flash/nor: at91samd protection bits write fix
[openocd.git] / src / flash / nor / at91samd.c
index acda3bb7fc2a3911a8d2dce86e941ff17fb2871c..2673b0eecadd858e1065557919106f4b2726f99f 100644 (file)
@@ -13,9 +13,7 @@
  *   GNU General Public License for more details.                          *
  *                                                                         *
  *   You should have received a copy of the GNU General Public License     *
- *   along with this program; if not, write to the                         *
- *   Free Software Foundation, Inc.,                                       *
- *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.           *
+ *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
  ***************************************************************************/
 
 #ifdef HAVE_CONFIG_H
 #endif
 
 #include "imp.h"
+#include "helper/binarybuffer.h"
+
+#include <target/cortex_m.h>
 
 #define SAMD_NUM_SECTORS       16
+#define SAMD_PAGE_SIZE_MAX     1024
 
-#define SAMD_FLASH                     0x00000000      /* physical Flash memory */
+#define SAMD_FLASH                     ((uint32_t)0x00000000)  /* physical Flash memory */
+#define SAMD_USER_ROW          ((uint32_t)0x00804000)  /* User Row of Flash */
+#define SAMD_PAC1                      0x41000000      /* Peripheral Access Control 1 */
 #define SAMD_DSU                       0x41002000      /* Device Service Unit */
 #define SAMD_NVMCTRL           0x41004000      /* Non-volatile memory controller */
 
+#define SAMD_DSU_STATUSA        1               /* DSU status register */
 #define SAMD_DSU_DID           0x18            /* Device ID register */
 
 #define SAMD_NVMCTRL_CTRLA             0x00    /* NVM control A register */
 #define SAMD_NVM_CMD_SSB       0x45            /* Set Security Bit */
 #define SAMD_NVM_CMD_INVALL    0x46            /* Invalidate all caches */
 
+/* NVMCTRL bits */
+#define SAMD_NVM_CTRLB_MANW 0x80
+
 /* Known identifiers */
 #define SAMD_PROCESSOR_M0      0x01
 #define SAMD_FAMILY_D          0x00
+#define SAMD_FAMILY_L          0x01
+#define SAMD_FAMILY_C          0x02
 #define SAMD_SERIES_20         0x00
 #define SAMD_SERIES_21         0x01
+#define SAMD_SERIES_22         0x02
+#define SAMD_SERIES_10         0x02
+#define SAMD_SERIES_11         0x03
+#define SAMD_SERIES_09         0x04
+
+/* Device ID macros */
+#define SAMD_GET_PROCESSOR(id) (id >> 28)
+#define SAMD_GET_FAMILY(id) (((id >> 23) & 0x1F))
+#define SAMD_GET_SERIES(id) (((id >> 16) & 0x3F))
+#define SAMD_GET_DEVSEL(id) (id & 0xFF)
 
 struct samd_part {
        uint8_t id;
@@ -69,6 +89,39 @@ struct samd_part {
        uint32_t ram_kb;
 };
 
