+
+@deffn {Config Command} {ft232r_vid_pid} @var{vid} @var{pid}
+The vendor ID and product ID of the adapter. If not specified, default
+0x0403:0x6001 is used.
+@end deffn
+
+@deffn {Config Command} {ft232r_serial_desc} @var{serial}
+Specifies the @var{serial} of the adapter to use, in case the
+vendor provides unique IDs and more than one adapter is connected to
+the host. If not specified, serial numbers are not considered.
+@end deffn
+
 @end deffn
 
 @deffn {Interface Driver} {remote_bitbang}
@@ -2817,18 +2670,30 @@ usb_blaster_vid_pid 0x16C0 0x06AD
 @end example
 @end deffn
 
-@deffn {Command} {usb_blaster} (@option{pin6}|@option{pin8}) (@option{0}|@option{1})
-Sets the state of the unused GPIO pins on USB-Blasters (pins 6 and 8 on the
-female JTAG header). These pins can be used as SRST and/or TRST provided the
-appropriate connections are made on the target board.
+@deffn {Command} {usb_blaster_pin} (@option{pin6}|@option{pin8}) (@option{0}|@option{1}|@option{s}|@option{t})
+Sets the state or function of the unused GPIO pins on USB-Blasters
+(pins 6 and 8 on the female JTAG header). These pins can be used as
+SRST and/or TRST provided the appropriate connections are made on the
+target board.
 
-For example, to use pin 6 as SRST (as with an AVR board):
+For example, to use pin 6 as SRST:
 @example
-$_TARGETNAME configure -event reset-assert \
-      "usb_blaster pin6 1; wait 1; usb_blaster pin6 0"
+usb_blaster_pin pin6 s
+reset_config srst_only
 @end example
 @end deffn
 
+@deffn {Command} {usb_blaster_lowlevel_driver} (@option{ftdi}|@option{ublast2})
+Chooses the low level access method for the adapter. If not specified,
+@option{ftdi} is selected unless it wasn't enabled during the
+configure stage. USB-Blaster II needs @option{ublast2}.
+@end deffn
+
+@deffn {Command} {usb_blaster_firmware} @var{path}
+This command specifies @var{path} to access USB-Blaster II firmware
+image. To be used with USB-Blaster II only.
+@end deffn
+
 @end deffn
 
 @deffn {Interface Driver} {gw16012}
@@ -2844,55 +2709,147 @@ This is a write-once setting.
 @end deffn
 
 @deffn {Interface Driver} {jlink}
-Segger J-Link family of USB adapters. It currently supports only the JTAG transport.
+SEGGER J-Link family of USB adapters. It currently supports JTAG and SWD
+transports.
 
 @quotation Compatibility Note
-Segger released many firmware versions for the many harware versions they
+SEGGER released many firmware versions for the many hardware versions they
 produced. OpenOCD was extensively tested and intended to run on all of them,
 but some combinations were reported as incompatible. As a general
 recommendation, it is advisable to use the latest firmware version
 available for each hardware version. However the current V8 is a moving
-target, and Segger firmware versions released after the OpenOCD was
+target, and SEGGER firmware versions released after the OpenOCD was
 released may not be compatible. In such cases it is recommended to
 revert to the last known functional version. For 0.5.0, this is from
 "Feb  8 2012 14:30:39", packed with 4.42c. For 0.6.0, the last known
 version is from "May  3 2012 18:36:22", packed with 4.46f.
 @end quotation
 
-@deffn {Command} {jlink caps}
-Display the device firmware capabilities.
+@deffn {Command} {jlink hwstatus}
+Display various hardware related information, for example target voltage and pin
+states.
 @end deffn
-@deffn {Command} {jlink info}
-Display various device information, like hardware version, firmware version, current bus status.
+@deffn {Command} {jlink freemem}
+Display free device internal memory.
 @end deffn
-@deffn {Command} {jlink hw_jtag} [@option{2}|@option{3}]
-Set the JTAG protocol version to be used. Without argument, show the actual JTAG protocol version.
+@deffn {Command} {jlink jtag} [@option{2}|@option{3}]
+Set the JTAG command version to be used. Without argument, show the actual JTAG
+command version.
 @end deffn
 @deffn {Command} {jlink config}
-Display the J-Link configuration.
+Display the device configuration.
 @end deffn
-@deffn {Command} {jlink config kickstart} [val]
-Set the Kickstart power on JTAG-pin 19. Without argument, show the Kickstart configuration.
+@deffn {Command} {jlink config targetpower} [@option{on}|@option{off}]
+Set the target power state on JTAG-pin 19. Without argument, show the target
+power state.
 @end deffn
-@deffn {Command} {jlink config mac_address} [@option{ff:ff:ff:ff:ff:ff}]
-Set the MAC address of the J-Link Pro. Without argument, show the MAC address.
+@deffn {Command} {jlink config mac} [@option{ff:ff:ff:ff:ff:ff}]
+Set the MAC address of the device. Without argument, show the MAC address.
 @end deffn
 @deffn {Command} {jlink config ip} [@option{A.B.C.D}(@option{/E}|@option{F.G.H.I})]
-Set the IP configuration of the J-Link Pro, where A.B.C.D is the IP address,
-     E the bit of the subnet mask and
-     F.G.H.I the subnet mask. Without arguments, show the IP configuration.
+Set the IP configuration of the device, where A.B.C.D is the IP address, E the
+bit of the subnet mask and F.G.H.I the subnet mask. Without arguments, show the
+IP configuration.
 @end deffn
-@deffn {Command} {jlink config usb_address} [@option{0x00} to @option{0x03} or @option{0xff}]
-Set the USB address; this will also change the product id. Without argument, show the USB address.
+@deffn {Command} {jlink config usb} [@option{0} to @option{3}]
+Set the USB address of the device. This will also change the USB Product ID
+(PID) of the device. Without argument, show the USB address.
 @end deffn
 @deffn {Command} {jlink config reset}
 Reset the current configuration.
 @end deffn
-@deffn {Command} {jlink config save}
-Save the current configuration to the internal persistent storage.
+@deffn {Command} {jlink config write}
+Write the current configuration to the internal persistent storage.
+@end deffn
+@deffn {Command} {jlink emucom write <channel> <data>}
+Write data to an EMUCOM channel. The data needs to be encoded as hexadecimal
+pairs.
+
+The following example shows how to write the three bytes 0xaa, 0x0b and 0x23 to
+the EMUCOM channel 0x10:
+@example
+> jlink emucom write 0x10 aa0b23
+@end example
+@end deffn
+@deffn {Command} {jlink emucom read <channel> <length>}
+Read data from an EMUCOM channel. The read data is encoded as hexadecimal
+pairs.
+
+The following example shows how to read 4 bytes from the EMUCOM channel 0x0:
+@example
+> jlink emucom read 0x0 4
+77a90000
+@end example
+@end deffn
+@deffn {Config} {jlink usb} <@option{0} to @option{3}>
+Set the USB address of the interface, in case more than one adapter is connected
+to the host. If not specified, USB addresses are not considered. Device
+selection via USB address is deprecated and the serial number should be used
+instead.
+
+As a configuration command, it can be used only before 'init'.
+@end deffn
+@deffn {Config} {jlink serial} <serial number>
+Set the serial number of the interface, in case more than one adapter is
+connected to the host. If not specified, serial numbers are not considered.
+
+As a configuration command, it can be used only before 'init'.
+@end deffn
+@end deffn
+
+@deffn {Interface Driver} {kitprog}
+This driver is for Cypress Semiconductor's KitProg adapters. The KitProg is an
+SWD-only adapter that is designed to be used with Cypress's PSoC and PRoC device
+families, but it is possible to use it with some other devices. If you are using
+this adapter with a PSoC or a PRoC, you may need to add
+@command{kitprog_init_acquire_psoc} or @command{kitprog acquire_psoc} to your
+configuration script.
+
+Note that this driver is for the proprietary KitProg protocol, not the CMSIS-DAP
+mode introduced in firmware 2.14. If the KitProg is in CMSIS-DAP mode, it cannot
+be used with this driver, and must either be used with the cmsis-dap driver or
+switched back to KitProg mode. See the Cypress KitProg User Guide for
+instructions on how to switch KitProg modes.
+
+Known limitations:
+@itemize @bullet
+@item The frequency of SWCLK cannot be configured, and varies between 1.6 MHz
+and 2.7 MHz.
+@item For firmware versions below 2.14, "JTAG to SWD" sequences are replaced by
+"SWD line reset" in the driver. This is for two reasons. First, the KitProg does
+not support sending arbitrary SWD sequences, and only firmware 2.14 and later
+implement both "JTAG to SWD" and "SWD line reset" in firmware. Earlier firmware
+versions only implement "SWD line reset". Second, due to a firmware quirk, an
+SWD sequence must be sent after every target reset in order to re-establish
+communications with the target.
+@item Due in part to the limitation above, KitProg devices with firmware below
+version 2.14 will need to use @command{kitprog_init_acquire_psoc} in order to
+communicate with PSoC 5LP devices. This is because, assuming debug is not
+disabled on the PSoC, the PSoC 5LP needs its JTAG interface switched to SWD
+mode before communication can begin, but prior to firmware 2.14, "JTAG to SWD"
+could only be sent with an acquisition sequence.
+@end itemize
+
+@deffn {Config Command} {kitprog_init_acquire_psoc}
+Indicate that a PSoC acquisition sequence needs to be run during adapter init.
+Please be aware that the acquisition sequence hard-resets the target.
+@end deffn
+
+@deffn {Config Command} {kitprog_serial} serial
+Select a KitProg device by its @var{serial}. If left unspecified, the first
+device detected by OpenOCD will be used.
 @end deffn
-@deffn {Config} {jlink pid} val
-Set the USB PID of the interface. As a configuration command, it can be used only before 'init'.
+
+@deffn {Command} {kitprog acquire_psoc}
+Run a PSoC acquisition sequence immediately. Typically, this should not be used
+outside of the target-specific configuration scripts since it hard-resets the
+target as a side-effect.
+This is necessary for "reset halt" on some PSoC 4 series devices.
+@end deffn
+
+@deffn {Command} {kitprog info}
+Display various adapter information, such as the hardware version, firmware
+version, and target voltage.
 @end deffn
 @end deffn
 
@@ -3018,38 +2975,37 @@ which are not currently documented here.
 @end quotation
 @end deffn
 
+@anchor{hla_interface}
 @deffn {Interface Driver} {hla}
 This is a driver that supports multiple High Level Adapters.
 This type of adapter does not expose some of the lower level api's
 that OpenOCD would normally use to access the target.
 
-Currently supported adapters include the ST STLINK and TI ICDI.
+Currently supported adapters include the ST ST-LINK and TI ICDI.
+ST-LINK firmware version >= V2.J21.S4 recommended due to issues with earlier
+versions of firmware where serial number is reset after first use.  Suggest
+using ST firmware update utility to upgrade ST-LINK firmware even if current
+version reported is V2.J21.S4.
 
 @deffn {Config Command} {hla_device_desc} description
 Currently Not Supported.
 @end deffn
 
 @deffn {Config Command} {hla_serial} serial
-Currently Not Supported.
+Specifies the serial number of the adapter.
 @end deffn
 
 @deffn {Config Command} {hla_layout} (@option{stlink}|@option{icdi})
 Specifies the adapter layout to use.
 @end deffn
 
-@deffn {Config Command} {hla_vid_pid} vid pid
-The vendor ID and product ID of the device.
+@deffn {Config Command} {hla_vid_pid} [vid pid]+
+Pairs of vendor IDs and product IDs of the device.
 @end deffn
 
-@deffn {Config Command} {stlink_api} api_level
-Manually sets the stlink api used, valid options are 1 or 2. (@b{STLINK Only}).
-@end deffn
-
-@deffn {Config Command} {trace} source_clock_hz [output_file_path]
-Enable SWO tracing (if supported). The source clock rate for the
-trace port must be specified, this is typically the CPU clock rate. If
-the optional output file is specified then raw trace data is appended
-to the file, and the file is created if it does not exist.
+@deffn {Command} {hla_command} command
+Execute a custom adapter-specific command. The @var{command} string is
+passed as is to the underlying adapter layout handler.
 @end deffn
 @end deffn
 
@@ -3091,6 +3047,39 @@ pinout.
 
 @end deffn
 
+@deffn {Interface Driver} {imx_gpio}
+i.MX SoC is present in many community boards. Wandboard is an example
+of the one which is most popular.
+
+This driver is mostly the same as bcm2835gpio.
+
+See @file{interface/imx-native.cfg} for a sample config and
+pinout.
+
+@end deffn
+
+
+@deffn {Interface Driver} {openjtag}
+OpenJTAG compatible USB adapter.
+This defines some driver-specific commands:
+
+@deffn {Config Command} {openjtag_variant} variant
+Specifies the variant of the OpenJTAG adapter (see @uref{http://www.openjtag.org/}).
+Currently valid @var{variant} values include:
+
+@itemize @minus
+@item @b{standard} Standard variant (default).
+@item @b{cy7c65215} Cypress CY7C65215 Dual Channel USB-Serial Bridge Controller
+(see @uref{http://www.cypress.com/?rID=82870}).
+@end itemize
+@end deffn
+
+@deffn {Config Command} {openjtag_device_desc} string
+The USB device description string of the adapter.
+This value is only used with the standard variant.
+@end deffn
+@end deffn
+
 @section Transport Configuration
 @cindex Transport
 As noted earlier, depending on the version of OpenOCD you use,
@@ -3102,11 +3091,20 @@ displays the names of the transports supported by this
 version of OpenOCD.
 @end deffn
 
-@deffn Command {transport select} transport_name
+@deffn Command {transport select} @option{transport_name}
 Select which of the supported transports to use in this OpenOCD session.
-The transport must be supported by the debug adapter hardware and by the
-version of OpenOCD you are using (including the adapter's driver).
-No arguments: returns name of session's selected transport.
+
+When invoked with @option{transport_name}, attempts to select the named
+transport.  The transport must be supported by the debug adapter
+hardware and by the version of OpenOCD you are using (including the
+adapter's driver).
+
+If no transport has been selected and no @option{transport_name} is
+provided, @command{transport select} auto-selects the first transport
+supported by the debug adapter.
+
+@command{transport select} always returns the name of the session's selected
+transport, if any.
 @end deffn
 
 @subsection JTAG Transport
@@ -3117,6 +3115,12 @@ JTAG transports expose a chain of one or more Test Access Points (TAPs),
 each of which must be explicitly declared.
 JTAG supports both debugging and boundary scan testing.
 Flash programming support is built on top of debug support.
+
+JTAG transport is selected with the command @command{transport select
+jtag}. Unless your adapter uses @ref{hla_interface,the hla interface
+driver}, in which case the command is @command{transport select
+hla_jtag}.
+
 @subsection SWD Transport
 @cindex SWD
 @cindex Serial Wire Debug
@@ -3126,13 +3130,19 @@ Debug Access Point (DAP, which must be explicitly declared.
 SWD is debug-oriented, and does not support boundary scan testing.
 Flash programming support is built on top of debug support.
 (Some processors support both JTAG and SWD.)
+
+SWD transport is selected with the command @command{transport select
+swd}. Unless your adapter uses @ref{hla_interface,the hla interface
+driver}, in which case the command is @command{transport select
+hla_swd}.
+
 @deffn Command {swd newdap} ...
 Declares a single DAP which uses SWD transport.
 Parameters are currently the same as "jtag newtap" but this is
 expected to change.
 @end deffn
 @deffn Command {swd wcr trn prescale}
-Updates TRN (turnaraound delay) and prescaling.fields of the
+Updates TRN (turnaround delay) and prescaling.fields of the
 Wire Control Register (WCR).
 No parameters: displays current settings.
 @end deffn
@@ -3434,7 +3444,7 @@ haven't seen hardware with such a bug, and can be worked around).
 
 @item
 The @var{gates} tokens control flags that describe some cases where
-JTAG may be unvailable during reset.
+JTAG may be unavailable during reset.
 @option{srst_gates_jtag} (default)
 indicates that asserting SRST gates the
 JTAG clock. This means that no communication can happen on JTAG
@@ -3473,7 +3483,7 @@ Possible @var{srst_type} driver modes for the system reset signal (SRST)
 are the default @option{srst_open_drain}, and @option{srst_push_pull}.
 Most boards connect this signal to a pullup, and allow the
 signal to be pulled low by various events including system
-powerup and pressing a reset button.
+power-up and pressing a reset button.
 @end itemize
 @end deffn
 
@@ -3569,15 +3579,15 @@ It then invokes the logic of @command{jtag arp_init}.
 TAPs serve many roles, including:
 
 @itemize @bullet
-@item @b{Debug Target} A CPU TAP can be used as a GDB debug target
-@item @b{Flash Programing} Some chips program the flash directly via JTAG.
+@item @b{Debug Target} A CPU TAP can be used as a GDB debug target.
+@item @b{Flash Programming} Some chips program the flash directly via JTAG.
 Others do it indirectly, making a CPU do it.
 @item @b{Program Download} Using the same CPU support GDB uses,
 you can initialize a DRAM controller, download code to DRAM, and then
 start running that code.
 @item @b{Boundary Scan} Most chips support boundary scan, which
 helps test for board assembly problems like solder bridges
-and missing connections
+and missing connections.
 @end itemize
 
 OpenOCD must know about the active TAPs on your board(s).
@@ -3590,7 +3600,7 @@ probes flash memory, performs low-level JTAG operations, and more.
 @cindex scan chain
 
 TAPs are part of a hardware @dfn{scan chain},
-which is daisy chain of TAPs.
+which is daisy chain of TAPs.
 They also need to be added to
 OpenOCD's software mirror of that hardware list,
 giving each member a name and associating other data with it.
@@ -3618,7 +3628,7 @@ Here's what the scan chain might look like for a chip more than one TAP:
 
 OpenOCD can detect some of that information, but not all
 of it. @xref{autoprobing,,Autoprobing}.
-Unfortunately those TAPs can't always be autoconfigured,
+Unfortunately, those TAPs can't always be autoconfigured,
 because not all devices provide good support for that.
 JTAG doesn't require supporting IDCODE instructions, and
 chips with JTAG routers may not link TAPs into the chain
@@ -3638,11 +3648,11 @@ by a given chip.
 Board configuration files combine all the targets on a board,
 and so forth.
 Note that @emph{the order in which TAPs are declared is very important.}
-It must match the order in the JTAG scan chain, both inside
-a single chip and between them.
+That declaration order must match the order in the JTAG scan chain,
+both inside a single chip and between them.
 @xref{faqtaporder,,FAQ TAP Order}.
 
-For example, the ST Microsystems STR912 chip has
+For example, the STMicroelectronics STR912 chip has
 three separate TAPs@footnote{See the ST
 document titled: @emph{STR91xFAxxx, Section 3.15 Jtag Interface, Page:
 28/102, Figure 3: JTAG chaining inside the STR91xFA}.
@@ -3656,9 +3666,9 @@ jtag newtap str912 cpu ... params ...
 jtag newtap str912 bs ... params ...
 @end example
 
-Actual config files use a variable instead of literals like
-@option{str912}, to support more than one chip of each type.
-@xref{Config File Guidelines}.
+Actual config files typically use a variable such as @code{$_CHIPNAME}
+instead of literals like @option{str912}, to support more than one chip
+of each type.  @xref{Config File Guidelines}.
 
 @deffn Command {jtag names}
 Returns the names of all current TAPs in the scan chain.
@@ -3702,17 +3712,6 @@ The components of a dotted name should follow ``C'' symbol
 name rules: start with an alphabetic character, then numbers
 and underscores are OK; while others (including dots!) are not.
 
