target: add valid smp target check
[openocd.git] / src / target / target.c
index f8326ea72b0800362140dab39aaccb2bac1b2ce4..b8e4c2ff9ed937dc0720b2f98634a3c6923aa074 100644 (file)
@@ -20,6 +20,9 @@
  *   Copyright (C) ST-Ericsson SA 2011                                     *
  *   michel.jaouen@stericsson.com : smp minimum support                    *
  *                                                                         *
+ *   Copyright (C) 2011 Andreas Fritiofson                                 *
+ *   andreas.fritiofson@gmail.com                                          *
+ *                                                                         *
  *   This program is free software; you can redistribute it and/or modify  *
  *   it under the terms of the GNU General Public License as published by  *
  *   the Free Software Foundation; either version 2 of the License, or     *
@@ -153,8 +156,6 @@ static const char *target_strerror_safe(int err)
 }
 
 static const Jim_Nvp nvp_target_event[] = {
-       { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
-       { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
 
        { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
        { .value = TARGET_EVENT_HALTED, .name = "halted" },
@@ -165,10 +166,7 @@ static const Jim_Nvp nvp_target_event[] = {
        { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
        { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
 
-       /* historical name */
-
-       { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
-
+       { .value = TARGET_EVENT_RESET_START,         .name = "reset-start" },
        { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
        { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
        { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
@@ -196,10 +194,6 @@ static const Jim_Nvp nvp_target_event[] = {
        { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
        { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
 
-       { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
-       { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
-       { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
-
        { .name = NULL, .value = -1 }
 };
 
@@ -524,6 +518,8 @@ int target_resume(struct target *target, int current, uint32_t address, int hand
                return ERROR_FAIL;
        }
 
+       target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
+
        /* note that resume *must* be asynchronous. The CPU can halt before
         * we poll. The CPU can even halt at the current PC as a result of
         * a software breakpoint being inserted by (a bug?) the application.
@@ -532,6 +528,8 @@ int target_resume(struct target *target, int current, uint32_t address, int hand
        if (retval != ERROR_OK)
                return retval;
 
+       target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
+
        return retval;
 }
 
@@ -613,9 +611,17 @@ static int jtag_enable_callback(enum jtag_event event, void *priv)
                return ERROR_OK;
 
        jtag_unregister_event_callback(jtag_enable_callback, target);
-       return target_examine_one(target);
-}
 
+       target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
+
+       int retval = target_examine_one(target);
+       if (retval != ERROR_OK)
+               return retval;
+
+       target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
+
+       return retval;
+}
 
 /* Targets that correctly implement init + examine, i.e.
  * no communication with target during init:
@@ -634,12 +640,18 @@ int target_examine(void)
                                        target);
                        continue;
                }
+
+               target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
+
                retval = target_examine_one(target);
                if (retval != ERROR_OK)
                        return retval;
+
+               target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
        }
        return retval;
 }
+
 const char *target_type_name(struct target *target)
 {
        return target->type->name;
@@ -793,6 +805,137 @@ done:
        return retval;
 }
 