+/* Known SAMD09 parts. DID reset values missing in RM, see
+ * https://github.com/avrxml/asf/blob/master/sam0/utils/cmsis/samd09/include/ */
+static const struct samd_part samd09_parts[] = {
+       { 0x0, "SAMD09D14A", 16, 4 },
+       { 0x7, "SAMD09C13A", 8, 4 },
+};
+
+/* Known SAMD10 parts */
+static const struct samd_part samd10_parts[] = {
+       { 0x0, "SAMD10D14AMU", 16, 4 },
+       { 0x1, "SAMD10D13AMU", 8, 4 },
+       { 0x2, "SAMD10D12AMU", 4, 4 },
+       { 0x3, "SAMD10D14ASU", 16, 4 },
+       { 0x4, "SAMD10D13ASU", 8, 4 },
+       { 0x5, "SAMD10D12ASU", 4, 4 },
+       { 0x6, "SAMD10C14A", 16, 4 },
+       { 0x7, "SAMD10C13A", 8, 4 },
+       { 0x8, "SAMD10C12A", 4, 4 },
+};
+
+/* Known SAMD11 parts */
+static const struct samd_part samd11_parts[] = {
+       { 0x0, "SAMD11D14AMU", 16, 4 },
+       { 0x1, "SAMD11D13AMU", 8, 4 },
+       { 0x2, "SAMD11D12AMU", 4, 4 },
+       { 0x3, "SAMD11D14ASU", 16, 4 },
+       { 0x4, "SAMD11D13ASU", 8, 4 },
+       { 0x5, "SAMD11D12ASU", 4, 4 },
+       { 0x6, "SAMD11C14A", 16, 4 },
+       { 0x7, "SAMD11C13A", 8, 4 },
+       { 0x8, "SAMD11C12A", 4, 4 },
+};
+
 /* Known SAMD20 parts. See Table 12-8 in 42129F–SAM–10/2013 */
 static const struct samd_part samd20_parts[] = {
        { 0x0, "SAMD20J18A", 256, 32 },
@@ -81,6 +134,7 @@ static const struct samd_part samd20_parts[] = {
        { 0x7, "SAMD20G16A", 64, 8 },
        { 0x8, "SAMD20G15A", 32, 4 },
        { 0x9, "SAMD20G14A", 16, 2 },
+       { 0xA, "SAMD20E18A", 256, 32 },
        { 0xB, "SAMD20E17A", 128, 16 },
        { 0xC, "SAMD20E16A", 64, 8 },
        { 0xD, "SAMD20E15A", 32, 4 },
@@ -104,6 +158,92 @@ static const struct samd_part samd21_parts[] = {
        { 0xC, "SAMD21E16A", 64, 8 },
        { 0xD, "SAMD21E15A", 32, 4 },
        { 0xE, "SAMD21E14A", 16, 2 },
+    /* Below are B Variants (Table 3-7 from rev I of datasheet) */
+       { 0x20, "SAMD21J16B", 64, 8 },
+       { 0x21, "SAMD21J15B", 32, 4 },
+       { 0x23, "SAMD21G16B", 64, 8 },
+       { 0x24, "SAMD21G15B", 32, 4 },
+       { 0x26, "SAMD21E16B", 64, 8 },
+       { 0x27, "SAMD21E15B", 32, 4 },
+};
+
+/* Known SAMR21 parts. */
+static const struct samd_part samr21_parts[] = {
+       { 0x19, "SAMR21G18A", 256, 32 },
+       { 0x1A, "SAMR21G17A", 128, 32 },
+       { 0x1B, "SAMR21G16A",  64, 32 },
+       { 0x1C, "SAMR21E18A", 256, 32 },
+       { 0x1D, "SAMR21E17A", 128, 32 },
+       { 0x1E, "SAMR21E16A",  64, 32 },
+};
+
+/* Known SAML21 parts. */
+static const struct samd_part saml21_parts[] = {
+       { 0x00, "SAML21J18A", 256, 32 },
+       { 0x01, "SAML21J17A", 128, 16 },
+       { 0x02, "SAML21J16A", 64, 8 },
+       { 0x05, "SAML21G18A", 256, 32 },
+       { 0x06, "SAML21G17A", 128, 16 },
+       { 0x07, "SAML21G16A", 64, 8 },
+       { 0x0A, "SAML21E18A", 256, 32 },
+       { 0x0B, "SAML21E17A", 128, 16 },
+       { 0x0C, "SAML21E16A", 64, 8 },
+       { 0x0D, "SAML21E15A", 32, 4 },
+       { 0x0F, "SAML21J18B", 256, 32 },
+       { 0x10, "SAML21J17B", 128, 16 },
+       { 0x11, "SAML21J16B", 64, 8 },
+       { 0x14, "SAML21G18B", 256, 32 },
+       { 0x15, "SAML21G17B", 128, 16 },
+       { 0x16, "SAML21G16B", 64, 8 },
+       { 0x19, "SAML21E18B", 256, 32 },
+       { 0x1A, "SAML21E17B", 128, 16 },
+       { 0x1B, "SAML21E16B", 64, 8 },
+       { 0x1C, "SAML21E15B", 32, 4 },
+};
+
+/* Known SAML22 parts. */
+static const struct samd_part saml22_parts[] = {
+       { 0x00, "SAML22N18A", 256, 32 },
+       { 0x01, "SAML22N17A", 128, 16 },
+       { 0x02, "SAML22N16A", 64, 8 },
+       { 0x05, "SAML22J18A", 256, 32 },
+       { 0x06, "SAML22J17A", 128, 16 },
+       { 0x07, "SAML22J16A", 64, 8 },
+       { 0x0A, "SAML22G18A", 256, 32 },
+       { 0x0B, "SAML22G17A", 128, 16 },
+       { 0x0C, "SAML22G16A", 64, 8 },
+};
+
+/* Known SAMC20 parts. */
+static const struct samd_part samc20_parts[] = {
+       { 0x00, "SAMC20J18A", 256, 32 },
+       { 0x01, "SAMC20J17A", 128, 16 },
+       { 0x02, "SAMC20J16A", 64, 8 },
+       { 0x03, "SAMC20J15A", 32, 4 },
+       { 0x05, "SAMC20G18A", 256, 32 },
+       { 0x06, "SAMC20G17A", 128, 16 },
+       { 0x07, "SAMC20G16A", 64, 8 },
+       { 0x08, "SAMC20G15A", 32, 4 },
+       { 0x0A, "SAMC20E18A", 256, 32 },
+       { 0x0B, "SAMC20E17A", 128, 16 },
+       { 0x0C, "SAMC20E16A", 64, 8 },
+       { 0x0D, "SAMC20E15A", 32, 4 },
+};
+
+/* Known SAMC21 parts. */
+static const struct samd_part samc21_parts[] = {
+       { 0x00, "SAMC21J18A", 256, 32 },
+       { 0x01, "SAMC21J17A", 128, 16 },
+       { 0x02, "SAMC21J16A", 64, 8 },
+       { 0x03, "SAMC21J15A", 32, 4 },
+       { 0x05, "SAMC21G18A", 256, 32 },
+       { 0x06, "SAMC21G17A", 128, 16 },
+       { 0x07, "SAMC21G16A", 64, 8 },
+       { 0x08, "SAMC21G15A", 32, 4 },
+       { 0x0A, "SAMC21E18A", 256, 32 },
+       { 0x0B, "SAMC21E17A", 128, 16 },
+       { 0x0C, "SAMC21E16A", 64, 8 },
+       { 0x0D, "SAMC21E15A", 32, 4 },
 };
 
 /* Each family of parts contains a parts table in the DEVSEL field of DID.  The
@@ -123,6 +263,22 @@ static const struct samd_family samd_families[] = {
                samd20_parts, ARRAY_SIZE(samd20_parts) },
        { SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_21,
                samd21_parts, ARRAY_SIZE(samd21_parts) },
+       { SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_21,
+               samr21_parts, ARRAY_SIZE(samr21_parts) },
+       { SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_09,
+               samd09_parts, ARRAY_SIZE(samd09_parts) },
+       { SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_10,
+               samd10_parts, ARRAY_SIZE(samd10_parts) },
+       { SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_11,
+               samd11_parts, ARRAY_SIZE(samd11_parts) },
+       { SAMD_PROCESSOR_M0, SAMD_FAMILY_L, SAMD_SERIES_21,
+               saml21_parts, ARRAY_SIZE(saml21_parts) },
+       { SAMD_PROCESSOR_M0, SAMD_FAMILY_L, SAMD_SERIES_22,
+               saml22_parts, ARRAY_SIZE(saml22_parts) },
+       { SAMD_PROCESSOR_M0, SAMD_FAMILY_C, SAMD_SERIES_20,
+               samc20_parts, ARRAY_SIZE(samc20_parts) },
+       { SAMD_PROCESSOR_M0, SAMD_FAMILY_C, SAMD_SERIES_21,
+               samc21_parts, ARRAY_SIZE(samc21_parts) },
 };
 
 struct samd_info {
@@ -137,12 +293,14 @@ struct samd_info {
 
 static struct samd_info *samd_chips;
 