-@quotation Tip
-In older code, JTAG TAPs were numbered from 0..N.
-This feature is still present.
-However its use is highly discouraged, and
-should not be relied on; it will be removed by mid-2010.
-Update all of your scripts to use TAP names rather than numbers,
-by paying attention to the runtime warnings they trigger.
-Using TAP numbers in target configuration scripts prevents
-reusing those scripts on boards with multiple targets.
-@end quotation
-
 @section TAP Declaration Commands
 
 @c shouldn't this be(come) a {Config Command}?
@@ -3730,19 +3729,19 @@ The @var{tapname} reflects the role of that TAP,
 and should follow this convention:
 
 @itemize @bullet
-@item @code{bs} -- For boundary scan if this is a seperate TAP;
+@item @code{bs} -- For boundary scan if this is a separate TAP;
 @item @code{cpu} -- The main CPU of the chip, alternatively
 @code{arm} and @code{dsp} on chips with both ARM and DSP CPUs,
-@code{arm1} and @code{arm2} on chips two ARMs, and so forth;
+@code{arm1} and @code{arm2} on chips with two ARMs, and so forth;
 @item @code{etb} -- For an embedded trace buffer (example: an ARM ETB11);
 @item @code{flash} -- If the chip has a flash TAP, like the str912;
-@item @code{jrc} -- For JTAG route controller (example: the ICEpick modules
+@item @code{jrc} -- For JTAG route controller (example: the ICEPick modules
 on many Texas Instruments chips, like the OMAP3530 on Beagleboards);
-@item @code{tap} -- Should be used only FPGA or CPLD like devices
+@item @code{tap} -- Should be used only for FPGA- or CPLD-like devices
 with a single TAP;
 @item @code{unknownN} -- If you have no idea what the TAP is for (N is a number);
 @item @emph{when in doubt} -- Use the chip maker's name in their data sheet.
-For example, the Freescale IMX31 has a SDMA (Smart DMA) with
+For example, the Freescale i.MX31 has a SDMA (Smart DMA) with
 a JTAG TAP; that TAP should be named @code{sdma}.
 @end itemize
 
@@ -3759,12 +3758,12 @@ A TAP may also provide optional @var{configparams}:
 @itemize @bullet
 @item @code{-disable} (or @code{-enable})
 @*Use the @code{-disable} parameter to flag a TAP which is not
-linked in to the scan chain after a reset using either TRST
+linked into the scan chain after a reset using either TRST
 or the JTAG state machine's @sc{reset} state.
 You may use @code{-enable} to highlight the default state
 (the TAP is linked in).
 @xref{enablinganddisablingtaps,,Enabling and Disabling TAPs}.
-@item @code{-expected-id} @var{number}
+@item @code{-expected-id} @var{NUMBER}
 @*A non-zero @var{number} represents a 32-bit IDCODE
 which you expect to find when the scan chain is examined.
 These codes are not required by all JTAG devices.
@@ -3791,20 +3790,25 @@ on entry to the @sc{ircapture} state, such as 0x01.
 JTAG requires the two LSBs of this value to be 01.
 By default, @code{-ircapture} and @code{-irmask} are set
 up to verify that two-bit value. You may provide
-additional bits, if you know them, or indicate that
+additional bits if you know them, or indicate that
 a TAP doesn't conform to the JTAG specification.
 @item @code{-irmask} @var{NUMBER}
 @*A mask used with @code{-ircapture}
 to verify that instruction scans work correctly.
 Such scans are not used by OpenOCD except to verify that
 there seems to be no problems with JTAG scan chain operations.
+@item @code{-ignore-syspwrupack}
+@*Specify this to ignore the CSYSPWRUPACK bit in the ARM DAP DP CTRL/STAT
+register during initial examination and when checking the sticky error bit.
+This bit is normally checked after setting the CSYSPWRUPREQ bit, but some
+devices do not set the ack bit until sometime later.
 @end itemize
 @end deffn
 
 @section Other TAP commands
 
-@deffn Command {jtag cget} dotted.name @option{-event} name
-@deffnx Command {jtag configure} dotted.name @option{-event} name string
+@deffn Command {jtag cget} dotted.name @option{-event} event_name
+@deffnx Command {jtag configure} dotted.name @option{-event} event_name handler
 At this writing this TAP attribute
 mechanism is used only for event handling.
 (It is not a direct analogue of the @code{cget}/@code{configure}
@@ -3852,7 +3856,7 @@ implement @command{jtag tapenable}
 by issuing the relevant JTAG commands.
 @end itemize
 
-If you need some action after each JTAG reset, which isn't actually
+If you need some action after each JTAG reset which isn't actually
 specific to any TAP (since you can't yet trust the scan chain's
 contents to be accurate), you might:
 
@@ -3871,8 +3875,8 @@ jtag configure CHIP.jrc -event post-reset @{
 
 In some systems, a @dfn{JTAG Route Controller} (JRC)
 is used to enable and/or disable specific JTAG TAPs.
-Many ARM based chips from Texas Instruments include
-an ``ICEpick'' module, which is a JRC.
+Many ARM-based chips from Texas Instruments include
+an ``ICEPick'' module, which is a JRC.
 Such chips include DaVinci and OMAP3 processors.
 
 A given TAP may not be visible until the JRC has been
@@ -4021,6 +4025,145 @@ with these TAPs, any targets associated with them, and any on-chip
 resources; then a @file{board.cfg} with off-chip resources, clocking,
 and so forth.
 
+@anchor{dapdeclaration}
+@section DAP declaration (ARMv7 and ARMv8 targets)
+@cindex DAP declaration
+
+Since OpenOCD version 0.11.0, the Debug Access Port (DAP) is
+no longer implicitly created together with the target. It must be
+explicitly declared using the @command{dap create} command. For all
+ARMv7 and ARMv8 targets, the option "@option{-dap} @var{dap_name}" has to be used
+instead of "@option{-chain-position} @var{dotted.name}" when the target is created.
+
+The @command{dap} command group supports the following sub-commands:
+
+@deffn Command {dap create} dap_name @option{-chain-position} dotted.name configparams...
+Declare a DAP instance named @var{dap_name} linked to the JTAG tap
+@var{dotted.name}. This also creates a new command (@command{dap_name})
+which is used for various purposes including additional configuration.
+There can only be one DAP for each JTAG tap in the system.
+
+A DAP may also provide optional @var{configparams}:
+
+@itemize @bullet
+@item @code{-ignore-syspwrupack}
+@*Specify this to ignore the CSYSPWRUPACK bit in the ARM DAP DP CTRL/STAT
+register during initial examination and when checking the sticky error bit.
+This bit is normally checked after setting the CSYSPWRUPREQ bit, but some
+devices do not set the ack bit until sometime later.
+@end itemize
+@end deffn
+
+@deffn Command {dap names}
+This command returns a list of all registered DAP objects. It it useful mainly
+for TCL scripting.
+@end deffn
+
+@deffn Command {dap info} [num]
+Displays the ROM table for MEM-AP @var{num},
+defaulting to the currently selected AP of the currently selected target.
+@end deffn
+
+@deffn Command {dap init}
+Initialize all registered DAPs. This command is used internally
+during initialization. It can be issued at any time after the
+initialization, too.
+@end deffn
+
+The following commands exist as subcommands of DAP instances:
+
+@deffn Command {$dap_name info} [num]
+Displays the ROM table for MEM-AP @var{num},
+defaulting to the currently selected AP.
+@end deffn
+
+@deffn Command {$dap_name apid} [num]
+Displays ID register from AP @var{num}, defaulting to the currently selected AP.
+@end deffn
+
+@anchor{DAP subcommand apreg}
+@deffn Command {$dap_name apreg} ap_num reg [value]
+Displays content of a register @var{reg} from AP @var{ap_num}
+or set a new value @var{value}.
+@var{reg} is byte address of a word register, 0, 4, 8 ... 0xfc.
+@end deffn
+
+@deffn Command {$dap_name apsel} [num]
+Select AP @var{num}, defaulting to 0.
+@end deffn
+
+@deffn Command {$dap_name dpreg} reg [value]
+Displays the content of DP register at address @var{reg}, or set it to a new
+value @var{value}.
+
+In case of SWD, @var{reg} is a value in packed format
+@math{dpbanksel << 4 | addr} and assumes values 0, 4, 8 ... 0xfc.
+In case of JTAG it only assumes values 0, 4, 8 and 0xc.
+
+@emph{Note:} Consider using @command{poll off} to avoid any disturbing
+background activity by OpenOCD while you are operating at such low-level.
+@end deffn
+
+@deffn Command {$dap_name baseaddr} [num]
+Displays debug base address from MEM-AP @var{num},
+defaulting to the currently selected AP.
+@end deffn
+
+@deffn Command {$dap_name memaccess} [value]
+Displays the number of extra tck cycles in the JTAG idle to use for MEM-AP
+memory bus access [0-255], giving additional time to respond to reads.
+If @var{value} is defined, first assigns that.
+@end deffn
+
+@deffn Command {$dap_name apcsw} [value [mask]]
+Displays or changes CSW bit pattern for MEM-AP transfers.
+
+At the begin of each memory access the CSW pattern is extended (bitwise or-ed)
+by @dfn{Size} and @dfn{AddrInc} bit-fields according to transfer requirements
+and the result is written to the real CSW register. All bits except dynamically
+updated fields @dfn{Size} and @dfn{AddrInc} can be changed by changing
+the CSW pattern. Refer to ARM ADI v5 manual chapter 7.6.4 and appendix A
+for details.
+
+Use @var{value} only syntax if you want to set the new CSW pattern as a whole.
+The example sets HPROT1 bit (required by Cortex-M) and clears the rest of
+the pattern:
+@example
+kx.dap apcsw 0x2000000
+@end example
+
+If @var{mask} is also used, the CSW pattern is changed only on bit positions
+where the mask bit is 1. The following example sets HPROT3 (cacheable)
+and leaves the rest of the pattern intact. It configures memory access through
+DCache on Cortex-M7.
+@example
+set CSW_HPROT3_CACHEABLE [expr 1 << 27]
+samv.dap apcsw $CSW_HPROT3_CACHEABLE $CSW_HPROT3_CACHEABLE
+@end example
+
+Another example clears SPROT bit and leaves the rest of pattern intact:
+@example
+set CSW_SPROT [expr 1 << 30]
+samv.dap apcsw 0 $CSW_SPROT
+@end example
+
+@emph{Note:} If you want to check the real value of CSW, not CSW pattern, use
+@code{xxx.dap apreg 0}. @xref{DAP subcommand apreg,,}.
+
+@emph{Warning:} Some of the CSW bits are vital for working memory transfer.
+If you set a wrong CSW pattern and MEM-AP stopped working, use the following
+example with a proper dap name:
+@example
+xxx.dap apcsw default
+@end example
+@end deffn
+
+@deffn Command {$dap_name ti_be_32_quirks} [@option{enable}]
+Set/get quirks mode for TI TMS450/TMS570 processors
+Disabled by default
+@end deffn
+
+
 @node CPU Configuration
 @chapter CPU Configuration
 @cindex GDB target
@@ -4064,22 +4207,6 @@ are examples; and there are many more.
 
 Several commands let you examine the list of targets:
 
-@deffn Command {target count}
-@emph{Note: target numbers are deprecated; don't use them.
-They will be removed shortly after August 2010, including this command.
-Iterate target using @command{target names}, not by counting.}
-
-Returns the number of targets, @math{N}.
-The highest numbered target is @math{N - 1}.
-@example
-set c [target count]
-for @{ set x 0 @} @{ $x < $c @} @{ incr x @} @{
-    # Assuming you have created this function
-    print_target_details $x
-@}
-@end example
-@end deffn
-
 @deffn Command {target current}
 Returns the name of the current target.
 @end deffn
@@ -4093,18 +4220,6 @@ foreach t [target names] @{
 @end example
 @end deffn
 
-@deffn Command {target number} number
-@emph{Note: target numbers are deprecated; don't use them.
-They will be removed shortly after August 2010, including this command.}
-
-The list of targets is numbered starting at zero.
-This command returns the name of the target at index @var{number}.
-@example
-set thename [target number $x]
-puts [format "Target %d is: %s\n" $x $thename]
-@end example
-@end deffn
-
 @c yep, "target list" would have been better.
 @c plus maybe "target setdefault".
 
@@ -4120,10 +4235,9 @@ the given target with the given @var{name}; this is
 only relevant on boards which have more than one target.
 @end deffn
 
-@section Target CPU Types and Variants
+@section Target CPU Types
 @cindex target type
 @cindex CPU type
-@cindex CPU variant
 
 Each target has a @dfn{CPU type}, as shown in the output of
 the @command{targets} command. You need to specify that type
@@ -4136,20 +4250,13 @@ what core-specific commands may be available
 (@pxref{Architecture and Core Commands}),
 and more.
 
-For some CPU types, OpenOCD also defines @dfn{variants} which
-indicate differences that affect their handling.
-For example, a particular implementation bug might need to be
-worked around in some chip versions.
-
 It's easy to see what target types are supported,
 since there's a command to list them.
-However, there is currently no way to list what target variants
-are supported (other than by reading the OpenOCD source code).
 
 @anchor{targettypes}
 @deffn Command {target types}
 Lists all supported target types.
-At this writing, the supported CPU types and variants are:
+At this writing, the supported CPU types are:
 
 @itemize @bullet
 @item @code{arm11} -- this is a generation of ARMv6 cores
@@ -4164,32 +4271,28 @@ At this writing, the supported CPU types and variants are:
 @item @code{cortex_a} -- this is an ARMv7 core with an MMU
 @item @code{cortex_m} -- this is an ARMv7 core, supporting only the
 compact Thumb2 instruction set.
+@item @code{aarch64} -- this is an ARMv8-A core with an MMU
 @item @code{dragonite} -- resembles arm966e
 @item @code{dsp563xx} -- implements Freescale's 24-bit DSP.
 (Support for this is still incomplete.)
 @item @code{fa526} -- resembles arm920 (w/o Thumb)
 @item @code{feroceon} -- resembles arm926
-@item @code{mips_m4k} -- a MIPS core. This supports one variant:
+@item @code{mips_m4k} -- a MIPS core
 @item @code{xscale} -- this is actually an architecture,
 not a CPU type. It is based on the ARMv5 architecture.
-There are several variants defined:
-@itemize @minus
-@item @code{ixp42x}, @code{ixp45x}, @code{ixp46x},
-@code{pxa27x} ... instruction register length is 7 bits
-@item @code{pxa250}, @code{pxa255},
-@code{pxa26x} ... instruction register length is 5 bits
-@item @code{pxa3xx} ... instruction register length is 11 bits
-@end itemize
 @item @code{openrisc} -- this is an OpenRISC 1000 core.
-The current implementation supports two JTAG TAP cores:
+The current implementation supports three JTAG TAP cores:
+@item @code{ls1_sap} -- this is the SAP on NXP LS102x CPUs,
+allowing access to physical memory addresses independently of CPU cores.
 @itemize @minus
-@item @code{OpenCores TAP} (See: @emph{http://opencores.org/project,jtag})
-@item @code{Altera Virtual JTAG TAP} (See: @emph{http://www.altera.com/literature/ug/ug_virtualjtag.pdf})
+@item @code{OpenCores TAP} (See: @url{http://opencores.org/project,jtag})
+@item @code{Altera Virtual JTAG TAP} (See: @url{http://www.altera.com/literature/ug/ug_virtualjtag.pdf})
+@item @code{Xilinx BSCAN_* virtual JTAG interface} (See: @url{http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_2/spartan6_hdl.pdf})
 @end itemize
 And two debug interfaces cores:
 @itemize @minus
-@item @code{Advanced debug interface} (See: @emph{http://opencores.org/project,adv_debug_sys})
-@item @code{SoC Debug Interface} (See: @emph{http://opencores.org/project,dbg_interface})
+@item @code{Advanced debug interface} (See: @url{http://opencores.org/project,adv_debug_sys})
+@item @code{SoC Debug Interface} (See: @url{http://opencores.org/project,dbg_interface})
 @end itemize
 @end itemize
 @end deffn
@@ -4198,10 +4301,10 @@ To avoid being confused by the variety of ARM based cores, remember
 this key point: @emph{ARM is a technology licencing company}.
 (See: @url{http://www.arm.com}.)
 The CPU name used by OpenOCD will reflect the CPU design that was
-licenced, not a vendor brand which incorporates that design.
+licensed, not a vendor brand which incorporates that design.
 Name prefixes like arm7, arm9, arm11, and cortex
 reflect design generations;
-while names like ARMv4, ARMv5, ARMv6, and ARMv7
+while names like ARMv4, ARMv5, ARMv6, ARMv7 and ARMv8
 reflect an architecture version implemented by a CPU design.
 
 @anchor{targetconfiguration}
@@ -4227,10 +4330,11 @@ to be much more board-specific.
 The key steps you use might look something like this
 
 @example
-target create MyTarget cortex_m -chain-position mychip.cpu
-$MyTarget configure -work-area-phys 0x08000 -work-area-size 8096
-$MyTarget configure -event reset-deassert-pre @{ jtag_rclk 5 @}
-$MyTarget configure -event reset-init @{ myboard_reinit @}
+dap create mychip.dap -chain-position mychip.cpu
+target create MyTarget cortex_m -dap mychip.dap
+MyTarget configure -work-area-phys 0x08000 -work-area-size 8096
+MyTarget configure -event reset-deassert-pre @{ jtag_rclk 5 @}
+MyTarget configure -event reset-init @{ myboard_reinit @}
 @end example
 
 You should specify a working area if you can; typically it uses some
@@ -4246,7 +4350,7 @@ On more complex chips, the work area can become
 inaccessible when application code
 (such as an operating system)
 enables or disables the MMU.
-For example, the particular MMU context used to acess the virtual
+For example, the particular MMU context used to access the virtual
 address will probably matter ... and that context might not have
 easy access to other addresses needed.
 At this writing, OpenOCD doesn't have much MMU intelligence.
@@ -4279,9 +4383,9 @@ and in other places the target needs to be identified.
 @item @var{configparams} ... all parameters accepted by
 @command{$target_name configure} are permitted.
 If the target is big-endian, set it here with @code{-endian big}.
-If the variant matters, set it here with @code{-variant}.
 
-You @emph{must} set the @code{-chain-position @var{dotted.name}} here.
+You @emph{must} set the @code{-chain-position @var{dotted.name}} or
+@code{-dap @var{dap_name}} here.
 @end itemize
 @end deffn
 
@@ -4293,13 +4397,17 @@ using the @command{$target_name cget} command.
 
 @emph{Warning:} changing some of these after setup is dangerous.
 For example, moving a target from one TAP to another;
-and changing its endianness or variant.
+and changing its endianness.
 
 @itemize @bullet
 
 @item @code{-chain-position} @var{dotted.name} -- names the TAP
 used to access this target.
 
+@item @code{-dap} @var{dap_name} -- names the DAP used to access
+this target. @xref{dapdeclaration,,DAP declaration}, on how to
+create and manage DAP instances.
+
 @item @code{-endian} (@option{big}|@option{little}) -- specifies
 whether the CPU uses big or little endian conventions
 
@@ -4310,8 +4418,8 @@ Calling this twice with two different event names assigns
 two different handlers, but calling it twice with the
 same event name assigns only one handler.
 
-@item @code{-variant} @var{name} -- specifies a variant of the target,
-which OpenOCD needs to know about.
+Current target is temporarily overridden to the event issuing target
+before handler code starts and switched back after handler is done.
 
 @item @code{-work-area-backup} (@option{0}|@option{1}) -- says
 whether the work area gets backed up; by default,
@@ -4336,10 +4444,32 @@ The value should normally correspond to a static mapping for the
 
 @anchor{rtostype}
 @item @code{-rtos} @var{rtos_type} -- enable rtos support for target,
-@var{rtos_type} can be one of @option{auto}|@option{eCos}|@option{ThreadX}|
-@option{FreeRTOS}|@option{linux}|@option{ChibiOS}|@option{embKernel}
+@var{rtos_type} can be one of @option{auto}, @option{eCos},
+@option{ThreadX}, @option{FreeRTOS}, @option{linux}, @option{ChibiOS},
+@option{embKernel}, @option{mqx}, @option{uCOS-III}, @option{nuttx}
 @xref{gdbrtossupport,,RTOS Support}.
 
+@item @code{-defer-examine} -- skip target examination at initial JTAG chain
+scan and after a reset. A manual call to arp_examine is required to
+access the target for debugging.
+
+@item @code{-ap-num} @var{ap_number} -- set DAP access port for target,
+@var{ap_number} is the numeric index of the DAP AP the target is connected to.
+Use this option with systems where multiple, independent cores are connected
+to separate access ports of the same DAP.
+
+@item @code{-cti} @var{cti_name} -- set Cross-Trigger Interface (CTI) connected
+to the target. Currently, only the @code{aarch64} target makes use of this option,
+where it is a mandatory configuration for the target run control.
+@xref{armcrosstrigger,,ARM Cross-Trigger Interface},
+for instruction on how to declare and control a CTI instance.
+
+@anchor{gdbportoverride}
+@item @code{-gdb-port} @var{number} -- see command @command{gdb_port} for the
+possible values of the parameter @var{number}, which are not only numeric values.
+Use this option to override, for this target only, the global parameter set with
+command @command{gdb_port}.
+@xref{gdb_port,,command gdb_port}.
 @end itemize
 @end deffn
 
@@ -4376,7 +4506,7 @@ omap3530.cpu  mww 0x5555 123
 
 The commands supported by OpenOCD target objects are:
 
-@deffn Command {$target_name arp_examine}
+@deffn Command {$target_name arp_examine} @option{allow-defer}
 @deffnx Command {$target_name arp_halt}
 @deffnx Command {$target_name arp_poll}
 @deffnx Command {$target_name arp_reset}
@@ -4510,15 +4640,14 @@ buttons and events. The two examples below act the same, but one creates
 and invokes a small procedure while the other inlines it.
 