+/**
+ * Executes a target-specific native code algorithm in the target.
+ * It differs from target_run_algorithm in that the algorithm is asynchronous.
+ * Because of this it requires an compliant algorithm:
+ * see contrib/loaders/flash/stm32f1x.S for example.
+ *
+ * @param target used to run the algorithm
+ */
+
+int target_run_flash_async_algorithm(struct target *target,
+               uint8_t *buffer, uint32_t count, int block_size,
+               int num_mem_params, struct mem_param *mem_params,
+               int num_reg_params, struct reg_param *reg_params,
+               uint32_t buffer_start, uint32_t buffer_size,
+               uint32_t entry_point, uint32_t exit_point, void *arch_info)
+{
+       int retval;
+
+       /* Set up working area. First word is write pointer, second word is read pointer,
+        * rest is fifo data area. */
+       uint32_t wp_addr = buffer_start;
+       uint32_t rp_addr = buffer_start + 4;
+       uint32_t fifo_start_addr = buffer_start + 8;
+       uint32_t fifo_end_addr = buffer_start + buffer_size;
+
+       uint32_t wp = fifo_start_addr;
+       uint32_t rp = fifo_start_addr;
+
+       /* validate block_size is 2^n */
+       assert(!block_size || !(block_size & (block_size - 1)));
+
+       retval = target_write_u32(target, wp_addr, wp);
+       if (retval != ERROR_OK)
+               return retval;
+       retval = target_write_u32(target, rp_addr, rp);
+       if (retval != ERROR_OK)
+               return retval;
+
+       /* Start up algorithm on target and let it idle while writing the first chunk */
+       retval = target_start_algorithm(target, num_mem_params, mem_params,
+                       num_reg_params, reg_params,
+                       entry_point,
+                       exit_point,
+                       arch_info);
+
+       if (retval != ERROR_OK) {
+               LOG_ERROR("error starting target flash write algorithm");
+               return retval;
+       }
+
+       while (count > 0) {
+
+               retval = target_read_u32(target, rp_addr, &rp);
+               if (retval != ERROR_OK) {
+                       LOG_ERROR("failed to get read pointer");
+                       break;
+               }
+
+               LOG_DEBUG("count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32, count, wp, rp);
+
+               if (rp == 0) {
+                       LOG_ERROR("flash write algorithm aborted by target");
+                       retval = ERROR_FLASH_OPERATION_FAILED;
+                       break;
+               }
+
+               if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
+                       LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
+                       break;
+               }
+
+               /* Count the number of bytes available in the fifo without
+                * crossing the wrap around. Make sure to not fill it completely,
+                * because that would make wp == rp and that's the empty condition. */
+               uint32_t thisrun_bytes;
+               if (rp > wp)
+                       thisrun_bytes = rp - wp - block_size;
+               else if (rp > fifo_start_addr)
+                       thisrun_bytes = fifo_end_addr - wp;
+               else
+                       thisrun_bytes = fifo_end_addr - wp - block_size;
+
+               if (thisrun_bytes == 0) {
+                       /* Throttle polling a bit if transfer is (much) faster than flash
+                        * programming. The exact delay shouldn't matter as long as it's
+                        * less than buffer size / flash speed. This is very unlikely to
+                        * run when using high latency connections such as USB. */
+                       alive_sleep(10);
+                       continue;
+               }
+
+               /* Limit to the amount of data we actually want to write */
+               if (thisrun_bytes > count * block_size)
+                       thisrun_bytes = count * block_size;
+
+               /* Write data to fifo */
+               retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
+               if (retval != ERROR_OK)
+                       break;
+
+               /* Update counters and wrap write pointer */
+               buffer += thisrun_bytes;
+               count -= thisrun_bytes / block_size;
+               wp += thisrun_bytes;
+               if (wp >= fifo_end_addr)
+                       wp = fifo_start_addr;
+
+               /* Store updated write pointer to target */
+               retval = target_write_u32(target, wp_addr, wp);
+               if (retval != ERROR_OK)
+                       break;
+       }
+
+       if (retval != ERROR_OK) {
+               /* abort flash write algorithm on target */
+               target_write_u32(target, wp_addr, 0);
+       }
+
+       int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
+                       num_reg_params, reg_params,
+                       exit_point,
+                       10000,
+                       arch_info);
+
+       if (retval2 != ERROR_OK) {
+               LOG_ERROR("error waiting for target flash write algorithm");
+               retval = retval2;
+       }
+
+       return retval;
+}
 
 int target_read_memory(struct target *target,
                uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
@@ -1232,11 +1375,85 @@ int target_call_timer_callbacks_now(void)
        return target_call_timer_callbacks_check_time(0);
 }
 
-int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
+/* Prints the working area layout for debug purposes */
+static void print_wa_layout(struct target *target)
 {
        struct working_area *c = target->working_areas;
-       struct working_area *new_wa = NULL;
 
