X-Git-Url: https://review.openocd.org/gitweb?p=openocd.git;a=blobdiff_plain;f=doc%2Fopenocd.texi;h=45b341c413f86e581b7a35365f6c9918bb5e74ac;hp=ff5593d8e697b2f8d4011848a00395a108c94238;hb=93bc4ec40ffb9c30f170af3f1e3551c4b198507f;hpb=21832327eed48be9d44607890d11d31b88d1bd30;ds=sidebyside diff --git a/doc/openocd.texi b/doc/openocd.texi index ff5593d8e6..45b341c413 100644 --- a/doc/openocd.texi +++ b/doc/openocd.texi @@ -898,7 +898,7 @@ using a Signalyzer FT2232-based JTAG adapter to talk to a board with an Atmel AT91SAM7X256 microcontroller: @example -source [find interface/signalyzer.cfg] +source [find interface/ftdi/signalyzer.cfg] # GDB can also flash my flash! gdb_memory_map enable @@ -910,7 +910,7 @@ source [find target/sam7x256.cfg] Here is the command line equivalent of that configuration: @example -openocd -f interface/signalyzer.cfg \ +openocd -f interface/ftdi/signalyzer.cfg \ -c "gdb_memory_map enable" \ -c "gdb_flash_program enable" \ -f target/sam7x256.cfg @@ -2403,113 +2403,15 @@ A dummy software-only driver for debugging. Cirrus Logic EP93xx based single-board computer bit-banging (in development) @end deffn -@deffn {Interface Driver} {ft2232} -FTDI FT2232 (USB) based devices over one of the userspace libraries. - -Note that this driver has several flaws and the @command{ftdi} driver is -recommended as its replacement. - -These interfaces have several commands, used to configure the driver -before initializing the JTAG scan chain: - -@deffn {Config Command} {ft2232_device_desc} description -Provides the USB device description (the @emph{iProduct string}) -of the FTDI FT2232 device. If not -specified, the FTDI default value is used. This setting is only valid -if compiled with FTD2XX support. -@end deffn - -@deffn {Config Command} {ft2232_serial} serial-number -Specifies the @var{serial-number} of the FTDI FT2232 device to use, -in case the vendor provides unique IDs and more than one FT2232 device -is connected to the host. -If not specified, serial numbers are not considered. -(Note that USB serial numbers can be arbitrary Unicode strings, -and are not restricted to containing only decimal digits.) -@end deffn - -@deffn {Config Command} {ft2232_layout} name -Each vendor's FT2232 device can use different GPIO signals -to control output-enables, reset signals, and LEDs. -Currently valid layout @var{name} values include: -@itemize @minus -@item @b{axm0432_jtag} Axiom AXM-0432 -@item @b{comstick} Hitex STR9 comstick -@item @b{cortino} Hitex Cortino JTAG interface -@item @b{evb_lm3s811} TI/Luminary Micro EVB_LM3S811 as a JTAG interface, -either for the local Cortex-M3 (SRST only) -or in a passthrough mode (neither SRST nor TRST) -This layout can not support the SWO trace mechanism, and should be -used only for older boards (before rev C). -@item @b{luminary_icdi} This layout should be used with most TI/Luminary -eval boards, including Rev C LM3S811 eval boards and the eponymous -ICDI boards, to debug either the local Cortex-M3 or in passthrough mode -to debug some other target. It can support the SWO trace mechanism. -@item @b{flyswatter} Tin Can Tools Flyswatter -@item @b{icebear} ICEbear JTAG adapter from Section 5 -@item @b{jtagkey} Amontec JTAGkey and JTAGkey-Tiny (and compatibles) -@item @b{jtagkey2} Amontec JTAGkey2 (and compatibles) -@item @b{m5960} American Microsystems M5960 -@item @b{olimex-jtag} Olimex ARM-USB-OCD and ARM-USB-Tiny -@item @b{oocdlink} OOCDLink -@c oocdlink ~= jtagkey_prototype_v1 -@item @b{redbee-econotag} Integrated with a Redbee development board. -@item @b{redbee-usb} Integrated with a Redbee USB-stick development board. -@item @b{sheevaplug} Marvell Sheevaplug