 @example
-proc my_attach_proc @{ @} @{
-    echo "Reset..."
-    reset halt
+proc my_init_proc @{ @} @{
+    echo "Disabling watchdog..."
+    mww 0xfffffd44 0x00008000
 @}
-mychip.cpu configure -event gdb-attach my_attach_proc
-mychip.cpu configure -event gdb-attach @{
-    echo "Reset..."
-    # To make flash probe and gdb load to flash work we need a reset init.
-    reset init
+mychip.cpu configure -event reset-init my_init_proc
+mychip.cpu configure -event reset-init @{
+    echo "Disabling watchdog..."
+    mww 0xfffffd44 0x00008000
 @}
 @end example
 
@@ -4528,7 +4657,7 @@ The following target events are defined:
 @item @b{debug-halted}
 @* The target has halted for debug reasons (i.e.: breakpoint)
 @item @b{debug-resumed}
-@* The target has resumed (i.e.: gdb said run)
+@* The target has resumed (i.e.: GDB said run)
 @item @b{early-halted}
 @* Occurs early in the halt process
 @item @b{examine-start}
@@ -4536,31 +4665,38 @@ The following target events are defined:
 @item @b{examine-end}
 @* After target examine is called with no errors.
 @item @b{gdb-attach}
-@* When GDB connects. This is before any communication with the target, so this
-can be used to set up the target so it is possible to probe flash. Probing flash
-is necessary during gdb connect if gdb load is to write the image to flash. Another
-use of the flash memory map is for GDB to automatically hardware/software breakpoints
-depending on whether the breakpoint is in RAM or read only memory.
+@* When GDB connects. Issued before any GDB communication with the target
+starts. GDB expects the target is halted during attachment.
+@xref{gdbmeminspect,,GDB as a non-intrusive memory inspector}, how to
+connect GDB to running target.
+The event can be also used to set up the target so it is possible to probe flash.
+Probing flash is necessary during GDB connect if you want to use
+@pxref{programmingusinggdb,,programming using GDB}.
+Another use of the flash memory map is for GDB to automatically choose
+hardware or software breakpoints depending on whether the breakpoint
+is in RAM or read only memory.
+Default is @code{halt}
 @item @b{gdb-detach}
 @* When GDB disconnects
 @item @b{gdb-end}
 @* When the target has halted and GDB is not doing anything (see early halt)
 @item @b{gdb-flash-erase-start}
-@* Before the GDB flash process tries to erase the flash
+@* Before the GDB flash process tries to erase the flash (default is
+@code{reset init})
 @item @b{gdb-flash-erase-end}
 @* After the GDB flash process has finished erasing the flash
 @item @b{gdb-flash-write-start}
 @* Before GDB writes to the flash
 @item @b{gdb-flash-write-end}
-@* After GDB writes to the flash
+@* After GDB writes to the flash (default is @code{reset halt})
 @item @b{gdb-start}
-@* Before the target steps, gdb is trying to start/resume the target
+@* Before the target steps, GDB is trying to start/resume the target
 @item @b{halted}
 @* The target has halted
 @item @b{reset-assert-pre}
 @* Issued as part of @command{reset} processing
-after @command{reset_init} was triggered
-but before either SRST alone is re-asserted on the scan chain,
+after @command{reset-start} was triggered
+but before either SRST alone is asserted on the scan chain,
 or @code{reset-assert} is triggered.
 @item @b{reset-assert}
 @* Issued as part of @command{reset} processing
@@ -4584,12 +4720,6 @@ and (if the target is using it) after SRST has been
 released on the scan chain.
 @item @b{reset-end}
 @* Issued as the final step in @command{reset} processing.
-@ignore
-@item @b{reset-halt-post}
-@* Currently not used
-@item @b{reset-halt-pre}
-@* Currently not used
-@end ignore
 @item @b{reset-init}
 @* Used by @b{reset init} command for board-specific initialization.
 This event fires after @emph{reset-deassert-post}.
@@ -4600,24 +4730,20 @@ multiplexing, and so on.
 (You may be able to switch to a fast JTAG clock rate here, after
 the target clocks are fully set up.)
 @item @b{reset-start}
-@* Issued as part of @command{reset} processing
-before @command{reset_init} is called.
+@* Issued as the first step in @command{reset} processing
+before @command{reset-assert-pre} is called.
 
 This is the most robust place to use @command{jtag_rclk}
 or @command{adapter_khz} to switch to a low JTAG clock rate,
 when reset disables PLLs needed to use a fast clock.
-@ignore
-@item @b{reset-wait-pos}
-@* Currently not used
-@item @b{reset-wait-pre}
-@* Currently not used
-@end ignore
 @item @b{resume-start}
 @* Before any target is resumed
 @item @b{resume-end}
 @* After all targets have resumed
 @item @b{resumed}
 @* Target has resumed
+@item @b{trace-config}
+@* After target hardware trace configuration was changed
 @end itemize
 
 @node Flash Commands
@@ -4648,7 +4774,7 @@ bank'', and the GDB flash features be enabled.
 @xref{gdbconfiguration,,GDB Configuration}.
 @end enumerate
 
-Many CPUs have the ablity to ``boot'' from the first flash bank.
+Many CPUs have the ability to ``boot'' from the first flash bank.
 This means that misprogramming that bank can ``brick'' a system,
 so that it can't boot.
 JTAG tools, like OpenOCD, are often then used to ``de-brick'' the
@@ -4725,7 +4851,7 @@ but most don't bother.
 @anchor{flashprogrammingcommands}
 
 One feature distinguishing NOR flash from NAND or serial flash technologies
-is that for read access, it acts exactly like any other addressible memory.
+is that for read access, it acts exactly like any other addressable memory.
 This means you can use normal memory read commands like @command{mdw} or
 @command{dump_image} with it, with no special @command{flash} subcommands.
 @xref{memoryaccess,,Memory access}, and @ref{imageaccess,,Image access}.
@@ -4742,7 +4868,7 @@ chips consume target address space. They implicitly refer to the current
 JTAG target, and map from an address in that target's address space
 back to a flash bank.
 @comment In May 2009, those mappings may fail if any bank associated
-@comment with that target doesn't succesfuly autoprobe ... bug worth fixing?
+@comment with that target doesn't successfully autoprobe ... bug worth fixing?
 A few commands use abstract addressing based on bank and sector numbers,
 and don't depend on searching the current target and its address space.
 Avoid confusing the two command models.
@@ -4795,14 +4921,31 @@ each block, and the specified length must stay within that bank.
 @end deffn
 @comment no current checks for errors if fill blocks touch multiple banks!
 
-@deffn Command {flash write_bank} num filename offset
+@deffn Command {flash write_bank} num filename [offset]
 Write the binary @file{filename} to flash bank @var{num},
-starting at @var{offset} bytes from the beginning of the bank.
+starting at @var{offset} bytes from the beginning of the bank. If @var{offset}
+is omitted, start at the beginning of the flash bank.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+
+@deffn Command {flash read_bank} num filename [offset [length]]
+Read @var{length} bytes from the flash bank @var{num} starting at @var{offset}
+and write the contents to the binary @file{filename}. If @var{offset} is
+omitted, start at the beginning of the flash bank. If @var{length} is omitted,
+read the remaining bytes from the flash bank.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+
+@deffn Command {flash verify_bank} num filename [offset]
+Compare the contents of the binary file @var{filename} with the contents of the
+flash bank @var{num} starting at @var{offset}. If @var{offset} is omitted,
+start at the beginning of the flash bank. Fail if the contents do not match.
 The @var{num} parameter is a value shown by @command{flash banks}.
 @end deffn
 
 @deffn Command {flash write_image} [erase] [unlock] filename [offset] [type]
 Write the image @file{filename} to the current target's flash bank(s).
+Only loadable sections from the image are written.
 A relocation @var{offset} may be specified, in which case it is added
 to the base address for each section in the image.
 The file [@var{type}] can be specified
@@ -4846,8 +4989,10 @@ and display that status.
 The @var{num} parameter is a value shown by @command{flash banks}.
 @end deffn
 
-@deffn Command {flash info} num
-Print info about flash bank @var{num}
+@deffn Command {flash info} num [sectors]
+Print info about flash bank @var{num}, a list of protection blocks
+and their status. Use @option{sectors} to show a list of sectors instead.
+
 The @var{num} parameter is a value shown by @command{flash banks}.
 This command will first query the hardware, it does not print cached
 and possibly stale information.
@@ -4855,22 +5000,25 @@ and possibly stale information.
 
 @anchor{flashprotect}
 @deffn Command {flash protect} num first last (@option{on}|@option{off})
-Enable (@option{on}) or disable (@option{off}) protection of flash sectors
-in flash bank @var{num}, starting at sector @var{first}
+Enable (@option{on}) or disable (@option{off}) protection of flash blocks
+in flash bank @var{num}, starting at protection block @var{first}
 and continuing up to and including @var{last}.
-Providing a @var{last} sector of @option{last}
+Providing a @var{last} block of @option{last}
 specifies "to the end of the flash bank".
 The @var{num} parameter is a value shown by @command{flash banks}.
+The protection block is usually identical to a flash sector.
+Some devices may utilize a protection block distinct from flash sector.
+See @command{flash info} for a list of protection blocks.
 @end deffn
 
 @deffn Command {flash padded_value} num value
 Sets the default value used for padding any image sections, This should
 normally match the flash bank erased value. If not specified by this
-comamnd or the flash driver then it defaults to 0xff.
+command or the flash driver then it defaults to 0xff.
 @end deffn
 
 @anchor{program}
-@deffn Command {program} filename [verify] [reset] [offset]
+@deffn Command {program} filename [verify] [reset] [exit] [offset]
 This is a helper script that simplifies using OpenOCD as a standalone
 programmer. The only required parameter is @option{filename}, the others are optional.
 @xref{Flash Programming}.
@@ -4882,6 +5030,28 @@ As noted above, the @command{flash bank} command requires a driver name,
 and allows driver-specific options and behaviors.
 Some drivers also activate driver-specific commands.
 
+@deffn {Flash Driver} virtual
+This is a special driver that maps a previously defined bank to another
+address. All bank settings will be copied from the master physical bank.
+
+The @var{virtual} driver defines one mandatory parameters,
+
+@itemize
+@item @var{master_bank} The bank that this virtual address refers to.
+@end itemize
+
+So in the following example addresses 0xbfc00000 and 0x9fc00000 refer to
+the flash bank defined at address 0x1fc00000. Any command executed on
+the virtual banks is actually performed on the physical banks.
+@example
+flash bank $_FLASHNAME pic32mx 0x1fc00000 0 0 0 $_TARGETNAME
+flash bank vbank0 virtual 0xbfc00000 0 0 0 \
+           $_TARGETNAME $_FLASHNAME
+flash bank vbank1 virtual 0x9fc00000 0 0 0 \
+           $_TARGETNAME $_FLASHNAME
+@end example
+@end deffn
+
 @subsection External Flash
 
 @deffn {Flash Driver} cfi
@@ -4905,6 +5075,9 @@ The CFI driver can accept the following optional parameters, in any order:
 @item @var{jedec_probe} ... is used to detect certain non-CFI flash ROMs,
 like AM29LV010 and similar types.
 @item @var{x16_as_x8} ... when a 16-bit flash is hooked up to an 8-bit bus.
+@item @var{bus_swap} ... when data bytes in a 16-bit flash needs to be swapped.
+@item @var{data_swap} ... when data bytes in a 16-bit flash needs to be
+swapped when writing data values (i.e. not CFI commands).
 @end itemize
 
 To configure two adjacent banks of 16 MBytes each, both sixteen bits (two bytes)
@@ -4926,7 +5099,94 @@ flash bank $_FLASHNAME cfi 0x00000000 0x02000000 2 4 $_TARGETNAME
 @c "cfi part_id" disabled
 @end deffn
 
-@deffn {Flash Driver} lpcspifi
+@deffn {Flash Driver} jtagspi
+@cindex Generic JTAG2SPI driver
+@cindex SPI
+@cindex jtagspi
+@cindex bscan_spi
+Several FPGAs and CPLDs can retrieve their configuration (bitstream) from a
+SPI flash connected to them. To access this flash from the host, the device
+is first programmed with a special proxy bitstream that
+exposes the SPI flash on the device's JTAG interface. The flash can then be
+accessed through JTAG.
+
+Since signaling between JTAG and SPI is compatible, all that is required for
+a proxy bitstream is to connect TDI-MOSI, TDO-MISO, TCK-CLK and activate
+the flash chip select when the JTAG state machine is in SHIFT-DR. Such
+a bitstream for several Xilinx FPGAs can be found in
+@file{contrib/loaders/flash/fpga/xilinx_bscan_spi.py}. It requires
+@uref{https://github.com/m-labs/migen, migen} and a Xilinx toolchain to build.
+
+This flash bank driver requires a target on a JTAG tap and will access that
+tap directly. Since no support from the target is needed, the target can be a
+"testee" dummy. Since the target does not expose the flash memory
+mapping, target commands that would otherwise be expected to access the flash
+will not work. These include all @command{*_image} and
+@command{$target_name m*} commands as well as @command{program}. Equivalent
+functionality is available through the @command{flash write_bank},
+@command{flash read_bank}, and @command{flash verify_bank} commands.
+
+@itemize
+@item @var{ir} ... is loaded into the JTAG IR to map the flash as the JTAG DR.
+For the bitstreams generated from @file{xilinx_bscan_spi.py} this is the
+@var{USER1} instruction.
+@end itemize
+
+@example
+target create $_TARGETNAME testee -chain-position $_CHIPNAME.fpga
+set _XILINX_USER1 0x02
+flash bank $_FLASHNAME spi 0x0 0 0 0 \
+           $_TARGETNAME $_XILINX_USER1
+@end example
+@end deffn
+
+@deffn {Flash Driver} xcf
+@cindex Xilinx Platform flash driver
+@cindex xcf
+Xilinx FPGAs can be configured from specialized flash ICs named Platform Flash.
+It is (almost) regular NOR flash with erase sectors, program pages, etc. The
+only difference is special registers controlling its FPGA specific behavior.
+They must be properly configured for successful FPGA loading using
+additional @var{xcf} driver command:
+
+@deffn Command {xcf ccb} <bank_id>
+command accepts additional parameters:
+@itemize
+@item @var{external|internal} ... selects clock source.
+@item @var{serial|parallel} ... selects serial or parallel data bus mode.
+@item @var{slave|master} ... selects slave of master mode for flash device.
+@item @var{40|20} ... selects clock frequency in MHz for internal clock
+in master mode.
+@end itemize
+@example
+xcf ccb 0 external parallel slave 40
+@end example
+All of them must be specified even if clock frequency is pointless
+in slave mode. If only bank id specified than command prints current
+CCB register value. Note: there is no need to write this register
+every time you erase/program data sectors because it stores in
+dedicated sector.
+@end deffn
+
+@deffn Command {xcf configure} <bank_id>
+Initiates FPGA loading procedure. Useful if your board has no "configure"
+button.
+@example
+xcf configure 0
+@end example
+@end deffn
+
+Additional driver notes:
+@itemize
+@item Only single revision supported.
+@item Driver automatically detects need of bit reverse, but
+only "bin" (raw binary, do not confuse it with "bit") and "mcs"
+(Intel hex) file types supported.
+@item For additional info check xapp972.pdf and ug380.pdf.
+@end itemize
+@end deffn
+
+@deffn {Flash Driver} lpcspifi
 @cindex NXP SPI Flash Interface
 @cindex SPIFI
 @cindex lpcspifi
@@ -4954,7 +5214,7 @@ flash bank $_FLASHNAME lpcspifi 0x14000000 0 0 0 $_TARGETNAME
 @cindex STMicroelectronics Serial Memory Interface
 @cindex SMI
 @cindex stmsmi
-Some devices form STMicroelectronics (e.g. STR75x MCU family,
+Some devices from STMicroelectronics (e.g. STR75x MCU family,
 SPEAr MPU family) include a proprietary
 ``Serial Memory Interface'' (SMI) controller able to drive external
 SPI flash devices.
@@ -4978,6 +5238,58 @@ flash bank $_FLASHNAME stmsmi 0xf8000000 0 0 0 $_TARGETNAME
 
 @end deffn
 
+@deffn {Flash Driver} mrvlqspi
+This driver supports QSPI flash controller of Marvell's Wireless
+Microcontroller platform.
+
+The flash size is autodetected based on the table of known JEDEC IDs
+hardcoded in the OpenOCD sources.
+
+@example
+flash bank $_FLASHNAME mrvlqspi 0x0 0 0 0 $_TARGETNAME 0x46010000
+@end example
+
+@end deffn
+
+@deffn {Flash Driver} ath79
+@cindex Atheros ath79 SPI driver
+@cindex ath79
+Members of ATH79 SoC family from Atheros include a SPI interface with 3
+chip selects.
+On reset a SPI flash connected to the first chip select (CS0) is made
+directly read-accessible in the CPU address space (up to 16MBytes)
+and is usually used to store the bootloader and operating system.
+Normal OpenOCD commands like @command{mdw} can be used to display
+the flash content while it is in memory-mapped mode (only the first
+4MBytes are accessible without additional configuration on reset).
+
+The setup command only requires the @var{base} parameter in order
+to identify the memory bank. The actual value for the base address
+is not otherwise used by the driver. However the mapping is passed
+to gdb. Thus for the memory mapped flash (chipselect CS0) the base
+address should be the actual memory mapped base address. For unmapped
+chipselects (CS1 and CS2) care should be taken to use a base address
+that does not overlap with real memory regions.
+Additional information, like flash size, are detected automatically.
+An optional additional parameter sets the chipselect for the bank,
+with the default CS0.
+CS1 and CS2 require additional GPIO setup before they can be used
+since the alternate function must be enabled on the GPIO pin
+CS1/CS2 is routed to on the given SoC.
+
+@example
+flash bank $_FLASHNAME ath79 0 0 0 0 $_TARGETNAME
+
+# When using multiple chipselects the base should be different for each,
+# otherwise the write_image command is not able to distinguish the
+# banks.
+flash bank flash0 ath79 0x00000000 0 0 0 $_TARGETNAME cs0
+flash bank flash1 ath79 0x10000000 0 0 0 $_TARGETNAME cs1
+flash bank flash2 ath79 0x20000000 0 0 0 $_TARGETNAME cs2
+@end example
+
+@end deffn
+
 @subsection Internal Flash (Microcontrollers)
 
 @deffn {Flash Driver} aduc702x
@@ -4992,6 +5304,134 @@ flash bank $_FLASHNAME aduc702x 0 0 0 0 $_TARGETNAME
 @end example
 @end deffn
 
+@deffn {Flash Driver} ambiqmicro
+@cindex ambiqmicro
+@cindex apollo
+All members of the Apollo microcontroller family from
+Ambiq Micro include internal flash and use ARM's Cortex-M4 core.
+The host connects over USB to an FTDI interface that communicates
+with the target using SWD.
+
+The @var{ambiqmicro} driver reads the Chip Information Register detect
+the device class of the MCU.
+The Flash and SRAM sizes directly follow device class, and are used
+to set up the flash banks.
+If this fails, the driver will use default values set to the minimum
+sizes of an Apollo chip.
+
+All Apollo chips have two flash banks of the same size.
+In all cases the first flash bank starts at location 0,
+and the second bank starts after the first.
+
+@example
+# Flash bank 0
+flash bank $_FLASHNAME ambiqmicro 0 0x00040000 0 0 $_TARGETNAME
+# Flash bank 1 - same size as bank0, starts after bank 0.
+flash bank $_FLASHNAME ambiqmicro 0x00040000 0x00040000 0 0 \
+           $_TARGETNAME
+@end example
+
+Flash is programmed using custom entry points into the bootloader.
+This is the only way to program the flash as no flash control registers
+are available to the user.
+
+The @var{ambiqmicro} driver adds some additional commands:
+
+@deffn Command {ambiqmicro mass_erase} <bank>
+Erase entire bank.
+@end deffn
+@deffn Command {ambiqmicro page_erase} <bank> <first> <last>
+Erase device pages.
+@end deffn
+@deffn Command {ambiqmicro program_otp} <bank> <offset> <count>
+Program OTP is a one time operation to create write protected flash.
+The user writes sectors to SRAM starting at 0x10000010.
+Program OTP will write these sectors from SRAM to flash, and write protect
+the flash.
+@end deffn
+@end deffn
+
+@anchor{at91samd}
+@deffn {Flash Driver} at91samd
+@cindex at91samd
+All members of the ATSAMD, ATSAMR, ATSAML and ATSAMC microcontroller
+families from Atmel include internal flash and use ARM's Cortex-M0+ core.
+This driver uses the same command names/syntax as @xref{at91sam3}.
+
+@deffn Command {at91samd chip-erase}
+Issues a complete Flash erase via the Device Service Unit (DSU). This can be
+used to erase a chip back to its factory state and does not require the
+processor to be halted.
+@end deffn
+
+@deffn Command {at91samd set-security}
+Secures the Flash via the Set Security Bit (SSB) command. This prevents access
+to the Flash and can only be undone by using the chip-erase command which
+erases the Flash contents and turns off the security bit. Warning: at this
+time, openocd will not be able to communicate with a secured chip and it is
+therefore not possible to chip-erase it without using another tool.
+
+@example
+at91samd set-security enable
+@end example
+@end deffn
+
+@deffn Command {at91samd eeprom}
+Shows or sets the EEPROM emulation size configuration, stored in the User Row
+of the Flash. When setting, the EEPROM size must be specified in bytes and it
+must be one of the permitted sizes according to the datasheet. Settings are
+written immediately but only take effect on MCU reset. EEPROM emulation
+requires additional firmware support and the minimum EEPROM size may not be
+the same as the minimum that the hardware supports. Set the EEPROM size to 0
+in order to disable this feature.
+
+@example
+at91samd eeprom
+at91samd eeprom 1024
+@end example
+@end deffn
+
+@deffn Command {at91samd bootloader}
+Shows or sets the bootloader size configuration, stored in the User Row of the
+Flash. This is called the BOOTPROT region. When setting, the bootloader size
+must be specified in bytes and it must be one of the permitted sizes according
+to the datasheet. Settings are written immediately but only take effect on
+MCU reset. Setting the bootloader size to 0 disables bootloader protection.
+
+@example
+at91samd bootloader
+at91samd bootloader 16384
+@end example
+@end deffn
+
+@deffn Command {at91samd dsu_reset_deassert}
+This command releases internal reset held by DSU
+and prepares reset vector catch in case of reset halt.
+Command is used internally in event event reset-deassert-post.
+@end deffn
+
+@deffn Command {at91samd nvmuserrow}
+Writes or reads the entire 64 bit wide NVM user row register which is located at
+0x804000. This register includes various fuses lock-bits and factory calibration
+data. Reading the register is done by invoking this command without any
+arguments. Writing is possible by giving 1 or 2 hex values. The first argument
+is the register value to be written and the second one is an optional changemask.
+Every bit which value in changemask is 0 will stay unchanged. The lock- and
+reserved-bits are masked out and cannot be changed.
+
+@example
+# Read user row
+>at91samd nvmuserrow
+NVMUSERROW: 0xFFFFFC5DD8E0C788
+# Write 0xFFFFFC5DD8E0C788 to user row
+>at91samd nvmuserrow 0xFFFFFC5DD8E0C788
+# Write 0x12300 to user row but leave other bits and low byte unchanged
+>at91samd nvmuserrow 0x12345 0xFFF00
+@end example
+@end deffn
+
+@end deffn
+
 @anchor{at91sam3}
 @deffn {Flash Driver} at91sam3
 @cindex at91sam3
@@ -5001,7 +5441,7 @@ currently (6/22/09) recognizes the AT91SAM3U[1/2/4][C/E] chips. Note
 that the driver was orginaly developed and tested using the
 AT91SAM3U4E, using a SAM3U-EK eval board. Support for other chips in
 the family was cribbed from the data sheet. @emph{Note to future
-readers/updaters: Please remove this worrysome comment after other
+readers/updaters: Please remove this worrisome comment after other
 chips are confirmed.}
 
