target/espressif: add algorithm support to execute code on target
[openocd.git] / src / target / espressif / esp_algorithm.c
diff --git a/src/target/espressif/esp_algorithm.c b/src/target/espressif/esp_algorithm.c
new file mode 100644 (file)
index 0000000..79f610b
--- /dev/null
@@ -0,0 +1,595 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+
+/***************************************************************************
+ *   Espressif chips common algorithm API for OpenOCD                      *
+ *   Copyright (C) 2022 Espressif Systems Ltd.                             *
+ ***************************************************************************/
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include <helper/align.h>
+#include <target/algorithm.h>
+#include <target/target.h>
+#include "esp_algorithm.h"
+
+#define DEFAULT_ALGORITHM_TIMEOUT_MS    40000  /* ms */
+
+static int esp_algorithm_read_stub_logs(struct target *target, struct esp_algorithm_stub *stub)
+{
+       if (!stub || stub->log_buff_addr == 0 || stub->log_buff_size == 0)
+               return ERROR_FAIL;
+
+       uint32_t len = 0;
+       int retval = target_read_u32(target, stub->log_buff_addr, &len);
+       if (retval != ERROR_OK)
+               return retval;
+
+       /* sanity check. log_buff_size = sizeof(len) + sizeof(log_buff) */
+       if (len == 0 || len > stub->log_buff_size - 4)
+               return ERROR_FAIL;
+
+       uint8_t *log_buff = calloc(1, len);
+       if (!log_buff) {
+               LOG_ERROR("Failed to allocate memory for the stub log!");
+               return ERROR_FAIL;
+       }
+       retval = target_read_memory(target, stub->log_buff_addr + 4, 1, len, log_buff);
+       if (retval == ERROR_OK)
+               LOG_OUTPUT("%*.*s", len, len, log_buff);
+       free(log_buff);
+       return retval;
+}
+
+static int esp_algorithm_run_image(struct target *target,
+       struct esp_algorithm_run_data *run,
+       uint32_t num_args,
+       va_list ap)
+{
+       struct working_area **mem_handles = NULL;
+
+       if (!run || !run->hw)
+               return ERROR_FAIL;
+
+       int retval = run->hw->algo_init(target, run, num_args, ap);
+       if (retval != ERROR_OK)
+               return retval;
+
+       /* allocate memory arguments and fill respective reg params */
+       if (run->mem_args.count > 0) {
+               mem_handles = calloc(run->mem_args.count, sizeof(*mem_handles));
+               if (!mem_handles) {
+                       LOG_ERROR("Failed to alloc target mem handles!");
+                       retval = ERROR_FAIL;
+                       goto _cleanup;
+               }
+               /* alloc memory args target buffers */
+               for (uint32_t i = 0; i < run->mem_args.count; i++) {
+                       /* small hack: if we need to update some reg param this field holds
+                        * appropriate user argument number, */
+                       /* otherwise should hold UINT_MAX */
+                       uint32_t usr_param_num = run->mem_args.params[i].address;
+                       static struct working_area *area;
+                       retval = target_alloc_working_area(target, run->mem_args.params[i].size, &area);
+                       if (retval != ERROR_OK) {
+                               LOG_ERROR("Failed to alloc target buffer!");
+                               retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
+                               goto _cleanup;
+                       }
+                       mem_handles[i] = area;
+                       run->mem_args.params[i].address = area->address;
+                       if (usr_param_num != UINT_MAX) /* if we need update some register param with mem param value */
+                               esp_algorithm_user_arg_set_uint(run, usr_param_num, run->mem_args.params[i].address);
+               }
+       }
+
+       if (run->usr_func_init) {
+               retval = run->usr_func_init(target, run, run->usr_func_arg);
+               if (retval != ERROR_OK) {
+                       LOG_ERROR("Failed to prepare algorithm host side args stub (%d)!", retval);
+                       goto _cleanup;
+               }
+       }
+
+       LOG_DEBUG("Algorithm start @ " TARGET_ADDR_FMT ", stack %d bytes @ " TARGET_ADDR_FMT,