development kit -@item @b{signalyzer} Xverve Signalyzer -@item @b{stm32stick} Hitex STM32 Performance Stick -@item @b{turtelizer2} egnite Software turtelizer2 -@item @b{usbjtag} "USBJTAG-1" layout described in the OpenOCD diploma thesis -@end itemize -@end deffn - -@deffn {Config Command} {ft2232_vid_pid} [vid pid]+ -The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI -default values are used. -Currently, up to eight [@var{vid}, @var{pid}] pairs may be given, e.g. -@example -ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003 -@end example -@end deffn - -@deffn {Config Command} {ft2232_latency} ms -On some systems using FT2232 based JTAG interfaces the FT_Read function call in -ft2232_read() fails to return the expected number of bytes. This can be caused by -USB communication delays and has proved hard to reproduce and debug. Setting the -FT2232 latency timer to a larger value increases delays for short USB packets but it -also reduces the risk of timeouts before receiving the expected number of bytes. -The OpenOCD default value is 2 and for some systems a value of 10 has proved useful. -@end deffn - -@deffn {Config Command} {ft2232_channel} channel -Used to select the channel of the ft2232 chip to use (between 1 and 4). -The default value is 1. -@end deffn - -For example, the interface config file for a -Turtelizer JTAG Adapter looks something like this: - -@example -interface ft2232 -ft2232_device_desc "Turtelizer JTAG/RS232 Adapter" -ft2232_layout turtelizer2 -ft2232_vid_pid 0x0403 0xbdc8 -@end example -@end deffn - @deffn {Interface Driver} {ftdi} This driver is for adapters using the MPSSE (Multi-Protocol Synchronous Serial Engine) mode built into many FTDI chips, such as the FT2232, FT4232 and FT232H. -It is a complete rewrite to address a large number of problems with the ft2232 -interface driver. The driver is using libusb-1.0 in asynchronous mode to talk to the FTDI device, -bypassing intermediate libraries like libftdi of D2XX. Performance-wise it is -consistently faster than the ft2232 driver, sometimes several times faster. +bypassing intermediate libraries like libftdi or D2XX. -A major improvement of this driver is that support for new FTDI based adapters -can be added competely through configuration files, without the need to patch -and rebuild OpenOCD. +Support for new FTDI based adapters can be added competely through +configuration files, without the need to patch and rebuild OpenOCD. The driver uses a signal abstraction to enable Tcl configuration files to define outputs for one or several FTDI GPIO. These outputs can then be @@ -2518,6 +2420,12 @@ are reserved for nTRST, nSRST and LED (for blink) so that they, if defined, will be used for their customary purpose. Inputs can be read using the @command{ftdi_get_signal} command. +To support SWD, a signal named SWD_EN must be defined. It is set to 1 when the +SWD protocol is selected. When set, the adapter should route the SWDIO pin to +the data input. An SWDIO_OE signal, if defined, will be set to 1 or 0 as +required by the protocol, to tell the adapter to drive the data output onto +the SWDIO pin or keep the SWDIO pin Hi-Z, respectively. + Depending on the type of buffer attached to the FTDI GPIO, the outputs have to be controlled differently. In order to support tristateable signals such as nSRST, both a data GPIO and an output-enable GPIO can be specified for each @@ -2536,9 +2444,8 @@ These interfaces have several commands, used to configure the driver before initializing the JTAG scan chain: @deffn {Config Command} {ftdi_vid_pid} [vid pid]+ -The vendor ID and product ID of the adapter. If not specified, the FTDI -default