David Brownell <david-b@pacbell.net>:
[openocd.git] / doc / openocd.texi
index cf01a94c01882762701879d5ee72aa3ce063aa64..ebb76f3c53a7fc8524352e65d0e03f606f560581 100644 (file)
@@ -1,18 +1,23 @@
-\input texinfo @c -*-texinfo-*-
+\input texinfo @c -*-texinfo-*-
 @c %**start of header
 @setfilename openocd.info
-@settitle Open On-Chip Debugger (OpenOCD)
+@settitle OpenOCD User's Guide
 @dircategory Development
 @direntry
-@paragraphindent 0
-* OpenOCD: (openocd).      Open On-Chip Debugger.
+* OpenOCD: (openocd).      OpenOCD User's Guide
 @end direntry
+@paragraphindent 0
 @c %**end of header
 
 @include version.texi
 
 @copying
 
+This User's Guide documents
+release @value{VERSION},
+dated @value{UPDATED},
+of the Open On-Chip Debugger (OpenOCD).
+
 @itemize @bullet
 @item Copyright @copyright{} 2008 The OpenOCD Project
 @item Copyright @copyright{} 2007-2008 Spencer Oliver @email{spen@@spen-soft.co.uk}
@@ -31,9 +36,12 @@ Free Documentation License''.
 @end copying
 
 @titlepage
-@title Open On-Chip Debugger (OpenOCD)
-@subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
+@titlefont{@emph{Open On-Chip Debugger:}}
+@sp 1
+@title OpenOCD User's Guide
+@subtitle for release @value{VERSION}
 @subtitle @value{UPDATED}
+
 @page
 @vskip 0pt plus 1filll
 @insertcopying
@@ -42,13 +50,12 @@ Free Documentation License''.
 @summarycontents
 @contents
 
-@node Top, About, , (dir)
-@top OpenOCD
-
-This manual documents edition @value{EDITION} of the Open On-Chip Debugger
-(OpenOCD) version @value{VERSION}, @value{UPDATED}.
+@ifnottex
+@node Top
+@top OpenOCD User's Guide
 
 @insertcopying
+@end ifnottex
 
 @menu
 * About::                            About OpenOCD
@@ -64,7 +71,7 @@ This manual documents edition @value{EDITION} of the Open On-Chip Debugger
 * Reset Configuration::              Reset Configuration
 * Tap Creation::                     Tap Creation
 * Target Configuration::             Target Configuration
-* Flash Configuration::              Flash Configuration
+* Flash Commands::                   Flash Commands
 * NAND Flash Commands::              NAND Flash Commands
 * General Commands::                 General Commands
 * JTAG Commands::                    JTAG Commands
@@ -77,12 +84,13 @@ This manual documents edition @value{EDITION} of the Open On-Chip Debugger
 * FAQ::                              Frequently Asked Questions
 * Tcl Crash Course::                 Tcl Crash Course
 * License::                          GNU Free Documentation License
+
 @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
 @comment case issue with ``Index.html'' and ``index.html''
 @comment Occurs when creating ``--html --no-split'' output
 @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
 * OpenOCD Concept Index::            Concept Index
-* OpenOCD Command Index::            Command Index
+* Command and Driver Index::         Command and Driver Index
 @end menu
 
 @node About
@@ -110,7 +118,7 @@ OpenOCD internally. @xref{JTAG Hardware Dongles}.
 
 @b{GDB Debug:} It allows ARM7 (ARM7TDMI and ARM720t), ARM9 (ARM920T,
 ARM922T, ARM926EJ--S, ARM966E--S), XScale (PXA25x, IXP42x) and
-Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be
+Cortex-M3 (Stellaris LM3 and ST STM32) based cores to be
 debugged via the GDB protocol.
 
 @b{Flash Programing:} Flash writing is supported for external CFI
@@ -125,6 +133,24 @@ The OpenOCD web site provides the latest public news from the community:
 
 @uref{http://openocd.berlios.de/web/}
 
+@section Latest User's Guide:
+
+The user's guide you are now reading may not be the latest one
+available.  A version for more recent code may be available.
+Its HTML form is published irregularly at:
+
+@uref{http://openocd.berlios.de/doc/}
+
+PDF form is likewise published at:
+
+@uref{http://openocd.berlios.de/doc/pdf/}
+
+@section OpenOCD User's Forum
+
+There is an OpenOCD forum (phpBB) hosted by SparkFun:
+
+@uref{http://forum.sparkfun.com/viewforum.php?f=18}
+
 
 @node Developers
 @chapter OpenOCD Developer Resources
@@ -167,12 +193,13 @@ listed in the Doxyfile configuration in the top of the repository trunk.
 The OpenOCD Developer Mailing List provides the primary means of
 communication between developers:
 
-       @uref{https://lists.berlios.de/mailman/listinfo/openocd-development}
+@uref{https://lists.berlios.de/mailman/listinfo/openocd-development}
 
 All drivers developers are enouraged to also subscribe to the list of
 SVN commits to keep pace with the ongoing changes:
 
-       @uref{https://lists.berlios.de/mailman/listinfo/openocd-svn}
+@uref{https://lists.berlios.de/mailman/listinfo/openocd-svn}
+
 
 @node Building OpenOCD
 @chapter Building OpenOCD
@@ -247,7 +274,14 @@ current directory):
  svn checkout svn://svn.berlios.de/openocd/trunk openocd
 @end example
 
-Building OpenOCD requires a recent version of the GNU autotools (autoconf >= 2.59 and automake >= 1.9).
+If you prefer GIT based tools, the @command{git-svn} package works too:
+
+@example
+ git svn clone -s svn://svn.berlios.de/openocd
+@end example
+
+Building OpenOCD from a repository requires a recent version of the
+GNU autotools (autoconf >= 2.59 and automake >= 1.9).
 For building on Windows,
 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
@@ -261,7 +295,7 @@ a FTDI FT2232 based interface:
 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
-homepage (@uref{http://www.amontec.com}), as the JTAGkey uses a non-standard VID/PID. 
+homepage (@uref{http://www.amontec.com}). The JTAGkey uses a non-standard VID/PID.
 @end itemize
 
 libftdi is supported under Windows. Do not use versions earlier than 0.14.
@@ -320,9 +354,11 @@ should be included (among other things):
 @item
 @option{--enable-ft2232_libftdi} - An open source (free) alternative to FTDICHIP.COM ftd2xx solution (Linux, MacOS, Cygwin).
 @item
-@option{--with-ftd2xx-win32-zipdir=PATH} - If using FTDICHIP.COM ft2232c, point at the directory where the Win32 FTDICHIP.COM 'CDM' driver zip file was unpacked.
+@option{--with-ftd2xx-win32-zipdir=PATH} - If using FTDICHIP.COM ft2232c driver,
+give the directory where the Win32 FTDICHIP.COM 'CDM' driver zip file was unpacked.
 @item
-@option{--with-ftd2xx-linux-tardir=PATH} - Linux only. Equivalent of @option{--with-ftd2xx-win32-zipdir}, where you unpacked the TAR.GZ file.
+@option{--with-ftd2xx-linux-tardir=PATH} - If using FTDICHIP.COM ft2232c driver
+on Linux, give the directory where the Linux driver's TAR.GZ file was unpacked.
 @item
 @option{--with-ftd2xx-lib=shared|static} - Linux only. Default: static. Specifies how the FTDICHIP.COM libftd2xx driver should be linked. Note: 'static' only works in conjunction with @option{--with-ftd2xx-linux-tardir}. The 'shared' value is supported (12/26/2008), however you must manually install the required header files and shared libraries in an appropriate place. This uses ``libusb'' internally.
 @item
@@ -369,43 +405,54 @@ files ``in an appropriate place'' As a result, there are two
 
 Below is an example build process:
 
-1) Check out the latest version of ``openocd'' from SVN.
+@enumerate
+@item Check out the latest version of ``openocd'' from SVN.
+
+@item If you are using the FTDICHIP.COM driver, download
+and unpack the Windows or Linux FTD2xx drivers
+(@uref{http://www.ftdichip.com/Drivers/D2XX.htm}).
+If you are using the libftdi driver, install that package
+(e.g. @command{apt-get install libftdi} on systems with APT).
+
+@example
+/home/duane/ftd2xx.win32    => the Cygwin/Win32 ZIP file contents
+/home/duane/libftd2xx0.4.16 => the Linux TAR.GZ file contents
+@end example
+
+@item Configure with options resembling the following.
 
-2) Download & unpack either the Windows or Linux FTD2xx drivers
-    (@uref{http://www.ftdichip.com/Drivers/D2XX.htm}).
+@enumerate a
+@item Cygwin FTDICHIP solution:
+@example
+./configure --prefix=/home/duane/mytools \
+        --enable-ft2232_ftd2xx \
+        --with-ftd2xx-win32-zipdir=/home/duane/ftd2xx.win32
+@end example
 
+@item Linux FTDICHIP solution:
 @example
-   /home/duane/ftd2xx.win32    => the Cygwin/Win32 ZIP file contents.
-   /home/duane/libftd2xx0.4.16 => the Linux TAR.GZ file contents.
+./configure --prefix=/home/duane/mytools \
+        --enable-ft2232_ftd2xx \
+        --with-ft2xx-linux-tardir=/home/duane/libftd2xx0.4.16
 @end example
 
-3) Configure with these options:
+@item Cygwin/Linux LIBFTDI solution ... assuming that
+@itemize
+@item For Windows -- that the Windows port of LIBUSB is in place.
+@item For Linux -- that libusb has been built/installed and is in place.
+@item That libftdi has been built and installed (relies on libusb).
+@end itemize
+
+Then configure the libftdi solution like this:
 
 @example
-Cygwin FTDICHIP solution:
-   ./configure --prefix=/home/duane/mytools \
-               --enable-ft2232_ftd2xx \
-               --with-ftd2xx-win32-zipdir=/home/duane/ftd2xx.win32
-
-Linux FTDICHIP solution:
-   ./configure --prefix=/home/duane/mytools \
-               --enable-ft2232_ftd2xx \
-               --with-ft2xx-linux-tardir=/home/duane/libftd2xx0.4.16
-
-Cygwin/Linux LIBFTDI solution:
-    Assumes: 
-    1a) For Windows: The Windows port of LIBUSB is in place.
-    1b) For Linux: libusb has been built/installed and is in place.
-
-    2) And libftdi has been built and installed
-    Note: libftdi - relies upon libusb.
-
-    ./configure --prefix=/home/duane/mytools \
-                --enable-ft2232_libftdi
-       
+./configure --prefix=/home/duane/mytools \
+        --enable-ft2232_libftdi
 @end example
+@end enumerate
 
-4) Then just type ``make'', and perhaps ``make install''.
+@item Then just type ``make'', and perhaps ``make install''.
+@end enumerate
 
 
 @section Miscellaneous Configure Options
@@ -467,9 +514,10 @@ and has a built in relay to power cycle targets remotely.
 
 There are many USB JTAG dongles on the market, many of them are based
 on a chip from ``Future Technology Devices International'' (FTDI)
-known as the FTDI FT2232.
-
-See: @url{http://www.ftdichip.com} or @url{http://www.ftdichip.com/Products/FT2232H.htm}
+known as the FTDI FT2232; this is a USB full speed (12 Mbps) chip.
+See: @url{http://www.ftdichip.com} for more information.
+In summer 2009, USB high speed (480 Mbps) versions of these FTDI
+chips are starting to become available in JTAG adapters.
 
 As of 28/Nov/2008, the following are supported:
 
@@ -483,19 +531,23 @@ As of 28/Nov/2008, the following are supported:
 @item @b{signalyzer}
 @* See: @url{http://www.signalyzer.com}
 @item @b{evb_lm3s811}
-@* See: @url{http://www.luminarymicro.com} - The Luminary Micro Stellaris LM3S811 eval board has an FTD2232C chip built in.
+@* See: @url{http://www.luminarymicro.com} - The Stellaris LM3S811 eval board has an FTD2232C chip built in.
 @item @b{olimex-jtag}
 @* See: @url{http://www.olimex.com}
 @item @b{flyswatter}
 @* See: @url{http://www.tincantools.com}
 @item @b{turtelizer2}
-@* See: @url{http://www.ethernut.de}, or @url{http://www.ethernut.de/en/hardware/turtelizer/index.html}
+@* See:
+@uref{http://www.ethernut.de/en/hardware/turtelizer/index.html, Turtelizer 2}, or
+@url{http://www.ethernut.de}
 @item @b{comstick}
 @* Link: @url{http://www.hitex.com/index.php?id=383}
 @item @b{stm32stick}
 @* Link @url{http://www.hitex.com/stm32-stick}
 @item @b{axm0432_jtag}
 @* Axiom AXM-0432 Link @url{http://www.axman.com}
+@item @b{cortino}
+@* Link @url{http://www.hitex.com/index.php?id=cortino}
 @end itemize
 
 @section USB JLINK based
@@ -561,7 +613,8 @@ produced, PDF schematics are easily found and it is easy to make.
 @* Link: @url{http://www.gateworks.com/products/avila_accessories/gw16042.php}
 
 @item @b{Wiggler2}
-@* Link: @url{http://www.ccac.rwth-aachen.de/~michaels/index.php/hardware/armjtag}
+@*@uref{http://www.ccac.rwth-aachen.de/@/~michaels/@/index.php/hardware/@/armjtag,
+Improved parallel-port wiggler-style JTAG adapter}
 
 @item @b{Wiggler_ntrst_inverted}
 @* Yet another variation - See the source code, src/jtag/parport.c
@@ -579,12 +632,13 @@ produced, PDF schematics are easily found and it is easy to make.
 @* Unknown.
 
 @item @b{Lattice}
-@* ispDownload from Lattice Semiconductor @url{http://www.latticesemi.com/lit/docs/devtools/dlcable.pdf}
+@* ispDownload from Lattice Semiconductor
+@url{http://www.latticesemi.com/lit/docs/@/devtools/dlcable.pdf}
 
 @item @b{flashlink}
-@* From ST Microsystems, link:
-@url{http://www.st.com/stonline/products/literature/um/7889.pdf}
-Title: FlashLINK JTAG programing cable for PSD and uPSD
+@* From ST Microsystems;
+@uref{http://www.st.com/stonline/@/products/literature/um/7889.pdf,
+FlashLINK JTAG programing cable for PSD and uPSD}
 
 @end itemize
 
@@ -715,7 +769,7 @@ You can use a series of ``-f filename'' options on the command line,
 OpenOCD will read each filename in sequence, for example:
 
 @example
-        openocd -f file1.cfg -f file2.cfg -f file2.cfg
+openocd -f file1.cfg -f file2.cfg -f file2.cfg
 @end example
 
 You can also intermix various commands with the ``-c'' command line
@@ -804,11 +858,6 @@ A preconfigured interface file should exist for every interface in use
 today, that said, perhaps some interfaces have only been used by the
 sole developer who created it.
 