+               run->stub.tramp_mapped_addr, run->stack_size, run->stub.stack_addr);
+       retval = target_start_algorithm(target,
+               run->mem_args.count, run->mem_args.params,
+               run->reg_args.count, run->reg_args.params,
+               run->stub.tramp_mapped_addr, 0,
+               run->stub.ainfo);
+       if (retval != ERROR_OK) {
+               LOG_ERROR("Failed to start algorithm (%d)!", retval);
+               goto _cleanup;
+       }
+
+       if (run->usr_func) {
+               /* give target algorithm stub time to init itself, then user func can communicate to it safely */
+               alive_sleep(100);
+               retval = run->usr_func(target, run->usr_func_arg);
+               if (retval != ERROR_OK)
+                       LOG_ERROR("Failed to exec algorithm user func (%d)!", retval);
+       }
+       uint32_t timeout_ms = 0;        /* do not wait if 'usr_func' returned error */
+       if (retval == ERROR_OK)
+               timeout_ms = run->timeout_ms ? run->timeout_ms : DEFAULT_ALGORITHM_TIMEOUT_MS;
+       LOG_DEBUG("Wait algorithm completion");
+       retval = target_wait_algorithm(target,
+               run->mem_args.count, run->mem_args.params,
+               run->reg_args.count, run->reg_args.params,
+               0, timeout_ms,
+               run->stub.ainfo);
+       if (retval != ERROR_OK) {
+               LOG_ERROR("Failed to wait algorithm (%d)!", retval);
+               /* target has been forced to stop in target_wait_algorithm() */
+       }
+       esp_algorithm_read_stub_logs(target, &run->stub);
+
+       if (run->usr_func_done)
+               run->usr_func_done(target, run, run->usr_func_arg);
+
+       if (retval != ERROR_OK) {
+               LOG_ERROR("Algorithm run failed (%d)!", retval);
+       } else {
+               run->ret_code = esp_algorithm_user_arg_get_uint(run, 0);
+               LOG_DEBUG("Got algorithm RC 0x%" PRIx32, run->ret_code);
+       }
+
+_cleanup:
+       /* free memory arguments */
+       if (mem_handles) {
+               for (uint32_t i = 0; i < run->mem_args.count; i++) {
+                       if (mem_handles[i])
+                               target_free_working_area(target, mem_handles[i]);
+               }
+               free(mem_handles);
+       }
+       run->hw->algo_cleanup(target, run);
+
+       return retval;
+}
+
+static int esp_algorithm_run_debug_stub(struct target *target,
+       struct esp_algorithm_run_data *run,
+       uint32_t num_args,
+       va_list ap)
+{
+       if (!run || !run->hw)
+               return ERROR_FAIL;
+
+       int retval = run->hw->algo_init(target, run, num_args, ap);
+       if (retval != ERROR_OK)
+               return retval;
+
+       LOG_DEBUG("Algorithm start @ " TARGET_ADDR_FMT ", stack %d bytes @ " TARGET_ADDR_FMT,
+               run->stub.tramp_mapped_addr, run->stack_size, run->stub.stack_addr);
+       retval = target_start_algorithm(target,
+               run->mem_args.count, run->mem_args.params,
+               run->reg_args.count, run->reg_args.params,
+               run->stub.tramp_mapped_addr, 0,
+               run->stub.ainfo);
+       if (retval != ERROR_OK) {
+               LOG_ERROR("Failed to start algorithm (%d)!", retval);
+               goto _cleanup;
+       }
+
+       uint32_t timeout_ms = 0;        /* do not wait if 'usr_func' returned error */
+       if (retval == ERROR_OK)
+               timeout_ms = run->timeout_ms ? run->timeout_ms : DEFAULT_ALGORITHM_TIMEOUT_MS;
+       LOG_DEBUG("Wait algorithm completion");
+       retval = target_wait_algorithm(target,
+               run->mem_args.count, run->mem_args.params,
+               run->reg_args.count, run->reg_args.params,
+               0, timeout_ms,
+               run->stub.ainfo);
+       if (retval != ERROR_OK) {
+               LOG_ERROR("Failed to wait algorithm (%d)!", retval);
+               /* target has been forced to stop in target_wait_algorithm() */
+       }
+
+       if (retval != ERROR_OK) {
+               LOG_ERROR("Algorithm run failed (%d)!", retval);
+       } else {
+               run->ret_code = esp_algorithm_user_arg_get_uint(run, 0);
+               LOG_DEBUG("Got algorithm RC 0x%" PRIx32, run->ret_code);
+       }