+
+
 static const struct samd_part *samd_find_part(uint32_t id)
 {
-       uint8_t processor = (id >> 28);
-       uint8_t family = (id >> 24) & 0x0F;
-       uint8_t series = (id >> 16) & 0xFF;
-       uint8_t devsel = id & 0xFF;
+       uint8_t processor = SAMD_GET_PROCESSOR(id);
+       uint8_t family = SAMD_GET_FAMILY(id);
+       uint8_t series = SAMD_GET_SERIES(id);
+       uint8_t devsel = SAMD_GET_DEVSEL(id);
 
        for (unsigned i = 0; i < ARRAY_SIZE(samd_families); i++) {
                if (samd_families[i].processor == processor &&
@@ -175,9 +333,31 @@ static int samd_protect_check(struct flash_bank *bank)
        return ERROR_OK;
 }
 
+static int samd_get_flash_page_info(struct target *target,
+               uint32_t *sizep, int *nump)
+{
+       int res;
+       uint32_t param;
+
+       res = target_read_u32(target, SAMD_NVMCTRL + SAMD_NVMCTRL_PARAM, &param);
+       if (res == ERROR_OK) {
+               /* The PSZ field (bits 18:16) indicate the page size bytes as 2^(3+n)
+                * so 0 is 8KB and 7 is 1024KB. */
+               if (sizep)
+                       *sizep = (8 << ((param >> 16) & 0x7));
+               /* The NVMP field (bits 15:0) indicates the total number of pages */
+               if (nump)
+                       *nump = param & 0xFFFF;
+       } else {
+               LOG_ERROR("Couldn't read NVM Parameters register");
+       }
+
+       return res;
+}
+
 static int samd_probe(struct flash_bank *bank)
 {
-       uint32_t id, param;
+       uint32_t id;
        int res;
        struct samd_info *chip = (struct samd_info *)bank->driver_priv;
        const struct samd_part *part;
@@ -193,32 +373,26 @@ static int samd_probe(struct flash_bank *bank)
 
        part = samd_find_part(id);
        if (part == NULL) {
-               LOG_ERROR("Couldn't find part correspoding to DID %08" PRIx32, id);
+               LOG_ERROR("Couldn't find part corresponding to DID %08" PRIx32, id);
                return ERROR_FAIL;
        }
 
-       res = target_read_u32(bank->target,
-                       SAMD_NVMCTRL + SAMD_NVMCTRL_PARAM, &param);
-       if (res != ERROR_OK) {
-               LOG_ERROR("Couldn't read NVM Parameters register");
-               return res;
-       }
-
        bank->size = part->flash_kb * 1024;
 
        chip->sector_size = bank->size / SAMD_NUM_SECTORS;
 
-       /* The PSZ field (bits 18:16) indicate the page size bytes as 2^(3+n) so
-        * 0 is 8KB and 7 is 1024KB. */
-       chip->page_size = (8 << ((param >> 16) & 0x7));
-       /* The NVMP field (bits 15:0) indicates the total number of pages */
-       chip->num_pages = param & 0xFFFF;
+       res = samd_get_flash_page_info(bank->target, &chip->page_size,
+                       &chip->num_pages);
+       if (res != ERROR_OK) {
+               LOG_ERROR("Couldn't determine Flash page size");
+               return res;
+       }
 
        /* Sanity check: the total flash size in the DSU should match the page size
         * multiplied by the number of pages. */
        if (bank->size != chip->num_pages * chip->page_size) {
                LOG_WARNING("SAMD: bank size doesn't match NVM parameters. "
-                               "Identified %uKB Flash but NVMCTRL reports %u %uB pages",
+                               "Identified %" PRIu32 "KB Flash but NVMCTRL reports %u %" PRIu32 "B pages",
                                part->flash_kb, chip->num_pages, chip->page_size);
        }
 
@@ -243,221 +417,303 @@ static int samd_probe(struct flash_bank *bank)
        /* Done */
        chip->probed = true;
 
-       LOG_INFO("SAMD MCU: %s (%uKB Flash, %uKB RAM)", part->name,
+       LOG_INFO("SAMD MCU: %s (%" PRIu32 "KB Flash, %" PRIu32 "KB RAM)", part->name,
                        part->flash_kb, part->ram_kb);
 
        return ERROR_OK;
 }
 
-static int samd_protect(struct flash_bank *bank, int set, int first, int last)
+static int samd_check_error(struct target *target)
 {
-       int res;
-       struct samd_info *chip = (struct samd_info *)bank->driver_priv;
-
-       for (int s = first; s <= last; s++) {
-               /* Load an address that is within this sector (we use offset 0) */
-               res = target_write_u32(bank->target, SAMD_NVMCTRL + SAMD_NVMCTRL_ADDR,
-                               s * chip->sector_size);
-               if (res != ERROR_OK)
-                       return res;
-
-               /* Tell the controller to lock that sector */
-               res = target_write_u16(bank->target,
-                               SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLA,
-                               SAMD_NVM_CMD(SAMD_NVM_CMD_LR));
-               if (res != ERROR_OK)
-                       return res;
-       }
-
-       samd_protect_check(bank);
-
-       return ERROR_OK;
-}
-
-static bool samd_check_error(struct flash_bank *bank)
-{
-       int ret;
-       bool error;
+       int ret, ret2;
        uint16_t status;
 