 The AT91SAM3U4[E/C] (256K) chips have two flash banks; most other chips
@@ -5061,7 +5501,28 @@ This command shows/sets the slow clock frequency used in the
 @cindex at91sam4
 All members of the AT91SAM4 microcontroller family from
 Atmel include internal flash and use ARM's Cortex-M4 core.
-This driver uses the same cmd names/syntax as @xref{at91sam3}.
+This driver uses the same command names/syntax as @xref{at91sam3}.
+@end deffn
+
+@deffn {Flash Driver} at91sam4l
+@cindex at91sam4l
+All members of the AT91SAM4L microcontroller family from
+Atmel include internal flash and use ARM's Cortex-M4 core.
+This driver uses the same command names/syntax as @xref{at91sam3}.
+
+The AT91SAM4L driver adds some additional commands:
+@deffn Command {at91sam4l smap_reset_deassert}
+This command releases internal reset held by SMAP
+and prepares reset vector catch in case of reset halt.
+Command is used internally in event event reset-deassert-post.
+@end deffn
+@end deffn
+
+@deffn {Flash Driver} atsamv
+@cindex atsamv
+All members of the ATSAMV, ATSAMS, and ATSAME families from
+Atmel include internal flash and use ARM's Cortex-M7 core.
+This driver uses the same command names/syntax as @xref{at91sam3}.
 @end deffn
 
 @deffn {Flash Driver} at91sam7
@@ -5117,22 +5578,239 @@ The AVR 8-bit microcontrollers from Atmel integrate flash memory.
 @comment - defines mass_erase ... pointless given flash_erase_address
 @end deffn
 
+@deffn {Flash Driver} bluenrg-x
+STMicroelectronics BlueNRG-1 and BlueNRG-2 Bluetooth low energy wireless system-on-chip. They include ARM Cortex-M0 core and internal flash memory.
+The driver automatically recognizes these chips using
+the chip identification registers, and autoconfigures itself.
+
+@example
+flash bank $_FLASHNAME bluenrg-x 0 0 0 0 $_TARGETNAME
+@end example
+
+Note that when users ask to erase all the sectors of the flash, a mass erase command is used which is faster than erasing
+each single sector one by one.
+
+@example
+flash erase_sector 0 0 79 # It will perform a mass erase on BlueNRG-1
+@end example
+
+@example
+flash erase_sector 0 0 127 # It will perform a mass erase on BlueNRG-2
+@end example
+
+Triggering a mass erase is also useful when users want to disable readout protection.
+@end deffn
+
+@deffn {Flash Driver} cc26xx
+All versions of the SimpleLink CC13xx and CC26xx microcontrollers from Texas
+Instruments include internal flash. The cc26xx flash driver supports both the
+CC13xx and CC26xx family of devices. The driver automatically recognizes the
+specific version's flash parameters and autoconfigures itself. Flash bank 0
+starts at address 0.
+
+@example
+flash bank $_FLASHNAME cc26xx 0 0 0 0 $_TARGETNAME
+@end example
+@end deffn
+
+@deffn {Flash Driver} cc3220sf
+The CC3220SF version of the SimpleLink CC32xx microcontrollers from Texas
+Instruments includes 1MB of internal flash. The cc3220sf flash driver only
+supports the internal flash. The serial flash on SimpleLink boards is
+programmed via the bootloader over a UART connection. Security features of
+the CC3220SF may erase the internal flash during power on reset. Refer to
+documentation at @url{www.ti.com/cc3220sf} for details on security features
+and programming the serial flash.
+
+@example
+flash bank $_FLASHNAME cc3220sf 0 0 0 0 $_TARGETNAME
+@end example
+@end deffn
+
 @deffn {Flash Driver} efm32
 All members of the EFM32 microcontroller family from Energy Micro include
-internal flash and use ARM Cortex M3 cores. The driver automatically recognizes
+internal flash and use ARM Cortex-M3 cores. The driver automatically recognizes
 a number of these chips using the chip identification register, and
 autoconfigures itself.
 @example
 flash bank $_FLASHNAME efm32 0 0 0 0 $_TARGETNAME
 @end example
+A special feature of efm32 controllers is that it is possible to completely disable the
+debug interface by writing the correct values to the 'Debug Lock Word'. OpenOCD supports
+this via the following command:
+@example
+efm32 debuglock num
+@end example
+The @var{num} parameter is a value shown by @command{flash banks}.
+Note that in order for this command to take effect, the target needs to be reset.
 @emph{The current implementation is incomplete. Unprotecting flash pages is not
 supported.}
 @end deffn
 
+@deffn {Flash Driver} fm3
+All members of the FM3 microcontroller family from Fujitsu
+include internal flash and use ARM Cortex-M3 cores.
+The @var{fm3} driver uses the @var{target} parameter to select the
+correct bank config, it can currently be one of the following:
+@code{mb9bfxx1.cpu}, @code{mb9bfxx2.cpu}, @code{mb9bfxx3.cpu},
+@code{mb9bfxx4.cpu}, @code{mb9bfxx5.cpu} or @code{mb9bfxx6.cpu}.
+
+@example
+flash bank $_FLASHNAME fm3 0 0 0 0 $_TARGETNAME
+@end example
+@end deffn
+
+@deffn {Flash Driver} fm4
+All members of the FM4 microcontroller family from Spansion (formerly Fujitsu)
+include internal flash and use ARM Cortex-M4 cores.
+The @var{fm4} driver uses a @var{family} parameter to select the
+correct bank config, it can currently be one of the following:
+@code{MB9BFx64}, @code{MB9BFx65}, @code{MB9BFx66}, @code{MB9BFx67}, @code{MB9BFx68},
+@code{S6E2Cx8}, @code{S6E2Cx9}, @code{S6E2CxA} or @code{S6E2Dx},
+with @code{x} treated as wildcard and otherwise case (and any trailing
+characters) ignored.
+
+@example
+flash bank $@{_FLASHNAME@}0 fm4 0x00000000 0 0 0 \
+           $_TARGETNAME S6E2CCAJ0A
+flash bank $@{_FLASHNAME@}1 fm4 0x00100000 0 0 0 \
+           $_TARGETNAME S6E2CCAJ0A
+@end example
+@emph{The current implementation is incomplete. Protection is not supported,
+nor is Chip Erase (only Sector Erase is implemented).}
+@end deffn
+
+@deffn {Flash Driver} kinetis
+@cindex kinetis
+Kx, KLx, KVx and KE1x members of the Kinetis microcontroller family
+from NXP (former Freescale) include
+internal flash and use ARM Cortex-M0+ or M4 cores. The driver automatically
+recognizes flash size and a number of flash banks (1-4) using the chip
+identification register, and autoconfigures itself.
+Use kinetis_ke driver for KE0x and KEAx devices.
+
+The @var{kinetis} driver defines option:
+@itemize
+@item -sim-base @var{addr} ... base of System Integration Module where chip identification resides. Driver tries two known locations if option is omitted.
+@end itemize
+
+@example
+flash bank $_FLASHNAME kinetis 0 0 0 0 $_TARGETNAME
+@end example
+
+@deffn Command {kinetis create_banks}
+Configuration command enables automatic creation of additional flash banks
+based on real flash layout of device. Banks are created during device probe.
+Use 'flash probe 0' to force probe.
+@end deffn
+
+@deffn Command {kinetis fcf_source} [protection|write]
+Select what source is used when writing to a Flash Configuration Field.
+@option{protection} mode builds FCF content from protection bits previously
+set by 'flash protect' command.
+This mode is default. MCU is protected from unwanted locking by immediate
+writing FCF after erase of relevant sector.
+@option{write} mode enables direct write to FCF.
+Protection cannot be set by 'flash protect' command. FCF is written along
+with the rest of a flash image.
+@emph{BEWARE: Incorrect flash configuration may permanently lock the device!}
+@end deffn
+
+@deffn Command {kinetis fopt} [num]
+Set value to write to FOPT byte of Flash Configuration Field.
+Used in kinetis 'fcf_source protection' mode only.
+@end deffn
+
+@deffn Command {kinetis mdm check_security}
+Checks status of device security lock. Used internally in examine-end event.
+@end deffn
+
+@deffn Command {kinetis mdm halt}
+Issues a halt via the MDM-AP. This command can be used to break a watchdog reset
+loop when connecting to an unsecured target.
+@end deffn
+
+@deffn Command {kinetis mdm mass_erase}
+Issues a complete flash erase via the MDM-AP. This can be used to erase a chip
+back to its factory state, removing security. It does not require the processor
+to be halted, however the target will remain in a halted state after this
+command completes.
+@end deffn
+
+@deffn Command {kinetis nvm_partition}
+For FlexNVM devices only (KxxDX and KxxFX).
+Command shows or sets data flash or EEPROM backup size in kilobytes,
+sets two EEPROM blocks sizes in bytes and enables/disables loading
+of EEPROM contents to FlexRAM during reset.
+
+For details see device reference manual, Flash Memory Module,
+Program Partition command.
+
+Setting is possible only once after mass_erase.
+Reset the device after partition setting.
+
+Show partition size:
+@example
+kinetis nvm_partition info
+@end example
+
+Set 32 KB data flash, rest of FlexNVM is EEPROM backup. EEPROM has two blocks
+of 512 and 1536 bytes and its contents is loaded to FlexRAM during reset:
+@example
+kinetis nvm_partition dataflash 32 512 1536 on
+@end example
+
+Set 16 KB EEPROM backup, rest of FlexNVM is a data flash. EEPROM has two blocks
+of 1024 bytes and its contents is not loaded to FlexRAM during reset:
+@example
+kinetis nvm_partition eebkp 16 1024 1024 off
+@end example
+@end deffn
+
+@deffn Command {kinetis mdm reset}
+Issues a reset via the MDM-AP. This causes the MCU to output a low pulse on the
+RESET pin, which can be used to reset other hardware on board.
+@end deffn
+
+@deffn Command {kinetis disable_wdog}
+For Kx devices only (KLx has different COP watchdog, it is not supported).
+Command disables watchdog timer.
+@end deffn
+@end deffn
+
+@deffn {Flash Driver} kinetis_ke
+@cindex kinetis_ke
+KE0x and KEAx members of the Kinetis microcontroller family from NXP include
+internal flash and use ARM Cortex-M0+. The driver automatically recognizes
+the KE0x sub-family using the chip identification register, and
+autoconfigures itself.
+Use kinetis (not kinetis_ke) driver for KE1x devices.
+
+@example
+flash bank $_FLASHNAME kinetis_ke 0 0 0 0 $_TARGETNAME
+@end example
+
+@deffn Command {kinetis_ke mdm check_security}
+Checks status of device security lock. Used internally in examine-end event.
+@end deffn
+
+@deffn Command {kinetis_ke mdm mass_erase}
+Issues a complete Flash erase via the MDM-AP.
+This can be used to erase a chip back to its factory state.
+Command removes security lock from a device (use of SRST highly recommended).
+It does not require the processor to be halted.
+@end deffn
+
+@deffn Command {kinetis_ke disable_wdog}
+Command disables watchdog timer.
+@end deffn
+@end deffn
+
 @deffn {Flash Driver} lpc2000
-Most members of the LPC1700, LPC1800, LPC2000 and LPC4300 microcontroller
-families from NXP include internal flash and use Cortex-M3 (LPC1700, LPC1800),
-Cortex-M4 (LPC4300) or ARM7TDMI (LPC2000) cores.
+This is the driver to support internal flash of all members of the
+LPC11(x)00 and LPC1300 microcontroller families and most members of
+the LPC800, LPC1500, LPC1700, LPC1800, LPC2000, LPC4000 and LPC54100
+microcontroller families from NXP.
 
 @quotation Note
 There are LPC2000 devices which are not supported by the @var{lpc2000}
@@ -5148,9 +5826,16 @@ which must appear in the following order:
 @item @var{variant} ... required, may be
 @option{lpc2000_v1} (older LPC21xx and LPC22xx)
 @option{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx)
-@option{lpc1700} (LPC175x and LPC176x)
-or @option{lpc4300} - available also as @option{lpc1800} alias (LPC18x[2357] and
+@option{lpc1700} (LPC175x and LPC176x and LPC177x/8x)
+@option{lpc4300} - available also as @option{lpc1800} alias (LPC18x[2357] and
 LPC43x[2357])
+@option{lpc800} (LPC8xx)
+@option{lpc1100} (LPC11(x)xx and LPC13xx)
+@option{lpc1500} (LPC15xx)
+@option{lpc54100} (LPC541xx)
+@option{lpc4000} (LPC40xx)
+or @option{auto} - automatically detects flash variant and size for LPC11(x)00,
+LPC8xx, LPC13xx, LPC17xx and LPC40xx
 @item @var{clock_kHz} ... the frequency, in kiloHertz,
 at which the core is running
 @item @option{calc_checksum} ... optional (but you probably want to provide this!),
@@ -5247,7 +5932,7 @@ lpc2900 read_custom 0 /path_to/customer_info.bin
 
 The index sector of the flash is a @emph{write-only} sector. It cannot be
 erased! In order to guard against unintentional write access, all following
-commands need to be preceeded by a successful call to the @code{password}
+commands need to be preceded by a successful call to the @code{password}
 command:
 
 @deffn Command {lpc2900 password} bank password
@@ -5311,8 +5996,158 @@ lpc2900 secure_jtag 0
 @end deffn
 @end deffn
 
+@deffn {Flash Driver} mdr
+This drivers handles the integrated NOR flash on Milandr Cortex-M
+based controllers. A known limitation is that the Info memory can't be
+read or verified as it's not memory mapped.
+
+@example
+flash bank <name> mdr <base> <size> \
+      0 0 <target#> @var{type} @var{page_count} @var{sec_count}
+@end example
+
+@itemize @bullet
+@item @var{type} - 0 for main memory, 1 for info memory
+@item @var{page_count} - total number of pages
+@item @var{sec_count} - number of sector per page count
+@end itemize
+
+Example usage:
+@example
+if @{ [info exists IMEMORY] && [string equal $IMEMORY true] @} @{
+   flash bank $@{_CHIPNAME@}_info.flash mdr 0x00000000 0x01000 \
+         0 0 $_TARGETNAME 1 1 4
+@} else @{
+   flash bank $_CHIPNAME.flash mdr 0x00000000 0x20000 \
+         0 0 $_TARGETNAME 0 32 4
+@}
+@end example
+@end deffn
+
+@deffn {Flash Driver} msp432
+All versions of the SimpleLink MSP432 microcontrollers from Texas
+Instruments include internal flash. The msp432 flash driver automatically
+recognizes the specific version's flash parameters and autoconfigures itself.
+Main program flash (starting at address 0) is flash bank 0. Information flash
+region on MSP432P4 versions (starting at address 0x200000) is flash bank 1.
+
+@example
+flash bank $_FLASHNAME msp432 0 0 0 0 $_TARGETNAME
+@end example
+
+@deffn Command {msp432 mass_erase} [main|all]
+Performs a complete erase of flash. By default, @command{mass_erase} will erase
+only the main program flash.
+
+On MSP432P4 versions, using @command{mass_erase all} will erase both the
+main program and information flash regions. To also erase the BSL in information
+flash, the user must first use the @command{bsl} command.
+@end deffn
+
+@deffn Command {msp432 bsl} [unlock|lock]
+On MSP432P4 versions, @command{bsl} unlocks and locks the bootstrap loader (BSL)
+region in information flash so that flash commands can erase or write the BSL.
+Leave the BSL locked to prevent accidentally corrupting the bootstrap loader.
+
+To erase and program the BSL:
+@example
+msp432 bsl unlock
+flash erase_address 0x202000 0x2000
+flash write_image bsl.bin 0x202000
+msp432 bsl lock
+@end example
+@end deffn
+@end deffn
+
+@deffn {Flash Driver} niietcm4
+This drivers handles the integrated NOR flash on NIIET Cortex-M4
+based controllers. Flash size and sector layout are auto-configured by the driver.
+Main flash memory is called "Bootflash" and has main region and info region.
+Info region is NOT memory mapped by default,
+but it can replace first part of main region if needed.
+Full erase, single and block writes are supported for both main and info regions.
+There is additional not memory mapped flash called "Userflash", which
+also have division into regions: main and info.
+Purpose of userflash - to store system and user settings.
+Driver has special commands to perform operations with this memory.
+
+@example
+flash bank $_FLASHNAME niietcm4 0 0 0 0 $_TARGETNAME
+@end example
+
+Some niietcm4-specific commands are defined:
+
+@deffn Command {niietcm4 uflash_read_byte} bank ('main'|'info') address
+Read byte from main or info userflash region.
+@end deffn
+
+@deffn Command {niietcm4 uflash_write_byte} bank ('main'|'info') address value
+Write byte to main or info userflash region.
+@end deffn
+
+@deffn Command {niietcm4 uflash_full_erase} bank
+Erase all userflash including info region.
+@end deffn
+
+@deffn Command {niietcm4 uflash_erase} bank ('main'|'info') first_sector last_sector
+Erase sectors of main or info userflash region, starting at sector first up to and including last.
+@end deffn
+
+@deffn Command {niietcm4 uflash_protect_check} bank ('main'|'info')
+Check sectors protect.
+@end deffn
+
+@deffn Command {niietcm4 uflash_protect} bank ('main'|'info') first_sector last_sector ('on'|'off')
+Protect sectors of main or info userflash region, starting at sector first up to and including last.
+@end deffn
+
+@deffn Command {niietcm4 bflash_info_remap} bank ('on'|'off')
+Enable remapping bootflash info region to 0x00000000 (or 0x40000000 if external memory boot used).
+@end deffn
+
+@deffn Command {niietcm4 extmem_cfg} bank ('gpioa'|'gpiob'|'gpioc'|'gpiod'|'gpioe'|'gpiof'|'gpiog'|'gpioh') pin_num ('func1'|'func3')
+Configure external memory interface for boot.
+@end deffn
+
+@deffn Command {niietcm4 service_mode_erase} bank
+Perform emergency erase of all flash (bootflash and userflash).
+@end deffn
+
+@deffn Command {niietcm4 driver_info} bank
+Show information about flash driver.
+@end deffn
+
+@end deffn
+
+@deffn {Flash Driver} nrf5
+All members of the nRF51 microcontroller families from Nordic Semiconductor
+include internal flash and use ARM Cortex-M0 core.
+Also, the nRF52832 microcontroller from Nordic Semiconductor, which include
+internal flash and use an ARM Cortex-M4F core.
+
+@example
+flash bank $_FLASHNAME nrf5 0 0x00000000 0 0 $_TARGETNAME
+@end example
+
+Some nrf5-specific commands are defined:
+
+@deffn Command {nrf5 mass_erase}
+Erases the contents of the code memory and user information
+configuration registers as well. It must be noted that this command
+works only for chips that do not have factory pre-programmed region 0
+code.
+@end deffn
+
+@end deffn
+
 @deffn {Flash Driver} ocl
-@emph{No idea what this is, other than using some arm7/arm9 core.}
+This driver is an implementation of the ``on chip flash loader''
+protocol proposed by Pavel Chromy.
+
+It is a minimalistic command-response protocol intended to be used
+over a DCC when communicating with an internal or external flash
+loader running from RAM. An example implementation for AT91SAM7x is
+available in @file{contrib/loaders/flash/at91sam7x/}.
 