+
+_cleanup:
+       run->hw->algo_cleanup(target, run);
+
+       return retval;
+}
+
+static void reverse_binary(const uint8_t *src, uint8_t *dest, size_t length)
+{
+       size_t remaining = length % 4;
+       size_t offset = 0;
+       size_t aligned_len = ALIGN_UP(length, 4);
+
+       if (remaining > 0) {
+               /* Put extra bytes to the beginning with padding */
+               memset(dest + remaining, 0xFF, 4 - remaining);
+               for (size_t i = 0; i < remaining; i++)
+                       dest[i] = src[length - remaining + i];
+               length -= remaining; /* reverse the others */
+               offset = 4;
+       }
+
+       for (size_t i = offset; i < aligned_len; i += 4) {
+               dest[i + 0] = src[length - i + offset - 4];
+               dest[i + 1] = src[length - i + offset - 3];
+               dest[i + 2] = src[length - i + offset - 2];
+               dest[i + 3] = src[length - i + offset - 1];
+       }
+}
+
+static int load_section_from_image(struct target *target,
+       struct esp_algorithm_run_data *run,
+       int section_num,
+       bool reverse)
+{
+       if (!run)
+               return ERROR_FAIL;
+
+       struct imagesection *section = &run->image.image.sections[section_num];
+       uint32_t sec_wr = 0;
+       uint8_t buf[1024];
+
+       assert(sizeof(buf) % 4 == 0);
+
+       while (sec_wr < section->size) {
+               uint32_t nb = section->size - sec_wr > sizeof(buf) ? sizeof(buf) : section->size - sec_wr;
+               size_t size_read = 0;
+               int retval = image_read_section(&run->image.image, section_num, sec_wr, nb, buf, &size_read);
+               if (retval != ERROR_OK) {
+                       LOG_ERROR("Failed to read stub section (%d)!", retval);
+                       return retval;
+               }
+
+               if (reverse) {
+                       size_t aligned_len = ALIGN_UP(size_read, 4);
+                       uint8_t reversed_buf[aligned_len];
+
+                       /* Send original size to allow padding */
+                       reverse_binary(buf, reversed_buf, size_read);
+
+                       /*
+                               The address range accessed via the instruction bus is in reverse order (word-wise) compared to access
+                               via the data bus. That is to say, address
+                               0x3FFE_0000 and 0x400B_FFFC access the same word
+                               0x3FFE_0004 and 0x400B_FFF8 access the same word
+                               0x3FFE_0008 and 0x400B_FFF4 access the same word
+                               ...
+                               The data bus and instruction bus of the CPU are still both little-endian,
+                               so the byte order of individual words is not reversed between address spaces.
+                               For example, address
+                               0x3FFE_0000 accesses the least significant byte in the word accessed by 0x400B_FFFC.
+                               0x3FFE_0001 accesses the second least significant byte in the word accessed by 0x400B_FFFC.
+                               0x3FFE_0002 accesses the second most significant byte in the word accessed by 0x400B_FFFC.
+                               For more details, please refer to ESP32 TRM, Internal SRAM1 section.
+                       */
+                       retval = target_write_buffer(target, run->image.dram_org - sec_wr - aligned_len, aligned_len, reversed_buf);
+                       if (retval != ERROR_OK) {
+                               LOG_ERROR("Failed to write stub section!");
+                               return retval;
+                       }
+               } else {
+                       retval = target_write_buffer(target, section->base_address + sec_wr, size_read, buf);
+                       if (retval != ERROR_OK) {
+                               LOG_ERROR("Failed to write stub section!");
+                               return retval;
+                       }
+               }
+
+               sec_wr += size_read;
+       }
+
+       return ERROR_OK;
+}
+
+/*
+ * Configuration:
+ * ----------------------------
+ * The linker scripts defines the memory layout for the stub code.