-       ret = target_read_u16(bank->target,
+       ret = target_read_u16(target,
                        SAMD_NVMCTRL + SAMD_NVMCTRL_STATUS, &status);
        if (ret != ERROR_OK) {
                LOG_ERROR("Can't read NVM status");
-               return true;
+               return ret;
        }
 
-       if (status & 0x001C) {
-               if (status & (1 << 4)) /* NVME */
-                       LOG_ERROR("SAMD: NVM Error");
-               if (status & (1 << 3)) /* LOCKE */
-                       LOG_ERROR("SAMD: NVM lock error");
-               if (status & (1 << 2)) /* PROGE */
-                       LOG_ERROR("SAMD: NVM programming error");
+       if ((status & 0x001C) == 0)
+               return ERROR_OK;
 
-               error = true;
-       } else {
-               error = false;
+       if (status & (1 << 4)) { /* NVME */
+               LOG_ERROR("SAMD: NVM Error");
+               ret = ERROR_FLASH_OPERATION_FAILED;
+       }
+
+       if (status & (1 << 3)) { /* LOCKE */
+               LOG_ERROR("SAMD: NVM lock error");
+               ret = ERROR_FLASH_PROTECTED;
+       }
+
+       if (status & (1 << 2)) { /* PROGE */
+               LOG_ERROR("SAMD: NVM programming error");
+               ret = ERROR_FLASH_OPER_UNSUPPORTED;
        }
 
        /* Clear the error conditions by writing a one to them */
-       ret = target_write_u16(bank->target,
+       ret2 = target_write_u16(target,
                        SAMD_NVMCTRL + SAMD_NVMCTRL_STATUS, status);
-       if (ret != ERROR_OK)
+       if (ret2 != ERROR_OK)
                LOG_ERROR("Can't clear NVM error conditions");
 
-       return error;
+       return ret;
+}
+
+static int samd_issue_nvmctrl_command(struct target *target, uint16_t cmd)
+{
+       int res;
+
+       if (target->state != TARGET_HALTED) {
+               LOG_ERROR("Target not halted");
+               return ERROR_TARGET_NOT_HALTED;
+       }
+
+       /* Issue the NVM command */
+       res = target_write_u16(target,
+                       SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLA, SAMD_NVM_CMD(cmd));
+       if (res != ERROR_OK)
+               return res;
+
+       /* Check to see if the NVM command resulted in an error condition. */
+       return samd_check_error(target);
 }
 
-static int samd_erase_row(struct flash_bank *bank, uint32_t address)
+static int samd_erase_row(struct target *target, uint32_t address)
 {
        int res;
-       bool error = false;
 
        /* Set an address contained in the row to be erased */
-       res = target_write_u32(bank->target,
+       res = target_write_u32(target,
                        SAMD_NVMCTRL + SAMD_NVMCTRL_ADDR, address >> 1);
-       if (res == ERROR_OK) {
-               /* Issue the Erase Row command to erase that row */
-               res = target_write_u16(bank->target,
-                               SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLA,
-                               SAMD_NVM_CMD(SAMD_NVM_CMD_ER));
 
-               /* Check (and clear) error conditions */
-               error = samd_check_error(bank);
-       }
+       /* Issue the Erase Row command to erase that row. */
+       if (res == ERROR_OK)
+               res = samd_issue_nvmctrl_command(target,
+                               address == SAMD_USER_ROW ? SAMD_NVM_CMD_EAR : SAMD_NVM_CMD_ER);
 
-       if (res != ERROR_OK || error)  {
-               LOG_ERROR("Failed to erase row containing %08X" PRIx32, address);
+       if (res != ERROR_OK)  {
+               LOG_ERROR("Failed to erase row containing %08" PRIx32, address);
                return ERROR_FAIL;
        }
 
        return ERROR_OK;
 }
 
-static int samd_erase(struct flash_bank *bank, int first, int last)
+static bool is_user_row_reserved_bit(uint8_t bit)
+{
+       /* See Table 9-3 in the SAMD20 datasheet for more information. */
+       switch (bit) {
+               /* Reserved bits */
+               case 3:
+               case 7:
+               /* Voltage regulator internal configuration with default value of 0x70,
+                * may not be changed. */
+               case 17 ... 24:
+               /* 41 is voltage regulator internal configuration and must not be
+                * changed.  42 through 47 are reserved. */
+               case 41 ... 47:
+                       return true;
+               default:
+                       break;
+       }
+
+       return false;
+}
+
+/* Modify the contents of the User Row in Flash.  These are described in Table
+ * 9-3 of the SAMD20 datasheet.  The User Row itself has a size of one page
+ * and contains a combination of "fuses" and calibration data in bits 24:17.
+ * We therefore try not to erase the row's contents unless we absolutely have
+ * to and we don't permit modifying reserved bits. */
+static int samd_modify_user_row(struct target *target, uint32_t value,
+               uint8_t startb, uint8_t endb)
 {
        int res;
-       int rows_in_sector;
-       struct samd_info *chip = (struct samd_info *)bank->driver_priv;
+       uint32_t nvm_ctrlb;
+       bool manual_wp = true;
 
-       if (bank->target->state != TARGET_HALTED) {
-               LOG_ERROR("Target not halted");
+       if (is_user_row_reserved_bit(startb) || is_user_row_reserved_bit(endb)) {
+               LOG_ERROR("Can't modify bits in the requested range");
+               return ERROR_FAIL;
+       }
 
-               return ERROR_TARGET_NOT_HALTED;
+       /* Check if we need to do manual page write commands */
+       res = target_read_u32(target, SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLB, &nvm_ctrlb);
+       if (res == ERROR_OK)
+               manual_wp = (nvm_ctrlb & SAMD_NVM_CTRLB_MANW) != 0;
+
+       /* Retrieve the MCU's page size, in bytes. This is also the size of the
+        * entire User Row. */
+       uint32_t page_size;
+       res = samd_get_flash_page_info(target, &page_size, NULL);
+       if (res != ERROR_OK) {
+               LOG_ERROR("Couldn't determine Flash page size");
+               return res;
        }
 