-@b{FIXME/NOTE:} We need to add support for a variable like Tcl variable
-tcl_platform(platform), it should be called jim_platform (because it
-is jim, not real tcl) and it should contain 1 of 3 words: ``linux'',
-``cygwin'' or ``mingw''
-
 Interface files should be found in @t{$(INSTALLDIR)/lib/openocd/interface}
 
 @section Board Config Files
@@ -879,8 +928,10 @@ error or warning like this. The hope is that this will help to pinpoint
 problems in OpenOCD configurations.
 
 @example
-Info:   JTAG tap: sam7x256.cpu tap/device found: 0x3f0f0f0f (Manufacturer: 0x787, Part: 0xf0f0, Version: 0x3)
-Error:  ERROR: Tap: sam7x256.cpu - Expected id: 0x12345678, Got: 0x3f0f0f0f
+Info:   JTAG tap: sam7x256.cpu tap/device found: 0x3f0f0f0f
+                (Manufacturer: 0x787, Part: 0xf0f0, Version: 0x3)
+Error:  ERROR: Tap: sam7x256.cpu - Expected id: 0x12345678,
+                Got: 0x3f0f0f0f
 Error:  ERROR: expected: mfg: 0x33c, part: 0x2345, ver: 0x1
 Error:  ERROR:      got: mfg: 0x787, part: 0xf0f0, ver: 0x3
 @end example
@@ -934,14 +985,14 @@ used at will within a ?TARGET? configuration file.
    # variable: _TARGETNAME = network.cpu
    # other commands can refer to the "network.cpu" tap.
    $_TARGETNAME configure .... params for this CPU..
-   
+
    set ENDIAN little
    set CHIPNAME video
    source [find target/pxa270.cfg]
    # variable: _TARGETNAME = video.cpu
    # other commands can refer to the "video.cpu" tap.
    $_TARGETNAME configure .... params for this CPU..
-   
+
    unset ENDIAN
    set CHIPNAME xilinx
    source [find target/spartan3.cfg]
@@ -959,15 +1010,15 @@ All target configuration files should start with this (or a modified form)
 
 @example
 # SIMPLE example
-if @{ [info exists CHIPNAME] @} @{     
-   set  _CHIPNAME $CHIPNAME    
-@} else @{      
+if @{ [info exists CHIPNAME] @} @{
+   set  _CHIPNAME $CHIPNAME
+@} else @{
    set  _CHIPNAME sam7x256
 @}
 
-if @{ [info exists ENDIAN] @} @{       
-   set  _ENDIAN $ENDIAN    
-@} else @{      
+if @{ [info exists ENDIAN] @} @{
+   set  _ENDIAN $ENDIAN
+@} else @{
    set  _ENDIAN little
 @}
 
@@ -987,7 +1038,8 @@ After the ``defaults'' are choosen [see above] the taps are created.
 @example
 # for an ARM7TDMI.
 set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
-jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask 0xf -expected-id $_CPUTAPID
+jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask 0xf \
+        -expected-id $_CPUTAPID
 @end example
 
 @b{COMPLEX example:}
@@ -1005,14 +1057,16 @@ if @{ [info exists FLASHTAPID ] @} @{
 @} else @{
    set _FLASHTAPID 0x25966041
 @}
-jtag newtap $_CHIPNAME flash -irlen 8 -ircapture 0x1 -irmask 0x1 -expected-id $_FLASHTAPID
+jtag newtap $_CHIPNAME flash -irlen 8 -ircapture 0x1 -irmask 0x1 \
+        -expected-id $_FLASHTAPID
 
 if @{ [info exists CPUTAPID ] @} @{
    set _CPUTAPID $CPUTAPID
 @} else @{
    set _CPUTAPID 0x25966041
 @}
-jtag newtap $_CHIPNAME cpu   -irlen 4 -ircapture 0xf -irmask 0xe -expected-id $_CPUTAPID
+jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0xf -irmask 0xe \
+        -expected-id $_CPUTAPID
 
 
 if @{ [info exists BSTAPID ] @} @{
@@ -1020,7 +1074,8 @@ if @{ [info exists BSTAPID ] @} @{
 @} else @{
    set _BSTAPID 0x1457f041
 @}
-jtag newtap $_CHIPNAME bs    -irlen 5 -ircapture 0x1 -irmask 0x1 -expected-id $_BSTAPID
+jtag newtap $_CHIPNAME bs -irlen 5 -ircapture 0x1 -irmask 0x1 \
+        -expected-id $_BSTAPID
 
 set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
 @end example
@@ -1048,7 +1103,7 @@ managed. If these are @b{CHIP SPECIFIC} they go here, if they are
 @subsection Work Areas
 
 Work areas are small RAM areas used by OpenOCD to speed up downloads,
-and to download small snippets of code to program flash chips.  
+and to download small snippets of code to program flash chips.
 
 If the chip includes a form of ``on-chip-ram'' - and many do - define
 a reasonable work area and use the ``backup'' option.
@@ -1073,17 +1128,11 @@ Some ARM cores are equipped with trace support, which permits
 examination of the instruction and data bus activity.  Trace
 activity is controlled through an ``Embedded Trace Module'' (ETM)
 on one of the core's scan chains.  The ETM emits voluminous data
-through a ``trace port''.  The trace port is accessed in one
-of two ways.  When its signals are pinned out from the chip,
-boards may provide a special high speed debugging connector;
-software support for this is not configured by default, use
-the ``--enable-oocd_trace'' option.  Alternatively, trace data
-may be stored an on-chip SRAM which is packaged as an ``Embedded
-Trace Buffer'' (ETB).  An ETB has its own TAP, usually right after
-its associated ARM core.  OpenOCD supports the ETM, and your
-target configuration should set it up with the relevant trace
-port:  ``etb'' for chips which use that, else the board-specific
-option will be either ``oocd_trace'' or ``dummy''.
+through a ``trace port''.  (@xref{ARM Tracing}.)
+If you are using an external trace port,
+configure it in your board config file.
+If you are using an on-chip ``Embedded Trace Buffer'' (ETB),
+configure it in your target config file.
 
 @example
 etm config $_TARGETNAME 16 normal full etb
@@ -1140,10 +1189,9 @@ can type a Tcl for() loop, set variables, etc.
 @* JIM-Tcl was introduced to OpenOCD in spring 2008.
 
 @item @b{Need a crash course in Tcl?}
-@* See: @xref{Tcl Crash Course}.
+@*@xref{Tcl Crash Course}.
 @end itemize
 
-
 @node Daemon Configuration
 @chapter Daemon Configuration
 @cindex initialization
@@ -1218,8 +1266,8 @@ When not specified during the configuration stage,
 the port @var{number} defaults to 4444.
 @end deffn
 
-@section GDB Configuration
 @anchor{GDB Configuration}
+@section GDB Configuration
 @cindex GDB
 @cindex GDB configuration
 You can reconfigure some GDB behaviors if needed.
@@ -1227,8 +1275,8 @@ The ones listed here are static and global.
 @xref{Target Create}, about declaring individual targets.
 @xref{Target Events}, about configuring target-specific event handling.
 
-@deffn {Command} gdb_breakpoint_override <hard|soft|disable>
 @anchor{gdb_breakpoint_override}
+@deffn {Command} gdb_breakpoint_override <hard|soft|disable>
 Force breakpoint type for gdb @command{break} commands.
 The raison d'etre for this option is to support GDB GUI's which don't
 distinguish hard versus soft breakpoints, if the default OpenOCD and
@@ -1244,8 +1292,8 @@ Configures what OpenOCD will do when GDB detaches from the daemon.
 Default behaviour is @var{resume}.
 @end deffn
 
-@deffn {Config command} gdb_flash_program <enable|disable>
 @anchor{gdb_flash_program}
+@deffn {Config command} gdb_flash_program <enable|disable>
 Set to @var{enable} to cause OpenOCD to program the flash memory when a
 vFlash packet is received.
 The default behaviour is @var{enable}.
@@ -1471,6 +1519,8 @@ egnite Software turtelizer2
 OOCDLink
 @item @b{axm0432_jtag}
 Axiom AXM-0432
+@item @b{cortino}
+Hitex Cortino JTAG interface
 @end itemize
 
 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
@@ -1492,141 +1542,261 @@ The OpenOCD default value is 2 and for some systems a value of 10 has proved use
 @cindex ep93xx options
 Currently, there are no options available for the ep93xx interface.
 
+@anchor{JTAG Speed}
 @section JTAG Speed
-@itemize @bullet
-@item @b{jtag_khz} <@var{reset speed kHz}>
-@cindex jtag_khz
+JTAG clock setup is part of system setup.
+It @emph{does not belong with interface setup} since any interface
+only knows a few of the constraints for the JTAG clock speed.
+Sometimes the JTAG speed is
+changed during the target initialization process: (1) slow at
+reset, (2) program the CPU clocks, (3) run fast.
+Both the "slow" and "fast" clock rates are functions of the
+oscillators used, the chip, the board design, and sometimes
+power management software that may be active.
+
+The speed used during reset can be adjusted using pre_reset
+and post_reset event handlers.
+@xref{Target Events}.
+
+If your system supports adaptive clocking (RTCK), configuring
+JTAG to use that is probably the most robust approach.
+However, it introduces delays to synchronize clocks; so it
+may not be the fastest solution.
+
+@b{NOTE:} Script writers should consider using @command{jtag_rclk}
+instead of @command{jtag_khz}.
+
+@deffn {Command} jtag_khz max_speed_kHz
+A non-zero speed is in KHZ. Hence: 3000 is 3mhz.
+JTAG interfaces usually support a limited number of
+speeds.  The speed actually used won't be faster
+than the speed specified.
+
+As a rule of thumb, if you specify a clock rate make
+sure the JTAG clock is no more than @math{1/6th CPU-Clock}.
+This is especially true for synthesized cores (ARMxxx-S).
+
+Speed 0 (khz) selects RTCK method.
+@xref{FAQ RTCK}.
+If your system uses RTCK, you won't need to change the
+JTAG clocking after setup.
+Not all interfaces, boards, or targets support ``rtck''.
+If the interface device can not
+support it, an error is returned when you try to use RTCK.
+@end deffn
 
-It is debatable if this command belongs here - or in a board
-configuration file. In fact, in some situations the JTAG speed is
-changed during the target initialisation process (i.e.: (1) slow at
-reset, (2) program the CPU clocks, (3) run fast)
+@defun jtag_rclk fallback_speed_kHz
+@cindex RTCK
+This Tcl proc (defined in startup.tcl) attempts to enable RTCK/RCLK.
+If that fails (maybe the interface, board, or target doesn't
+support it), falls back to the specified frequency.
+@example
+# Fall back to 3mhz if RTCK is not supported
+jtag_rclk 3000
+@end example
+@end defun
 
-Speed 0 (khz) selects RTCK method. A non-zero speed is in KHZ. Hence: 3000 is 3mhz. 
+@node Reset Configuration
+@chapter Reset Configuration
+@cindex Reset Configuration
 
-Not all interfaces support ``rtck''. If the interface device can not
-support the rate asked for, or can not translate from kHz to
-jtag_speed, then an error is returned.
+Every system configuration may require a different reset
+configuration. This can also be quite confusing.
+Resets also interact with @var{reset-init} event handlers,
+which do things like setting up clocks and DRAM, and
+JTAG clock rates.  (@xref{JTAG Speed}.)
+Please see the various board files for examples.
+
+@quotation Note
+To maintainers and integrators:
+Reset configuration touches several things at once.
+Normally the board configuration file
+should define it and assume that the JTAG adapter supports
+everything that's wired up to the board's JTAG connector.
+However, the target configuration file could also make note
+of something the silicon vendor has done inside the chip,
+which will be true for most (or all) boards using that chip.
+And when the JTAG adapter doesn't support everything, the
+system configuration file will need to override parts of
+the reset configuration provided by other files.
+@end quotation
 
-Make sure the JTAG clock is no more than @math{1/6th  CPU-Clock}. This is
-especially true for synthesized cores (-S). Also see RTCK.
+@section Types of Reset
 
-@b{NOTE: Script writers} If the target chip requires/uses RTCK -
-please use the command: 'jtag_rclk FREQ'. This Tcl proc (in
-startup.tcl) attempts to enable RTCK, if that fails it falls back to
-the specified frequency.
+There are many kinds of reset possible through JTAG, but
+they may not all work with a given board and adapter.
+That's part of why reset configuration can be error prone.
 
-@example
-    # Fall back to 3mhz if RCLK is not supported
-    jtag_rclk 3000
-@end example
+@itemize @bullet
+@item
+@emph{System Reset} ... the @emph{SRST} hardware signal
+resets all chips connected to the JTAG adapter, such as processors,
+power management chips, and I/O controllers.  Normally resets triggered
+with this signal behave exactly like pressing a RESET button.
+@item
+@emph{JTAG TAP Reset} ... the @emph{TRST} hardware signal resets
+just the TAP controllers connected to the JTAG adapter.
+Such resets should not be visible to the rest of the system; resetting a
+device's the TAP controller just puts that controller into a known state.
+@item
+@emph{Emulation Reset} ... many devices can be reset through JTAG
+commands.  These resets are often distinguishable from system
+resets, either explicitly (a "reset reason" register says so)
+or implicitly (not all parts of the chip get reset).
+@item
+@emph{Other Resets} ... system-on-chip devices often support
+several other types of reset.
+You may need to arrange that a watchdog timer stops
+while debugging, preventing a watchdog reset.
+There may be individual module resets.
+@end itemize
 
-@item @b{DEPRECATED} @b{jtag_speed} - please use jtag_khz above.
-@cindex jtag_speed
-@*Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
-speed. The actual effect of this option depends on the JTAG interface used. 
+In the best case, OpenOCD can hold SRST, then reset
+the TAPs via TRST and send commands through JTAG to halt the
+CPU at the reset vector before the 1st instruction is executed.
+Then when it finally releases the SRST signal, the system is
+halted under debugger control before any code has executed.
+This is the behavior required to support the @command{reset halt}
+and @command{reset init} commands; after @command{reset init} a
+board-specific script might do things like setting up DRAM.
+(@xref{Reset Command}.)
 