 @example
 flash bank $_FLASHNAME ocl 0 0 0 0 $_TARGETNAME
@@ -5343,26 +6178,197 @@ This will remove any Code Protection.
 @end deffn
 @end deffn
 
-@deffn {Flash Driver} stellaris
-All members of the Stellaris LM3Sxxx microcontroller family from
-Texas Instruments
-include internal flash and use ARM Cortex M3 cores.
+@deffn {Flash Driver} psoc4
+All members of the PSoC 41xx/42xx microcontroller family from Cypress
+include internal flash and use ARM Cortex-M0 cores.
 The driver automatically recognizes a number of these chips using
 the chip identification register, and autoconfigures itself.
-@footnote{Currently there is a @command{stellaris mass_erase} command.
-That seems pointless since the same effect can be had using the
-standard @command{flash erase_address} command.}
+
+Note: Erased internal flash reads as 00.
+System ROM of PSoC 4 does not implement erase of a flash sector.
+
+@example
+flash bank $_FLASHNAME psoc4 0 0 0 0 $_TARGETNAME
+@end example
+
+psoc4-specific commands
+@deffn Command {psoc4 flash_autoerase} num (on|off)
+Enables or disables autoerase mode for a flash bank.
+
+If flash_autoerase is off, use mass_erase before flash programming.
+Flash erase command fails if region to erase is not whole flash memory.
+
+If flash_autoerase is on, a sector is both erased and programmed in one
+system ROM call. Flash erase command is ignored.
+This mode is suitable for gdb load.
+
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+
+@deffn Command {psoc4 mass_erase} num
+Erases the contents of the flash memory, protection and security lock.
+
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+@end deffn
+
+@deffn {Flash Driver} psoc5lp
+All members of the PSoC 5LP microcontroller family from Cypress
+include internal program flash and use ARM Cortex-M3 cores.
+The driver probes for a number of these chips and autoconfigures itself,
+apart from the base address.
+
+@example
+flash bank $_FLASHNAME psoc5lp 0x00000000 0 0 0 $_TARGETNAME
+@end example
+
+@b{Note:} PSoC 5LP chips can be configured to have ECC enabled or disabled.
+@quotation Attention
+If flash operations are performed in ECC-disabled mode, they will also affect
+the ECC flash region. Erasing a 16k flash sector in the 0x00000000 area will
+then also erase the corresponding 2k data bytes in the 0x48000000 area.
+Writing to the ECC data bytes in ECC-disabled mode is not implemented.
+@end quotation
+
+Commands defined in the @var{psoc5lp} driver:
+
+@deffn Command {psoc5lp mass_erase}
+Erases all flash data and ECC/configuration bytes, all flash protection rows,
+and all row latches in all flash arrays on the device.
+@end deffn
+@end deffn
+
+@deffn {Flash Driver} psoc5lp_eeprom
+All members of the PSoC 5LP microcontroller family from Cypress
+include internal EEPROM and use ARM Cortex-M3 cores.
+The driver probes for a number of these chips and autoconfigures itself,
+apart from the base address.
+
+@example
+flash bank $_CHIPNAME.eeprom psoc5lp_eeprom 0x40008000 0 0 0 $_TARGETNAME
+@end example
+@end deffn
+
+@deffn {Flash Driver} psoc5lp_nvl
+All members of the PSoC 5LP microcontroller family from Cypress
+include internal Nonvolatile Latches and use ARM Cortex-M3 cores.
+The driver probes for a number of these chips and autoconfigures itself.
+
+@example
+flash bank $_CHIPNAME.nvl psoc5lp_nvl 0 0 0 0 $_TARGETNAME
+@end example
+
+PSoC 5LP chips have multiple NV Latches:
+
+@itemize
+@item Device Configuration NV Latch - 4 bytes
+@item Write Once (WO) NV Latch - 4 bytes
+@end itemize
+
+@b{Note:} This driver only implements the Device Configuration NVL.
+
+The @var{psoc5lp} driver reads the ECC mode from Device Configuration NVL.
+@quotation Attention
+Switching ECC mode via write to Device Configuration NVL will require a reset
+after successful write.
+@end quotation
+@end deffn
+
+@deffn {Flash Driver} psoc6
+Supports PSoC6 (CY8C6xxx) family of Cypress microcontrollers.
+PSoC6 is a dual-core device with CM0+ and CM4 cores. Both cores share
+the same Flash/RAM/MMIO address space.
+
+Flash in PSoC6 is split into three regions:
+@itemize @bullet
+@item Main Flash - this is the main storage for user application.
+Total size varies among devices, sector size: 256 kBytes, row size:
+512 bytes. Supports erase operation on individual rows.
+@item Work Flash - intended to be used as storage for user data
+(e.g. EEPROM emulation). Total size: 32 KBytes, sector size: 32 KBytes,
+row size: 512 bytes.
+@item Supervisory Flash - special region which contains device-specific
+service data. This region does not support erase operation. Only few rows can
+be programmed by the user, most of the rows are read only. Programming
+operation will erase row automatically.
+@end itemize
+
+All three flash regions are supported by the driver. Flash geometry is detected
+automatically by parsing data in SPCIF_GEOMETRY register.
+
+PSoC6 is equipped with NOR Flash so erased Flash reads as 0x00.
+
+@example
+flash bank main_flash_cm0 psoc6 0x10000000 0 0 0 $@{TARGET@}.cm0
+flash bank work_flash_cm0 psoc6 0x14000000 0 0 0 $@{TARGET@}.cm0
+flash bank super_flash_user_cm0 psoc6 0x16000800 0 0 0 $@{TARGET@}.cm0
+flash bank super_flash_nar_cm0 psoc6 0x16001A00 0 0 0 $@{TARGET@}.cm0
+flash bank super_flash_key_cm0 psoc6 0x16005A00 0 0 0 $@{TARGET@}.cm0
+flash bank super_flash_toc2_cm0 psoc6 0x16007C00 0 0 0 $@{TARGET@}.cm0
+
+flash bank main_flash_cm4 psoc6 0x10000000 0 0 0 $@{TARGET@}.cm4
+flash bank work_flash_cm4 psoc6 0x14000000 0 0 0 $@{TARGET@}.cm4
+flash bank super_flash_user_cm4 psoc6 0x16000800 0 0 0 $@{TARGET@}.cm4
+flash bank super_flash_nar_cm4 psoc6 0x16001A00 0 0 0 $@{TARGET@}.cm4
+flash bank super_flash_key_cm4 psoc6 0x16005A00 0 0 0 $@{TARGET@}.cm4
+flash bank super_flash_toc2_cm4 psoc6 0x16007C00 0 0 0 $@{TARGET@}.cm4
+@end example
+
+psoc6-specific commands
+@deffn Command {psoc6 reset_halt}
+Command can be used to simulate broken Vector Catch from gdbinit or tcl scripts.
+When invoked for CM0+ target, it will set break point at application entry point
+and issue SYSRESETREQ. This will reset both cores and all peripherals. CM0+ will
+reset CM4 during boot anyway so this is safe. On CM4 target, VECTRESET is used
+instead of SYSRESETREQ to avoid unwanted reset of CM0+;
+@end deffn
+
+@deffn Command {psoc6 mass_erase} num
+Erases the contents given flash bank. The @var{num} parameter is a value shown
+by @command{flash banks}.
+Note: only Main and Work flash regions support Erase operation.
+@end deffn
+@end deffn
+
+@deffn {Flash Driver} sim3x
+All members of the SiM3 microcontroller family from Silicon Laboratories
+include internal flash and use ARM Cortex-M3 cores. It supports both JTAG
+and SWD interface.
+The @var{sim3x} driver tries to probe the device to auto detect the MCU.
+If this fails, it will use the @var{size} parameter as the size of flash bank.
+
+@example
+flash bank $_FLASHNAME sim3x 0 $_CPUROMSIZE 0 0 $_TARGETNAME
+@end example
+
+There are 2 commands defined in the @var{sim3x} driver:
+
+@deffn Command {sim3x mass_erase}
+Erases the complete flash. This is used to unlock the flash.
+And this command is only possible when using the SWD interface.
+@end deffn
+
+@deffn Command {sim3x lock}
+Lock the flash. To unlock use the @command{sim3x mass_erase} command.
+@end deffn
+@end deffn
+
+@deffn {Flash Driver} stellaris
+All members of the Stellaris LM3Sxxx, LM4x and Tiva C microcontroller
+families from Texas Instruments include internal flash. The driver
+automatically recognizes a number of these chips using the chip
+identification register, and autoconfigures itself.
 
 @example
 flash bank $_FLASHNAME stellaris 0 0 0 0 $_TARGETNAME
 @end example
 
-@deffn Command {stellaris recover bank_id}
-Performs the @emph{Recovering a "Locked" Device} procedure to
-restore the flash specified by @var{bank_id} and its associated
-nonvolatile registers to their factory default values (erased).
-This is the only way to remove flash protection or re-enable
-debugging if that capability has been disabled.
+@deffn Command {stellaris recover}
+Performs the @emph{Recovering a "Locked" Device} procedure to restore
+the flash and its associated nonvolatile registers to their factory
+default values (erased). This is the only way to remove flash
+protection or re-enable debugging if that capability has been
+disabled.
 
 Note that the final "power cycle the chip" step in this procedure
 must be performed by hand, since OpenOCD can't do it.
@@ -5397,11 +6403,7 @@ as per the following example.
 flash bank $_FLASHNAME stm32f1x 0x08080000 0 0 0 $_TARGETNAME
 @end example
 
-Some stm32f1x-specific commands
-@footnote{Currently there is a @command{stm32f1x mass_erase} command.
-That seems pointless since the same effect can be had using the
-standard @command{flash erase_address} command.}
-are defined:
+Some stm32f1x-specific commands are defined:
 
 @deffn Command {stm32f1x lock} num
 Locks the entire stm32 device.
@@ -5413,6 +6415,11 @@ Unlocks the entire stm32 device.
 The @var{num} parameter is a value shown by @command{flash banks}.
 @end deffn
 
+@deffn Command {stm32f1x mass_erase} num
+Mass erases the entire stm32f1x device.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+
 @deffn Command {stm32f1x options_read} num
 Read and display the stm32 option bytes written by
 the @command{stm32f1x options_write} command.
@@ -5426,11 +6433,15 @@ The @var{num} parameter is a value shown by @command{flash banks}.
 @end deffn
 
 @deffn {Flash Driver} stm32f2x
-All members of the STM32F2 and STM32F4 microcontroller families from ST Microelectronics
-include internal flash and use ARM Cortex-M3/M4 cores.
+All members of the STM32F2, STM32F4 and STM32F7 microcontroller families from ST Microelectronics
+include internal flash and use ARM Cortex-M3/M4/M7 cores.
 The driver automatically recognizes a number of these chips using
 the chip identification register, and autoconfigures itself.
 
+@example
+flash bank $_FLASHNAME stm32f2x 0 0 0 0 $_TARGETNAME
+@end example
+
 Note that some devices have been found that have a flash size register that contains
 an invalid value, to workaround this issue you can override the probed value used by
 the flash driver.
@@ -5450,21 +6461,177 @@ The @var{num} parameter is a value shown by @command{flash banks}.
 Unlocks the entire stm32 device.
 The @var{num} parameter is a value shown by @command{flash banks}.
 @end deffn
+
+@deffn Command {stm32f2x mass_erase} num
+Mass erases the entire stm32f2x device.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+
+@deffn Command {stm32f2x options_read} num
+Reads and displays user options and (where implemented) boot_addr0, boot_addr1, optcr2.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+
+@deffn Command {stm32f2x options_write} num user_options boot_addr0 boot_addr1
+Writes user options and (where implemented) boot_addr0 and boot_addr1 in raw format.
+Warning: The meaning of the various bits depends on the device, always check datasheet!
+The @var{num} parameter is a value shown by @command{flash banks}, @var{user_options} a
+12 bit value, consisting of bits 31-28 and 7-0 of FLASH_OPTCR, @var{boot_addr0} and
+@var{boot_addr1} two halfwords (of FLASH_OPTCR1).
+@end deffn
+
+@deffn Command {stm32f2x optcr2_write} num optcr2
+Writes FLASH_OPTCR2 options. Warning: Clearing PCROPi bits requires a full mass erase!
+The @var{num} parameter is a value shown by @command{flash banks}, @var{optcr2} a 32-bit word.
+@end deffn
+@end deffn
+
+@deffn {Flash Driver} stm32h7x
+All members of the STM32H7 microcontroller families from ST Microelectronics
+include internal flash and use ARM Cortex-M7 core.
+The driver automatically recognizes a number of these chips using
+the chip identification register, and autoconfigures itself.
+
+@example
+flash bank $_FLASHNAME stm32h7x 0 0 0 0 $_TARGETNAME
+@end example
+
+Note that some devices have been found that have a flash size register that contains
+an invalid value, to workaround this issue you can override the probed value used by
+the flash driver.
+
+@example
+flash bank $_FLASHNAME stm32h7x 0 0x20000 0 0 $_TARGETNAME
+@end example
+
+Some stm32h7x-specific commands are defined:
+
+@deffn Command {stm32h7x lock} num
+Locks the entire stm32 device.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+
+@deffn Command {stm32h7x unlock} num
+Unlocks the entire stm32 device.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+
+@deffn Command {stm32h7x mass_erase} num
+Mass erases the entire stm32h7x device.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+@end deffn
+
+@deffn {Flash Driver} stm32lx
+All members of the STM32L microcontroller families from ST Microelectronics
+include internal flash and use ARM Cortex-M3 and Cortex-M0+ cores.
+The driver automatically recognizes a number of these chips using
+the chip identification register, and autoconfigures itself.
+
+@example
+flash bank $_FLASHNAME stm32lx 0 0 0 0 $_TARGETNAME
+@end example
+
+Note that some devices have been found that have a flash size register that contains
+an invalid value, to workaround this issue you can override the probed value used by
+the flash driver. If you use 0 as the bank base address, it tells the
+driver to autodetect the bank location assuming you're configuring the
+second bank.
+
+@example
+flash bank $_FLASHNAME stm32lx 0x08000000 0x20000 0 0 $_TARGETNAME
+@end example
+
+Some stm32lx-specific commands are defined:
+
+@deffn Command {stm32lx lock} num
+Locks the entire stm32 device.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+
+@deffn Command {stm32lx unlock} num
+Unlocks the entire stm32 device.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+
+@deffn Command {stm32lx mass_erase} num
+Mass erases the entire stm32lx device (all flash banks and EEPROM
+data). This is the only way to unlock a protected flash (unless RDP
+Level is 2 which can't be unlocked at all).
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+@end deffn
+
+@deffn {Flash Driver} stm32l4x
+All members of the STM32L4 microcontroller families from ST Microelectronics
+include internal flash and use ARM Cortex-M4 cores.
+The driver automatically recognizes a number of these chips using
+the chip identification register, and autoconfigures itself.
+
+@example
+flash bank $_FLASHNAME stm32l4x 0 0 0 0 $_TARGETNAME
+@end example
+
+Note that some devices have been found that have a flash size register that contains
+an invalid value, to workaround this issue you can override the probed value used by
+the flash driver.
+
+@example
+flash bank $_FLASHNAME stm32l4x 0x08000000 0x40000 0 0 $_TARGETNAME
+@end example
+
+Some stm32l4x-specific commands are defined:
+
+@deffn Command {stm32l4x lock} num
+Locks the entire stm32 device.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+
+@deffn Command {stm32l4x unlock} num
+Unlocks the entire stm32 device.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+
+@deffn Command {stm32l4x mass_erase} num
+Mass erases the entire stm32l4x device.
+The @var{num} parameter is a value shown by @command{flash banks}.
 @end deffn
 
-@deffn {Flash Driver} stm32lx
-All members of the STM32L microcontroller families from ST Microelectronics
-include internal flash and use ARM Cortex-M3 cores.
-The driver automatically recognizes a number of these chips using
-the chip identification register, and autoconfigures itself.
+@deffn Command {stm32l4x option_read} num reg_offset
+Reads an option byte register from the stm32l4x device.
+The @var{num} parameter is a value shown by @command{flash banks}, @var{reg_offset}
+is the register offset of the Option byte to read.
+
+For example to read the FLASH_OPTR register:
+@example
+stm32l4x option_read 0 0x20
+# Option Register: <0x40022020> = 0xffeff8aa
+@end example
+
+The above example will read out the FLASH_OPTR register which contains the RDP
+option byte, Watchdog configuration, BOR level etc.
+@end deffn
 
-Note that some devices have been found that have a flash size register that contains
-an invalid value, to workaround this issue you can override the probed value used by
-the flash driver.
+@deffn Command {stm32l4x option_write} num reg_offset reg_mask
+Write an option byte register of the stm32l4x device.
+The @var{num} parameter is a value shown by @command{flash banks}, @var{reg_offset}
+is the register offset of the Option byte to write, and @var{reg_mask} is the mask
+to apply when writing the register (only bits with a '1' will be touched).
 
+For example to write the WRP1AR option bytes:
 @example
-flash bank $_FLASHNAME stm32lx 0 0x20000 0 0 $_TARGETNAME
+stm32l4x option_write 0 0x28 0x00FF0000 0x00FF00FF
 @end example
+
+The above example will write the WRP1AR option register configuring the Write protection
+Area A for bank 1. The above example set WRP1AR_END=255, WRP1AR_START=0.
+This will effectively write protect all sectors in flash bank 1.
+@end deffn
+
+@deffn Command {stm32l4x option_load} num
+Forces a re-load of the option byte registers. Will cause a reset of the device.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
 @end deffn
 
 @deffn {Flash Driver} str7x
@@ -5474,7 +6641,8 @@ The @var{str7x} driver defines one mandatory parameter, @var{variant},
 which is either @code{STR71x}, @code{STR73x} or @code{STR75x}.
 
 @example
-flash bank $_FLASHNAME str7x 0x40000000 0x00040000 0 0 $_TARGETNAME STR71x
+flash bank $_FLASHNAME str7x \
+      0x40000000 0x00040000 0 0 $_TARGETNAME STR71x
 @end example
 
 @deffn Command {str7x disable_jtag} bank
@@ -5508,63 +6676,14 @@ The @var{num} parameter is a value shown by @command{flash banks}.
 
 @end deffn
 
-@deffn {Flash Driver} tms470
-Most members of the TMS470 microcontroller family from Texas Instruments
-include internal flash and use ARM7TDMI cores.
-This driver doesn't require the chip and bus width to be specified.
-
-Some tms470-specific commands are defined:
-
-@deffn Command {tms470 flash_keyset} key0 key1 key2 key3
-Saves programming keys in a register, to enable flash erase and write commands.
-@end deffn
-
-@deffn Command {tms470 osc_mhz} clock_mhz
-Reports the clock speed, which is used to calculate timings.
-@end deffn
-
-@deffn Command {tms470 plldis} (0|1)
-Disables (@var{1}) or enables (@var{0}) use of the PLL to speed up
-the flash clock.
-@end deffn
-@end deffn
-
-@deffn {Flash Driver} virtual
-This is a special driver that maps a previously defined bank to another
-address. All bank settings will be copied from the master physical bank.
-
-The @var{virtual} driver defines one mandatory parameters,
-
-@itemize
-@item @var{master_bank} The bank that this virtual address refers to.
-@end itemize
-
-So in the following example addresses 0xbfc00000 and 0x9fc00000 refer to
-the flash bank defined at address 0x1fc00000. Any cmds executed on
-the virtual banks are actually performed on the physical banks.
-@example
-flash bank $_FLASHNAME pic32mx 0x1fc00000 0 0 0 $_TARGETNAME
-flash bank vbank0 virtual 0xbfc00000 0 0 0 $_TARGETNAME $_FLASHNAME
-flash bank vbank1 virtual 0x9fc00000 0 0 0 $_TARGETNAME $_FLASHNAME
-@end example
-@end deffn
-
-@deffn {Flash Driver} fm3
-All members of the FM3 microcontroller family from Fujitsu
-include internal flash and use ARM Cortex M3 cores.
-The @var{fm3} driver uses the @var{target} parameter to select the
-correct bank config, it can currently be one of the following:
-@code{mb9bfxx1.cpu}, @code{mb9bfxx2.cpu}, @code{mb9bfxx3.cpu},
-@code{mb9bfxx4.cpu}, @code{mb9bfxx5.cpu} or @code{mb9bfxx6.cpu}.
-
-@example
-flash bank $_FLASHNAME fm3 0 0 0 0 $_TARGETNAME
-@end example
-@end deffn
-
-@subsection str9xpec driver
+@deffn {Flash Driver} str9xpec
 @cindex str9xpec
 
+Only use this driver for locking/unlocking the device or configuring the option bytes.
+Use the standard str9 driver for programming.
+Before using the flash commands the turbo mode must be enabled using the
+@command{str9xpec enable_turbo} command.
+
 Here is some background info to help
 you better understand how this driver works. OpenOCD has two flash drivers for
 the str9:
@@ -5574,7 +6693,7 @@ Standard driver @option{str9x} programmed via the str9 core. Normally used for
 flash programming as it is faster than the @option{str9xpec} driver.
 @item
 Direct programming @option{str9xpec} using the flash controller. This is an
-ISC compilant (IEEE 1532) tap connected in series with the str9 core. The str9
+ISC compliant (IEEE 1532) tap connected in series with the str9 core. The str9
 core does not need to be running to program using this flash driver. Typical use
 for this driver is locking/unlocking the target and programming the option bytes.
 @end enumerate
@@ -5602,12 +6721,6 @@ When performing a unlock remember that you will not be able to halt the str9 - i
 has been locked. Halting the core is not required for the @option{str9xpec} driver
 as mentioned above, just issue the commands above manually or from a telnet prompt.
 