values are used. -Currently, up to eight [@var{vid}, @var{pid}] pairs may be given, e.g. +The vendor ID and product ID of the adapter. Up to eight +[@var{vid}, @var{pid}] pairs may be given, e.g. @example ftdi_vid_pid 0x0403 0xcff8 0x15ba 0x0003 @end example @@ -2721,7 +2628,7 @@ reset_config srst_only @end example @end deffn -@deffn {Command} {usb_blaster_lowlevel_driver} (@option{ftdi}|@option{ftd2xx}|@option{ublast2}) +@deffn {Command} {usb_blaster_lowlevel_driver} (@option{ftdi}|@option{ublast2}) Chooses the low level access method for the adapter. If not specified, @option{ftdi} is selected unless it wasn't enabled during the configure stage. USB-Blaster II needs @option{ublast2}. @@ -2799,6 +2706,26 @@ Reset the current configuration. @deffn {Command} {jlink config write} Write the current configuration to the internal persistent storage. @end deffn +@deffn {Command} {jlink emucom write } +Write data to an EMUCOM channel. The data needs to be encoded as hexadecimal +pairs. + +The following example shows how to write the three bytes 0xaa, 0x0b and 0x23 to +the EMUCOM channel 0x10: +@example +> jlink emucom write 0x10 aa0b23 +@end example +@end deffn +@deffn {Command} {jlink emucom read } +Read data from an EMUCOM channel. The read data is encoded as hexadecimal +pairs. + +The following example shows how to read 4 bytes from the EMUCOM channel 0x0: +@example +> jlink emucom read 0x0 4 +77a90000 +@end example +@end deffn @deffn {Config} {jlink usb} <@option{0} to @option{3}> Set the USB address of the interface, in case more than one adapter is connected to the host. If not specified, USB addresses are not considered. Device @@ -3009,6 +2936,27 @@ pinout. @end deffn +@deffn {Interface Driver} {openjtag} +OpenJTAG compatible USB adapter. +This defines some driver-specific commands: + +@deffn {Config Command} {openjtag_variant} variant +Specifies the variant of the OpenJTAG adapter (see @uref{http://www.openjtag.org/}). +Currently valid @var{variant} values include: + +@itemize @minus +@item @b{standard} Standard variant (default). +@item @b{cy7c65215} Cypress CY7C65215 Dual Channel USB-Serial Bridge Controller +(see @uref{http://www.cypress.com/?rID=82870}). +@end itemize +@end deffn + +@deffn {Config Command} {openjtag_device_desc} string +The USB device description string of the adapter. +This value is only used with the standard variant. +@end deffn +@end deffn + @section Transport Configuration @cindex Transport As noted earlier, depending on the version of OpenOCD you use, @@ -4219,10 +4167,19 @@ The value should normally correspond to a static mapping for the @anchor{rtostype} @item @code{-rtos} @var{rtos_type} -- enable rtos support for target, -@var{rtos_type} can be one of @option{auto}|@option{eCos}|@option{ThreadX}| -@option{FreeRTOS}|@option{linux}|@option{ChibiOS}|@option{embKernel}|@option{mqx} +@var{rtos_type} can be one of @option{auto}, @option{eCos}, +@option{ThreadX}, @option{FreeRTOS}, @option{linux}, @option{ChibiOS}, +@option{embKernel}, @option{mqx}, @option{uCOS-III} @xref{gdbrtossupport,,RTOS Support}. +@item @code{-defer-examine} -- skip target examination at initial JTAG chain +scan and after a reset. A manual call to arp_examine is required to +access the target for debugging. + +@item @code{-ap-num} @var{ap_number} -- set DAP access port for target, +@var{ap_number} is the numeric index of the DAP AP the target is connected to. +Use this option with systems where multiple, independent cores are connected +to separate access ports of the same DAP. @end itemize @end deffn @@ -4259,7 +4216,7 @@ omap3530.cpu mww 0x5555 123 The commands supported by OpenOCD target objects are: -@deffn Command {$target_name arp_examine} +@deffn Command {$target_name arp_examine} @option{allow-defer} @deffnx Command {$target_name arp_halt} @deffnx Command {$target_name arp_poll} @deffnx Command {$target_name arp_reset} @@ -4757,12 +4714,15 @@ and possibly stale information. @anchor{flashprotect} @deffn Command {flash protect} num first last (@option{on}|@option{off}) -Enable (@option{on}) or disable (@option{off}) protection of flash sectors -in flash bank @var{num}, starting at sector @var{first} +Enable (@option{on}) or disable (@option{off}) protection of flash blocks +in flash bank @var{num}, starting at protection block @var{first} and continuing up to and including @var{last}. -Providing a @var{last} sector of @option{last} +Providing a @var{last} block of @option{last} specifies "to the end of the flash bank". The @var{num} parameter is a value shown by @command{flash banks}. +The protection block is usually identical to a flash sector. +Some devices may utilize a protection block distinct from flash sector. +See @command{flash info} for a list of protection blocks. @end deffn @deffn Command {flash padded_value} num value @@ -4799,8 +4759,10 @@ the flash bank defined at address 0x1fc00000. Any cmds executed on the virtual banks are actually performed on the physical banks. @example flash bank $_FLASHNAME pic32mx 0x1fc00000 0 0 0 $_TARGETNAME -flash bank vbank0 virtual 0xbfc00000 0 0 0 $_TARGETNAME $_FLASHNAME -flash bank vbank1 virtual 0x9fc00000 0 0 0 $_TARGETNAME $_FLASHNAME +flash bank vbank0 virtual 0xbfc00000 0 0 0 \ + $_TARGETNAME $_FLASHNAME +flash bank vbank1 virtual 0x9fc00000 0 0 0 \ + $_TARGETNAME $_FLASHNAME @end example @end deffn @@ -4866,8 +4828,8 @@ Since signaling between JTAG and SPI is compatible, all that is required for a proxy bitstream is to connect TDI-MOSI, TDO-MISO, TCK-CLK and activate the flash chip select when the JTAG state machine is in SHIFT-DR. Such a bitstream for several Xilinx FPGAs can be found in -@file{contrib/loaders/flash/fpga/xilinx_bscan_spi.py}. It requires migen -(@url{http://github.com/m-labs/migen}) and a Xilinx toolchain to build. +@file{contrib/loaders/flash/fpga/xilinx_bscan_spi.py}. It requires +@uref{https://github.com/m-labs/migen, migen} and a Xilinx toolchain to build. This flash bank driver requires a target on a JTAG tap and will access that tap directly. Since no support from the target is needed, the target can be a @@ -4890,7 +4852,8 @@ For the bitstreams generated from @file{xilinx_bscan_spi.py} this is the target create $_TARGETNAME testee -chain-position $_CHIPNAME.fpga set _XILINX_USER1 0x02 set _DR_LENGTH 1 -flash bank $_FLASHNAME spi 0x0 0 0 0 $_TARGETNAME $_XILINX_USER1 $_DR_LENGTH +flash bank $_FLASHNAME spi 0x0 0 0 0 \ + $_TARGETNAME $_XILINX_USER1 $_DR_LENGTH @end example @end deffn @@ -4996,7 +4959,8 @@ and the second bank starts after the first. # Flash bank 0 flash bank $_FLASHNAME ambiqmicro 0 0x00040000 0 0 $_TARGETNAME # Flash bank 1 - same size as bank0, starts after bank 0. -flash bank $_FLASHNAME ambiqmicro 0x00040000 0x00040000 0 0 $_TARGETNAME +flash bank $_FLASHNAME ambiqmicro 0x00040000 0x00040000 0 0 \ + $_TARGETNAME @end example Flash is programmed using custom entry points into the bootloader. @@ -5270,8 +5234,10 @@ with @code{x} treated as wildcard and otherwise case (and any trailing characters) ignored. @example -flash bank $@{_FLASHNAME@}0 fm4 0x00000000 0 0 0 $_TARGETNAME S6E2CCAJ0A -flash bank $@{_FLASHNAME@}1 fm4 0x00100000 0 0 0 $_TARGETNAME S6E2CCAJ0A +flash bank $@{_FLASHNAME@}0 fm4 0x00000000 0 0 0 \ + $_TARGETNAME S6E2CCAJ0A +flash bank $@{_FLASHNAME@}1 fm4 0x00100000 0 0 0 \ + $_TARGETNAME S6E2CCAJ0A @end example @emph{The current implementation is incomplete. Protection is not supported, nor is Chip Erase (only Sector Erase is implemented).