+       while (c) {
+               LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
+                       c->backup ? 'b' : ' ', c->free ? ' ' : '*',
+                       c->address, c->address + c->size - 1, c->size);
+               c = c->next;
+       }
+}
+
+/* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
+static void target_split_working_area(struct working_area *area, uint32_t size)
+{
+       assert(area->free); /* Shouldn't split an allocated area */
+       assert(size <= area->size); /* Caller should guarantee this */
+
+       /* Split only if not already the right size */
+       if (size < area->size) {
+               struct working_area *new_wa = malloc(sizeof(*new_wa));
+
+               if (new_wa == NULL)
+                       return;
+
+               new_wa->next = area->next;
+               new_wa->size = area->size - size;
+               new_wa->address = area->address + size;
+               new_wa->backup = NULL;
+               new_wa->user = NULL;
+               new_wa->free = true;
+
+               area->next = new_wa;
+               area->size = size;
+
+               /* If backup memory was allocated to this area, it has the wrong size
+                * now so free it and it will be reallocated if/when needed */
+               if (area->backup) {
+                       free(area->backup);
+                       area->backup = NULL;
+               }
+       }
+}
+
+/* Merge all adjacent free areas into one */
+static void target_merge_working_areas(struct target *target)
+{
+       struct working_area *c = target->working_areas;
+
+       while (c && c->next) {
+               assert(c->next->address == c->address + c->size); /* This is an invariant */
+
+               /* Find two adjacent free areas */
+               if (c->free && c->next->free) {
+                       /* Merge the last into the first */
+                       c->size += c->next->size;
+
+                       /* Remove the last */
+                       struct working_area *to_be_freed = c->next;
+                       c->next = c->next->next;
+                       if (to_be_freed->backup)
+                               free(to_be_freed->backup);
+                       free(to_be_freed);
+
+                       /* If backup memory was allocated to the remaining area, it's has
+                        * the wrong size now */
+                       if (c->backup) {
+                               free(c->backup);
+                               c->backup = NULL;
+                       }
+               } else {
+                       c = c->next;
+               }
+       }
+}
+
+int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
+{
        /* Reevaluate working area address based on MMU state*/
        if (target->working_areas == NULL) {
                int retval;
@@ -1249,8 +1466,8 @@ int target_alloc_working_area_try(struct target *target, uint32_t size, struct w
                if (!enabled) {
                        if (target->working_area_phys_spec) {
                                LOG_DEBUG("MMU disabled, using physical "
-                                       "address for working memory 0x%08x",
-                                       (unsigned)target->working_area_phys);
+                                       "address for working memory 0x%08"PRIx32,
+                                       target->working_area_phys);
                                target->working_area = target->working_area_phys;
                        } else {
                                LOG_ERROR("No working memory available. "
@@ -1260,8 +1477,8 @@ int target_alloc_working_area_try(struct target *target, uint32_t size, struct w
                } else {
                        if (target->working_area_virt_spec) {
                                LOG_DEBUG("MMU enabled, using virtual "
-                                       "address for working memory 0x%08x",
-                                       (unsigned)target->working_area_virt);
+                                       "address for working memory 0x%08"PRIx32,
+                                       target->working_area_virt);
                                target->working_area = target->working_area_virt;
                        } else {
                                LOG_ERROR("No working memory available. "
@@ -1269,70 +1486,62 @@ int target_alloc_working_area_try(struct target *target, uint32_t size, struct w
                                return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
                        }
                }
+
+               /* Set up initial working area on first call */
+               struct working_area *new_wa = malloc(sizeof(*new_wa));
+               if (new_wa) {
+                       new_wa->next = NULL;
+                       new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
+                       new_wa->address = target->working_area;
+                       new_wa->backup = NULL;
+                       new_wa->user = NULL;
+                       new_wa->free = true;
+               }
+
+               target->working_areas = new_wa;
        }
 
        /* only allocate multiples of 4 byte */
-       if (size % 4) {
-               LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
-               size = (size + 3) & (~3);
-       }
+       if (size % 4)
+               size = (size + 3) & (~3UL);
+
+       struct working_area *c = target->working_areas;
 