+ * The OpenOCD script specifies the workarea address and it's size
+ * Sections defined in the linker are organized to share the same addresses with the workarea.
+ * code and data sections are located in Internal SRAM1 and OpenOCD fills these sections using the data bus.
+ */
+int esp_algorithm_load_func_image(struct target *target, struct esp_algorithm_run_data *run)
+{
+       int retval;
+       size_t tramp_sz = 0;
+       const uint8_t *tramp = NULL;
+       struct duration algo_time;
+       bool alloc_code_working_area = true;
+
+       if (!run || !run->hw)
+               return ERROR_FAIL;
+
+       if (duration_start(&algo_time) != 0) {
+               LOG_ERROR("Failed to start algo time measurement!");
+               return ERROR_FAIL;
+       }
+
+       if (run->hw->stub_tramp_get) {
+               tramp = run->hw->stub_tramp_get(target, &tramp_sz);
+               if (!tramp)
+                       return ERROR_FAIL;
+       }
+
+       LOG_DEBUG("stub: base 0x%x, start 0x%" PRIx32 ", %d sections",
+               run->image.image.base_address_set ? (unsigned int)run->image.image.base_address : 0,
+               run->image.image.start_address,
+               run->image.image.num_sections);
+       run->stub.entry = run->image.image.start_address;
+
+       /* [code + trampoline] + <padding> + [data] */
+
+       /* ESP32 has reversed memory region. It will use the last part of DRAM, the others will use the first part.
+        * To avoid complexity for the backup/restore process, we will allocate a workarea for all IRAM region from
+        * the beginning. In that case no need to have a padding area.
+        */
+       if (run->image.reverse) {
+               if (target_alloc_working_area(target, run->image.iram_len, &run->stub.code) != ERROR_OK) {
+                       LOG_ERROR("no working area available, can't alloc space for stub code!");
+                       retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
+                       goto _on_error;
+               }
+               alloc_code_working_area = false;
+       }
+
+       uint32_t code_size = 0;
+
+       /* Load code section */
+       for (unsigned int i = 0; i < run->image.image.num_sections; i++) {
+               struct imagesection *section = &run->image.image.sections[i];
+
+               if (section->size == 0)
+                       continue;
+
+               if (section->flags & ESP_IMAGE_ELF_PHF_EXEC) {
+                       LOG_DEBUG("addr " TARGET_ADDR_FMT ", sz %d, flags %" PRIx64,
+                               section->base_address, section->size, section->flags);
+
+                       if (alloc_code_working_area) {
+                               retval = target_alloc_working_area(target, section->size, &run->stub.code);
+                               if (retval != ERROR_OK) {
+                                       LOG_ERROR("no working area available, can't alloc space for stub code!");
+                                       retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
+                                       goto _on_error;
+                               }
+                       }
+
+                       if (section->base_address == 0) {
+                               section->base_address = run->stub.code->address;
+                               /* sanity check, stub is compiled to be run from working area */
+                       } else if (run->stub.code->address != section->base_address) {
+                               LOG_ERROR("working area " TARGET_ADDR_FMT " and stub code section " TARGET_ADDR_FMT
+                                       " address mismatch!",
+                                       section->base_address,
+                                       run->stub.code->address);
+                               retval = ERROR_FAIL;
+                               goto _on_error;
+                       }
+
+                       retval = load_section_from_image(target, run, i, run->image.reverse);
+                       if (retval != ERROR_OK)
+                               goto _on_error;
+
+                       code_size += ALIGN_UP(section->size, 4);
+                       break; /* Stub has one executable text section */
+               }
+       }
+
+       /* If exists, load trampoline to the code area */
+       if (tramp) {
+               if (run->stub.tramp_addr == 0) {
+                       if (alloc_code_working_area) {
+                               /* alloc trampoline in code working area */
+                               if (target_alloc_working_area(target, tramp_sz, &run->stub.tramp) != ERROR_OK) {