-The speed used during reset can be adjusted using setting jtag_speed during
-pre_reset and post_reset events.
-@itemize @minus
+@section SRST and TRST Signal Issues
 
-@item wiggler: maximum speed / @var{number}
-@item ft2232: 6MHz / (@var{number}+1)
-@item amt jtagaccel: 8 / 2**@var{number}
-@item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
-@item rlink: 24MHz / @var{number}, but only for certain values of @var{number}
-@comment end speed list.
-@end itemize
+Because SRST and TRST are hardware signals, they can have a
+variety of system-specific constraints.  Some of the most
+common issues are:
+
+@itemize @bullet
 
-@comment END command list
+@item @emph{Signal not available} ... Some boards don't wire
+SRST or TRST to the JTAG connector.  Some JTAG adapters don't
+support such signals even if they are wired up.
+Use the @command{reset_config} @var{signals} options to say
+when one of those signals is not connected.
+When SRST is not available, your code might not be able to rely
+on controllers having been fully reset during code startup.
+
+@item @emph{Signals shorted} ... Sometimes a chip, board, or
+adapter will connect SRST to TRST, instead of keeping them separate.
+Use the @command{reset_config} @var{combination} options to say
+when those signals aren't properly independent.
+
+@item @emph{Timing} ... Reset circuitry like a resistor/capacitor
+delay circuit, reset supervisor, or on-chip features can extend
+the effect of a JTAG adapter's reset for some time after the adapter
+stops issuing the reset.  For example, there may be chip or board
+requirements that all reset pulses last for at least a
+certain amount of time; and reset buttons commonly have
+hardware debouncing.
+Use the @command{jtag_nsrst_delay} and @command{jtag_ntrst_delay}
+commands to say when extra delays are needed.
+
+@item @emph{Drive type} ... Reset lines often have a pullup
+resistor, letting the JTAG interface treat them as open-drain
+signals.  But that's not a requirement, so the adapter may need
+to use push/pull output drivers.
+Also, with weak pullups it may be advisable to drive
+signals to both levels (push/pull) to minimize rise times.
+Use the @command{reset_config} @var{trst_type} and
+@var{srst_type} parameters to say how to drive reset signals.
 @end itemize
 
-@node Reset Configuration
-@chapter Reset Configuration
-@cindex Reset Configuration
+There can also be other issues.
+Some devices don't fully conform to the JTAG specifications.
+Trivial system-specific differences are common, such as
+SRST and TRST using slightly different names.
+There are also vendors who distribute key JTAG documentation for
+their chips only to developers who have signed a Non-Disclosure
+Agreement (NDA).
 
-Every system configuration may require a different reset
-configuration. This can also be quite confusing. Please see the
-various board files for example.
-
-@section jtag_nsrst_delay <@var{ms}>
-@cindex jtag_nsrst_delay
-@*How long (in milliseconds) OpenOCD should wait after deasserting
-nSRST before starting new JTAG operations.
-
-@section jtag_ntrst_delay <@var{ms}>
-@cindex jtag_ntrst_delay
-@*Same @b{jtag_nsrst_delay}, but for nTRST  
-
-The jtag_n[st]rst_delay options are useful if reset circuitry (like a
-big resistor/capacitor, reset supervisor, or on-chip features). This
-keeps the signal asserted for some time after the external reset got
-deasserted.
-
-@section reset_config
-
-@b{Note:} To maintainers and integrators: Where exactly the
-``reset configuration'' goes is a good question. It touches several
-things at once. In the end, if you have a board file - the board file
-should define it and assume 100% that the DONGLE supports
-anything. However, that does not mean the target should not also make
-not of something the silicon vendor has done inside the
-chip. @i{Grr.... nothing is every pretty.}
-
-@* @b{Problems:} 
-@enumerate
-@item Every JTAG Dongle is slightly different, some dongles implement reset differently.
-@item Every board is also slightly different; some boards tie TRST and SRST together.
-@item Every chip is slightly different; some chips internally tie the two signals together.
-@item Some may not implement all of the signals the same way.
-@item Some signals might be push-pull, others open-drain/collector.
-@end enumerate
-@b{Best Case:} OpenOCD can hold the SRST (push-button-reset), then
-reset the TAP via TRST and send commands through the JTAG tap to halt
-the CPU at the reset vector before the 1st instruction is executed,
-and finally release the SRST signal.
-@*Depending on your board vendor, chip vendor, etc., these
-signals may have slightly different names. 
-
-OpenOCD defines these signals in these terms:
-@itemize @bullet
-@item @b{TRST} - is Tap Reset - and should reset only the TAP.
-@item @b{SRST} - is System Reset - typically equal to a reset push button.
-@end itemize
+Sometimes there are chip-specific extensions like a requirement to use
+the normally-optional TRST signal (precluding use of JTAG adapters which
+don't pass TRST through), or needing extra steps to complete a TAP reset.
 
-The Command:
+In short, SRST and especially TRST handling may be very finicky,
+needing to cope with both architecture and board specific constraints.
 
-@itemize @bullet
-@item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
-@cindex reset_config
-@* The @t{reset_config} command tells OpenOCD the reset configuration
-of your combination of Dongle, Board, and Chips.
-If the JTAG interface provides SRST, but the target doesn't connect
-that signal properly, then OpenOCD can't use it. <@var{signals}> can
-be @option{none}, @option{trst_only}, @option{srst_only} or
-@option{trst_and_srst}.
-
-[@var{combination}] is an optional value specifying broken reset
-signal implementations.  @option{srst_pulls_trst} states that the
+@section Commands for Handling Resets
+
+@deffn {Command} jtag_nsrst_delay milliseconds
+How long (in milliseconds) OpenOCD should wait after deasserting
+nSRST (active-low system reset) before starting new JTAG operations.
+When a board has a reset button connected to SRST line it will
+probably have hardware debouncing, implying you should use this.
+@end deffn
+
+@deffn {Command} jtag_ntrst_delay milliseconds
+How long (in milliseconds) OpenOCD should wait after deasserting
+nTRST (active-low JTAG TAP reset) before starting new JTAG operations.
+@end deffn
+
+@deffn {Command} reset_config mode_flag ...
+This command tells OpenOCD the reset configuration
+of your combination of JTAG board and target in target
+configuration scripts.
+
+If you have an interface that does not support SRST and
+TRST(unlikely), then you may be able to work around that
+problem by using a reset_config command to override any
+settings in the target configuration script.
+
+SRST and TRST has a fairly well understood definition and
+behaviour in the JTAG specification, but vendors take
+liberties to achieve various more or less clearly understood
+goals. Sometimes documentation is available, other times it
+is not. OpenOCD has the reset_config command to allow OpenOCD
+to deal with the various common cases.
+
+The @var{mode_flag} options can be specified in any order, but only one
+of each type -- @var{signals}, @var{combination}, @var{trst_type},
+and @var{srst_type} -- may be specified at a time.
+If you don't provide a new value for a given type, its previous
+value (perhaps the default) is unchanged.
+For example, this means that you don't need to say anything at all about
+TRST just to declare that if the JTAG adapter should want to drive SRST,
+it must explicitly be driven high (@option{srst_push_pull}).
+
+@var{signals} can specify which of the reset signals are connected.
+For example, If the JTAG interface provides SRST, but the board doesn't
+connect that signal properly, then OpenOCD can't use it.
+Possible values are @option{none} (the default), @option{trst_only},
+@option{srst_only} and @option{trst_and_srst}.
+
+@quotation Tip
+If your board provides SRST or TRST through the JTAG connector,
+you must declare that or else those signals will not be used.
+@end quotation
+
+The @var{combination} is an optional value specifying broken reset
+signal implementations.
+The default behaviour if no option given is @option{separate},
+indicating everything behaves normally.
+@option{srst_pulls_trst} states that the
 test logic is reset together with the reset of the system (e.g. Philips
 LPC2000, "broken" board layout), @option{trst_pulls_srst} says that
 the system is reset together with the test logic (only hypothetical, I
 haven't seen hardware with such a bug, and can be worked around).
 @option{combined} implies both @option{srst_pulls_trst} and
-@option{trst_pulls_srst}.  The default behaviour if no option given is
-@option{separate}.
-
-The [@var{trst_type}] and [@var{srst_type}] parameters allow the
-driver type of the reset lines to be specified. Possible values are
-@option{trst_push_pull} (default) and @option{trst_open_drain} for the
-test reset signal, and @option{srst_open_drain} (default) and
-@option{srst_push_pull} for the system reset. These values only affect
-JTAG interfaces with support for different drivers, like the Amontec
-JTAGkey and JTAGAccelerator.
-
-@comment - end command
-@end itemize
-
+@option{trst_pulls_srst}.
+
+The optional @var{trst_type} and @var{srst_type} parameters allow the
+driver mode of each reset line to be specified.  These values only affect
+JTAG interfaces with support for different driver modes, like the Amontec
+JTAGkey and JTAGAccelerator.  Also, they are necessarily ignored if the
+relevant signal (TRST or SRST) is not connected.
+
+Possible @var{trst_type} driver modes for the test reset signal (TRST)
+are @option{trst_push_pull} (default) and @option{trst_open_drain}.
+Most boards connect this signal to a pulldown, so the JTAG TAPs
+never leave reset unless they are hooked up to a JTAG adapter.
+
+Possible @var{srst_type} driver modes for the system reset signal (SRST)
+are the default @option{srst_open_drain}, and @option{srst_push_pull}.
+Most boards connect this signal to a pullup, and allow the
+signal to be pulled low by various events including system
+powerup and pressing a reset button.
+@end deffn
 
 
 @node Tap Creation
@@ -1851,7 +2021,7 @@ This chapter discusses how to create a GDB debug target.  Before
 creating a ``target'' a JTAG tap DOTTED.NAME must exist first.
 
 @section targets [NAME]
-@b{Note:} This command name is PLURAL - not singular.  
+@b{Note:} This command name is PLURAL - not singular.
 
 With NO parameter, this plural @b{targets} command lists all known
 targets in a human friendly form.
@@ -1862,7 +2032,7 @@ target to the given name. (i.e.: If there are multiple debug targets)
 Example:
 @verbatim
 (gdb) mon targets
-      CmdName     Type     Endian    ChainPos   State     
+      CmdName     Type     Endian    ChainPos   State
 --  ---------- ---------- ---------- -------- ----------
     0: target0  arm7tdmi   little        0      halted
 @end verbatim
@@ -1882,7 +2052,7 @@ The TARGET command accepts these sub-commands:
 @* Lists all supported target types (perhaps some are not yet in this document).
 @item @b{names}
 @* Lists all current debug target names, for example: 'str912.cpu' or 'pxa27.cpu' example usage:
-@verbatim  
+@verbatim
        foreach t [target names] {
            puts [format "Target: %s\n" $t]
        }
@@ -1937,7 +2107,7 @@ configure it like this:
     # Report
     puts [format "The button is %s" $x]
 @end example
-    
+
 In OpenOCD's terms, the ``target'' is an object just like a Tcl/Tk
 button. Commands available as a ``target object'' are:
 
@@ -1984,9 +2154,9 @@ with odd reset situations and are not documented here.
 @* Invokes the specific event manually for the target
 @end itemize
 
+@anchor{Target Events}
 @section Target Events
 @cindex events
-@anchor{Target Events}
 At various times, certain things can happen, or you want them to happen.
 
 Examples:
@@ -2015,7 +2185,10 @@ creates and invokes small procedure. The second inlines the procedure.
        reset halt
    @}
    mychip.cpu configure -event gdb-attach my_attach_proc 
-   mychip.cpu configure -event gdb-attach @{ puts "Reset..." ; reset halt @}
+   mychip.cpu configure -event gdb-attach @{
+       puts "Reset..."
+       reset halt
+   @}
 @end example
 
 @section Current Events
@@ -2104,8 +2277,8 @@ jtag configure DOTTED.NAME -event tap-disable @{
 @end example
 @end itemize
 
-@section Target Create
 @anchor{Target Create}
+@section Target Create
 @cindex target
 @cindex target creation
 
@@ -2184,27 +2357,16 @@ Example:
 
 @section Target Variants
 @itemize @bullet
-@item @b{arm7tdmi}
-@* Unknown (please write me)
-@item @b{arm720t}
-@* Unknown (please write me) (similar to arm7tdmi)
-@item @b{arm9tdmi}
-@* Variants: @option{arm920t}, @option{arm922t} and @option{arm940t}
-This enables the hardware single-stepping support found on these
-cores.
-@item @b{arm920t}
-@* None.
-@item @b{arm966e}
-@* None (this is also used as the ARM946)
 @item @b{cortex_m3}
-@* use variant <@var{-variant lm3s}> when debugging Luminary lm3s targets. This will cause
-OpenOCD to use a software reset rather than asserting SRST to avoid a issue with clearing
-the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will
+@* Use variant @option{lm3s} when debugging older Stellaris LM3S targets.
+This will cause OpenOCD to use a software reset rather than asserting
+SRST, to avoid a issue with clearing the debug registers.
+This is fixed in Fury Rev B, DustDevil Rev B, Tempest; these revisions will
 be detected and the normal reset behaviour used.
 @item @b{xscale}
-@* Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},@option{pxa250}, @option{pxa255}, @option{pxa26x}.
-@item @b{arm11}
-@* Supported variants are @option{arm1136}, @option{arm1156}, @option{arm1176}
+@*Supported variants are
+@option{ixp42x}, @option{ixp45x}, @option{ixp46x},
+@option{pxa250}, @option{pxa255}, @option{pxa26x}.
 @item @b{mips_m4k}
 @* Use variant @option{ejtag_srst} when debugging targets that do not
 provide a functional SRST line on the EJTAG connector.  This causes
@@ -2223,9 +2385,8 @@ still use this that need to be converted.
 @end example
 @* The target# is a the 0 based target numerical index.
 
-@node Flash Configuration
-@chapter Flash programming
-@cindex Flash Configuration
+@node Flash Commands
+@chapter Flash Commands
 
 OpenOCD has different commands for NOR and NAND flash;
 the ``flash'' command works with NOR flash, while
@@ -2237,272 +2398,505 @@ used.  (SPI flash must also be copied to memory before use.)
 However, the documentation also uses ``flash'' as a generic term;
 for example, ``Put flash configuration in board-specific files''.
 