-       /* see if there's already a matching working area */
+       /* Find the first large enough working area */
        while (c) {
-               if ((c->free) && (c->size == size)) {
-                       new_wa = c;
+               if (c->free && c->size >= size)
                        break;
-               }
                c = c->next;
        }
 
-       /* if not, allocate a new one */
-       if (!new_wa) {
-               struct working_area **p = &target->working_areas;
-               uint32_t first_free = target->working_area;
-               uint32_t free_size = target->working_area_size;
-
-               c = target->working_areas;
-               while (c) {
-                       first_free += c->size;
-                       free_size -= c->size;
-                       p = &c->next;
-                       c = c->next;
-               }
-
-               if (free_size < size)
-                       return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
+       if (c == NULL)
+               return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
 
-               LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
+       /* Split the working area into the requested size */
+       target_split_working_area(c, size);
 
-               new_wa = malloc(sizeof(struct working_area));
-               new_wa->next = NULL;
-               new_wa->size = size;
-               new_wa->address = first_free;
+       LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
 
-               if (target->backup_working_area) {
-                       int retval;
-                       new_wa->backup = malloc(new_wa->size);
-                       retval = target_read_memory(target, new_wa->address, 4,
-                                       new_wa->size / 4, new_wa->backup);
-                       if (retval != ERROR_OK) {
-                               free(new_wa->backup);
-                               free(new_wa);
-                               return retval;
-                       }
-               } else
-                       new_wa->backup = NULL;
+       if (target->backup_working_area) {
+               if (c->backup == NULL) {
+                       c->backup = malloc(c->size);
+                       if (c->backup == NULL)
+                               return ERROR_FAIL;
+               }
 
-               /* put new entry in list */
-               *p = new_wa;
+               int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
+               if (retval != ERROR_OK)
+                       return retval;
        }
 
        /* mark as used, and return the new (reused) area */
-       new_wa->free = false;
-       *area = new_wa;
+       c->free = false;
+       *area = c;
 
        /* user pointer */
-       new_wa->user = area;
+       c->user = area;
+
+       print_wa_layout(target);
 
        return ERROR_OK;
 }
@@ -1343,30 +1552,57 @@ int target_alloc_working_area(struct target *target, uint32_t size, struct worki
 
        retval = target_alloc_working_area_try(target, size, area);
        if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
-               LOG_WARNING("not enough working area available(requested %u)", (unsigned)(size));
+               LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
        return retval;
 
 }
 
+static int target_restore_working_area(struct target *target, struct working_area *area)
+{
+       int retval = ERROR_OK;
+
+       if (target->backup_working_area && area->backup != NULL) {
+               retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
+               if (retval != ERROR_OK)
+                       LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
+                                       area->size, area->address);
+       }
+
+       return retval;
+}
+
+/* Restore the area's backup memory, if any, and return the area to the allocation pool */
 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
 {
+       int retval = ERROR_OK;
+
        if (area->free)
-               return ERROR_OK;
+               return retval;
 
-       if (restore && target->backup_working_area) {
-               int retval = target_write_memory(target,
-                               area->address, 4, area->size / 4, area->backup);
+       if (restore) {
+               retval = target_restore_working_area(target, area);
+               /* REVISIT: Perhaps the area should be freed even if restoring fails. */
                if (retval != ERROR_OK)
                        return retval;
        }
 
        area->free = true;
 
+       LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
+                       area->size, area->address);
+
        /* mark user pointer invalid */
+       /* TODO: Is this really safe? It points to some previous caller's memory.
+        * How could we know that the area pointer is still in that place and not
+        * some other vital data? What's the purpose of this, anyway? */
        *area->user = NULL;
        area->user = NULL;
 
-       return ERROR_OK;
+       target_merge_working_areas(target);
+
+       print_wa_layout(target);
+
+       return retval;
 }
 
 int target_free_working_area(struct target *target, struct working_area *area)
@@ -1381,19 +1617,24 @@ static void target_free_all_working_areas_restore(struct target *target, int res
 {
        struct working_area *c = target->working_areas;
 