+                                       LOG_ERROR("no working area available, can't alloc space for stub jumper!");
+                                       retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
+                                       goto _on_error;
+                               }
+                               run->stub.tramp_addr = run->stub.tramp->address;
+                       }
+               }
+
+               size_t al_tramp_size = ALIGN_UP(tramp_sz, 4);
+
+               if (run->image.reverse) {
+                       target_addr_t reversed_tramp_addr = run->image.dram_org - code_size;
+                       uint8_t reversed_tramp[al_tramp_size];
+
+                       /* Send original size to allow padding */
+                       reverse_binary(tramp, reversed_tramp, tramp_sz);
+                       run->stub.tramp_addr = reversed_tramp_addr - al_tramp_size;
+                       LOG_DEBUG("Write reversed tramp to addr " TARGET_ADDR_FMT ", sz %zu", run->stub.tramp_addr, al_tramp_size);
+                       retval = target_write_buffer(target, run->stub.tramp_addr, al_tramp_size, reversed_tramp);
+               } else {
+                       LOG_DEBUG("Write tramp to addr " TARGET_ADDR_FMT ", sz %zu", run->stub.tramp_addr, tramp_sz);
+                       retval = target_write_buffer(target, run->stub.tramp_addr, tramp_sz, tramp);
+               }
+
+               if (retval != ERROR_OK) {
+                       LOG_ERROR("Failed to write stub jumper!");
+                       goto _on_error;
+               }
+
+               run->stub.tramp_mapped_addr = run->image.iram_org + code_size;
+               code_size += al_tramp_size;
+               LOG_DEBUG("Tramp mapped to addr " TARGET_ADDR_FMT, run->stub.tramp_mapped_addr);
+       }
+
+       /* allocate dummy space until the data address */
+       if (alloc_code_working_area) {
+               /* we dont need to restore padding area. */
+               uint32_t backup_working_area_prev = target->backup_working_area;
+               target->backup_working_area = 0;
+               if (target_alloc_working_area(target, run->image.iram_len - code_size, &run->stub.padding) != ERROR_OK) {
+                       LOG_ERROR("no working area available, can't alloc space for stub code!");
+                       retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
+                       goto _on_error;
+               }
+               target->backup_working_area = backup_working_area_prev;
+       }
+
+       /*  Load the data section */
+       for (unsigned int i = 0; i < run->image.image.num_sections; i++) {
+               struct imagesection *section = &run->image.image.sections[i];
+
+               if (section->size == 0)
+                       continue;
+
+               if (!(section->flags & ESP_IMAGE_ELF_PHF_EXEC)) {
+                       LOG_DEBUG("addr " TARGET_ADDR_FMT ", sz %d, flags %" PRIx64, section->base_address, section->size,
+                               section->flags);
+                       /* target_alloc_working_area() aligns the whole working area size to 4-byte boundary.
+                          We alloc one area for both DATA and BSS, so align each of them ourselves. */
+                       uint32_t data_sec_sz = ALIGN_UP(section->size, 4);
+                       LOG_DEBUG("DATA sec size %" PRIu32 " -> %" PRIu32, section->size, data_sec_sz);
+                       uint32_t bss_sec_sz = ALIGN_UP(run->image.bss_size, 4);
+                       LOG_DEBUG("BSS sec size %" PRIu32 " -> %" PRIu32, run->image.bss_size, bss_sec_sz);
+                       if (target_alloc_working_area(target, data_sec_sz + bss_sec_sz, &run->stub.data) != ERROR_OK) {
+                               LOG_ERROR("no working area available, can't alloc space for stub data!");
+                               retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
+                               goto _on_error;
+                       }
+                       if (section->base_address == 0) {
+                               section->base_address = run->stub.data->address;
+                               /* sanity check, stub is compiled to be run from working area */
+                       } else if (run->stub.data->address != section->base_address) {
+                               LOG_ERROR("working area " TARGET_ADDR_FMT
+                                       " and stub data section " TARGET_ADDR_FMT
+                                       " address mismatch!",