-       if (!chip->probed) {
-               if (samd_probe(bank) != ERROR_OK)
-                       return ERROR_FLASH_BANK_NOT_PROBED;
+       /* Make sure the size is sane before we allocate. */
+       assert(page_size > 0 && page_size <= SAMD_PAGE_SIZE_MAX);
+
+       /* Make sure we're within the single page that comprises the User Row. */
+       if (startb >= (page_size * 8) || endb >= (page_size * 8)) {
+               LOG_ERROR("Can't modify bits outside the User Row page range");
+               return ERROR_FAIL;
        }
 
-       /* The SAMD NVM has row erase granularity.  There are four pages in a row
-        * and the number of rows in a sector depends on the sector size, which in
-        * turn depends on the Flash capacity as there is a fixed number of
-        * sectors. */
-       rows_in_sector = chip->sector_size / (chip->page_size * 4);
+       uint8_t *buf = malloc(page_size);
+       if (!buf)
+               return ERROR_FAIL;
 
-       /* For each sector to be erased */
-       for (int s = first; s <= last; s++) {
-               /* For each row in that sector */
-               for (int r = s * rows_in_sector; r < (s + 1) * rows_in_sector; r++) {
-                       res = samd_erase_row(bank, r * chip->page_size * 4);
-                       if (res != ERROR_OK) {
-                               LOG_ERROR("SAMD: failed to erase sector %d", s);
-                               return res;
-                       }
+       /* Read the user row (comprising one page) by words. */
+       res = target_read_memory(target, SAMD_USER_ROW, 4, page_size / 4, buf);
+       if (res != ERROR_OK)
+               goto out_user_row;
+
+       /* We will need to erase before writing if the new value needs a '1' in any
+        * position for which the current value had a '0'.  Otherwise we can avoid
+        * erasing. */
+       uint32_t cur = buf_get_u32(buf, startb, endb - startb + 1);
+       if ((~cur) & value) {
+               res = samd_erase_row(target, SAMD_USER_ROW);
+               if (res != ERROR_OK) {
+                       LOG_ERROR("Couldn't erase user row");
+                       goto out_user_row;
                }
+       }
+
+       /* Modify */
+       buf_set_u32(buf, startb, endb - startb + 1, value);
+
+       /* Write the page buffer back out to the target. */
+       res = target_write_memory(target, SAMD_USER_ROW, 4, page_size / 4, buf);
+       if (res != ERROR_OK)
+               goto out_user_row;
 
-               bank->sectors[s].is_erased = 1;
+       if (manual_wp) {
+               /* Trigger flash write */
+               res = samd_issue_nvmctrl_command(target, SAMD_NVM_CMD_WAP);
+       } else {
+               res = samd_check_error(target);
        }
 
-       return ERROR_OK;
+out_user_row:
+       free(buf);
+
+       return res;
 }
 
-/* Write an entire row (four pages) from host buffer 'buf' to row-aligned
- * 'address' in the Flash. */
-static int samd_write_row(struct flash_bank *bank, uint32_t address,
-               const uint8_t *buf)
+static int samd_protect(struct flash_bank *bank, int set, int first, int last)
 {
-       int res;
        struct samd_info *chip = (struct samd_info *)bank->driver_priv;
 
-       /* Erase the row that we'll be writing to */
-       res = samd_erase_row(bank, address);
-       if (res != ERROR_OK)
-               return res;
+       /* We can issue lock/unlock region commands with the target running but
+        * the settings won't persist unless we're able to modify the LOCK regions
+        * and that requires the target to be halted. */
+       if (bank->target->state != TARGET_HALTED) {
+               LOG_ERROR("Target not halted");
+               return ERROR_TARGET_NOT_HALTED;
+       }
 
-       /* Now write the pages in this row. */
-       for (unsigned int i = 0; i < 4; i++) {
-               bool error;
+       int res = ERROR_OK;
 
-               /* Write the page contents to the target's page buffer.  A page write
-                * is issued automatically once the last location is written in the
-                * page buffer (ie: a complete page has been written out). */
-               res = target_write_memory(bank->target, address, 4,
-                               chip->page_size / 4, buf);
-               if (res != ERROR_OK) {
-                       LOG_ERROR("%s: %d", __func__, __LINE__);
-                       return res;
+       for (int s = first; s <= last; s++) {
+               if (set != bank->sectors[s].is_protected) {
+                       /* Load an address that is within this sector (we use offset 0) */
+                       res = target_write_u32(bank->target,
+                                                       SAMD_NVMCTRL + SAMD_NVMCTRL_ADDR,
+                                                       ((s * chip->sector_size) >> 1));
+                       if (res != ERROR_OK)
+                               goto exit;
+
+                       /* Tell the controller to lock that sector */
+                       res = samd_issue_nvmctrl_command(bank->target,
+                                       set ? SAMD_NVM_CMD_LR : SAMD_NVM_CMD_UR);
+                       if (res != ERROR_OK)
+                               goto exit;
                }
+       }
 
-               error = samd_check_error(bank);
-               if (error)
-                       return ERROR_FAIL;
+       /* We've now applied our changes, however they will be undone by the next
+        * reset unless we also apply them to the LOCK bits in the User Page.  The
+        * LOCK bits start at bit 48, corresponding to Sector 0 and end with bit 63,
+        * corresponding to Sector 15.  A '1' means unlocked and a '0' means
+        * locked.  See Table 9-3 in the SAMD20 datasheet for more details. */
 