-@b{Note:} As of 28/nov/2008 OpenOCD does not know how to program a SPI
+@quotation Note
+As of 28-nov-2008 OpenOCD does not know how to program a SPI
 flash that a micro may boot from. Perhaps you, the reader, would like to
 contribute support for this.
+@end quotation
 
 Flash Steps:
 @enumerate
-@item Configure via the command @b{flash bank} 
-@* Normally this is done in a configuration file.
-@item Operate on the flash via @b{flash SOMECOMMAND}
+@item Configure via the command @command{flash bank}
+@* Do this in a board-specific configuration file,
+passing parameters as needed by the driver.
+@item Operate on the flash via @command{flash subcommand}
 @* Often commands to manipulate the flash are typed by a human, or run
-via a script in some automated way. For example: To program the boot
-flash on your board.
+via a script in some automated way.  Common tasks include writing a
+boot loader, operating system, or other data.
 @item GDB Flashing
 @* Flashing via GDB requires the flash be configured via ``flash
 bank'', and the GDB flash features be enabled.
 @xref{GDB Configuration}.
 @end enumerate
 
-@section Flash commands
-@cindex Flash commands
-@subsection flash banks
-@b{flash banks}
-@cindex flash banks
-@*List configured flash banks 
-@*@b{NOTE:} the singular form: 'flash bank' is used to configure the flash banks.
-@subsection flash info
-@b{flash info} <@var{num}>
-@cindex flash info
-@*Print info about flash bank <@option{num}> 
-@subsection flash probe
-@b{flash probe} <@var{num}>
-@cindex flash probe
-@*Identify the flash, or validate the parameters of the configured flash. Operation
-depends on the flash type. 
-@subsection flash erase_check
-@b{flash erase_check} <@var{num}>
-@cindex flash erase_check
-@*Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
-updates the erase state information displayed by @option{flash info}. That means you have
-to issue an @option{erase_check} command after erasing or programming the device to get
-updated information. 
-@subsection flash protect_check
-@b{flash protect_check} <@var{num}>
-@cindex flash protect_check
-@*Check protection state of sectors in flash bank <num>. 
-@option{flash erase_sector} using the same syntax. 
-@subsection flash erase_sector
-@b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
-@cindex flash erase_sector
+Many CPUs have the ablity to ``boot'' from the first flash bank.
+This means that misprograming that bank can ``brick'' a system,
+so that it can't boot.
+JTAG tools, like OpenOCD, are often then used to ``de-brick'' the
+board by (re)installing working boot firmware.
+
+@section Flash Configuration Commands
+@cindex flash configuration
+
+@deffn {Config Command} {flash bank} driver base size chip_width bus_width target [driver_options]
+Configures a flash bank which provides persistent storage
+for addresses from @math{base} to @math{base + size - 1}.
+These banks will often be visible to GDB through the target's memory map.
+In some cases, configuring a flash bank will activate extra commands;
+see the driver-specific documentation.
+
+@itemize @bullet
+@item @var{driver} ... identifies the controller driver
+associated with the flash bank being declared.
+This is usually @code{cfi} for external flash, or else
+the name of a microcontroller with embedded flash memory.
+@xref{Flash Driver List}.
+@item @var{base} ... Base address of the flash chip.
+@item @var{size} ... Size of the chip, in bytes.
+For some drivers, this value is detected from the hardware.
+@item @var{chip_width} ... Width of the flash chip, in bytes;
+ignored for most microcontroller drivers.
+@item @var{bus_width} ... Width of the data bus used to access the
+chip, in bytes; ignored for most microcontroller drivers.
+@item @var{target} ... Names the target used to issue
+commands to the flash controller.
+@comment Actually, it's currently a controller-specific parameter...
+@item @var{driver_options} ... drivers may support, or require,
+additional parameters.  See the driver-specific documentation
+for more information.
+@end itemize
+@quotation Note
+This command is not available after OpenOCD initialization has completed.
+Use it in board specific configuration files, not interactively.
+@end quotation
+@end deffn
+
+@comment the REAL name for this command is "ocd_flash_banks"
+@comment less confusing would be:  "flash list" (like "nand list")
+@deffn Command {flash banks}
+Prints a one-line summary of each device declared
+using @command{flash bank}, numbered from zero.
+Note that this is the @emph{plural} form;
+the @emph{singular} form is a very different command.
+@end deffn
+
+@deffn Command {flash probe} num
+Identify the flash, or validate the parameters of the configured flash. Operation
+depends on the flash type.
+The @var{num} parameter is a value shown by @command{flash banks}.
+Most flash commands will implicitly @emph{autoprobe} the bank;
+flash drivers can distinguish between probing and autoprobing,
+but most don't bother.
+@end deffn
+
+@section Erasing, Reading, Writing to Flash
+@cindex flash erasing
+@cindex flash reading
+@cindex flash writing
+@cindex flash programming
+
+One feature distinguishing NOR flash from NAND or serial flash technologies
+is that for read access, it acts exactly like any other addressible memory.
+This means you can use normal memory read commands like @command{mdw} or
+@command{dump_image} with it, with no special @command{flash} subcommands.
+@xref{Memory access}, and @ref{Image access}.
+
+Write access works differently.  Flash memory normally needs to be erased
+before it's written.  Erasing a sector turns all of its bits to ones, and
+writing can turn ones into zeroes.  This is why there are special commands
+for interactive erasing and writing, and why GDB needs to know which parts
+of the address space hold NOR flash memory.
+
+@quotation Note
+Most of these erase and write commands leverage the fact that NOR flash
+chips consume target address space.  They implicitly refer to the current
+JTAG target, and map from an address in that target's address space
+back to a flash bank.
+@comment In May 2009, those mappings may fail if any bank associated
+@comment with that target doesn't succesfuly autoprobe ... bug worth fixing?
+A few commands use abstract addressing based on bank and sector numbers,
+and don't depend on searching the current target and its address space.
+Avoid confusing the two command models.
+@end quotation
+
+Some flash chips implement software protection against accidental writes,
+since such buggy writes could in some cases ``brick'' a system.
+For such systems, erasing and writing may require sector protection to be
+disabled first.
+Examples include CFI flash such as ``Intel Advanced Bootblock flash'',
+and AT91SAM7 on-chip flash.
+@xref{flash protect}.
+
 @anchor{flash erase_sector}
-@*Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
-<@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may
-require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
-the CFI driver).
-@subsection flash erase_address
-@b{flash erase_address} <@var{address}> <@var{length}>
-@cindex flash erase_address
-@*Erase sectors starting at <@var{address}> for <@var{length}> bytes
-@subsection flash write_bank
-@b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
-@cindex flash write_bank
+@deffn Command {flash erase_sector} num first last
+Erase sectors in bank @var{num}, starting at sector @var{first} up to and including
+@var{last}. Sector numbering starts at 0.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+
+@deffn Command {flash erase_address} address length
+Erase sectors starting at @var{address} for @var{length} bytes.
+The flash bank to use is inferred from the @var{address}, and
+the specified length must stay within that bank.
+As a special case, when @var{length} is zero and @var{address} is
+the start of the bank, the whole flash is erased.
+@end deffn
+
+@deffn Command {flash fillw} address word length
+@deffnx Command {flash fillh} address halfword length
+@deffnx Command {flash fillb} address byte length
+Fills flash memory with the specified @var{word} (32 bits),
+@var{halfword} (16 bits), or @var{byte} (8-bit) pattern,
+starting at @var{address} and continuing
+for @var{length} units (word/halfword/byte).
+No erasure is done before writing; when needed, that must be done
+before issuing this command.
+Writes are done in blocks of up to 1024 bytes, and each write is
+verified by reading back the data and comparing it to what was written.
+The flash bank to use is inferred from the @var{address} of
+each block, and the specified length must stay within that bank.
+@end deffn
+@comment no current checks for errors if fill blocks touch multiple banks!
+
 @anchor{flash write_bank}
-@*Write the binary <@var{file}> to flash bank <@var{num}>, starting at
-<@option{offset}> bytes from the beginning of the bank.
-@subsection flash write_image
-@b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
-@cindex flash write_image
+@deffn Command {flash write_bank} num filename offset
+Write the binary @file{filename} to flash bank @var{num},
+starting at @var{offset} bytes from the beginning of the bank.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+
 @anchor{flash write_image}
-@*Write the image <@var{file}> to the current target's flash bank(s). A relocation
-[@var{offset}] can be specified and the file [@var{type}] can be specified
-explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
-(ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
+@deffn Command {flash write_image} [erase] filename [offset] [type]
+Write the image @file{filename} to the current target's flash bank(s).
+A relocation @var{offset} may be specified, in which case it is added
+to the base address for each section in the image.
+The file [@var{type}] can be specified
+explicitly as @option{bin} (binary), @option{ihex} (Intel hex),
+@option{elf} (ELF file), @option{s19} (Motorola s19).
+@option{mem}, or @option{builder}.
+The relevant flash sectors will be erased prior to programming
 if the @option{erase} parameter is given.
-@subsection flash protect
-@b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
-@cindex flash protect
-@*Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
-<@var{last}> of @option{flash bank} <@var{num}>.
+The flash bank to use is inferred from the @var{address} of
+each image segment.
+@end deffn
 
-@subsection mFlash commands
-@cindex mFlash commands
-@itemize @bullet
-@item @b{mflash probe} 
-@cindex mflash probe
-Probe mflash.
-@item @b{mflash write} <@var{num}> <@var{file}> <@var{offset}>
-@cindex mflash write
-Write the binary <@var{file}> to mflash bank <@var{num}>, starting at
-<@var{offset}> bytes from the beginning of the bank.
-@item @b{mflash dump} <@var{num}> <@var{file}> <@var{offset}> <@var{size}>
-@cindex mflash dump
-Dump <size> bytes, starting at <@var{offset}> bytes from the beginning of the <@var{num}> bank 
-to a <@var{file}>.
-@end itemize
+@section Other Flash commands
+@cindex flash protection
+
+@deffn Command {flash erase_check} num
+Check erase state of sectors in flash bank @var{num},
+and display that status.
+The @var{num} parameter is a value shown by @command{flash banks}.
+This is the only operation that
+updates the erase state information displayed by @option{flash info}. That means you have
+to issue an @command{flash erase_check} command after erasing or programming the device
+to get updated information.
+(Code execution may have invalidated any state records kept by OpenOCD.)
+@end deffn
 
-@section flash bank command
-The @b{flash bank} command is used to configure one or more flash chips (or banks in OpenOCD terms)
+@deffn Command {flash info} num
+Print info about flash bank @var{num}
+The @var{num} parameter is a value shown by @command{flash banks}.
+The information includes per-sector protect status.
+@end deffn
 
-@example
-@b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
-<@var{bus_width}> <@var{target}> [@var{driver_options ...}]
-@end example
-@cindex flash bank
-@*Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
-and <@var{bus_width}> bytes using the selected flash <driver>.
-
-@subsection External Flash - cfi options
-@cindex cfi options
-CFI flashes are external flash chips - often they are connected to a
-specific chip select on the CPU. By default, at hard reset, most
-CPUs have the ablity to ``boot'' from some flash chip - typically
-attached to the CPU's CS0 pin.
-
-For other chip selects: OpenOCD does not know how to configure, or
-access a specific chip select. Instead you, the human, might need to 
-configure additional chip selects via other commands (like: mww) , or
+@anchor{flash protect}
+@deffn Command {flash protect} num first last (on|off)
+Enable (@var{on}) or disable (@var{off}) protection of flash sectors
+@var{first} to @var{last} of flash bank @var{num}.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+
+@deffn Command {flash protect_check} num
+Check protection state of sectors in flash bank @var{num}.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@comment @option{flash erase_sector} using the same syntax.
+@end deffn
+
+@anchor{Flash Driver List}
+@section Flash Drivers, Options, and Commands
+As noted above, the @command{flash bank} command requires a driver name,
+and allows driver-specific options and behaviors.
+Some drivers also activate driver-specific commands.
+
+@subsection External Flash
+
+@deffn {Flash Driver} cfi
+@cindex Common Flash Interface
+@cindex CFI
+The ``Common Flash Interface'' (CFI) is the main standard for
+external NOR flash chips, each of which connects to a
+specific external chip select on the CPU.
+Frequently the first such chip is used to boot the system.
+Your board's @code{reset-init} handler might need to
+configure additional chip selects using other commands (like: @command{mww} to
+configure a bus and its timings) , or
 perhaps configure a GPIO pin that controls the ``write protect'' pin
 on the flash chip.
+The CFI driver can use a target-specific working area to significantly
+speed up operation.
 
-@b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
-<@var{target}> [@var{jedec_probe}|@var{x16_as_x8}]
-@*CFI flashes require the name or number of the target they're connected to
-as an additional
-argument. The CFI driver makes use of a working area (specified for the target)
-to significantly speed up operation. 
+The CFI driver can accept the following optional parameters, in any order:
 
-@var{chip_width} and @var{bus_width} are specified in bytes.
+@itemize
+@item @var{jedec_probe} ... is used to detect certain non-CFI flash ROMs,
+like AM29LV010 and similar types.
+@item @var{x16_as_x8} ...
+@end itemize
 
-The @var{jedec_probe} option is used to detect certain non-CFI flash ROMs, like AM29LV010 and similar types.
+To configure two adjacent banks of 16 MBytes each, both sixteen bits (two bytes)
+wide on a sixteen bit bus:
 
-@var{x16_as_x8} ???
+@example
+flash bank cfi 0x00000000 0x01000000 2 2 $_TARGETNAME
+flash bank cfi 0x01000000 0x01000000 2 2 $_TARGETNAME
+@end example
+@end deffn
 
 @subsection Internal Flash (Microcontrollers)
-@subsubsection lpc2000 options
-@cindex lpc2000 options
 
-@b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target}> <@var{variant}>
-<@var{clock}> [@var{calc_checksum}]
-@*LPC flashes don't require the chip and bus width to be specified. Additional
-parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
-or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx),
-the name or number of the target this flash belongs to (first is 0),
-the frequency at which the core
-is currently running (in kHz - must be an integral number), and the optional keyword
-@var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
-vector table. 
+@deffn {Flash Driver} aduc702x
+The ADUC702x analog microcontrollers from ST Micro
+include internal flash and use ARM7TDMI cores.
+The aduc702x flash driver works with models ADUC7019 through ADUC7028.
+The setup command only requires the @var{target} argument
+since all devices in this family have the same memory layout.
+
+@example
+flash bank aduc702x 0 0 0 0 $_TARGETNAME
+@end example
+@end deffn
+
+@deffn {Flash Driver} at91sam7
+All members of the AT91SAM7 microcontroller family from Atmel
+include internal flash and use ARM7TDMI cores.
+The driver automatically recognizes a number of these chips using
+the chip identification register, and autoconfigures itself.
+
+@example
+flash bank at91sam7 0 0 0 0 $_TARGETNAME
+@end example
+
+For chips which are not recognized by the controller driver, you must
+provide additional parameters in the following order:
+
+@itemize
+@item @var{chip_model} ... label used with @command{flash info}
+@item @var{banks}
+@item @var{sectors_per_bank}
+@item @var{pages_per_sector}
+@item @var{pages_size}
+@item @var{num_nvm_bits}
+@item @var{freq_khz} ... required if an external clock is provided,
+optional (but recommended) when the oscillator frequency is known
+@end itemize
 