-       while (c) {
-               struct working_area *next = c->next;
-               target_free_working_area_restore(target, c, restore);
-
-               if (c->backup)
-                       free(c->backup);
+       LOG_DEBUG("freeing all working areas");
 
-               free(c);
-
-               c = next;
+       /* Loop through all areas, restoring the allocated ones and marking them as free */
+       while (c) {
+               if (!c->free) {
+                       if (restore)
+                               target_restore_working_area(target, c);
+                       c->free = true;
+                       *c->user = NULL; /* Same as above */
+                       c->user = NULL;
+               }
+               c = c->next;
        }
 
-       target->working_areas = NULL;
+       /* Run a merge pass to combine all areas into one */
+       target_merge_working_areas(target);
+
+       print_wa_layout(target);
 }
 
 void target_free_all_working_areas(struct target *target)
@@ -1401,6 +1642,25 @@ void target_free_all_working_areas(struct target *target)
        target_free_all_working_areas_restore(target, 1);
 }
 
+/* Find the largest number of bytes that can be allocated */
+uint32_t target_get_working_area_avail(struct target *target)
+{
+       struct working_area *c = target->working_areas;
+       uint32_t max_size = 0;
+
+       if (c == NULL)
+               return target->working_area_size;
+
+       while (c) {
+               if (c->free && max_size < c->size)
+                       max_size = c->size;
+
+               c = c->next;
+       }
+
+       return max_size;
+}
+
 int target_arch_state(struct target *target)
 {
        int retval;
@@ -2260,7 +2520,6 @@ COMMAND_HANDLER(handle_resume_command)
                return ERROR_COMMAND_SYNTAX_ERROR;
 
        struct target *target = get_current_target(CMD_CTX);
-       target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
 
        /* with no CMD_ARGV, resume from current pc, addr = 0,
         * with one arguments, addr = CMD_ARGV[0],
@@ -4084,6 +4343,34 @@ static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
        return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
 }
 
+/**
+*  @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
+*
+*  Usage: mdw [phys] <address> [<count>] - for 32 bit reads
+*         mdh [phys] <address> [<count>] - for 16 bit reads
+*         mdb [phys] <address> [<count>] - for  8 bit reads
+*
+*  Count defaults to 1.
+*
+*  Calls target_read_memory or target_read_phys_memory depending on
+*  the presence of the "phys" argument
+*  Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
+*  to int representation in base16.
+*  Also outputs read data in a human readable form using command_print
+*
+*  @param phys if present target_read_phys_memory will be used instead of target_read_memory
+*  @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
+*  @param count optional count parameter to read an array of values. If not specified, defaults to 1.
+*  @returns:  JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
+*  on success, with [<count>] number of elements.
+*
+*  In case of little endian target:
+*      Example1: "mdw 0x00000000"  returns "10123456"
+*      Exmaple2: "mdh 0x00000000 1" returns "3456"
+*      Example3: "mdb 0x00000000" returns "56"
+*      Example4: "mdh 0x00000000 2" returns "3456 1012"
+*      Example5: "mdb 0x00000000 3" returns "56 34 12"
+**/
 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
 {
        const char *cmd_name = Jim_GetString(argv[0], NULL);
@@ -4112,78 +4399,80 @@ static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
                fn = target_read_phys_memory;
        }
 
-       jim_wide a;
-       e = Jim_GetOpt_Wide(&goi, &a);
+       /* Read address parameter */
+       jim_wide addr;
+       e = Jim_GetOpt_Wide(&goi, &addr);
        if (e != JIM_OK)
                return JIM_ERR;
-       jim_wide c;
+
+       /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
+       jim_wide count;
        if (goi.argc == 1) {
-               e = Jim_GetOpt_Wide(&goi, &c);
+               e = Jim_GetOpt_Wide(&goi, &count);
                if (e != JIM_OK)
                        return JIM_ERR;
        } else
-               c = 1;
+               count = 1;
 