-               /* Next page */
-               address += chip->page_size;
-               buf += chip->page_size;
-       }
+       res = samd_modify_user_row(bank->target, set ? 0x0000 : 0xFFFF,
+                       48 + first, 48 + last);
+       if (res != ERROR_OK)
+               LOG_WARNING("SAMD: protect settings were not made persistent!");
+
+       res = ERROR_OK;
+
+exit:
+       samd_protect_check(bank);
 
        return res;
 }
 
-/* Write partial contents into row-aligned 'address' on the Flash from host
- * buffer 'buf' by writing 'nb' of 'buf' at 'row_offset' into the Flash row. */
-static int samd_write_row_partial(struct flash_bank *bank, uint32_t address,
-               const uint8_t *buf, uint32_t row_offset, uint32_t nb)
+static int samd_erase(struct flash_bank *bank, int first, int last)
 {
        int res;
+       int rows_in_sector;
        struct samd_info *chip = (struct samd_info *)bank->driver_priv;
-       uint32_t row_size = chip->page_size * 4;
-       uint8_t *rb = malloc(row_size);
-       if (!rb)
-               return ERROR_FAIL;
 
-       assert(row_offset + nb < row_size);
-       assert((address % row_size) == 0);
+       if (bank->target->state != TARGET_HALTED) {
+               LOG_ERROR("Target not halted");
+
+               return ERROR_TARGET_NOT_HALTED;
+       }
 
-       /* Retrieve the full row contents from Flash */
-       res = target_read_memory(bank->target, address, 4, row_size / 4, rb);
-       if (res != ERROR_OK) {
-               free(rb);
-               return res;
+       if (!chip->probed) {
+               if (samd_probe(bank) != ERROR_OK)
+                       return ERROR_FLASH_BANK_NOT_PROBED;
        }
 
-       /* Insert our partial row over the data from Flash */
-       memcpy(rb + (row_offset % row_size), buf, nb);
+       /* The SAMD NVM has row erase granularity.  There are four pages in a row
+        * and the number of rows in a sector depends on the sector size, which in
+        * turn depends on the Flash capacity as there is a fixed number of
+        * sectors. */
+       rows_in_sector = chip->sector_size / (chip->page_size * 4);
 
-       /* Write the row back out */
-       res = samd_write_row(bank, address, rb);
-       free(rb);
+       /* For each sector to be erased */
+       for (int s = first; s <= last; s++) {
+               if (bank->sectors[s].is_protected) {
+                       LOG_ERROR("SAMD: failed to erase sector %d. That sector is write-protected", s);
+                       return ERROR_FLASH_OPERATION_FAILED;
+               }
 
-       return res;
+               /* For each row in that sector */
+               for (int r = s * rows_in_sector; r < (s + 1) * rows_in_sector; r++) {
+                       res = samd_erase_row(bank->target, r * chip->page_size * 4);
+                       if (res != ERROR_OK) {
+                               LOG_ERROR("SAMD: failed to erase sector %d", s);
+                               return res;
+                       }
+               }
+       }
+
+       return ERROR_OK;
 }
 
+
 static int samd_write(struct flash_bank *bank, const uint8_t *buffer,
                uint32_t offset, uint32_t count)
 {
        int res;
+       uint32_t nvm_ctrlb;
        uint32_t address;
-       uint32_t nb = 0;
+       uint32_t pg_offset;
+       uint32_t nb;
+       uint32_t nw;
        struct samd_info *chip = (struct samd_info *)bank->driver_priv;
-       uint32_t row_size = chip->page_size * 4;
+       uint8_t *pb = NULL;
+       bool manual_wp;
 
        if (bank->target->state != TARGET_HALTED) {
                LOG_ERROR("Target not halted");
-
                return ERROR_TARGET_NOT_HALTED;
        }
 
@@ -466,61 +722,97 @@ static int samd_write(struct flash_bank *bank, const uint8_t *buffer,
                        return ERROR_FLASH_BANK_NOT_PROBED;
        }
 
-       if (offset % row_size) {
-               /* We're starting at an unaligned offset so we'll write a partial row
-                * comprising that offset and up to the end of that row. */
-               nb = row_size - (offset % row_size);
-               if (nb > count)
-                       nb = count;
-       } else if (count < row_size) {
-               /* We're writing an aligned but partial row. */
-               nb = count;
+       /* Check if we need to do manual page write commands */
+       res = target_read_u32(bank->target, SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLB, &nvm_ctrlb);
+
+       if (res != ERROR_OK)
+               return res;
+
+       if (nvm_ctrlb & SAMD_NVM_CTRLB_MANW)
+               manual_wp = true;
+       else
+               manual_wp = false;
+
+       res = samd_issue_nvmctrl_command(bank->target, SAMD_NVM_CMD_PBC);
+       if (res != ERROR_OK) {
+               LOG_ERROR("%s: %d", __func__, __LINE__);
+               return res;
        }
 
-       address = (offset / row_size) * row_size + bank->base;
+       while (count) {
+               nb = chip->page_size - offset % chip->page_size;
+               if (count < nb)
+                       nb = count;
 
-       if (nb > 0) {
-               res = samd_write_row_partial(bank, address, buffer,
-                               offset % row_size, nb);
-               if (res != ERROR_OK)
-                       return res;
+               address = bank->base + offset;
+               pg_offset = offset % chip->page_size;
 
-               /* We're done with the row contents */
-               count -= nb;
-               offset += nb;
-               buffer += row_size;
-       }
-
-       /* There's at least one aligned row to write out. */
-       if (count >= row_size) {
-               int nr = count / row_size + ((count % row_size) ? 1 : 0);
-               unsigned int r = 0;
-
-               for (unsigned int i = address / row_size;
-                               (i < (address / row_size) + nr) && count > 0; i++) {
-                       address = (i * row_size) + bank->base;
-
-                       if (count >= row_size) {
-                               res = samd_write_row(bank, address, buffer + (r * row_size));
-                               /* Advance one row */
-                               offset += row_size;
-                               count -= row_size;
-                       } else {
-                               res = samd_write_row_partial(bank, address,
-                                               buffer + (r * row_size), 0, count);
-                               /* We're done after this. */
-                               offset += count;
-                               count = 0;
+               if (offset % 4 || (offset + nb) % 4) {
+                       /* Either start or end of write is not word aligned */
+                       if (!pb) {
+                               pb = malloc(chip->page_size);
+                               if (!pb)
+                                       return ERROR_FAIL;
                        }
 