+It is recommended that you provide zeroes for all of those values
+except the clock frequency, so that everything except that frequency
+will be autoconfigured.
+Knowing the frequency helps ensure correct timings for flash access.
+
+The flash controller handles erases automatically on a page (128/256 byte)
+basis, so explicit erase commands are not necessary for flash programming.
+However, there is an ``EraseAll`` command that can erase an entire flash
+plane (of up to 256KB), and it will be used automatically when you issue
+@command{flash erase_sector} or @command{flash erase_address} commands.
+
+@deffn Command {at91sam7 gpnvm} bitnum (set|clear)
+Set or clear a ``General Purpose Non-Volatle Memory'' (GPNVM)
+bit for the processor.   Each processor has a number of such bits,
+used for controlling features such as brownout detection (so they
+are not truly general purpose).
+@quotation Note
+This assumes that the first flash bank (number 0) is associated with
+the appropriate at91sam7 target.
+@end quotation
+@end deffn
+@end deffn
 
-@subsubsection at91sam7 options
-@cindex at91sam7 options
+@deffn {Flash Driver} avr
+The AVR 8-bit microcontrollers from Atmel integrate flash memory.
+@emph{The current implementation is incomplete.}
+@comment - defines mass_erase ... pointless given flash_erase_address
+@end deffn
 
-@b{flash bank at91sam7} 0 0 0 0 <@var{target}>
-@*AT91SAM7 flashes only require the @var{target}, all other values are looked up after
-reading the chip-id and type. 
+@deffn {Flash Driver} ecosflash
+@emph{No idea what this is...}
+The @var{ecosflash} driver defines one mandatory parameter,
+the name of a modules of target code which is downloaded
+and executed.
+@end deffn
 
-@subsubsection str7 options
-@cindex str7 options
+@deffn {Flash Driver} lpc2000
+Most members of the LPC2000 microcontroller family from NXP
+include internal flash and use ARM7TDMI cores.
+The @var{lpc2000} driver defines two mandatory and one optional parameters,
+which must appear in the following order:
 
-@b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target}> <@var{variant}>
-@*variant can be either STR71x, STR73x or STR75x. 
+@itemize
+@item @var{variant} ... required, may be
+@var{lpc2000_v1} (older LPC21xx and LPC22xx)
+or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx)
+@item @var{clock_kHz} ... the frequency, in kiloHertz,
+at which the core is running
+@item @var{calc_checksum} ... optional (but you probably want to provide this!),
+telling the driver to calculate a valid checksum for the exception vector table.
+@end itemize
 
-@subsubsection str9 options
-@cindex str9 options
+LPC flashes don't require the chip and bus width to be specified.
 
-@b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target}>
-@*The str9 needs the flash controller to be configured prior to Flash programming, e.g.
 @example
-str9x flash_config 0 4 2 0 0x80000
+flash bank lpc2000 0x0 0x7d000 0 0 $_TARGETNAME \
+      lpc2000_v2 14765 calc_checksum
 @end example
-This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively. 
+@end deffn
 
-@subsubsection str9 options (str9xpec driver)
+@deffn {Flash Driver} lpc288x
+The LPC2888 microcontroller from NXP needs slightly different flash
+support from its lpc2000 siblings.
+The @var{lpc288x} driver defines one mandatory parameter,
+the programming clock rate in Hz.
+LPC flashes don't require the chip and bus width to be specified.
 
-@b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target}>
-@*Before using the flash commands the turbo mode must be enabled using str9xpec
-@option{enable_turbo} <@var{num>.}
+@example
+flash bank lpc288x 0 0 0 0 $_TARGETNAME 12000000
+@end example
+@end deffn
 
-Only use this driver for locking/unlocking the device or configuring the option bytes.
-Use the standard str9 driver for programming. @xref{STR9 specific commands}.
+@deffn {Flash Driver} ocl
+@emph{No idea what this is, other than using some arm7/arm9 core.}
+
+@example
+flash bank ocl 0 0 0 0 $_TARGETNAME
+@end example
+@end deffn
+
+@deffn {Flash Driver} pic32mx
+The PIC32MX microcontrollers are based on the MIPS 4K cores,
+and integrate flash memory.
+@emph{The current implementation is incomplete.}
+
+@example
+flash bank pix32mx 0 0 0 0 $_TARGETNAME
+@end example
 
-@subsubsection Stellaris (LM3Sxxx) options
-@cindex Stellaris (LM3Sxxx) options
+@comment numerous *disabled* commands are defined:
+@comment - chip_erase ... pointless given flash_erase_address
+@comment - lock, unlock ... pointless given protect on/off (yes?)
+@comment - pgm_word ... shouldn't bank be deduced from address??
+Some pic32mx-specific commands are defined:
+@deffn Command {pic32mx pgm_word} address value bank
+Programs the specified 32-bit @var{value} at the given @var{address}
+in the specified chip @var{bank}.
+@end deffn
+@end deffn
 
-@b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target}>
-@*Stellaris flash plugin only require the @var{target}.
+@deffn {Flash Driver} stellaris
+All members of the Stellaris LM3Sxxx microcontroller family from
+Texas Instruments
+include internal flash and use ARM Cortex M3 cores.
+The driver automatically recognizes a number of these chips using
+the chip identification register, and autoconfigures itself.
+@footnote{Currently there is a @command{stellaris mass_erase} command.
+That seems pointless since the same effect can be had using the
+standard @command{flash erase_address} command.}
 
-@subsubsection stm32x options
-@cindex stm32x options
+@example
+flash bank stellaris 0 0 0 0 $_TARGETNAME
+@end example
+@end deffn
 
-@b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target}>
-@*stm32x flash plugin only require the @var{target}.
+@deffn {Flash Driver} stm32x
+All members of the STM32 microcontroller family from ST Microelectronics
+include internal flash and use ARM Cortex M3 cores.
+The driver automatically recognizes a number of these chips using
+the chip identification register, and autoconfigures itself.
 
-@subsubsection aduc702x options
-@cindex aduc702x options
+@example
+flash bank stm32x 0 0 0 0 $_TARGETNAME
+@end example
 
-@b{flash bank aduc702x} 0 0 0 0 <@var{target}>
-@*The aduc702x flash plugin works with Analog Devices model numbers ADUC7019 through ADUC7028.  The setup command only requires the @var{target} argument (all devices in this family have the same memory layout).
+Some stm32x-specific commands
+@footnote{Currently there is a @command{stm32x mass_erase} command.
+That seems pointless since the same effect can be had using the
+standard @command{flash erase_address} command.}
+are defined:
 
-@subsection mFlash Configuration
-@cindex mFlash Configuration
-@b{mflash bank} <@var{soc}> <@var{base}> <@var{chip_width}> <@var{bus_width}>
-<@var{RST pin}> <@var{WP pin}> <@var{DPD pin}> <@var{target}>
-@cindex mflash bank
-@*Configures a mflash for <@var{soc}> host bank at
-<@var{base}>. <@var{chip_width}> and <@var{bus_width}> are bytes
-order. Pin number format is dependent on host GPIO calling convention.
-If WP or DPD pin was not used, write -1. Currently, mflash bank
-support s3c2440 and pxa270.
+@deffn Command {stm32x lock} num
+Locks the entire stm32 device.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+
+@deffn Command {stm32x unlock} num
+Unlocks the entire stm32 device.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+
+@deffn Command {stm32x options_read} num
+Read and display the stm32 option bytes written by
+the @command{stm32x options_write} command.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+
+@deffn Command {stm32x options_write} num (SWWDG|HWWDG) (RSTSTNDBY|NORSTSTNDBY) (RSTSTOP|NORSTSTOP)
+Writes the stm32 option byte with the specified values.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+@end deffn
+
+@deffn {Flash Driver} str7x
+All members of the STR7 microcontroller family from ST Microelectronics
+include internal flash and use ARM7TDMI cores.
+The @var{str7x} driver defines one mandatory parameter, @var{variant},
+which is either @code{STR71x}, @code{STR73x} or @code{STR75x}.
 
-(ex. of s3c2440) mflash <@var{RST pin}> is GPIO B1, <@var{WP pin}> and <@var{DPD pin}> are not used.
 @example
-mflash bank s3c2440 0x10000000 2 2 1b -1 -1 0
+flash bank str7x 0x40000000 0x00040000 0 0 $_TARGETNAME STR71x
 @end example
-(ex. of pxa270) mflash <@var{RST pin}> is GPIO 43, <@var{DPD pin}> is not used and <@var{DPD pin}> is GPIO 51.
+@end deffn
+
+@deffn {Flash Driver} str9x
+Most members of the STR9 microcontroller family from ST Microelectronics
+include internal flash and use ARM966E cores.
+The str9 needs the flash controller to be configured using
+the @command{str9x flash_config} command prior to Flash programming.
+
 @example
-mflash bank pxa270 0x08000000 2 2 43 -1 51 0  
+flash bank str9x 0x40000000 0x00040000 0 0 $_TARGETNAME
+str9x flash_config 0 4 2 0 0x80000
 @end example
 
-@section Microcontroller specific Flash Commands
+@deffn Command {str9x flash_config} num bbsr nbbsr bbadr nbbadr
+Configures the str9 flash controller.
+The @var{num} parameter is a value shown by @command{flash banks}.
 
-@subsection AT91SAM7 specific commands
-@cindex AT91SAM7 specific commands
-The flash configuration is deduced from the chip identification register. The flash
-controller handles erases automatically on a page (128/265 byte) basis, so erase is
-not necessary for flash programming. AT91SAM7 processors with less than 512K flash
-only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
-that can be erased separatly. Only an EraseAll command is supported by the controller
-for each flash plane and this is called with
 @itemize @bullet
-@item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
-@*bulk erase flash planes first_plane to last_plane. 
-@item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
-@cindex at91sam7 gpnvm
-@*set or clear a gpnvm bit for the processor 
+@item @var{bbsr} - Boot Bank Size register
+@item @var{nbbsr} - Non Boot Bank Size register
+@item @var{bbadr} - Boot Bank Start Address register
+@item @var{nbbadr} - Boot Bank Start Address register
 @end itemize
+@end deffn
 
-@subsection STR9 specific commands
-@cindex STR9 specific commands
-@anchor{STR9 specific commands}
-These are flash specific commands when using the str9xpec driver.
-@itemize @bullet
-@item @b{str9xpec enable_turbo} <@var{num}>
-@cindex str9xpec enable_turbo
-@*enable turbo mode, will simply remove the str9 from the chain and talk
-directly to the embedded flash controller. 
-@item @b{str9xpec disable_turbo} <@var{num}>
-@cindex str9xpec disable_turbo
-@*restore the str9 into JTAG chain. 
-@item @b{str9xpec lock} <@var{num}>
-@cindex str9xpec lock
-@*lock str9 device. The str9 will only respond to an unlock command that will
-erase the device. 
-@item @b{str9xpec unlock} <@var{num}>
-@cindex str9xpec unlock
-@*unlock str9 device. 
-@item @b{str9xpec options_read} <@var{num}>
-@cindex str9xpec options_read
-@*read str9 option bytes. 
-@item @b{str9xpec options_write} <@var{num}>
-@cindex str9xpec options_write
-@*write str9 option bytes. 
-@end itemize
+@end deffn
 
-Note: Before using the str9xpec driver here is some background info to help
-you better understand how the drivers works. OpenOCD has two flash drivers for
-the str9.
+@deffn {Flash Driver} tms470
+Most members of the TMS470 microcontroller family from Texas Instruments
+include internal flash and use ARM7TDMI cores.
+This driver doesn't require the chip and bus width to be specified.
+
+Some tms470-specific commands are defined:
+
+@deffn Command {tms470 flash_keyset} key0 key1 key2 key3
+Saves programming keys in a register, to enable flash erase and write commands.
+@end deffn
+
+@deffn Command {tms470 osc_mhz} clock_mhz
+Reports the clock speed, which is used to calculate timings.
+@end deffn
+
+@deffn Command {tms470 plldis} (0|1)
+Disables (@var{1}) or enables (@var{0}) use of the PLL to speed up
+the flash clock.
+@end deffn
+@end deffn
+
+@subsection str9xpec driver
+@cindex str9xpec
+
+Here is some background info to help
+you better understand how this driver works. OpenOCD has two flash drivers for
+the str9:
 @enumerate
 @item
 Standard driver @option{str9x} programmed via the str9 core. Normally used for
@@ -2537,26 +2931,46 @@ When performing a unlock remember that you will not be able to halt the str9 - i
 has been locked. Halting the core is not required for the @option{str9xpec} driver
 as mentioned above, just issue the commands above manually or from a telnet prompt.
 