} @@ -7077,6 +7043,13 @@ The file format may optionally be specified This will first attempt a comparison using a CRC checksum, if this fails it will try a binary compare. @end deffn +@deffn Command {verify_image_checksum} filename address [@option{bin}|@option{ihex}|@option{elf}] +Verify @var{filename} against target memory starting at @var{address}. +The file format may optionally be specified +(@option{bin}, @option{ihex}, or @option{elf}) +This perform a comparison using a CRC checksum only +@end deffn + @section Breakpoint and Watchpoint commands @cindex breakpoint @@ -7489,6 +7462,17 @@ requests by using a special SVC instruction that is trapped at the Supervisor Call vector by OpenOCD. @end deffn +@deffn Command {arm semihosting_fileio} [@option{enable}|@option{disable}] +@cindex ARM semihosting +Display status of semihosting fileio, after optionally changing that +status. + +Enabling this option forwards semihosting I/O to GDB process using the +File-I/O remote protocol extension. This is especially useful for +interacting with remote files or displaying console messages in the +debugger. +@end deffn + @section ARMv4 and ARMv5 Architecture @cindex ARMv4 @cindex ARMv5 @@ -8900,7 +8884,11 @@ end @anchor{gdbrtossupport} OpenOCD includes RTOS support, this will however need enabling as it defaults to disabled. -It can be enabled by passing @option{-rtos} arg to the target @xref{rtostype,,RTOS Type}. +It can be enabled by passing @option{-rtos} arg to the target. @xref{rtostype,,RTOS Type}. + +@xref{Threads, Debugging Programs with Multiple Threads, +Debugging Programs with Multiple Threads, gdb, GDB manual}, for details about relevant +GDB commands. @* An example setup is below: @@ -8919,6 +8907,7 @@ Currently supported rtos's include: @item @option{ChibiOS} @item @option{embKernel} @item @option{mqx} +@item @option{uCOS-III} @end itemize @quotation Note @@ -8952,10 +8941,12 @@ Rtos::sCurrentTask, Rtos::sListReady, Rtos::sListSleep, Rtos::sListSuspended, Rtos::sMaxPriorities, Rtos::sCurrentTaskCount. @item mqx symbols _mqx_kernel_data, MQX_init_struct. +@item uC/OS-III symbols +OSRunning, OSTCBCurPtr, OSTaskDbgListPtr, OSTaskQty @end table For most RTOS supported the above symbols will be exported by default. However for -some, eg. FreeRTOS, extra steps must be taken. +some, eg. FreeRTOS and uC/OS-III, extra steps must be taken. These RTOSes may require additional OpenOCD-specific file to be linked along with the project: @@ -8963,6 +8954,8 @@ along with the project: @table @code @item FreeRTOS contrib/rtos-helpers/FreeRTOS-openocd.c +@item uC/OS-III +contrib/rtos-helpers/uCOS-III-openocd.c @end table @node Tcl Scripting API @@ -9344,16 +9337,6 @@ supply stable enough for the Amontec JTAGkey to be operated. @b{Laptops running on battery have this problem too...} -@item @b{USB Power} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the -following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned: -4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232". -What does that mean and what might be the reason for this? - -First of all, the reason might be the USB power supply. Try using a self-powered -hub instead of a direct connection to your computer. Secondly, the error code 4 -corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB -chip ran into some sort of error - this points us to a USB problem. - @item @b{GDB Disconnects} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054". What does that mean and what might be the reason for this?