+                                       section->base_address,
+                                       run->stub.data->address);
+                               retval = ERROR_FAIL;
+                               goto _on_error;
+                       }
+
+                       retval = load_section_from_image(target, run, i, false);
+                       if (retval != ERROR_OK)
+                               goto _on_error;
+               }
+       }
+
+       /* stack */
+       if (run->stub.stack_addr == 0 && run->stack_size > 0) {
+               /* allocate stack in data working area */
+               if (target_alloc_working_area(target, run->stack_size, &run->stub.stack) != ERROR_OK) {
+                       LOG_ERROR("no working area available, can't alloc stub stack!");
+                       retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
+                       goto _on_error;
+               }
+               run->stub.stack_addr = run->stub.stack->address + run->stack_size;
+       }
+
+       if (duration_measure(&algo_time) != 0) {
+               LOG_ERROR("Failed to stop algo run measurement!");
+               retval = ERROR_FAIL;
+               goto _on_error;
+       }
+       LOG_DEBUG("Stub loaded in %g ms", duration_elapsed(&algo_time) * 1000);
+       return ERROR_OK;
+
+_on_error:
+       esp_algorithm_unload_func_image(target, run);
+       return retval;
+}
+
+int esp_algorithm_unload_func_image(struct target *target, struct esp_algorithm_run_data *run)
+{
+       if (!run)
+               return ERROR_FAIL;
+
+       target_free_all_working_areas(target);
+
+       run->stub.tramp = NULL;
+       run->stub.stack = NULL;
+       run->stub.code = NULL;
+       run->stub.data = NULL;
+       run->stub.padding = NULL;
+
+       return ERROR_OK;
+}
+
+int esp_algorithm_exec_func_image_va(struct target *target,
+       struct esp_algorithm_run_data *run,
+       uint32_t num_args,
+       va_list ap)
+{
+       if (!run || !run->image.image.start_address_set || run->image.image.start_address == 0)
+               return ERROR_FAIL;
+
+       return esp_algorithm_run_image(target, run, num_args, ap);
+}
+
+int esp_algorithm_load_onboard_func(struct target *target, target_addr_t func_addr, struct esp_algorithm_run_data *run)
+{
+       int res;
+       const uint8_t *tramp = NULL;
+       size_t tramp_sz = 0;
+       struct duration algo_time;
+
+       if (!run || !run->hw)
+               return ERROR_FAIL;
+
+       if (duration_start(&algo_time) != 0) {
+               LOG_ERROR("Failed to start algo time measurement!");
+               return ERROR_FAIL;
+       }
+
+       if (run->hw->stub_tramp_get) {
+               tramp = run->hw->stub_tramp_get(target, &tramp_sz);
+               if (!tramp)
+                       return ERROR_FAIL;
+       }
+
+       if (tramp_sz > run->on_board.code_buf_size) {
+               LOG_ERROR("Stub tramp size %zu bytes exceeds target buf size %d bytes!",
+                       tramp_sz, run->on_board.code_buf_size);
+               return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
+       }
+
+       if (run->stack_size > run->on_board.min_stack_size) {
+               LOG_ERROR("Algorithm stack size not fit into the allocated target stack!");
+               return ERROR_FAIL;
+       }
+
+       run->stub.stack_addr = run->on_board.min_stack_addr + run->stack_size;
+       run->stub.tramp_addr = run->on_board.code_buf_addr;
+       run->stub.tramp_mapped_addr = run->stub.tramp_addr;
+       run->stub.entry = func_addr;
+
+       if (tramp) {
+               res = target_write_buffer(target, run->stub.tramp_addr, tramp_sz, tramp);
+               if (res != ERROR_OK) {
+                       LOG_ERROR("Failed to write stub jumper!");
+                       esp_algorithm_unload_onboard_func(target, run);
+                       return res;
+               }
+       }
+
+       if (duration_measure(&algo_time) != 0) {
+               LOG_ERROR("Failed to stop algo run measurement!");
+               return ERROR_FAIL;
+       }
+       LOG_DEBUG("Stub loaded in %g ms", duration_elapsed(&algo_time) * 1000);
+
+       return ERROR_OK;
+}
+
+int esp_algorithm_unload_onboard_func(struct target *target, struct esp_algorithm_run_data *run)
+{
+       return ERROR_OK;
+}
+
+int esp_algorithm_exec_onboard_func_va(struct target *target,
+       struct esp_algorithm_run_data *run,
+       uint32_t num_args,
+       va_list ap)
+{
+       return esp_algorithm_run_debug_stub(target, run, num_args, ap);
+}

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)