-@subsection STR9 configuration
-@cindex STR9 configuration
-@itemize @bullet
-@item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
-<@var{BBADR}> <@var{NBBADR}>
-@cindex str9x flash_config
-@*Configure str9 flash controller.
-@example
-e.g. str9x flash_config 0 4 2 0 0x80000
-This will setup
-BBSR - Boot Bank Size register
-NBBSR - Non Boot Bank Size register
-BBADR - Boot Bank Start Address register
-NBBADR - Boot Bank Start Address register
-@end example
-@end itemize
+@subsubsection str9xpec driver options
 
-@subsection STR9 option byte configuration
-@cindex STR9 option byte configuration
-@itemize @bullet
+@b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target}>
+@*Before using the flash commands the turbo mode must be enabled using str9xpec
+@option{enable_turbo} <@var{num>.}
+
+Only use this driver for locking/unlocking the device or configuring the option bytes.
+Use the standard str9 driver for programming.
+
+@subsubsection str9xpec specific commands
+@cindex str9xpec specific commands
+These are flash specific commands when using the str9xpec driver.
+
+@itemize @bullet
+@item @b{str9xpec enable_turbo} <@var{num}>
+@cindex str9xpec enable_turbo
+@*enable turbo mode, will simply remove the str9 from the chain and talk
+directly to the embedded flash controller.
+@item @b{str9xpec disable_turbo} <@var{num}>
+@cindex str9xpec disable_turbo
+@*restore the str9 into JTAG chain.
+@item @b{str9xpec lock} <@var{num}>
+@cindex str9xpec lock
+@*lock str9 device. The str9 will only respond to an unlock command that will
+erase the device.
+@item @b{str9xpec unlock} <@var{num}>
+@cindex str9xpec unlock
+@*unlock str9 device.
+@item @b{str9xpec options_read} <@var{num}>
+@cindex str9xpec options_read
+@*read str9 option bytes.
+@item @b{str9xpec options_write} <@var{num}>
+@cindex str9xpec options_write
+@*write str9 option bytes.
+@end itemize
+
+@subsubsection STR9 option byte configuration
+@cindex STR9 option byte configuration
+
+@itemize @bullet
 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
 @cindex str9xpec options_cmap
 @*configure str9 boot bank. 
@@ -2571,37 +2985,57 @@ NBBADR - Boot Bank Start Address register
 @*configure str9 lvd reset warning source. 
 @end itemize
 
-@subsection STM32x specific commands
-@cindex STM32x specific commands
-These are flash specific commands when using the stm32x driver.
-@itemize @bullet
-@item @b{stm32x lock} <@var{num}>
-@cindex stm32x lock
-@*lock stm32 device. 
-@item @b{stm32x unlock} <@var{num}>
-@cindex stm32x unlock
-@*unlock stm32 device. 
-@item @b{stm32x options_read} <@var{num}>
-@cindex stm32x options_read
-@*read stm32 option bytes. 
-@item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
-<@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
-@cindex stm32x options_write
-@*write stm32 option bytes. 
-@item @b{stm32x mass_erase} <@var{num}>
-@cindex stm32x mass_erase
-@*mass erase flash memory. 
-@end itemize
+@section mFlash
+
+@subsection mFlash Configuration
+@cindex mFlash Configuration
+@b{mflash bank} <@var{soc}> <@var{base}> <@var{RST pin}> <@var{target}>
+@cindex mflash bank
+@*Configures a mflash for <@var{soc}> host bank at
+<@var{base}>. Pin number format is dependent on host GPIO calling convention.
+Currently, mflash bank support s3c2440 and pxa270.
+
+(ex. of s3c2440) mflash <@var{RST pin}> is GPIO B1.
+
+@example
+mflash bank s3c2440 0x10000000 1b 0
+@end example
+
+(ex. of pxa270) mflash <@var{RST pin}> is GPIO 43.
+
+@example
+mflash bank pxa270 0x08000000 43 0
+@end example
+
+@subsection mFlash commands
+@cindex mFlash commands
 
-@subsection Stellaris specific commands
-@cindex Stellaris specific commands
-These are flash specific commands when using the Stellaris driver.
 @itemize @bullet
-@item @b{stellaris mass_erase} <@var{num}>
-@cindex stellaris mass_erase
-@*mass erase flash memory. 
+@item @b{mflash probe}
+@cindex mflash probe
+@*Probe mflash.
+@item @b{mflash write} <@var{num}> <@var{file}> <@var{offset}>
+@cindex mflash write
+@*Write the binary <@var{file}> to mflash bank <@var{num}>, starting at
+<@var{offset}> bytes from the beginning of the bank.
+@item @b{mflash dump} <@var{num}> <@var{file}> <@var{offset}> <@var{size}>
+@cindex mflash dump
+@*Dump <size> bytes, starting at <@var{offset}> bytes from the beginning of the <@var{num}> bank
+to a <@var{file}>.
+@item @b{mflash config pll} <@var{frequency}>
+@cindex mflash config pll
+@*Configure mflash pll. <@var{frequency}> is input frequency of mflash. The order is Hz.
+Issuing this command will erase mflash's whole internal nand and write new pll.
+After this command, mflash needs power-on-reset for normal operation.
+If pll was newly configured, storage and boot(optional) info also need to be update.
+@item @b{mflash config boot}
+@cindex mflash config boot
+@*Configure bootable option. If bootable option is set, mflash offer the first 8 sectors
+(4kB) for boot.
+@item @b{mflash config storage}
+@cindex mflash config storage
+@*Configure storage information. For the normal storage operation, this information must be
+written.
 @end itemize
 
 @node NAND Flash Commands
@@ -2689,7 +3123,7 @@ initialization has completed.  Use it in board specific
 configuration files, not interactively.
 
 @itemize @bullet
-@item @var{controller} ... identifies the controller driver
+@item @var{controller} ... identifies the controller driver
 associated with the NAND device being declared.
 @xref{NAND Driver List}.
 @item @var{target} ... names the target used when issuing
@@ -2756,6 +3190,7 @@ spare areas associated with each data page.
 
 @deffn Command {nand erase} num offset length
 @cindex NAND erasing
+@cindex NAND programming
 Erases blocks on the specified NAND device, starting at the
 specified @var{offset} and continuing for @var{length} bytes.
 Both of those values must be exact multiples of the device's
@@ -2771,6 +3206,7 @@ will still report that the block ``is'' bad.
 
 @deffn Command {nand write} num filename offset [option...]
 @cindex NAND writing
+@cindex NAND programming
 Writes binary data from the file into the specified NAND device,
 starting at the specified offset.  Those pages should already
 have been erased; you can't change zero bits to one bits.
@@ -2870,8 +3306,8 @@ bypassing hardware ECC logic.
 with the wrong ECC data can cause them to be marked as bad.
 @end deffn
 
-@section NAND Drivers; Driver-specific Options and Commands
 @anchor{NAND Driver List}
+@section NAND Drivers, Options, and Commands
 As noted above, the @command{nand device} command allows
 driver-specific options and behaviors.
 Some controllers also activate controller-specific commands.
@@ -2896,7 +3332,7 @@ the @command{nand raw_access} command.
 @deffn {NAND Driver} lpc3180
 These controllers require an extra @command{nand device}
 parameter:  the clock rate used by the controller.
-@deffn Command {nand lpc3180 select} num [mlc|slc]
+@deffn Command {lpc3180 select} num [mlc|slc]
 Configures use of the MLC or SLC controller mode.
 MLC implies use of hardware ECC.
 The @var{num} parameter is the value shown by @command{nand list}.
@@ -2921,7 +3357,10 @@ or @code{read_page} methods, so @command{nand raw_access} won't
 change any behavior.
 @end deffn
 
-@deffn {NAND Driver} {s3c2410, s3c2412, s3c2440, s3c2443}
+@deffn {NAND Driver} s3c2410
+@deffnx {NAND Driver} s3c2412
+@deffnx {NAND Driver} s3c2440
+@deffnx {NAND Driver} s3c2443
 These S3C24xx family controllers don't have any special
 @command{nand device} options, and don't define any
 specialized commands.
@@ -2970,9 +3409,9 @@ port is 5555.
 @cindex shutdown
 @*Close the OpenOCD daemon, disconnecting all clients (GDB, telnet, other). 
 
+@anchor{debug_level}
 @subsection debug_level [@var{n}]
 @cindex debug_level
-@anchor{debug_level}
 @*Display or adjust debug level to n<0-3> 
 
 @subsection fast [@var{enable|disable}]
@@ -3048,11 +3487,14 @@ OpenOCD will wait 5 seconds for the target to resume.
 @cindex step
 @*Single-step the target at its current code position, or at an optional address. 
 
+@anchor{Reset Command}
 @subsection reset [@option{run}|@option{halt}|@option{init}]
 @cindex reset
-@*Perform a hard-reset. The optional parameter specifies what should happen after the reset.
-
-With no arguments a "reset run" is executed
+@*Perform a hard-reset. The optional parameter specifies what should
+happen after the reset.
+If there is no parameter, a @command{reset run} is executed.
+The other options will not work on all systems.
+@xref{Reset Configuration}.
 @itemize @minus
 @item @b{run}
 @cindex reset run
@@ -3076,9 +3518,12 @@ the code that was executed may have left the hardware in an unknown
 state.
 
 
+@anchor{Memory access}
 @section Memory access commands
 @subsection meminfo
-display available RAM memory.
+display available RAM memory on OpenOCD host. Used in OpenOCD regression testing scripts. Mainly
+useful on embedded targets, PC type hosts have complimentary tools like Valgrind to address
+resource tracking problems.
 @subsection Memory peek/poke type commands
 These commands allow accesses of a specific size to the memory
 system. Often these are used to configure the current target in some
@@ -3111,16 +3556,16 @@ SDRAM controller to enable SDRAM.
 @*write memory byte (8bit)
 @end itemize
 
+@anchor{Image access}
 @section Image loading commands
+@anchor{load_image}
 @subsection load_image
 @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
 @cindex load_image
-@anchor{load_image}
 @*Load image <@var{file}> to target memory at <@var{address}> 
 @subsection fast_load_image
 @b{fast_load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
 @cindex fast_load_image
-@anchor{fast_load_image}
 @*Normally you should be using @b{load_image} or GDB load. However, for
 testing purposes or when I/O overhead is significant(OpenOCD running on an embedded
 host), storing the image in memory and uploading the image to the target
@@ -3132,12 +3577,11 @@ separately.
 @subsection fast_load
 @b{fast_load}
 @cindex fast_image
-@anchor{fast_image}
 @*Loads an image stored in memory by @b{fast_load_image} to the current target. Must be preceeded by fast_load_image.
+@anchor{dump_image}
 @subsection dump_image
 @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
 @cindex dump_image
-@anchor{dump_image}
 @*Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
 (binary) <@var{file}>.
 @subsection verify_image
@@ -3173,189 +3617,581 @@ Profiling samples the CPU's program counter as quickly as possible, which is use
 
 @end itemize
 
-@section Target Specific Commands
-@cindex Target Specific Commands
+@section Architecture and Core Specific Commands
+@cindex Architecture Specific Commands
+@cindex Core Specific Commands
 
+Most CPUs have specialized JTAG operations to support debugging.
+OpenOCD packages most such operations in its standard command framework.
+Some of those operations don't fit well in that framework, so they are
+exposed here using architecture or implementation specific commands.
 
-@page
-@section Architecture Specific Commands
-@cindex Architecture Specific Commands
+@anchor{ARM Tracing}
+@subsection ARM Tracing
+@cindex ETM
+@cindex ETB
 
-@subsection ARMV4/5 specific commands
-@cindex ARMV4/5 specific commands
+CPUs based on ARM cores may include standard tracing interfaces,
+based on an ``Embedded Trace Module'' (ETM) which sends voluminous
+address and data bus trace records to a ``Trace Port''.
 
-These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
-or Intel XScale (XScale isn't supported yet).
-@itemize @bullet
-@item @b{armv4_5 reg}
-@cindex armv4_5 reg
-@*Display a list of all banked core registers, fetching the current value from every
+@itemize
+@item
+Development-oriented boards will sometimes provide a high speed
+trace connector for collecting that data, when the particular CPU
+supports such an interface.
+(The standard connector is a 38-pin Mictor, with both JTAG
+and trace port support.)
+Those trace connectors are supported by higher end JTAG adapters
+and some logic analyzer modules; frequently those modules can
+buffer several megabytes of trace data.
+Configuring an ETM coupled to such an external trace port belongs
+in the board-specific configuration file.
+@item
+If the CPU doesn't provide an external interface, it probably
+has an ``Embedded Trace Buffer'' (ETB) on the chip, which is a
+dedicated SRAM.  4KBytes is one common ETB size.
+Configuring an ETM coupled only to an ETB belongs in the CPU-specific
+(target) configuration file, since it works the same on all boards.
+@end itemize
+
+ETM support in OpenOCD doesn't seem to be widely used yet.
+
+@quotation Issues
+ETM support may be buggy, and at least some @command{etm config}
+parameters should be detected by asking the ETM for them.
+It seems like a GDB hookup should be possible,
+as well as triggering trace on specific events
+(perhaps @emph{handling IRQ 23} or @emph{calls foo()}).
+There should be GUI tools to manipulate saved trace data and help
+analyse it in conjunction with the source code.
+It's unclear how much of a common interface is shared
+with the current XScale trace support, or should be
+shared with eventual Nexus-style trace module support.
+@end quotation
+
+@subsubsection ETM Configuration
+ETM setup is coupled with the trace port driver configuration.
+
+@deffn {Config Command} {etm config} target width mode clocking driver
+Declares the ETM associated with @var{target}, and associates it
+with a given trace port @var{driver}.  @xref{Trace Port Drivers}.
+
+Several of the parameters must reflect the trace port configuration.
+The @var{width} must be either 4, 8, or 16.
+The @var{mode} must be @option{normal}, @option{multiplexted},
+or @option{demultiplexted}.
+The @var{clocking} must be @option{half} or @option{full}.
+
+@quotation Note
+You can see the ETM registers using the @command{reg} command, although
+not all of those possible registers are present in every ETM.
+@end quotation
+@end deffn
+
+@deffn Command {etm info}
+Displays information about the current target's ETM.
+@end deffn
+
+@deffn Command {etm status}
+Displays status of the current target's ETM:
+is the ETM idle, or is it collecting data?
+Did trace data overflow?
+Was it triggered?
+@end deffn
+
+@deffn Command {etm tracemode} [type context_id_bits cycle_accurate branch_output]
+Displays what data that ETM will collect.
+If arguments are provided, first configures that data.
+When the configuration changes, tracing is stopped
+and any buffered trace data is invalidated.
+
+@itemize
+@item @var{type} ... one of
+@option{none} (save nothing),
+@option{data} (save data),
+@option{address} (save addresses),
+@option{all} (save data and addresses)
+@item @var{context_id_bits} ... 0, 8, 16, or 32
+@item @var{cycle_accurate} ...  @option{enable} or @option{disable}
+@item @var{branch_output} ...  @option{enable} or @option{disable}
+@end itemize
+@end deffn
+
+@deffn Command {etm trigger_percent} percent
+@emph{Buggy and effectively a NOP ... @var{percent} from 2..100}
+@end deffn
+
+@subsubsection ETM Trace Operation
+
+After setting up the ETM, you can use it to collect data.
+That data can be exported to files for later analysis.
+It can also be parsed with OpenOCD, for basic sanity checking.
+
+@deffn Command {etm analyze}
+Reads trace data into memory, if it wasn't already present.
+Decodes and prints the data that was collected.
+@end deffn
+
+@deffn Command {etm dump} filename
+Stores the captured trace data in @file{filename}.
+@end deffn
+
+@deffn Command {etm image} filename [base_address] [type]
+Opens an image file.
+@end deffn
+
+@deffn Command {etm load} filename
+Loads captured trace data from @file{filename}.
+@end deffn
+
+@deffn Command {etm start}
+Starts trace data collection.
+@end deffn
+
+@deffn Command {etm stop}
+Stops trace data collection.
+@end deffn
+
+@anchor{Trace Port Drivers}
+@subsubsection Trace Port Drivers
+
+To use an ETM trace port it must be associated with a driver.
+
+@deffn {Trace Port Driver} dummy
+Use the @option{dummy} driver if you are configuring an ETM that's
+not connected to anything (on-chip ETB or off-chip trace connector).
+@emph{This driver lets OpenOCD talk to the ETM, but it does not expose
+any trace data collection.}
+@deffn {Config Command} {etm_dummy config} target
+Associates the ETM for @var{target} with a dummy driver.
+@end deffn
+@end deffn
+
+@deffn {Trace Port Driver} etb
+Use the @option{etb} driver if you are configuring an ETM
+to use on-chip ETB memory.
+@deffn {Config Command} {etb config} target etb_tap
+Associates the ETM for @var{target} with the ETB at @var{etb_tap}.
+You can see the ETB registers using the @command{reg} command.
+@end deffn
+@end deffn
+
+@deffn {Trace Port Driver} oocd_trace
+This driver isn't available unless OpenOCD was explicitly configured
+with the @option{--enable-oocd_trace} option.  You probably don't want
+to configure it unless you've built the appropriate prototype hardware;
+it's @emph{proof-of-concept} software.
+
+Use the @option{oocd_trace} driver if you are configuring an ETM that's
+connected to an off-chip trace connector.
+
+@deffn {Config Command} {oocd_trace config} target tty
+Associates the ETM for @var{target} with a trace driver which
+collects data through the serial port @var{tty}.
+@end deffn
+
+@deffn Command {oocd_trace resync}
+Re-synchronizes with the capture clock.
+@end deffn
+
+@deffn Command {oocd_trace status}
+Reports whether the capture clock is locked or not.
+@end deffn
+@end deffn
+
+
+@subsection ARMv4 and ARMv5 Architecture
+@cindex ARMv4 specific commands
+@cindex ARMv5 specific commands
+
+These commands are specific to ARM architecture v4 and v5,
+including all ARM7 or ARM9 systems and Intel XScale.
+They are available in addition to other core-specific
+commands that may be available.
+
+@deffn Command {armv4_5 core_state} [arm|thumb]
+Displays the core_state, optionally changing it to process
+either @option{arm} or @option{thumb} instructions.
+The target may later be resumed in the currently set core_state.
+(Processors may also support the Jazelle state, but
+that is not currently supported in OpenOCD.)
+@end deffn
+
+@deffn Command {armv4_5 disassemble} address count [thumb]
+@cindex disassemble
+Disassembles @var{count} instructions starting at @var{address}.
+If @option{thumb} is specified, Thumb (16-bit) instructions are used;
+else ARM (32-bit) instructions are used.
+(Processors may also support the Jazelle state, but
+those instructions are not currently understood by OpenOCD.)
+@end deffn
+
+@deffn Command {armv4_5 reg}
+Display a list of all banked core registers, fetching the current value from every
 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
 register value. 
-@item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
-@cindex armv4_5 core_mode
-@*Displays the core_mode, optionally changing it to either ARM or Thumb mode.
-The target is resumed in the currently set @option{core_mode}. 
-@end itemize
+@end deffn
 