        /* all args must be consumed */
        if (goi.argc != 0)
                return JIM_ERR;
 
-       jim_wide b = 1; /* shut up gcc */
+       jim_wide dwidth = 1; /* shut up gcc */
        if (strcasecmp(cmd_name, "mdw") == 0)
-               b = 4;
+               dwidth = 4;
        else if (strcasecmp(cmd_name, "mdh") == 0)
-               b = 2;
+               dwidth = 2;
        else if (strcasecmp(cmd_name, "mdb") == 0)
-               b = 1;
+               dwidth = 1;
        else {
                LOG_ERROR("command '%s' unknown: ", cmd_name);
                return JIM_ERR;
        }
 
        /* convert count to "bytes" */
-       c = c * b;
+       int bytes = count * dwidth;
 
        struct target *target = Jim_CmdPrivData(goi.interp);
        uint8_t  target_buf[32];
        jim_wide x, y, z;
-       while (c > 0) {
-               y = c;
-               if (y > 16)
-                       y = 16;
-               e = fn(target, a, b, y / b, target_buf);
+       while (bytes > 0) {
+               y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
+
+               /* Try to read out next block */
+               e = fn(target, addr, dwidth, y / dwidth, target_buf);
+
                if (e != ERROR_OK) {
-                       char tmp[10];
-                       snprintf(tmp, sizeof(tmp), "%08lx", (long)a);
-                       Jim_SetResultFormatted(interp, "error reading target @ 0x%s", tmp);
+                       Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
                        return JIM_ERR;
                }
 
-               command_print(NULL, "0x%08x ", (int)(a));
-               switch (b) {
+               command_print_sameline(NULL, "0x%08x ", (int)(addr));
+               switch (dwidth) {
                case 4:
                        for (x = 0; x < 16 && x < y; x += 4) {
                                z = target_buffer_get_u32(target, &(target_buf[x]));
-                               command_print(NULL, "%08x ", (int)(z));
+                               command_print_sameline(NULL, "%08x ", (int)(z));
                        }
                        for (; (x < 16) ; x += 4)
-                               command_print(NULL, "         ");
+                               command_print_sameline(NULL, "         ");
                        break;
                case 2:
                        for (x = 0; x < 16 && x < y; x += 2) {
                                z = target_buffer_get_u16(target, &(target_buf[x]));
-                               command_print(NULL, "%04x ", (int)(z));
+                               command_print_sameline(NULL, "%04x ", (int)(z));
                        }
                        for (; (x < 16) ; x += 2)
-                               command_print(NULL, "     ");
+                               command_print_sameline(NULL, "     ");
                        break;
                case 1:
                default:
                        for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
                                z = target_buffer_get_u8(target, &(target_buf[x]));
-                               command_print(NULL, "%02x ", (int)(z));
+                               command_print_sameline(NULL, "%02x ", (int)(z));
                        }
                        for (; (x < 16) ; x += 1)
-                               command_print(NULL, "   ");
+                               command_print_sameline(NULL, "   ");
                        break;
                }
                /* ascii-ify the bytes */
@@ -4204,10 +4493,10 @@ static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
                /* terminate */
                target_buf[16] = 0;
                /* print - with a newline */
-               command_print(NULL, "%s\n", target_buf);
+               command_print_sameline(NULL, "%s\n", target_buf);
                /* NEXT... */
-               c -= 16;
-               a += 16;
+               bytes -= 16;
+               addr += 16;
        }
        return JIM_OK;
 }
@@ -4807,7 +5096,6 @@ static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
        struct target_list *head, *curr, *new;
        curr = (struct target_list *) NULL;
        head = (struct target_list *) NULL;
-       new = (struct target_list *) NULL;
 
        retval = 0;
        LOG_DEBUG("%d", argc);
@@ -4843,8 +5131,10 @@ static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
                target->head = head;
                curr = curr->next;
        }
-       if (target->rtos)
+
+       if (target && target->rtos)
                retval = rtos_smp_init(head->target);
+
        return retval;
 }
 

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)