-@deffn {Flash Driver} str9xpec
-Only use this driver for locking/unlocking the device or configuring the option bytes.
-Use the standard str9 driver for programming.
-Before using the flash commands the turbo mode must be enabled using the
-@command{str9xpec enable_turbo} command.
-
 Several str9xpec-specific commands are defined:
 
 @deffn Command {str9xpec disable_turbo} num
@@ -5658,103 +6771,49 @@ unlock str9 device.
 
 @end deffn
 
+@deffn {Flash Driver} tms470
+Most members of the TMS470 microcontroller family from Texas Instruments
+include internal flash and use ARM7TDMI cores.
+This driver doesn't require the chip and bus width to be specified.
 
-@section mFlash
-
-@subsection mFlash Configuration
-@cindex mFlash Configuration
-
-@deffn {Config Command} {mflash bank} soc base RST_pin target
-Configures a mflash for @var{soc} host bank at
-address @var{base}.
-The pin number format depends on the host GPIO naming convention.
-Currently, the mflash driver supports s3c2440 and pxa270.
-
-Example for s3c2440 mflash where @var{RST pin} is GPIO B1:
-
-@example
-mflash bank $_FLASHNAME s3c2440 0x10000000 1b 0
-@end example
-
-Example for pxa270 mflash where @var{RST pin} is GPIO 43:
-
-@example
-mflash bank $_FLASHNAME pxa270 0x08000000 43 0
-@end example
-@end deffn
-
-@subsection mFlash commands
-@cindex mFlash commands
-
-@deffn Command {mflash config pll} frequency
-Configure mflash PLL.
-The @var{frequency} is the mflash input frequency, in Hz.
-Issuing this command will erase mflash's whole internal nand and write new pll.
-After this command, mflash needs power-on-reset for normal operation.
-If pll was newly configured, storage and boot(optional) info also need to be update.
-@end deffn
+Some tms470-specific commands are defined:
 
-@deffn Command {mflash config boot}
-Configure bootable option.
-If bootable option is set, mflash offer the first 8 sectors
-(4kB) for boot.
+@deffn Command {tms470 flash_keyset} key0 key1 key2 key3
+Saves programming keys in a register, to enable flash erase and write commands.
 @end deffn
 
-@deffn Command {mflash config storage}
-Configure storage information.
-For the normal storage operation, this information must be
-written.
+@deffn Command {tms470 osc_mhz} clock_mhz
+Reports the clock speed, which is used to calculate timings.
 @end deffn
 
-@deffn Command {mflash dump} num filename offset size
-Dump @var{size} bytes, starting at @var{offset} bytes from the
-beginning of the bank @var{num}, to the file named @var{filename}.
+@deffn Command {tms470 plldis} (0|1)
+Disables (@var{1}) or enables (@var{0}) use of the PLL to speed up
+the flash clock.
 @end deffn
-
-@deffn Command {mflash probe}
-Probe mflash.
 @end deffn
 
-@deffn Command {mflash write} num filename offset
-Write the binary file @var{filename} to mflash bank @var{num}, starting at
-@var{offset} bytes from the beginning of the bank.
+@deffn {Flash Driver} xmc1xxx
+All members of the XMC1xxx microcontroller family from Infineon.
+This driver does not require the chip and bus width to be specified.
 @end deffn
 
-@node Flash Programming
-@chapter Flash Programming
-
-OpenOCD implements numerous ways to program the target flash, whether internal or external.
-Programming can be acheived by either using GDB @ref{programmingusinggdb,,Programming using GDB},
-or using the cmds given in @ref{flashprogrammingcommands,,Flash Programming Commands}.
-
-@*To simplify using the flash cmds directly a jimtcl script is available that handles the programming and verify stage.
-OpenOCD will program/verify/reset the target and shutdown.
+@deffn {Flash Driver} xmc4xxx
+All members of the XMC4xxx microcontroller family from Infineon.
+This driver does not require the chip and bus width to be specified.
 
-The script is executed as follows and by default the following actions will be peformed.
-@enumerate
-@item 'init' is executed.
-@item 'reset init' is called to reset and halt the target, any 'reset init' scripts are executed.
-@item @code{flash write_image} is called to erase and write any flash using the filename given.
-@item @code{verify_image} is called if @option{verify} parameter is given.
-@item @code{reset run} is called if @option{reset} parameter is given.
-@item OpenOCD is shutdown.
-@end enumerate
+Some xmc4xxx-specific commands are defined:
 
-An example of usage is given below. @xref{program}.
+@deffn Command {xmc4xxx flash_password} bank_id passwd1 passwd2
+Saves flash protection passwords which are used to lock the user flash
+@end deffn
 
-@example
-# program and verify using elf/hex/s19. verify and reset
-# are optional parameters
-openocd -f board/stm32f3discovery.cfg \
-       -c "program filename.elf verify reset"
+@deffn Command {xmc4xxx flash_unprotect} bank_id user_level[0-1]
+Removes Flash write protection from the selected user bank
+@end deffn
 
-# binary files need the flash address passing
-openocd -f board/stm32f3discovery.cfg \
-       -c "program filename.bin 0x08000000"
-@end example
+@end deffn
 
-@node NAND Flash Commands
-@chapter NAND Flash Commands
+@section NAND Flash Commands
 @cindex NAND
 
 Compared to NOR or SPI flash, NAND devices are inexpensive
@@ -5787,7 +6846,7 @@ geared for newer MLC chips may correct 4 or more errors for
 every 512 bytes of data.
 
 You will need to make sure that any data you write using
-OpenOCD includes the apppropriate kind of ECC. For example,
+OpenOCD includes the appropriate kind of ECC. For example,
 that may mean passing the @code{oob_softecc} flag when
 writing NAND data, or ensuring that the correct hardware
 ECC mode is used.
@@ -5818,7 +6877,7 @@ Some larger devices will work, since they are actually multi-chip
 modules with two smaller chips and individual chipselect lines.
 
 @anchor{nandconfiguration}
-@section NAND Configuration Commands
+@subsection NAND Configuration Commands
 @cindex NAND configuration
 
 NAND chips must be declared in configuration scripts,
@@ -5875,7 +6934,7 @@ You must (successfully) probe a device before you can use
 it with most other NAND commands.
 @end deffn
 
-@section Erasing, Reading, Writing to NAND Flash
+@subsection Erasing, Reading, Writing to NAND Flash
 
 @deffn Command {nand dump} num filename offset length [oob_option]
 @cindex NAND reading
@@ -5960,7 +7019,7 @@ if @command{nand raw_access} was used to disable hardware ECC.
 @itemize @bullet
 @item no oob_* parameter
 @*File has only page data, which is written.
-If raw acccess is in use, the OOB area will not be written.
+If raw access is in use, the OOB area will not be written.
 Otherwise, if the underlying NAND controller driver has
 a @code{write_page} routine, that routine may write the OOB
 with hardware-computed ECC data.
@@ -6013,11 +7072,11 @@ can be compared against the contents produced from @command{nand dump}.
 
 @b{NOTE:} This will not work when the underlying NAND controller
 driver's @code{write_page} routine must update the OOB with a
-hardward-computed ECC before the data is written. This limitation may
+hardware-computed ECC before the data is written. This limitation may
 be removed in a future release.
 @end deffn
 
-@section Other NAND commands
+@subsection Other NAND commands
 @cindex NAND other commands
 
 @deffn Command {nand check_bad_blocks} num [offset length]
@@ -6061,7 +7120,7 @@ with the wrong ECC data can cause them to be marked as bad.
 @end deffn
 
 @anchor{nanddriverlist}
-@section NAND Driver List
+@subsection NAND Driver List
 As noted above, the @command{nand device} command allows
 driver-specific options and behaviors.
 Some controllers also activate controller-specific commands.
@@ -6137,7 +7196,7 @@ in the MLC controller mode, but won't change SLC behavior.
 
 @deffn {NAND Driver} mx3
 This driver handles the NAND controller in i.MX31. The mxc driver
-should work for this chip aswell.
+should work for this chip as well.
 @end deffn
 
 @deffn {NAND Driver} mxc
@@ -6151,35 +7210,129 @@ main area and spare area (@option{biswap}), defaults to off.
 nand device mx35.nand mxc imx35.cpu mx35 hwecc biswap
 @end example
 @deffn Command {mxc biswap} bank_num [enable|disable]
-Turns on/off bad block information swaping from main area,
+Turns on/off bad block information swapping from main area,
 without parameter query status.
 @end deffn
 @end deffn
 
-@deffn {NAND Driver} orion
-These controllers require an extra @command{nand device}
-parameter: the address of the controller.
+@deffn {NAND Driver} orion
+These controllers require an extra @command{nand device}
+parameter: the address of the controller.
+@example
+nand device orion 0xd8000000
+@end example
+These controllers don't define any specialized commands.
+At this writing, their drivers don't include @code{write_page}
+or @code{read_page} methods, so @command{nand raw_access} won't
+change any behavior.
+@end deffn
+
+@deffn {NAND Driver} s3c2410
+@deffnx {NAND Driver} s3c2412
+@deffnx {NAND Driver} s3c2440
+@deffnx {NAND Driver} s3c2443
+@deffnx {NAND Driver} s3c6400
+These S3C family controllers don't have any special
+@command{nand device} options, and don't define any
+specialized commands.
+At this writing, their drivers don't include @code{write_page}
+or @code{read_page} methods, so @command{nand raw_access} won't
+change any behavior.
+@end deffn
+
+@section mFlash
+
+@subsection mFlash Configuration
+@cindex mFlash Configuration
+
+@deffn {Config Command} {mflash bank} soc base RST_pin target
+Configures a mflash for @var{soc} host bank at
+address @var{base}.
+The pin number format depends on the host GPIO naming convention.
+Currently, the mflash driver supports s3c2440 and pxa270.
+
+Example for s3c2440 mflash where @var{RST pin} is GPIO B1:
+
+@example
+mflash bank $_FLASHNAME s3c2440 0x10000000 1b 0
+@end example
+
+Example for pxa270 mflash where @var{RST pin} is GPIO 43:
+
+@example
+mflash bank $_FLASHNAME pxa270 0x08000000 43 0
+@end example
+@end deffn
+
+@subsection mFlash commands
+@cindex mFlash commands
+
+@deffn Command {mflash config pll} frequency
+Configure mflash PLL.
+The @var{frequency} is the mflash input frequency, in Hz.
+Issuing this command will erase mflash's whole internal nand and write new pll.
+After this command, mflash needs power-on-reset for normal operation.
+If pll was newly configured, storage and boot(optional) info also need to be update.
+@end deffn
+
+@deffn Command {mflash config boot}
+Configure bootable option.
+If bootable option is set, mflash offer the first 8 sectors
+(4kB) for boot.
+@end deffn
+
+@deffn Command {mflash config storage}
+Configure storage information.
+For the normal storage operation, this information must be
+written.
+@end deffn
+
+@deffn Command {mflash dump} num filename offset size
+Dump @var{size} bytes, starting at @var{offset} bytes from the
+beginning of the bank @var{num}, to the file named @var{filename}.
+@end deffn
+
+@deffn Command {mflash probe}
+Probe mflash.
+@end deffn
+
+@deffn Command {mflash write} num filename offset
+Write the binary file @var{filename} to mflash bank @var{num}, starting at
+@var{offset} bytes from the beginning of the bank.
+@end deffn
+
+@node Flash Programming
+@chapter Flash Programming
+
+OpenOCD implements numerous ways to program the target flash, whether internal or external.
+Programming can be achieved by either using GDB @ref{programmingusinggdb,,Programming using GDB},
+or using the commands given in @ref{flashprogrammingcommands,,Flash Programming Commands}.
+
+@*To simplify using the flash commands directly a jimtcl script is available that handles the programming and verify stage.
+OpenOCD will program/verify/reset the target and optionally shutdown.
+
+The script is executed as follows and by default the following actions will be performed.
+@enumerate
+@item 'init' is executed.
+@item 'reset init' is called to reset and halt the target, any 'reset init' scripts are executed.
+@item @code{flash write_image} is called to erase and write any flash using the filename given.
+@item @code{verify_image} is called if @option{verify} parameter is given.
+@item @code{reset run} is called if @option{reset} parameter is given.
+@item OpenOCD is shutdown if @option{exit} parameter is given.
+@end enumerate
+
+An example of usage is given below. @xref{program}.
+
 @example
-nand device orion 0xd8000000
-@end example
-These controllers don't define any specialized commands.
-At this writing, their drivers don't include @code{write_page}
-or @code{read_page} methods, so @command{nand raw_access} won't
-change any behavior.
-@end deffn
+# program and verify using elf/hex/s19. verify and reset
+# are optional parameters
+openocd -f board/stm32f3discovery.cfg \
+       -c "program filename.elf verify reset exit"
 
-@deffn {NAND Driver} s3c2410
-@deffnx {NAND Driver} s3c2412
-@deffnx {NAND Driver} s3c2440
-@deffnx {NAND Driver} s3c2443
-@deffnx {NAND Driver} s3c6400
-These S3C family controllers don't have any special
-@command{nand device} options, and don't define any
-specialized commands.
-At this writing, their drivers don't include @code{write_page}
-or @code{read_page} methods, so @command{nand raw_access} won't
-change any behavior.
-@end deffn
+# binary files need the flash address passing
+openocd -f board/stm32f3discovery.cfg \
+       -c "program filename.bin exit 0x08000000"
+@end example
 
 @node PLD/FPGA Commands
 @chapter PLD/FPGA Commands
@@ -6225,11 +7378,13 @@ Drivers may support PLD-specific options to the @command{pld device}
 definition command, and may also define commands usable only with
 that particular type of PLD.
 
-@deffn {FPGA Driver} virtex2
+@deffn {FPGA Driver} virtex2 [no_jstart]
 Virtex-II is a family of FPGAs sold by Xilinx.
 It supports the IEEE 1532 standard for In-System Configuration (ISC).
-No driver-specific PLD definition options are used,
-and one driver-specific command is defined.
+
+If @var{no_jstart} is non-zero, the JSTART instruction is not used after
+loading the bitstream. While required for Series2, Series3, and Series6, it
+breaks bitstream loading on Series7.
 
 @deffn {Command} {virtex2 read_stat} num
 Reads and displays the Virtex-II status register (STAT)
@@ -6249,7 +7404,7 @@ Intent:
 @itemize @bullet
 @item @b{Source Of Commands}
 @* OpenOCD commands can occur in a configuration script (discussed
-elsewhere) or typed manually by a human or supplied programatically,
+elsewhere) or typed manually by a human or supplied programmatically,
 or via one of several TCP/IP Ports.
 
 @item @b{From the human}
@@ -6266,7 +7421,7 @@ port is 5555.
 @end itemize
 
 
-@section Daemon Commands
+@section Server Commands
 
 @deffn {Command} exit
 Exits the current telnet session.
@@ -6291,20 +7446,36 @@ Useful in connection with script files
 (@command{script} command and @command{target_name} configuration).
 @end deffn
 
-@deffn Command shutdown
-Close the OpenOCD daemon, disconnecting all clients (GDB, telnet, other).
+@deffn Command shutdown [@option{error}]
+Close the OpenOCD server, disconnecting all clients (GDB, telnet,
+other). If option @option{error} is used, OpenOCD will return a
+non-zero exit code to the parent process.
+
+Like any TCL commands, also @command{shutdown} can be redefined, e.g.:
+@example
+# redefine shutdown
+rename shutdown original_shutdown
+proc shutdown @{@} @{
+    puts "This is my implementation of shutdown"
+    # my own stuff before exit OpenOCD
+    original_shutdown
+@}
+@end example
+If user types CTRL-C or kills OpenOCD, either the command @command{shutdown}
+or its replacement will be automatically executed before OpenOCD exits.
 @end deffn
 
 @anchor{debuglevel}
 @deffn Command debug_level [n]
 @cindex message level
 Display debug level.
-If @var{n} (from 0..3) is provided, then set it to that level.
+If @var{n} (from 0..4) is provided, then set it to that level.
 This affects the kind of messages sent to the server log.
 Level 0 is error messages only;
 level 1 adds warnings;
 level 2 adds informational messages;
-and level 3 adds debugging messages.
+level 3 adds debugging messages;
+and level 4 adds verbose low-level debug messages.
 The default is level 2, but that can be overridden on
 the command line along with the location of that log
 file (which is normally the server's standard output).
@@ -6329,6 +7500,13 @@ the initial log output channel is stderr.
 Add @var{directory} to the file/script search path.
 @end deffn
 
+@deffn Command bindto [@var{name}]
+Specify hostname or IPv4 address on which to listen for incoming
+TCP/IP connections. By default, OpenOCD will listen on the loopback
+interface only. If your network environment is safe, @code{bindto
+0.0.0.0} can be used to cover all available interfaces.
+@end deffn
+
 @anchor{targetstatehandling}
 @section Target State handling
 @cindex reset
@@ -6343,7 +7521,7 @@ various operations. The current target may be changed
 by using @command{targets} command with the name of the
 target which should become current.
 
-@deffn Command reg [(number|name) [value]]
+@deffn Command reg [(number|name) [(value|'force')]]
 Access a single register by @var{number} or by its @var{name}.
 The target must generally be halted before access to CPU core
 registers is allowed. Depending on the hardware, some other
@@ -6357,6 +7535,8 @@ which are also dirty (and will be written back later)
 are flagged as such.
 
 @emph{With number/name}: display that register's value.
+Use @var{force} argument to read directly from the target,
+bypassing any internal cache.
 
 @emph{With both number/name and value}: set register's value.
 Writes may be held in a writeback cache internal to OpenOCD,
@@ -6405,7 +7585,7 @@ Also, it can't work until an interrupt is issued.
 
 A more complete workaround is to not use that operation while you
 work with a JTAG debugger.
-Tasking environments generaly have idle loops where the body is the
+Tasking environments generally have idle loops where the body is the
 @emph{wait for interrupt} operation.
 (On older cores, it is a coprocessor action;
 newer cores have a @option{wfi} instruction.)
@@ -6573,7 +7753,7 @@ binary file named @var{filename}.
 
 @deffn Command {fast_load}
 Loads an image stored in memory by @command{fast_load_image} to the
-current target. Must be preceeded by fast_load_image.
+current target. Must be preceded by fast_load_image.
 @end deffn
 
 @deffn Command {fast_load_image} filename address [@option{bin}|@option{ihex}|@option{elf}|@option{s19}]
@@ -6591,14 +7771,15 @@ separately.
 Load image from file @var{filename} to target memory offset by @var{address} from its load address.
 The file format may optionally be specified
 (@option{bin}, @option{ihex}, @option{elf}, or @option{s19}).
-In addition the following arguments may be specifed:
+In addition the following arguments may be specified:
 @var{min_addr} - ignore data below @var{min_addr} (this is w.r.t. to the target's load address + @var{address})
 @var{max_length} - maximum number of bytes to load.
 @example
 proc load_image_bin @{fname foffset address length @} @{
     # Load data from fname filename at foffset offset to
     # target at address. Load at most length bytes.
-    load_image $fname [expr $address - $foffset] bin $address $length
+    load_image $fname [expr $address - $foffset] bin \
+               $address $length
 @}
 @end example
 @end deffn
@@ -6618,6 +7799,13 @@ The file format may optionally be specified
 This will first attempt a comparison using a CRC checksum, if this fails it will try a binary compare.
 @end deffn
 
+@deffn Command {verify_image_checksum} filename address [@option{bin}|@option{ihex}|@option{elf}]
+Verify @var{filename} against target memory starting at @var{address}.
+The file format may optionally be specified
+(@option{bin}, @option{ihex}, or @option{elf})
+This perform a comparison using a CRC checksum only
+@end deffn
+
 
 @section Breakpoint and Watchpoint commands
 @cindex breakpoint
@@ -6661,10 +7849,12 @@ using @var{mask} to mark ``don't care'' fields.
 @section Misc Commands
 
 @cindex profiling
-@deffn Command {profile} seconds filename
+@deffn Command {profile} seconds filename [start end]
 Profiling samples the CPU's program counter as quickly as possible,
 which is useful for non-intrusive stochastic profiling.
-Saves up to 10000 sampines in @file{filename} using ``gmon.out'' format.
+Saves up to 10000 samples in @file{filename} using ``gmon.out''
+format. Optional @option{start} and @option{end} parameters allow to
+limit the address range.
 @end deffn
 
 @deffn Command {version}
@@ -6752,7 +7942,7 @@ Declares the ETM associated with @var{target}, and associates it
 with a given trace port @var{driver}. @xref{traceportdrivers,,Trace Port Drivers}.
 