-                       r++;
+                       /* Set temporary page buffer to 0xff and overwrite the relevant part */
+                       memset(pb, 0xff, chip->page_size);
+                       memcpy(pb + pg_offset, buffer, nb);
+
+                       /* Align start address to a word boundary */
+                       address -= offset % 4;
+                       pg_offset -= offset % 4;
+                       assert(pg_offset % 4 == 0);
+
+                       /* Extend length to whole words */
+                       nw = (nb + offset % 4 + 3) / 4;
+                       assert(pg_offset + 4 * nw <= chip->page_size);
+
+                       /* Now we have original data extended by 0xff bytes
+                        * to the nearest word boundary on both start and end */
+                       res = target_write_memory(bank->target, address, 4, nw, pb + pg_offset);
+               } else {
+                       assert(nb % 4 == 0);
+                       nw = nb / 4;
+                       assert(pg_offset + 4 * nw <= chip->page_size);
+
+                       /* Word aligned data, use direct write from buffer */
+                       res = target_write_memory(bank->target, address, 4, nw, buffer);
+               }
+               if (res != ERROR_OK) {
+                       LOG_ERROR("%s: %d", __func__, __LINE__);
+                       goto free_pb;
+               }
 
-                       if (res != ERROR_OK)
-                               return res;
+               /* Devices with errata 13134 have automatic page write enabled by default
+                * For other devices issue a write page CMD to the NVM
+                * If the page has not been written up to the last word
+                * then issue CMD_WP always */
+               if (manual_wp || pg_offset + 4 * nw < chip->page_size) {
+                       res = samd_issue_nvmctrl_command(bank->target, SAMD_NVM_CMD_WP);
+               } else {
+                       /* Access through AHB is stalled while flash is being programmed */
+                       usleep(200);
+
+                       res = samd_check_error(bank->target);
                }
+
+               if (res != ERROR_OK) {
+                       LOG_ERROR("%s: write failed at address 0x%08" PRIx32, __func__, address);
+                       goto free_pb;
+               }
+
+               /* We're done with the page contents */
+               count -= nb;
+               offset += nb;
+               buffer += nb;
        }
 
-       return ERROR_OK;
+free_pb:
+       if (pb)
+               free(pb);
+
+       return res;
 }
 
 FLASH_BANK_COMMAND_HANDLER(samd_flash_bank_command)
@@ -564,7 +856,210 @@ COMMAND_HANDLER(samd_handle_info_command)
        return ERROR_OK;
 }
 