-@subsection ARM7/9 specific commands
-@cindex ARM7/9 specific commands
+@subsubsection ARM7 and ARM9 specific commands
+@cindex ARM7 specific commands
+@cindex ARM9 specific commands
 
-These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
-ARM920T or ARM926EJ-S.
-@itemize @bullet
-@item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
-@cindex arm7_9 dbgrq
-@*Enable use of the DBGRQ bit to force entry into debug mode. This should be
+These commands are specific to ARM7 and ARM9 cores, like ARM7TDMI, ARM720T,
+ARM9TDMI, ARM920T or ARM926EJ-S.
+They are available in addition to the ARMv4/5 commands,
+and any other core-specific commands that may be available.
+
+@deffn Command {arm7_9 dbgrq} (enable|disable)
+Control use of the EmbeddedIce DBGRQ signal to force entry into debug mode,
+instead of breakpoints.  This should be
 safe for all but ARM7TDMI--S cores (like Philips LPC). 
-@item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
-@cindex arm7_9 fast_memory_access
+@end deffn
+
+@deffn Command {arm7_9 dcc_downloads} (enable|disable)
+@cindex DCC
+Control the use of the debug communications channel (DCC) to write larger (>128 byte)
+amounts of memory. DCC downloads offer a huge speed increase, but might be
+unsafe, especially with targets running at very low speeds. This command was introduced
+with OpenOCD rev. 60, and requires a few bytes of working area.
+@end deffn
+
 @anchor{arm7_9 fast_memory_access}
-@*Allow OpenOCD to read and write memory without checking completion of
+@deffn Command {arm7_9 fast_memory_access} (enable|disable)
+Enable or disable memory writes and reads that don't check completion of
 the operation. This provides a huge speed increase, especially with USB JTAG
 cables (FT2232), but might be unsafe if used with targets running at very low
 speeds, like the 32kHz startup clock of an AT91RM9200. 
-@item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
-@cindex arm7_9 dcc_downloads
-@*Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
-amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
-unsafe, especially with targets running at very low speeds. This command was introduced
-with OpenOCD rev. 60, and requires a few bytes of working area.
-@end itemize
+@end deffn
 
-@subsection ARM720T specific commands
+@deffn {Debug Command} {arm7_9 write_core_reg} num mode word
+@emph{This is intended for use while debugging OpenOCD; you probably
+shouldn't use it.}
+
+Writes a 32-bit @var{word} to register @var{num} (from 0 to 16)
+as used in the specified @var{mode}
+(where e.g. mode 16 is "user" and mode 19 is "supervisor";
+the M4..M0 bits of the PSR).
+Registers 0..15 are the normal CPU registers such as r0(0), r1(1) ... pc(15).
+Register 16 is the mode-specific SPSR,
+unless the specified mode is 0xffffffff (32-bit all-ones)
+in which case register 16 is the CPSR.
+The write goes directly to the CPU, bypassing the register cache.
+@end deffn
+
+@deffn {Debug Command} {arm7_9 write_xpsr} word (0|1)
+@emph{This is intended for use while debugging OpenOCD; you probably
+shouldn't use it.}
+
+If the second parameter is zero, writes @var{word} to the
+Current Program Status register (CPSR).
+Else writes @var{word} to the current mode's Saved PSR (SPSR).
+In both cases, this bypasses the register cache.
+@end deffn
+
+@deffn {Debug Command} {arm7_9 write_xpsr_im8} byte rotate (0|1)
+@emph{This is intended for use while debugging OpenOCD; you probably
+shouldn't use it.}
+
+Writes eight bits to the CPSR or SPSR,
+first rotating them by @math{2*rotate} bits,
+and bypassing the register cache.
+This has lower JTAG overhead than writing the entire CPSR or SPSR
+with @command{arm7_9 write_xpsr}.
+@end deffn
+
+@subsubsection ARM720T specific commands
 @cindex ARM720T specific commands
 
-@itemize @bullet
-@item @b{arm720t cp15} <@var{num}> [@var{value}]
-@cindex arm720t cp15
-@*display/modify cp15 register <@option{num}> [@option{value}].
-@item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
-@cindex arm720t md<bhw>_phys
-@*Display memory at physical address addr. 
-@item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
-@cindex arm720t mw<bhw>_phys
-@*Write memory at physical address addr.
-@item @b{arm720t virt2phys} <@var{va}>
-@cindex arm720t virt2phys
-@*Translate a virtual address to a physical address. 
-@end itemize
+These commands are available to ARM720T based CPUs,
+which are implementations of the ARMv4T architecture
+based on the ARM7TDMI-S integer core.
+They are available in addition to the ARMv4/5 and ARM7/ARM9 commands.
+
+@deffn Command {arm720t cp15} regnum [value]
+Display cp15 register @var{regnum};
+else if a @var{value} is provided, that value is written to that register.
+@end deffn
 
-@subsection ARM9TDMI specific commands
+@deffn Command {arm720t mdw_phys} addr [count]
+@deffnx Command {arm720t mdh_phys} addr [count]
+@deffnx Command {arm720t mdb_phys} addr [count]
+Display contents of physical address @var{addr}, as
+32-bit words (@command{mdw_phys}), 16-bit halfwords (@command{mdh_phys}),
+or 8-bit bytes (@command{mdb_phys}).
+If @var{count} is specified, displays that many units.
+@end deffn
+
+@deffn Command {arm720t mww_phys} addr word
+@deffnx Command {arm720t mwh_phys} addr halfword
+@deffnx Command {arm720t mwb_phys} addr byte
+Writes the specified @var{word} (32 bits),
+@var{halfword} (16 bits), or @var{byte} (8-bit) pattern,
+at the specified physical address @var{addr}.
+@end deffn
+
+@deffn Command {arm720t virt2phys} va
+Translate a virtual address @var{va} to a physical address
+and display the result.
+@end deffn
+
+@subsubsection ARM9TDMI specific commands
 @cindex ARM9TDMI specific commands
 
-@itemize @bullet
-@item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
-@cindex arm9tdmi vector_catch
-@*Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
+Many ARM9-family CPUs are built around ARM9TDMI integer cores,
+or processors resembling ARM9TDMI, and can use these commands.
+Such cores include the ARM920T, ARM926EJ-S, and ARM966.
+
+@deffn Command {arm9tdmi vector_catch} (all|none|list)
+Catch arm9 interrupt vectors, can be @option{all}, @option{none},
+or a list with one or more of the following:
 @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
 @option{irq} @option{fiq}.
+@end deffn
 
-Can also be used on other ARM9 based cores such as ARM966, ARM920T and ARM926EJ-S.
-@end itemize
+@subsubsection ARM920T specific commands
+@cindex ARM920T specific commands
 
-@subsection ARM966E specific commands
-@cindex ARM966E specific commands
+These commands are available to ARM920T based CPUs,
+which are implementations of the ARMv4T architecture
+built using the ARM9TDMI integer core.
+They are available in addition to the ARMv4/5, ARM7/ARM9,
+and ARM9TDMI commands.
 
-@itemize @bullet
-@item @b{arm966e cp15} <@var{num}> [@var{value}]
-@cindex arm966e cp15
-@*display/modify cp15 register <@option{num}> [@option{value}].
-@end itemize
+@deffn Command {arm920t cache_info}
+Print information about the caches found. This allows to see whether your target
+is an ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
+@end deffn
 
-@subsection ARM920T specific commands
-@cindex ARM920T specific commands
+@deffn Command {arm920t cp15} regnum [value]
+Display cp15 register @var{regnum};
+else if a @var{value} is provided, that value is written to that register.
+@end deffn
 
-@itemize @bullet
-@item @b{arm920t cp15} <@var{num}> [@var{value}]
-@cindex arm920t cp15
-@*display/modify cp15 register <@option{num}> [@option{value}].
-@item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
-@cindex arm920t cp15i
-@*display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
-@item @b{arm920t cache_info}
-@cindex arm920t cache_info
-@*Print information about the caches found. This allows to see whether your target
-is an ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache). 
-@item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
-@cindex arm920t md<bhw>_phys
-@*Display memory at physical address addr. 
-@item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
-@cindex arm920t mw<bhw>_phys
-@*Write memory at physical address addr. 
-@item @b{arm920t read_cache} <@var{filename}>
-@cindex arm920t read_cache
-@*Dump the content of ICache and DCache to a file. 
-@item @b{arm920t read_mmu} <@var{filename}>
-@cindex arm920t read_mmu
-@*Dump the content of the ITLB and DTLB to a file. 
-@item @b{arm920t virt2phys} <@var{va}>
-@cindex arm920t virt2phys
-@*Translate a virtual address to a physical address. 
-@end itemize
+@deffn Command {arm920t cp15i} opcode [value [address]]
+Interpreted access using cp15 @var{opcode}.
+If no @var{value} is provided, the result is displayed.
+Else if that value is written using the specified @var{address},
+or using zero if no other address is not provided.
+@end deffn
+
+@deffn Command {arm920t mdw_phys} addr [count]
+@deffnx Command {arm920t mdh_phys} addr [count]
+@deffnx Command {arm920t mdb_phys} addr [count]
+Display contents of physical address @var{addr}, as
+32-bit words (@command{mdw_phys}), 16-bit halfwords (@command{mdh_phys}),
+or 8-bit bytes (@command{mdb_phys}).
+If @var{count} is specified, displays that many units.
+@end deffn
+
+@deffn Command {arm920t mww_phys} addr word
+@deffnx Command {arm920t mwh_phys} addr halfword
+@deffnx Command {arm920t mwb_phys} addr byte
+Writes the specified @var{word} (32 bits),
+@var{halfword} (16 bits), or @var{byte} (8-bit) pattern,
+at the specified physical address @var{addr}.
+@end deffn
+
+@deffn Command {arm920t read_cache} filename
+Dump the content of ICache and DCache to a file named @file{filename}.
+@end deffn
 
-@subsection ARM926EJ-S specific commands
+@deffn Command {arm920t read_mmu} filename
+Dump the content of the ITLB and DTLB to a file named @file{filename}.
+@end deffn
+
+@deffn Command {arm920t virt2phys} @var{va}
+Translate a virtual address @var{va} to a physical address
+and display the result.
+@end deffn
+
+@subsubsection ARM926EJ-S specific commands
 @cindex ARM926EJ-S specific commands
 
-@itemize @bullet
-@item @b{arm926ejs cp15} <@var{num}> [@var{value}]
-@cindex arm926ejs cp15
-@*display/modify cp15 register <@option{num}> [@option{value}].
-@item @b{arm926ejs cache_info}
-@cindex arm926ejs cache_info
-@*Print information about the caches found.
-@item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
-@cindex arm926ejs md<bhw>_phys
-@*Display memory at physical address addr. 
-@item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
-@cindex arm926ejs mw<bhw>_phys
-@*Write memory at physical address addr. 
-@item @b{arm926ejs virt2phys} <@var{va}>
-@cindex arm926ejs virt2phys
-@*Translate a virtual address to a physical address. 
-@end itemize
+These commands are available to ARM926EJ-S based CPUs,
+which are implementations of the ARMv5TEJ architecture
+based on the ARM9EJ-S integer core.
+They are available in addition to the ARMv4/5, ARM7/ARM9,
+and ARM9TDMI commands.
 