 Several of the parameters must reflect the trace port capabilities,
-which are a function of silicon capabilties (exposed later
+which are a function of silicon capabilities (exposed later
 using @command{etm info}) and of what hardware is connected to
 that port (such as an external pod, or ETB).
 The @var{width} must be either 4, 8, or 16,
@@ -6959,6 +8149,50 @@ Reports whether the capture clock is locked or not.
 @end deffn
 @end deffn
 
+@anchor{armcrosstrigger}
+@section ARM Cross-Trigger Interface
+@cindex CTI
+
+The ARM Cross-Trigger Interface (CTI) is a generic CoreSight component
+that connects event sources like tracing components or CPU cores with each
+other through a common trigger matrix (CTM). For ARMv8 architecture, a
+CTI is mandatory for core run control and each core has an individual
+CTI instance attached to it. OpenOCD has limited support for CTI using
+the @emph{cti} group of commands.
+
+@deffn Command {cti create} cti_name @option{-dap} dap_name @option{-ap-num} apn @option{-ctibase} base_address
+Creates a CTI instance @var{cti_name} on the DAP instance @var{dap_name} on MEM-AP
+@var{apn}. The @var{base_address} must match the base address of the CTI
+on the respective MEM-AP. All arguments are mandatory. This creates a
+new command @command{$cti_name} which is used for various purposes
+including additional configuration.
+@end deffn
+
+@deffn Command {$cti_name enable} @option{on|off}
+Enable (@option{on}) or disable (@option{off}) the CTI.
+@end deffn
+
+@deffn Command {$cti_name dump}
+Displays a register dump of the CTI.
+@end deffn
+
+@deffn Command {$cti_name write } @var{reg_name} @var{value}
+Write @var{value} to the CTI register with the symbolic name @var{reg_name}.
+@end deffn
+
+@deffn Command {$cti_name read} @var{reg_name}
+Print the value read from the CTI register with the symbolic name @var{reg_name}.
+@end deffn
+
+@deffn Command {$cti_name testmode} @option{on|off}
+Enable (@option{on}) or disable (@option{off}) the integration test mode
+of the CTI.
+@end deffn
+
+@deffn Command {cti names}
+Prints a list of names of all CTI objects created. This command is mainly
+useful in TCL scripting.
+@end deffn
 
 @section Generic ARM
 @cindex ARM
@@ -7028,6 +8262,55 @@ requests by using a special SVC instruction that is trapped at the
 Supervisor Call vector by OpenOCD.
 @end deffn
 
+@deffn Command {arm semihosting_cmdline} [@option{enable}|@option{disable}]
+@cindex ARM semihosting
+Set the command line to be passed to the debugger.
+
+@example
+arm semihosting_cmdline argv0 argv1 argv2 ...
+@end example
+
+This option lets one set the command line arguments to be passed to
+the program. The first argument (argv0) is the program name in a
+standard C environment (argv[0]). Depending on the program (not much
+programs look at argv[0]), argv0 is ignored and can be any string.
+@end deffn
+
+@deffn Command {arm semihosting_fileio} [@option{enable}|@option{disable}]
+@cindex ARM semihosting
+Display status of semihosting fileio, after optionally changing that
+status.
+
+Enabling this option forwards semihosting I/O to GDB process using the
+File-I/O remote protocol extension. This is especially useful for
+interacting with remote files or displaying console messages in the
+debugger.
+@end deffn
+
+@deffn Command {arm semihosting_resexit} [@option{enable}|@option{disable}]
+@cindex ARM semihosting
+Enable resumable SEMIHOSTING_SYS_EXIT.
+
+When SEMIHOSTING_SYS_EXIT is called outside a debug session,
+things are simple, the openocd process calls exit() and passes
+the value returned by the target.
+
+When SEMIHOSTING_SYS_EXIT is called during a debug session,
+by default execution returns to the debugger, leaving the
+debugger in a HALT state, similar to the state entered when
+encountering a break.
+
+In some use cases, it is useful to have SEMIHOSTING_SYS_EXIT
+return normally, as any semihosting call, and do not break
+to the debugger.
+The standard allows this to happen, but the condition
+to trigger it is a bit obscure ("by performing an RDI_Execute
+request or equivalent").
+
+To make the SEMIHOSTING_SYS_EXIT call return normally, enable
+this option (default: disabled).
+@end deffn
+
 @section ARMv4 and ARMv5 Architecture
 @cindex ARMv4
 @cindex ARMv5
@@ -7216,7 +8499,7 @@ mini-IC is marked valid, which makes the CPU fetch all exception
 handlers from the mini-IC, ignoring the code in RAM.
 
 To address this situation, OpenOCD provides the @code{xscale
-vector_table} command, which allows the user to explicity write
+vector_table} command, which allows the user to explicitly write
 individual entries to either the high or low vector table stored in
 the mini-IC.
 
@@ -7409,44 +8692,154 @@ coprocessor 14 register 7 itself) but all current ARM11
 cores @emph{except the ARM1176} use the same six bits.
 @end deffn
 
-@section ARMv7 Architecture
+@section ARMv7 and ARMv8 Architecture
 @cindex ARMv7
+@cindex ARMv8
 
-@subsection ARMv7 Debug Access Port (DAP) specific commands
-@cindex Debug Access Port
-@cindex DAP
-These commands are specific to ARM architecture v7 Debug Access Port (DAP),
-included on Cortex-M and Cortex-A systems.
-They are available in addition to other core-specific commands that may be available.
+@subsection ARMv7-A specific commands
+@cindex Cortex-A
 
-@deffn Command {dap apid} [num]
-Displays ID register from AP @var{num},
-defaulting to the currently selected AP.
+@deffn Command {cortex_a cache_info}
+display information about target caches
 @end deffn
 
-@deffn Command {dap apsel} [num]
-Select AP @var{num}, defaulting to 0.
+@deffn Command {cortex_a dacrfixup [@option{on}|@option{off}]}
+Work around issues with software breakpoints when the program text is
+mapped read-only by the operating system. This option sets the CP15 DACR
+to "all-manager" to bypass MMU permission checks on memory access.
+Defaults to 'off'.
 @end deffn
 
-@deffn Command {dap baseaddr} [num]
-Displays debug base address from MEM-AP @var{num},
-defaulting to the currently selected AP.
+@deffn Command {cortex_a dbginit}
+Initialize core debug
+Enables debug by unlocking the Software Lock and clearing sticky powerdown indications
 @end deffn
 
-@deffn Command {dap info} [num]
-Displays the ROM table for MEM-AP @var{num},
-defaulting to the currently selected AP.
+@deffn Command {cortex_a smp_off}
+Disable SMP mode
 @end deffn
 
-@deffn Command {dap memaccess} [value]
-Displays the number of extra tck cycles in the JTAG idle to use for MEM-AP
-memory bus access [0-255], giving additional time to respond to reads.
-If @var{value} is defined, first assigns that.
+@deffn Command {cortex_a smp_on}
+Enable SMP mode
+@end deffn
+
+@deffn Command {cortex_a smp_gdb} [core_id]
+Display/set the current core displayed in GDB
+@end deffn
+
+@deffn Command {cortex_a maskisr} [@option{on}|@option{off}]
+Selects whether interrupts will be processed when single stepping
+@end deffn
+
+@deffn Command {cache_config l2x}  [base way]
+configure l2x cache
 @end deffn
 
-@deffn Command {dap apcsw} [0 / 1]
-fix CSW_SPROT from register AP_REG_CSW on selected dap.
-Defaulting to 0.
+
+@subsection ARMv7-R specific commands
+@cindex Cortex-R
+
+@deffn Command {cortex_r dbginit}
+Initialize core debug
+Enables debug by unlocking the Software Lock and clearing sticky powerdown indications
+@end deffn
+
+@deffn Command {cortex_r maskisr} [@option{on}|@option{off}]
+Selects whether interrupts will be processed when single stepping
+@end deffn
+
+
+@subsection ARMv7-M specific commands
+@cindex tracing
+@cindex SWO
+@cindex SWV
+@cindex TPIU
+@cindex ITM
+@cindex ETM
+
+@deffn Command {tpiu config} (@option{disable} | ((@option{external} | @option{internal (@var{filename} | -)}) @
+               (@option{sync @var{port_width}} | ((@option{manchester} | @option{uart}) @var{formatter_enable})) @
+               @var{TRACECLKIN_freq} [@var{trace_freq}]))
+
+ARMv7-M architecture provides several modules to generate debugging
+information internally (ITM, DWT and ETM). Their output is directed
+through TPIU to be captured externally either on an SWO pin (this
+configuration is called SWV) or on a synchronous parallel trace port.
+
+This command configures the TPIU module of the target and, if internal
+capture mode is selected, starts to capture trace output by using the
+debugger adapter features.
+
+Some targets require additional actions to be performed in the
+@b{trace-config} handler for trace port to be activated.
+
+Command options:
+@itemize @minus
+@item @option{disable} disable TPIU handling;
+@item @option{external} configure TPIU to let user capture trace
+output externally (with an additional UART or logic analyzer hardware);
+@item @option{internal @var{filename}} configure TPIU and debug adapter to
+gather trace data and append it to @var{filename} (which can be
+either a regular file or a named pipe);
+@item @option{internal -} configure TPIU and debug adapter to
+gather trace data, but not write to any file. Useful in conjunction with the @command{tcl_trace} command;
+@item @option{sync @var{port_width}} use synchronous parallel trace output
+mode, and set port width to @var{port_width};
+@item @option{manchester} use asynchronous SWO mode with Manchester
+coding;
+@item @option{uart} use asynchronous SWO mode with NRZ (same as
+regular UART 8N1) coding;
+@item @var{formatter_enable} is @option{on} or @option{off} to enable
+or disable TPIU formatter which needs to be used when both ITM and ETM
+data is to be output via SWO;
+@item @var{TRACECLKIN_freq} this should be specified to match target's
+current TRACECLKIN frequency (usually the same as HCLK);
+@item @var{trace_freq} trace port frequency. Can be omitted in
+internal mode to let the adapter driver select the maximum supported
+rate automatically.
+@end itemize
+
+Example usage:
+@enumerate
+@item STM32L152 board is programmed with an application that configures
+PLL to provide core clock with 24MHz frequency; to use ITM output it's
+enough to:
+@example
+#include <libopencm3/cm3/itm.h>
+    ...
+       ITM_STIM8(0) = c;
+    ...
+@end example
+(the most obvious way is to use the first stimulus port for printf,
+for that this ITM_STIM8 assignment can be used inside _write(); to make it
+blocking to avoid data loss, add @code{while (!(ITM_STIM8(0) &
+ITM_STIM_FIFOREADY));});
+@item An FT2232H UART is connected to the SWO pin of the board;
+@item Commands to configure UART for 12MHz baud rate:
+@example
+$ setserial /dev/ttyUSB1 spd_cust divisor 5
+$ stty -F /dev/ttyUSB1 38400
+@end example
+(FT2232H's base frequency is 60MHz, spd_cust allows to alias 38400
+baud with our custom divisor to get 12MHz)
+@item @code{itmdump -f /dev/ttyUSB1 -d1}
+@item OpenOCD invocation line:
+@example
+openocd -f interface/stlink.cfg \
+        -c "transport select hla_swd" \
+        -f target/stm32l1.cfg \
+        -c "tpiu config external uart off 24000000 12000000"
+@end example
+@end enumerate
+@end deffn
+
+@deffn Command {itm port} @var{port} (@option{0}|@option{1}|@option{on}|@option{off})
+Enable or disable trace output for ITM stimulus @var{port} (counting
+from 0). Port 0 is enabled on target creation automatically.
+@end deffn
+
+@deffn Command {itm ports} (@option{0}|@option{1}|@option{on}|@option{off})
+Enable or disable trace output for all ITM stimulus ports.
 @end deffn
 
 @subsection Cortex-M specific commands
@@ -7455,16 +8848,17 @@ Defaulting to 0.
 @deffn Command {cortex_m maskisr} (@option{auto}|@option{on}|@option{off})
 Control masking (disabling) interrupts during target step/resume.
 
-The @option{auto} option handles interrupts during stepping a way they get
-served but don't disturb the program flow. The step command first allows
+The @option{auto} option handles interrupts during stepping in a way that they
+get served but don't disturb the program flow. The step command first allows
 pending interrupt handlers to execute, then disables interrupts and steps over
 the next instruction where the core was halted. After the step interrupts
 are enabled again. If the interrupt handlers don't complete within 500ms,
 the step command leaves with the core running.
 
-Note that a free breakpoint is required for the @option{auto} option. If no
-breakpoint is available at the time of the step, then the step is taken
-with interrupts enabled, i.e. the same way the @option{off} option does.
+Note that a free hardware (FPB) breakpoint is required for the @option{auto}
+option. If no breakpoint is available at the time of the step, then the step
+is taken with interrupts enabled, i.e. the same way the @option{off} option
+does.
 
 Default is @option{auto}.
 @end deffn
@@ -7506,19 +8900,88 @@ otherwise fallback to @option{vectreset}.
 @end itemize
 Using @option{vectreset} is a safe option for all current Cortex-M cores.
 This however has the disadvantage of only resetting the core, all peripherals
-are uneffected. A solution would be to use a @code{reset-init} event handler to manually reset
+are unaffected. A solution would be to use a @code{reset-init} event handler to manually reset
 the peripherals.
 @xref{targetevents,,Target Events}.
 @end deffn
 
+@subsection ARMv8-A specific commands
+@cindex ARMv8-A
+@cindex aarch64
+
+@deffn Command {aarch64 cache_info}
+Display information about target caches
+@end deffn
+
+@deffn Command {aarch64 dbginit}
+This command enables debugging by clearing the OS Lock and sticky power-down and reset
+indications. It also establishes the expected, basic cross-trigger configuration the aarch64
+target code relies on. In a configuration file, the command would typically be called from a
+@code{reset-end} or @code{reset-deassert-post} handler, to re-enable debugging after a system reset.
+However, normally it is not necessary to use the command at all.
+@end deffn
+
+@deffn Command {aarch64 smp_on|smp_off}
+Enable and disable SMP handling. The state of SMP handling influences the way targets in an SMP group
+are handled by the run control. With SMP handling enabled, issuing halt or resume to one core will trigger
+halting or resuming of all cores in the group. The command @code{target smp} defines which targets are in the SMP
+group. With SMP handling disabled, all targets need to be treated individually.
+@end deffn
+
+@deffn Command {aarch64 maskisr} [@option{on}|@option{off}]
+Selects whether interrupts will be processed when single stepping. The default configuration is
+@option{on}.
+@end deffn
+
+@section Intel Architecture
+
+Intel Quark X10xx is the first product in the Quark family of SoCs. It is an IA-32
+(Pentium x86 ISA) compatible SoC. The core CPU in the X10xx is codenamed Lakemont.
+Lakemont version 1 (LMT1) is used in X10xx. The CPU TAP (Lakemont TAP) is used for
+software debug and the CLTAP is used for SoC level operations.
+Useful docs are here: https://communities.intel.com/community/makers/documentation
+@itemize
+@item Intel Quark SoC X1000 OpenOCD/GDB/Eclipse App Note (web search for doc num 330015)
+@item Intel Quark SoC X1000 Debug Operations User Guide (web search for doc num 329866)
+@item Intel Quark SoC X1000 Datasheet (web search for doc num 329676)
+@end itemize
+
+@subsection x86 32-bit specific commands
+The three main address spaces for x86 are memory, I/O and configuration space.
+These commands allow a user to read and write to the 64Kbyte I/O address space.
+
+@deffn Command {x86_32 idw} address
+Display the contents of a 32-bit I/O port from address range 0x0000 - 0xffff.
+@end deffn
+
+@deffn Command {x86_32 idh} address
+Display the contents of a 16-bit I/O port from address range 0x0000 - 0xffff.
+@end deffn
+
+@deffn Command {x86_32 idb} address
+Display the contents of a 8-bit I/O port from address range 0x0000 - 0xffff.
+@end deffn
+
+@deffn Command {x86_32 iww} address
+Write the contents of a 32-bit I/O port to address range 0x0000 - 0xffff.
+@end deffn
+
+@deffn Command {x86_32 iwh} address
+Write the contents of a 16-bit I/O port to address range 0x0000 - 0xffff.
+@end deffn
+
+@deffn Command {x86_32 iwb} address
+Write the contents of a 8-bit I/O port to address range 0x0000 - 0xffff.
+@end deffn
+
 @section OpenRISC Architecture
 
 The OpenRISC CPU is a soft core. It is used in a programmable SoC which can be
 configured with any of the TAP / Debug Unit available.
 
 @subsection TAP and Debug Unit selection commands
-@deffn Command {tap_select} (@option{vjtag}|@option{mohor})
-Select between the Altera Virtual JTAG and Mohor TAP.
+@deffn Command {tap_select} (@option{vjtag}|@option{mohor}|@option{xilinx_bscan})
+Select between the Altera Virtual JTAG , Xilinx Virtual JTAG and Mohor TAP.
 @end deffn
 @deffn Command {du_select} (@option{adv}|@option{mohor}) [option]
 Select between the Advanced Debug Interface and the classic one.
@@ -7556,6 +9019,84 @@ Display all registers in @emph{group}.
  "timer" or any new group created with addreg command.
 @end deffn
 
+@section RISC-V Architecture
+
+@uref{http://riscv.org/, RISC-V} is a free and open ISA. OpenOCD supports JTAG
+debug of targets that implement version 0.11 and 0.13 of the RISC-V Debug
+Specification.
+
+@subsection RISC-V Terminology
+
+A @emph{hart} is a hardware thread. A hart may share resources (eg. FPU) with
+another hart, or may be a separate core.  RISC-V treats those the same, and
+OpenOCD exposes each hart as a separate core.
+
+@subsection RISC-V Debug Configuration Commands
+
+@deffn Command {riscv expose_csrs} n0[-m0][,n1[-m1]]...
+Configure a list of inclusive ranges for CSRs to expose in addition to the
+standard ones. This must be executed before `init`.
+
+By default OpenOCD attempts to expose only CSRs that are mentioned in a spec,
+and then only if the corresponding extension appears to be implemented. This
+command can be used if OpenOCD gets this wrong, or a target implements custom
+CSRs.
+@end deffn
+
+@deffn Command {riscv set_command_timeout_sec} [seconds]
+Set the wall-clock timeout (in seconds) for individual commands. The default
+should work fine for all but the slowest targets (eg. simulators).
+@end deffn
+
+@deffn Command {riscv set_reset_timeout_sec} [seconds]
+Set the maximum time to wait for a hart to come out of reset after reset is
+deasserted.
+@end deffn
+
+@deffn Command {riscv set_scratch_ram} none|[address]
+Set the address of 16 bytes of scratch RAM the debugger can use, or 'none'.
+This is used to access 64-bit floating point registers on 32-bit targets.
+@end deffn
+
+@deffn Command {riscv set_prefer_sba} on|off
+When on, prefer to use System Bus Access to access memory.  When off, prefer to
+use the Program Buffer to access memory.
+@end deffn
+
+@subsection RISC-V Authentication Commands
+
+The following commands can be used to authenticate to a RISC-V system. Eg.  a
+trivial challenge-response protocol could be implemented as follows in a
+configuration file, immediately following @command{init}:
+@example
+set challenge [ocd_riscv authdata_read]
+riscv authdata_write [expr $challenge + 1]
+@end example
+
+@deffn Command {riscv authdata_read}
+Return the 32-bit value read from authdata. Note that to get read value back in
+a TCL script, it needs to be invoked as @command{ocd_riscv authdata_read}.
+@end deffn
+
+@deffn Command {riscv authdata_write} value
+Write the 32-bit value to authdata.
+@end deffn
+
+@subsection RISC-V DMI Commands
+
+The following commands allow direct access to the Debug Module Interface, which
+can be used to interact with custom debug features.
+
+@deffn Command {riscv dmi_read}
+Perform a 32-bit DMI read at address, returning the value.  Note that to get
+read value back in a TCL script, it needs to be invoked as @command{ocd_riscv
+dmi_read}.
+@end deffn
+
+@deffn Command {riscv dmi_write} address value
+Perform a 32-bit DMI write of value at address.
+@end deffn
+
 @anchor{softwaredebugmessagesandtracing}
 @section Software Debug Messages and Tracing
 @cindex Linux-ARM DCC support
@@ -7874,11 +9415,27 @@ way to represent JTAG test patterns in text files.
 In a debug session using JTAG for its transport protocol,
 OpenOCD supports running such test files.
 