+COMMAND_HANDLER(samd_handle_chip_erase_command)
+{
+       struct target *target = get_current_target(CMD_CTX);
+
+       if (target) {
+               /* Enable access to the DSU by disabling the write protect bit */
+               target_write_u32(target, SAMD_PAC1, (1<<1));
+               /* Tell the DSU to perform a full chip erase.  It takes about 240ms to
+                * perform the erase. */
+               target_write_u8(target, SAMD_DSU, (1<<4));
+
+               command_print(CMD_CTX, "chip erased");
+       }
+
+       return ERROR_OK;
+}
+
+COMMAND_HANDLER(samd_handle_set_security_command)
+{
+       int res = ERROR_OK;
+       struct target *target = get_current_target(CMD_CTX);
+
+       if (CMD_ARGC < 1 || (CMD_ARGC >= 1 && (strcmp(CMD_ARGV[0], "enable")))) {
+               command_print(CMD_CTX, "supply the \"enable\" argument to proceed.");
+               return ERROR_COMMAND_SYNTAX_ERROR;
+       }
+
+       if (target) {
+               if (target->state != TARGET_HALTED) {
+                       LOG_ERROR("Target not halted");
+                       return ERROR_TARGET_NOT_HALTED;
+               }
+
+               res = samd_issue_nvmctrl_command(target, SAMD_NVM_CMD_SSB);
+
+               /* Check (and clear) error conditions */
+               if (res == ERROR_OK)
+                       command_print(CMD_CTX, "chip secured on next power-cycle");
+               else
+                       command_print(CMD_CTX, "failed to secure chip");
+       }
+
+       return res;
+}
+
+COMMAND_HANDLER(samd_handle_eeprom_command)
+{
+       int res = ERROR_OK;
+       struct target *target = get_current_target(CMD_CTX);
+
+       if (target) {
+               if (target->state != TARGET_HALTED) {
+                       LOG_ERROR("Target not halted");
+                       return ERROR_TARGET_NOT_HALTED;
+               }
+
+               if (CMD_ARGC >= 1) {
+                       int val = atoi(CMD_ARGV[0]);
+                       uint32_t code;
+
+                       if (val == 0)
+                               code = 7;
+                       else {
+                               /* Try to match size in bytes with corresponding size code */
+                               for (code = 0; code <= 6; code++) {
+                                       if (val == (2 << (13 - code)))
+                                               break;
+                               }
+
+                               if (code > 6) {
+                                       command_print(CMD_CTX, "Invalid EEPROM size.  Please see "
+                                                       "datasheet for a list valid sizes.");
+                                       return ERROR_COMMAND_SYNTAX_ERROR;
+                               }
+                       }
+
+                       res = samd_modify_user_row(target, code, 4, 6);
+               } else {
+                       uint16_t val;
+                       res = target_read_u16(target, SAMD_USER_ROW, &val);
+                       if (res == ERROR_OK) {
+                               uint32_t size = ((val >> 4) & 0x7); /* grab size code */
+
+                               if (size == 0x7)
+                                       command_print(CMD_CTX, "EEPROM is disabled");
+                               else {
+                                       /* Otherwise, 6 is 256B, 0 is 16KB */
+                                       command_print(CMD_CTX, "EEPROM size is %u bytes",
+                                                       (2 << (13 - size)));
+                               }
+                       }
+               }
+       }
+
+       return res;
+}
+
+COMMAND_HANDLER(samd_handle_bootloader_command)
+{
+       int res = ERROR_OK;
+       struct target *target = get_current_target(CMD_CTX);
+
+       if (target) {
+               if (target->state != TARGET_HALTED) {
+                       LOG_ERROR("Target not halted");
+                       return ERROR_TARGET_NOT_HALTED;
+               }
+
+               /* Retrieve the MCU's page size, in bytes. */
+               uint32_t page_size;
+               res = samd_get_flash_page_info(target, &page_size, NULL);
+               if (res != ERROR_OK) {
+                       LOG_ERROR("Couldn't determine Flash page size");
+                       return res;
+               }
+
+               if (CMD_ARGC >= 1) {
+                       int val = atoi(CMD_ARGV[0]);
+                       uint32_t code;
+
+                       if (val == 0)
+                               code = 7;
+                       else {
+                               /* Try to match size in bytes with corresponding size code */
+                               for (code = 0; code <= 6; code++) {
+                                       if ((unsigned int)val == (2UL << (8UL - code)) * page_size)
+                                               break;
+                               }
+
+                               if (code > 6) {
+                                       command_print(CMD_CTX, "Invalid bootloader size.  Please "
+                                                       "see datasheet for a list valid sizes.");
+                                       return ERROR_COMMAND_SYNTAX_ERROR;
+                               }
+
+                       }
+
+                       res = samd_modify_user_row(target, code, 0, 2);
+               } else {
+                       uint16_t val;
+                       res = target_read_u16(target, SAMD_USER_ROW, &val);
+                       if (res == ERROR_OK) {
+                               uint32_t size = (val & 0x7); /* grab size code */
+                               uint32_t nb;
+
+                               if (size == 0x7)
+                                       nb = 0;
+                               else
+                                       nb = (2 << (8 - size)) * page_size;
+
+                               /* There are 4 pages per row */
+                               command_print(CMD_CTX, "Bootloader size is %" PRIu32 " bytes (%" PRIu32 " rows)",
+                                          nb, (uint32_t)(nb / (page_size * 4)));
+                       }
+               }
+       }
+
+       return res;
+}
+
+
+
+COMMAND_HANDLER(samd_handle_reset_deassert)
+{
+       struct target *target = get_current_target(CMD_CTX);
+       int retval = ERROR_OK;
+       enum reset_types jtag_reset_config = jtag_get_reset_config();
+
+       /* If the target has been unresponsive before, try to re-establish
+        * communication now - CPU is held in reset by DSU, DAP is working */
+       if (!target_was_examined(target))
+               target_examine_one(target);
+       target_poll(target);
+
+       /* In case of sysresetreq, debug retains state set in cortex_m_assert_reset()
+        * so we just release reset held by DSU
+        *
+        * n_RESET (srst) clears the DP, so reenable debug and set vector catch here
+        *
+        * After vectreset DSU release is not needed however makes no harm
+        */
+       if (target->reset_halt && (jtag_reset_config & RESET_HAS_SRST)) {
+               retval = target_write_u32(target, DCB_DHCSR, DBGKEY | C_HALT | C_DEBUGEN);
+               if (retval == ERROR_OK)
+                       retval = target_write_u32(target, DCB_DEMCR,
+                               TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
+               /* do not return on error here, releasing DSU reset is more important */
+       }
+
+       /* clear CPU Reset Phase Extension bit */
+       int retval2 = target_write_u8(target, SAMD_DSU + SAMD_DSU_STATUSA, (1<<1));
+       if (retval2 != ERROR_OK)
+               return retval2;
+
+       return retval;
+}
+
 static const struct command_registration at91samd_exec_command_handlers[] = {
+       {
+               .name = "dsu_reset_deassert",
+               .handler = samd_handle_reset_deassert,
+               .mode = COMMAND_EXEC,
+               .help = "deasert internal reset held by DSU"
+       },
        {
                .name = "info",
                .handler = samd_handle_info_command,
@@ -572,6 +1067,42 @@ static const struct command_registration at91samd_exec_command_handlers[] = {
                .help = "Print information about the current at91samd chip"
                        "and its flash configuration.",
        },
+       {
+               .name = "chip-erase",
+               .handler = samd_handle_chip_erase_command,
+               .mode = COMMAND_EXEC,
+               .help = "Erase the entire Flash by using the Chip"
+                       "Erase feature in the Device Service Unit (DSU).",
+       },
+       {
+               .name = "set-security",
+               .handler = samd_handle_set_security_command,
+               .mode = COMMAND_EXEC,
+               .help = "Secure the chip's Flash by setting the Security Bit."
+                       "This makes it impossible to read the Flash contents."
+                       "The only way to undo this is to issue the chip-erase"
+                       "command.",
+       },
+       {
+               .name = "eeprom",
+               .usage = "[size_in_bytes]",
+               .handler = samd_handle_eeprom_command,
+               .mode = COMMAND_EXEC,
+               .help = "Show or set the EEPROM size setting, stored in the User Row."
+                       "Please see Table 20-3 of the SAMD20 datasheet for allowed values."
+                       "Changes are stored immediately but take affect after the MCU is"
+                       "reset.",
+       },
+       {
+               .name = "bootloader",
+               .usage = "[size_in_bytes]",
+               .handler = samd_handle_bootloader_command,
+               .mode = COMMAND_EXEC,
+               .help = "Show or set the bootloader size, stored in the User Row."
+                       "Please see Table 20-2 of the SAMD20 datasheet for allowed values."
+                       "Changes are stored immediately but take affect after the MCU is"
+                       "reset.",
+       },
        COMMAND_REGISTRATION_DONE
 };
 

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)