-@subsection CORTEX_M3 specific commands
-@cindex CORTEX_M3 specific commands
+@deffn Command {arm926ejs cache_info}
+Print information about the caches found.
+@end deffn
 
-@itemize @bullet
-@item @b{cortex_m3 maskisr} <@var{on}|@var{off}>
-@cindex cortex_m3 maskisr
-@*Enable masking (disabling) interrupts during target step/resume.
-@end itemize
+@deffn Command {arm926ejs cp15} opcode1 opcode2 CRn CRm regnum [value]
+Accesses cp15 register @var{regnum} using
+@var{opcode1}, @var{opcode2}, @var{CRn}, and @var{CRm}.
+If a @var{value} is provided, that value is written to that register.
+Else that register is read and displayed.
+@end deffn
 
-@page
-@section Debug commands
-@cindex Debug commands
-The following commands give direct access to the core, and are most likely
-only useful while debugging OpenOCD.
-@itemize @bullet
-@item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
-@cindex arm7_9 write_xpsr
-@*Immediately write either the current program status register (CPSR) or the saved
-program status register (SPSR), without changing the register cache (as displayed
-by the @option{reg} and @option{armv4_5 reg} commands). 
-@item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
-<@var{0=cpsr},@var{1=spsr}>
-@cindex arm7_9 write_xpsr_im8
-@*Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
-operation (similar to @option{write_xpsr}). 
-@item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
-@cindex arm7_9 write_core_reg
-@*Write a core register, without changing the register cache (as displayed by the
-@option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
-encoding of the [M4:M0] bits of the PSR. 
-@end itemize
+@deffn Command {arm926ejs mdw_phys} addr [count]
+@deffnx Command {arm926ejs mdh_phys} addr [count]
+@deffnx Command {arm926ejs mdb_phys} addr [count]
+Display contents of physical address @var{addr}, as
+32-bit words (@command{mdw_phys}), 16-bit halfwords (@command{mdh_phys}),
+or 8-bit bytes (@command{mdb_phys}).
+If @var{count} is specified, displays that many units.
+@end deffn
+
+@deffn Command {arm926ejs mww_phys} addr word
+@deffnx Command {arm926ejs mwh_phys} addr halfword
+@deffnx Command {arm926ejs mwb_phys} addr byte
+Writes the specified @var{word} (32 bits),
+@var{halfword} (16 bits), or @var{byte} (8-bit) pattern,
+at the specified physical address @var{addr}.
+@end deffn
+
+@deffn Command {arm926ejs virt2phys} @var{va}
+Translate a virtual address @var{va} to a physical address
+and display the result.
+@end deffn
+
+@subsubsection ARM966E specific commands
+@cindex ARM966E specific commands
+
+These commands are available to ARM966 based CPUs,
+which are implementations of the ARMv5TE architecture.
+They are available in addition to the ARMv4/5, ARM7/ARM9,
+and ARM9TDMI commands.
+
+@deffn Command {arm966e cp15} regnum [value]
+Display cp15 register @var{regnum};
+else if a @var{value} is provided, that value is written to that register.
+@end deffn
+
+@subsubsection XScale specific commands
+@cindex XScale specific commands
+
+These commands are available to XScale based CPUs,
+which are implementations of the ARMv5TE architecture.
+
+@deffn Command {xscale analyze_trace}
+Displays the contents of the trace buffer.
+@end deffn
+
+@deffn Command {xscale cache_clean_address} address
+Changes the address used when cleaning the data cache.
+@end deffn
+
+@deffn Command {xscale cache_info}
+Displays information about the CPU caches.
+@end deffn
+
+@deffn Command {xscale cp15} regnum [value]
+Display cp15 register @var{regnum};
+else if a @var{value} is provided, that value is written to that register.
+@end deffn
+
+@deffn Command {xscale debug_handler} target address
+Changes the address used for the specified target's debug handler.
+@end deffn
+
+@deffn Command {xscale dcache} (enable|disable)
+Enables or disable the CPU's data cache.
+@end deffn
+
+@deffn Command {xscale dump_trace} filename
+Dumps the raw contents of the trace buffer to @file{filename}.
+@end deffn
+
+@deffn Command {xscale icache} (enable|disable)
+Enables or disable the CPU's instruction cache.
+@end deffn
+
+@deffn Command {xscale mmu} (enable|disable)
+Enables or disable the CPU's memory management unit.
+@end deffn
+
+@deffn Command {xscale trace_buffer} (enable|disable) [fill [n] | wrap]
+Enables or disables the trace buffer,
+and controls how it is emptied.
+@end deffn
+
+@deffn Command {xscale trace_image} filename [offset [type]]
+Opens a trace image from @file{filename}, optionally rebasing
+its segment addresses by @var{offset}.
+The image @var{type} may be one of
+@option{bin} (binary), @option{ihex} (Intel hex),
+@option{elf} (ELF file), @option{s19} (Motorola s19),
+@option{mem}, or @option{builder}.
+@end deffn
+
+@deffn Command {xscale vector_catch} mask
+Provide a bitmask showing the vectors to catch.
+@end deffn
+
+@subsection ARMv6 Architecture
+
+@subsubsection ARM11 specific commands
+@cindex ARM11 specific commands
+
+@deffn Command {arm11 mcr} p1 p2 p3 p4 p5
+Read coprocessor register
+@end deffn
+
+@deffn Command {arm11 memwrite burst} [value]
+Displays the value of the memwrite burst-enable flag,
+which is enabled by default.
+If @var{value} is defined, first assigns that.
+@end deffn
+
+@deffn Command {arm11 memwrite error_fatal} [value]
+Displays the value of the memwrite error_fatal flag,
+which is enabled by default.
+If @var{value} is defined, first assigns that.
+@end deffn
+
+@deffn Command {arm11 mrc} p1 p2 p3 p4 p5 value
+Write coprocessor register
+@end deffn
+
+@deffn Command {arm11 no_increment}  [value]
+Displays the value of the flag controlling whether
+some read or write operations increment the pointer
+(the default behavior) or not (acting like a FIFO).
+If @var{value} is defined, first assigns that.
+@end deffn
+
+@deffn Command {arm11 step_irq_enable}  [value]
+Displays the value of the flag controlling whether
+IRQs are enabled during single stepping;
+they is disabled by default.
+If @var{value} is defined, first assigns that.
+@end deffn
+
+@subsection ARMv7 Architecture
+
+@subsubsection Cortex-M3 specific commands
+@cindex Cortex-M3 specific commands
+
+@deffn Command {cortex_m3 maskisr} (on|off)
+Control masking (disabling) interrupts during target step/resume.
+@end deffn
+
+@section Target DCC Requests
+@cindex Linux-ARM DCC support
+@cindex libdcc
+@cindex DCC
+OpenOCD can handle certain target requests; currently debugmsgs
+@command{target_request debugmsgs}
+are only supported for arm7_9 and cortex_m3.
 
-@section Target Requests
-@cindex Target Requests
-OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
 See libdcc in the contrib dir for more details.
-@itemize @bullet
-@item @b{target_request debugmsgs} <@var{enable}|@var{disable}|@var{charmsg}>
-@cindex target_request debugmsgs
-@*Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running. @var{charmsg} receives messages if Linux kernel ``Kernel low-level debugging via EmbeddedICE DCC channel'' option is enabled.
-@end itemize
+Linux-ARM kernels have a ``Kernel low-level debugging
+via EmbeddedICE DCC channel'' option (CONFIG_DEBUG_ICEDCC,
+depends on CONFIG_DEBUG_LL) which uses this mechanism to
+deliver messages before a serial console can be activated.
+
+@deffn Command {target_request debugmsgs} [enable|disable|charmsg]
+Displays current handling of target DCC message requests.
+These messages may be sent to the debugger while the target is running.
+The optional @option{enable} and @option{charmsg} parameters
+both enable the messages, while @option{disable} disables them.
+With @option{charmsg} the DCC words each contain one character,
+as used by Linux with CONFIG_DEBUG_ICEDCC;
+otherwise the libdcc format is used.
+@end deffn
 
 @node JTAG Commands
 @chapter JTAG Commands
@@ -3450,8 +4286,13 @@ be used to access files on PCs (either the developer's PC or some other PC).
 
 The way this works on the ZY1000 is to prefix a filename by
 "/tftp/ip/" and append the TFTP path on the TFTP
-server (tftpd). E.g. "load_image /tftp/10.0.0.96/c:\temp\abc.elf" will
-load c:\temp\abc.elf from the developer pc (10.0.0.96) into memory as
+server (tftpd). For example,
+
+@example
+load_image /tftp/10.0.0.96/c:\temp\abc.elf
+@end example
+
+will load c:\temp\abc.elf from the developer pc (10.0.0.96) into memory as
 if the file was hosted on the embedded host.
 
 In order to achieve decent performance, you must choose a TFTP server
@@ -3481,7 +4322,8 @@ Detailed information about each section can be found at OpenOCD configuration.
 To start OpenOCD with a target script for the AT91R40008 CPU and reset
 the CPU upon startup of the OpenOCD daemon.
 @example
-openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset 
+openocd -f interface/parport.cfg -f target/at91r40008.cfg \
+        -c "init" -c "reset"
 @end example
 
 
@@ -3491,15 +4333,16 @@ openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset
 OpenOCD complies with the remote gdbserver protocol, and as such can be used
 to debug remote targets.
 
+@anchor{Connecting to GDB}
 @section Connecting to GDB
 @cindex Connecting to GDB
-@anchor{Connecting to GDB}
 Use GDB 6.7 or newer with OpenOCD if you run into trouble. For
 instance GDB 6.3 has a known bug that produces bogus memory access
 errors, which has since been fixed: look up 1836 in
 @url{http://sourceware.org/cgi-bin/gnatsweb.pl?database=gdb}
 
-@*OpenOCD can communicate with GDB in two ways:
+OpenOCD can communicate with GDB in two ways:
+
 @enumerate
 @item
 A socket (TCP/IP) connection is typically started as follows:
@@ -3517,7 +4360,7 @@ Using this method has the advantage of GDB starting/stopping OpenOCD for the deb
 session.
 @end enumerate
 
-@*To see a list of available OpenOCD commands type @option{monitor help} on the
+To list the available OpenOCD commands type @command{monitor help} on the
 GDB command line.
 
 OpenOCD supports the gdb @option{qSupported} packet, this enables information
@@ -3621,8 +4464,9 @@ should be passed in to the proc in question.
 
 By low-level, the intent is a human would not directly use these commands.
 
-Low-level commands are (should be) prefixed with "openocd_", e.g. openocd_flash_banks
-is the low level API upon which "flash banks" is implemented.
+Low-level commands are (should be) prefixed with "ocd_", e.g.
+@command{ocd_flash_banks}
+is the low level API upon which @command{flash banks} is implemented.
 
 @itemize @bullet
 @item @b{ocd_mem2array} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
@@ -3659,6 +4503,13 @@ holds one of the following values:
 
 Note: 'winxx' was choosen because today (March-2009) no distinction is made between Win32 and Win64.
 
+@quotation Note
+We should add support for a variable like Tcl variable
+@code{tcl_platform(platform)}, it should be called
+@code{jim_platform} (because it
+is jim, not real tcl).
+@end quotation
+
 @node Upgrading
 @chapter Deprecated/Removed Commands
 @cindex Deprecated/Removed Commands
@@ -3667,7 +4518,8 @@ Certain OpenOCD commands have been deprecated/removed during the various revisio
 @itemize @bullet
 @item @b{arm7_9 fast_writes}
 @cindex arm7_9 fast_writes
-@*use @option{arm7_9 fast_memory_access} command with same args. @xref{arm7_9 fast_memory_access}.
+@*Use @command{arm7_9 fast_memory_access} instead.
+@xref{arm7_9 fast_memory_access}.
 @item @b{arm7_9 force_hw_bkpts}
 @cindex arm7_9 force_hw_bkpts
 @*Use @command{gdb_breakpoint_override} instead. Note that GDB will use hardware breakpoints
@@ -3696,6 +4548,20 @@ and @option{target cortex_m3 little reset_halt 0}.
 @item @b{flash auto_erase}
 @cindex flash auto_erase
 @*use @option{flash write_image} command passing @option{erase} as the first parameter. @xref{flash write_image}.
+
+@item @b{jtag_speed} value
+@*@xref{JTAG Speed}.
+Usually, a value of zero means maximum
+speed. The actual effect of this option depends on the JTAG interface used.
+@itemize @minus
+@item wiggler: maximum speed / @var{number}
+@item ft2232: 6MHz / (@var{number}+1)
+@item amt jtagaccel: 8 / 2**@var{number}
+@item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
+@item rlink: 24MHz / @var{number}, but only for certain values of @var{number}
+@comment end speed list.
+@end itemize
+
 @item @b{load_binary}
 @cindex load_binary
 @*use @option{load_image} command with same args. @xref{load_image}.
@@ -3723,6 +4589,7 @@ halt
 @chapter FAQ
 @cindex faq
 @enumerate
+@anchor{FAQ RTCK}
 @item @b{RTCK, also known as: Adaptive Clocking - What is it?}
 @cindex RTCK
 @cindex adaptive clocking
@@ -3827,7 +4694,7 @@ arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not e
 
 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720T or ARM920T,
-software breakpoints consume one of the two available hardware breakpoints.  
+software breakpoints consume one of the two available hardware breakpoints.
 
 @item @b{LPC2000 Flash} When erasing or writing LPC2000 on-chip flash, the operation fails at random.
 
@@ -3978,7 +4845,7 @@ log file, I can see these error messages: Error: arm7_9_common.c:561
 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
 
 TODO.
-                                                       
+
 @end enumerate
 
 @node Tcl Crash Course
@@ -4195,7 +5062,7 @@ MyForCommand( void *interp,
        SetResult( interp, "WRONG number of parameters");
        return ERROR;
    @}
-   
+
    // argv[0] = the ascii string just like C
 
    // Execute the start statement.
@@ -4218,7 +5085,7 @@ MyForCommand( void *interp,
     SetResult( interp, "" );
     return SUCCESS;
 @}
-@end example        
+@end example
 
 Every other command IF, WHILE, FORMAT, PUTS, EXPR, everything works
 in the same basic way.
@@ -4238,7 +5105,7 @@ substituted on the orginal command line.
 @* SOURCE reads a file and executes as a script.
 @end enumerate
 @subsection format command
-@b{Where:} Generally occurs in numerous places.  
+@b{Where:} Generally occurs in numerous places.
 @* Tcl has no command like @b{printf()}, instead it has @b{format}, which is really more like
 @b{sprintf()}.
 @b{Example}
@@ -4350,7 +5217,8 @@ finally issues the init and reset commands. The communication speed
 is set to 10kHz for reset and 8MHz for post reset.
 
 @example
-openocd -f interface/parport.cfg -f target/str710.cfg -c "init" -c "reset"
+openocd -f interface/parport.cfg -f target/str710.cfg \
+        -c "init" -c "reset"
 @end example
 
 To list the target scripts available:
@@ -4375,8 +5243,8 @@ at91sam9260.cfg  nslu2.cfg     sam7x256.cfg    wi-9c.cfg
 
 @printindex cp
 
-@node OpenOCD Command Index
-@unnumbered OpenOCD Command Index
+@node Command and Driver Index
+@unnumbered Command and Driver Index
 @printindex fn
 
 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)