-@deffn Command {svf} filename [@option{quiet}]
+@deffn Command {svf} @file{filename} [@option{-tap @var{tapname}}] [@option{[-]quiet}] @
+                     [@option{[-]nil}] [@option{[-]progress}] [@option{[-]ignore_error}]
 This issues a JTAG reset (Test-Logic-Reset) and then
 runs the SVF script from @file{filename}.
-Unless the @option{quiet} option is specified,
-each command is logged before it is executed.
+
+Arguments can be specified in any order; the optional dash doesn't
+affect their semantics.
+
+Command options:
+@itemize @minus
+@item @option{-tap @var{tapname}} ignore IR and DR headers and footers
+specified by the SVF file with HIR, TIR, HDR and TDR commands;
+instead, calculate them automatically according to the current JTAG
+chain configuration, targeting @var{tapname};
+@item @option{[-]quiet} do not log every command before execution;
+@item @option{[-]nil} ``dry run'', i.e., do not perform any operations
+on the real interface;
+@item @option{[-]progress} enable progress indication;
+@item @option{[-]ignore_error} continue execution despite TDO check
+errors.
+@end itemize
 @end deffn
 
 @section XSVF: Xilinx Serial Vector Format
@@ -7936,11 +9493,11 @@ probably will not be usable with other XSVF tools.
 
 There is often a need to stress-test random access memory (RAM) for
 errors. OpenOCD comes with a Tcl implementation of well-known memory
-testing procedures allowing to detect all sorts of issues with
+testing procedures allowing the detection of all sorts of issues with
 electrical wiring, defective chips, PCB layout and other common
 hardware problems.
 
-To use them you usually need to initialise your RAM controller first,
+To use them, you usually need to initialise your RAM controller first;
 consult your SoC's documentation to get the recommended list of
 register operations and translate them to the corresponding
 @command{mww}/@command{mwb} commands.
@@ -7974,10 +9531,21 @@ storage bit in the device is tested as zero and as one.
 Run all of the above tests over a specified memory region.
 @end deffn
 
+@section Firmware recovery helpers
+@cindex Firmware recovery
+
+OpenOCD includes an easy-to-use script to facilitate mass-market
+devices recovery with JTAG.
+
+For quickstart instructions run:
+@example
+openocd -f tools/firmware-recovery.tcl -c firmware_help
+@end example
+
 @node TFTP
 @chapter TFTP
 @cindex TFTP
-If OpenOCD runs on an embedded host(as ZY1000 does), then TFTP can
+If OpenOCD runs on an embedded host (as ZY1000 does), then TFTP can
 be used to access files on PCs (either the developer's PC or some other PC).
 
 The way this works on the ZY1000 is to prefix a filename by
@@ -7999,7 +9567,7 @@ a bit of googling to find something that fits your requirements.
 @node GDB and OpenOCD
 @chapter GDB and OpenOCD
 @cindex GDB
-OpenOCD complies with the remote gdbserver protocol, and as such can be used
+OpenOCD complies with the remote gdbserver protocol and, as such, can be used
 to debug remote targets.
 Setting up GDB to work with OpenOCD can involve several components:
 
@@ -8058,7 +9626,7 @@ GDB command line.
 
 With the remote protocol, GDB sessions start a little differently
 than they do when you're debugging locally.
-Here's an examples showing how to start a debug session with a
+Here's an example showing how to start a debug session with a
 small ARM program.
 In this case the program was linked to be loaded into SRAM on a Cortex-M3.
 Most programs would be written into flash (address 0) and run from there.
@@ -8115,19 +9683,6 @@ With that particular hardware (Cortex-M3) the hardware breakpoints
 only work for code running from flash memory. Most other ARM systems
 do not have such restrictions.
 
-Another example of useful GDB configuration came from a user who
-found that single stepping his Cortex-M3 didn't work well with IRQs
-and an RTOS until he told GDB to disable the IRQs while stepping:
-
-@example
-define hook-step
-mon cortex_m maskisr on
-end
-define hookpost-step
-mon cortex_m maskisr off
-end
-@end example
-
 Rather than typing such commands interactively, you may prefer to
 save them in a file and have GDB execute them as it starts, perhaps
 using a @file{.gdbinit} in your project directory or starting GDB
@@ -8151,7 +9706,7 @@ flash areas of the target and use hardware breakpoints by default. This means
 that the OpenOCD option @command{gdb_breakpoint_override} is not required when
 using a memory map. @xref{gdbbreakpointoverride,,gdb_breakpoint_override}.
 
-To view the configured memory map in GDB, use the GDB command @option{info mem}
+To view the configured memory map in GDB, use the GDB command @option{info mem}.
 All other unassigned addresses within GDB are treated as RAM.
 
 GDB 6.8 and higher set any memory area not in the memory map as inaccessible.
@@ -8167,14 +9722,60 @@ GDB will look at the target memory map when a load command is given, if any
 areas to be programmed lie within the target flash area the vFlash packets
 will be used.
 
-If the target needs configuring before GDB programming, an event
-script can be executed:
+If the target needs configuring before GDB programming, set target
+event gdb-flash-erase-start:
 @example
-$_TARGETNAME configure -event EVENTNAME BODY
+$_TARGETNAME configure -event gdb-flash-erase-start BODY
 @end example
+@xref{targetevents,,Target Events}, for other GDB programming related events.
 
 To verify any flash programming the GDB command @option{compare-sections}
 can be used.
+
+@section Using GDB as a non-intrusive memory inspector
+@cindex Using GDB as a non-intrusive memory inspector
+@anchor{gdbmeminspect}
+
+If your project controls more than a blinking LED, let's say a heavy industrial
+robot or an experimental nuclear reactor, stopping the controlling process
+just because you want to attach GDB is not a good option.
+
+OpenOCD does not support GDB non-stop mode (might be implemented in the future).
+Though there is a possible setup where the target does not get stopped
+and GDB treats it as it were running.
+If the target supports background access to memory while it is running,
+you can use GDB in this mode to inspect memory (mainly global variables)
+without any intrusion of the target process.
+
+Remove default setting of gdb-attach event. @xref{targetevents,,Target Events}.
+Place following command after target configuration:
+@example
+$_TARGETNAME configure -event gdb-attach @{@}
+@end example
+
+If any of installed flash banks does not support probe on running target,
+switch off gdb_memory_map:
+@example
+gdb_memory_map disable
+@end example
+
+Ensure GDB is configured without interrupt-on-connect.
+Some GDB versions set it by default, some does not.
+@example
+set remote interrupt-on-connect off
+@end example
+
+If you switched gdb_memory_map off, you may want to setup GDB memory map
+manually or issue @command{set mem inaccessible-by-default off}
+
+Now you can issue GDB command @command{target remote ...} and inspect memory
+of a running target. Do not use GDB commands @command{continue},
+@command{step} or @command{next} as they synchronize GDB with your target
+and GDB would require stopping the target to get the prompt back.
+
+Do not use this mode under an IDE like Eclipse as it caches values of
+previously shown varibles.
+
 @anchor{usingopenocdsmpwithgdb}
 @section Using OpenOCD SMP with GDB
 @cindex SMP
@@ -8229,7 +9830,11 @@ end
 @anchor{gdbrtossupport}
 
 OpenOCD includes RTOS support, this will however need enabling as it defaults to disabled.
-It can be enabled by passing @option{-rtos} arg to the target @xref{rtostype,,RTOS Type}.
+It can be enabled by passing @option{-rtos} arg to the target. @xref{rtostype,,RTOS Type}.
+
+@xref{Threads, Debugging Programs with Multiple Threads,
+Debugging Programs with Multiple Threads, gdb, GDB manual}, for details about relevant
+GDB commands.
 
 @* An example setup is below:
 
@@ -8247,11 +9852,14 @@ Currently supported rtos's include:
 @item @option{linux}
 @item @option{ChibiOS}
 @item @option{embKernel}
+@item @option{mqx}
+@item @option{uCOS-III}
+@item @option{nuttx}
 @end itemize
 
 @quotation Note
-Before an RTOS can be detected it must export certain symbols otherwise it cannot be used by
-OpenOCD. Below is a list of the required symbols for each supported RTOS.
+Before an RTOS can be detected, it must export certain symbols; otherwise, it cannot
+be used by OpenOCD. Below is a list of the required symbols for each supported RTOS.
 @end quotation
 
 @table @code
@@ -8260,9 +9868,17 @@ Cyg_Thread::thread_list, Cyg_Scheduler_Base::current_thread.
 @item ThreadX symbols
 _tx_thread_current_ptr, _tx_thread_created_ptr, _tx_thread_created_count.
 @item FreeRTOS symbols
+@c The following is taken from recent texinfo to provide compatibility
+@c with ancient versions that do not support @raggedright
+@tex
+\begingroup
+\rightskip0pt plus2em \spaceskip.3333em \xspaceskip.5em\relax
 pxCurrentTCB, pxReadyTasksLists, xDelayedTaskList1, xDelayedTaskList2,
 pxDelayedTaskList, pxOverflowDelayedTaskList, xPendingReadyList,
-xTasksWaitingTermination, xSuspendedTaskList, uxCurrentNumberOfTasks, uxTopUsedPriority.
+uxCurrentNumberOfTasks, uxTopUsedPriority.
+\par
+\endgroup
+@end tex
 @item linux symbols
 init_task.
 @item ChibiOS symbols
@@ -8270,11 +9886,26 @@ rlist, ch_debug, chSysInit.
 @item embKernel symbols
 Rtos::sCurrentTask, Rtos::sListReady, Rtos::sListSleep,
 Rtos::sListSuspended, Rtos::sMaxPriorities, Rtos::sCurrentTaskCount.
+@item mqx symbols
+_mqx_kernel_data, MQX_init_struct.
+@item uC/OS-III symbols
+OSRunning, OSTCBCurPtr, OSTaskDbgListPtr, OSTaskQty
+@item nuttx symbols
+g_readytorun, g_tasklisttable
 @end table
 
 For most RTOS supported the above symbols will be exported by default. However for
-some, eg. FreeRTOS @option{xTasksWaitingTermination} is only exported
-if @option{INCLUDE_vTaskDelete} is defined during the build.
+some, eg. FreeRTOS and uC/OS-III, extra steps must be taken.
+
+These RTOSes may require additional OpenOCD-specific file to be linked
+along with the project:
+
+@table @code
+@item FreeRTOS
+contrib/rtos-helpers/FreeRTOS-openocd.c
+@item uC/OS-III
+contrib/rtos-helpers/uCOS-III-openocd.c
+@end table
 
 @node Tcl Scripting API
 @chapter Tcl Scripting API
@@ -8282,9 +9913,9 @@ if @option{INCLUDE_vTaskDelete} is defined during the build.
 @cindex Tcl scripts
 @section API rules
 
-The commands are stateless. E.g. the telnet command line has a concept
-of currently active target, the Tcl API proc's take this sort of state
-information as an argument to each proc.
+Tcl commands are stateless; e.g. the @command{telnet} command has
+a concept of currently active target, the Tcl API proc's take this sort
+of state information as an argument to each proc.
 
 There are three main types of return values: single value, name value
 pair list and lists.
@@ -8292,38 +9923,44 @@ pair list and lists.
 Name value pair. The proc 'foo' below returns a name/value pair
 list.
 
-@verbatim
-
- >  set foo(me)  Duane
- >  set foo(you) Oyvind
- >  set foo(mouse) Micky
- >  set foo(duck) Donald
+@example
+>  set foo(me)  Duane
+>  set foo(you) Oyvind
+>  set foo(mouse) Micky
+>  set foo(duck) Donald
+@end example
 
 If one does this:
 
- >  set foo
+@example
+>  set foo
+@end example
 
 The result is:
 
-    me Duane you Oyvind mouse Micky duck Donald
+@example
+me Duane you Oyvind mouse Micky duck Donald
+@end example
 
 Thus, to get the names of the associative array is easy:
 
-     foreach { name value } [set foo] {
-                puts "Name: $name, Value: $value"
-     }
+@verbatim
+foreach { name value } [set foo] {
+        puts "Name: $name, Value: $value"
+}
 @end verbatim
 
-Lists returned must be relatively small. Otherwise a range
+Lists returned should be relatively small. Otherwise, a range
 should be passed in to the proc in question.
 
 @section Internal low-level Commands
 
-By low-level, the intent is a human would not directly use these commands.
+By "low-level," we mean commands that a human would typically not
+invoke directly.
 
-Low-level commands are (should be) prefixed with "ocd_", e.g.
+Some low-level commands need to be prefixed with "ocd_"; e.g.
 @command{ocd_flash_banks}
-is the low level API upon which @command{flash banks} is implemented.
+is the low-level API upon which @command{flash banks} is implemented.
 
 @itemize @bullet
 @item @b{mem2array} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
@@ -8335,6 +9972,16 @@ Convert a Tcl array to memory locations and write the values
 @item @b{ocd_flash_banks} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}> <@var{target}> [@option{driver options} ...]
 
 Return information about the flash banks
+
+@item @b{capture} <@var{command}>
+
+Run <@var{command}> and return full log output that was produced during
+its execution. Example:
+
+@example
+> capture "reset init"
+@end example
+
 @end itemize
 
 OpenOCD commands can consist of two words, e.g. "flash banks". The
@@ -8349,15 +9996,18 @@ holds one of the following values:
 
 @itemize @bullet
 @item @b{cygwin}   Running under Cygwin
-@item @b{darwin}   Darwin (Mac-OS) is the underlying operating sytem.
+@item @b{darwin}   Darwin (Mac-OS) is the underlying operating system.
 @item @b{freebsd}  Running under FreeBSD
-@item @b{linux}    Linux is the underlying operating sytem
+@item @b{openbsd}  Running under OpenBSD
+@item @b{netbsd}   Running under NetBSD
+@item @b{linux}    Linux is the underlying operating system
 @item @b{mingw32}  Running under MingW32
 @item @b{winxx}    Built using Microsoft Visual Studio
+@item @b{ecos}     Running under eCos
 @item @b{other}    Unknown, none of the above.
 @end itemize
 
-Note: 'winxx' was choosen because today (March-2009) no distinction is made between Win32 and Win64.
+Note: 'winxx' was chosen because today (March-2009) no distinction is made between Win32 and Win64.
 
 @quotation Note
 We should add support for a variable like Tcl variable
@@ -8366,6 +10016,68 @@ We should add support for a variable like Tcl variable
 is jim, not real tcl).
 @end quotation
 
+@section Tcl RPC server
+@cindex RPC
+
+OpenOCD provides a simple RPC server that allows to run arbitrary Tcl
+commands and receive the results.
+
+To access it, your application needs to connect to a configured TCP port
+(see @command{tcl_port}). Then it can pass any string to the
+interpreter terminating it with @code{0x1a} and wait for the return
+value (it will be terminated with @code{0x1a} as well). This can be
+repeated as many times as desired without reopening the connection.
+
+Remember that most of the OpenOCD commands need to be prefixed with
+@code{ocd_} to get the results back. Sometimes you might also need the
+@command{capture} command.
+
+See @file{contrib/rpc_examples/} for specific client implementations.
+
+@section Tcl RPC server notifications
+@cindex RPC Notifications
+
+Notifications are sent asynchronously to other commands being executed over
+the RPC server, so the port must be polled continuously.
+
+Target event, state and reset notifications are emitted as Tcl associative arrays
+in the following format.
+
+@verbatim
+type target_event event [event-name]
+type target_state state [state-name]
+type target_reset mode [reset-mode]
+@end verbatim
+
+@deffn {Command} tcl_notifications [on/off]
+Toggle output of target notifications to the current Tcl RPC server.
+Only available from the Tcl RPC server.
+Defaults to off.
+
+@end deffn
+
+@section Tcl RPC server trace output
+@cindex RPC trace output
+
+Trace data is sent asynchronously to other commands being executed over
+the RPC server, so the port must be polled continuously.
+
+Target trace data is emitted as a Tcl associative array in the following format.
+
+@verbatim
+type target_trace data [trace-data-hex-encoded]
+@end verbatim
+
+@deffn {Command} tcl_trace [on/off]
+Toggle output of target trace data to the current Tcl RPC server.
+Only available from the Tcl RPC server.
+Defaults to off.
+
+See an example application here:
+@url{https://github.com/apmorton/OpenOcdTraceUtil} [OpenOcdTraceUtil]
+
+@end deffn
+
 @node FAQ
 @chapter FAQ
 @cindex faq
@@ -8376,7 +10088,7 @@ is jim, not real tcl).
 @cindex adaptive clocking
 @*
 
-In digital circuit design it is often refered to as ``clock
+In digital circuit design it is often referred to as ``clock
 synchronisation'' the JTAG interface uses one clock (TCK or TCLK)
 operating at some speed, your CPU target is operating at another.
 The two clocks are not synchronised, they are ``asynchronous''
@@ -8504,7 +10216,7 @@ Make sure you have Cygwin installed, or at least a version of OpenOCD that
 claims to come with all the necessary DLLs. When using Cygwin, try launching
 OpenOCD from the Cygwin shell.
 
-@item @b{Breakpoint Issue} I'm trying to set a breakpoint using GDB (or a frontend like Insight or
+@item @b{Breakpoint Issue} I'm trying to set a breakpoint using GDB (or a front-end like Insight or
 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
 
@@ -8544,7 +10256,7 @@ stackframes have been processed. By pushing zeros on the stack, GDB
 gracefully stops.
 
 @b{Debugging Interrupt Service Routines} - In your ISR before you call
-your C code, do the same - artifically push some zeros onto the stack,
+your C code, do the same - artificially push some zeros onto the stack,
 remember to pop them off when the ISR is done.
 
 @b{Also note:} If you have a multi-threaded operating system, they
@@ -8574,16 +10286,6 @@ supply stable enough for the Amontec JTAGkey to be operated.
 
 @b{Laptops running on battery have this problem too...}
 
-@item @b{USB Power} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
-following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
-4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
-What does that mean and what might be the reason for this?
-
-First of all, the reason might be the USB power supply. Try using a self-powered
-hub instead of a direct connection to your computer. Secondly, the error code 4
-corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
-chip ran into some sort of error - this points us to a USB problem.
-
 @item @b{GDB Disconnects} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
 What does that mean and what might be the reason for this?
@@ -8630,8 +10332,8 @@ particular order?
 Yes; whenever you have more than one, you must declare them in
 the same order used by the hardware.
 
-Many newer devices have multiple JTAG TAPs. For example: ST
-Microsystems STM32 chips have two TAPs, a ``boundary scan TAP'' and
+Many newer devices have multiple JTAG TAPs. For example:
+STMicroelectronics STM32 chips have two TAPs, a ``boundary scan TAP'' and
 ``Cortex-M3'' TAP. Example: The STM32 reference manual, Document ID:
 RM0008, Section 26.5, Figure 259, page 651/681, the ``TDI'' pin is
 connected to the boundary scan TAP, which then connects to the
@@ -8714,7 +10416,7 @@ those commands is the word ``for'', another command is ``if''.
 
 @section Per Rule #1 - All Results are strings
 Every Tcl command results in a string. The word ``result'' is used
-deliberatly. No result is just an empty string. Remember: @i{Rule #1 -
+deliberately. No result is just an empty string. Remember: @i{Rule #1 -
 Everything is a string}
 
 @section Tcl Quoting Operators
@@ -8731,7 +10433,7 @@ three primary quoting constructs, the [square-brackets] the
 
 By now you should know $VARIABLES always start with a $DOLLAR
 sign. BTW: To set a variable, you actually use the command ``set'', as
-in ``set VARNAME VALUE'' much like the ancient BASIC langauge ``let x
+in ``set VARNAME VALUE'' much like the ancient BASIC language ``let x
 = 1'' statement, but without the equal sign.
 
 @itemize @bullet
@@ -8777,7 +10479,7 @@ the normal way.
 
 As a script is parsed, each (multi) line in the script file is
 tokenised and according to the quoting rules. After tokenisation, that
-line is immedatly executed.
+line is immediately executed.
 
 Multi line statements end with one or more ``still-open''
 @{curly-braces@} which - eventually - closes a few lines later.
@@ -8848,7 +10550,7 @@ MyCommand( Jim_Interp *interp,
 @end example
 
 Real Tcl is nearly identical. Although the newer versions have
-introduced a byte-code parser and intepreter, but at the core, it
+introduced a byte-code parser and interpreter, but at the core, it
 still operates in the same basic way.
 
 @subsection FOR command implementation
@@ -8861,7 +10563,7 @@ In Tcl there are two underlying C helper functions.
 Remember Rule #1 - You are a string.
 
 The @b{first} helper parses and executes commands found in an ascii
-string. Commands can be seperated by semicolons, or newlines. While
+string. Commands can be separated by semicolons, or newlines. While
 parsing, variables are expanded via the quoting rules.
 
 The @b{second} helper evaluates an ascii string as a numerical
@@ -8956,7 +10658,7 @@ it reads a file and executes as a script.
    @}
    $_TARGETNAME configure -event FOO someproc
 #2 Good - no variables
-   $_TARGETNAME confgure -event foo "this ; that;"
+   $_TARGETNAME configure -event foo "this ; that;"
 #3 Good Curly Braces
    $_TARGETNAME configure -event FOO @{
         puts "Time: [date]"
@@ -8975,7 +10677,7 @@ command.
 @*There are 4 examples:
 @enumerate
 @item The TCLBODY is a simple string that happens to be a proc name
-@item The TCLBODY is several simple commands seperated by semicolons
+@item The TCLBODY is several simple commands separated by semicolons
 @item The TCLBODY is a multi-line @{curly-brace@} quoted string
 @item The TCLBODY is a string with variables that get expanded.
 @end enumerate

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)