X-Git-Url: https://review.openocd.org/gitweb?p=openocd.git;a=blobdiff_plain;f=src%2Fflash%2Fnor%2Fkinetis.c;h=3177473b8b23c171fe7e1e8195e0483877c3a1c6;hp=cf36104a441f6971e96054a413c23e23b0fc3425;hb=61c18ee486fe7d4c5d65718ba540cb5f76b0da1f;hpb=aeb3c4f37e9c83e45ea1b9ef9f23bbdbb451fca2 diff --git a/src/flash/nor/kinetis.c b/src/flash/nor/kinetis.c index cf36104a44..3177473b8b 100644 --- a/src/flash/nor/kinetis.c +++ b/src/flash/nor/kinetis.c @@ -8,6 +8,12 @@ * Copyright (C) 2012 by Christopher D. Kilgour * * techie at whiterocker.com * * * + * Copyright (C) 2013 Nemui Trinomius * + * nemuisan_kawausogasuki@live.jp * + * * + * Copyright (C) 2015 Tomas Vanek * + * vanekt@fbl.cz * + * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * @@ -19,17 +25,21 @@ * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * - * along with this program; if not, write to the * - * Free Software Foundation, Inc., * - * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * + * along with this program. If not, see . * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif +#include "jtag/interface.h" #include "imp.h" -#include "helper/binarybuffer.h" +#include +#include +#include +#include +#include +#include /* * Implementation Notes @@ -45,61 +55,167 @@ * variants also have FlexNVM and FlexRAM, which always appear * together. * - * A given Kinetis chip may have 2 or 4 blocks of flash. Here we map + * A given Kinetis chip may have 1, 2 or 4 blocks of flash. Here we map * each block to a separate bank. Each block size varies by chip and * may be determined by the read-only SIM_FCFG1 register. The sector - * size within each bank/block varies by the chip granularity as - * described below. + * size within each bank/block varies by chip, and may be 1, 2 or 4k. + * The sector size may be different for flash and FlexNVM. * - * Kinetis offers four different of flash granularities applicable - * across the chip families. The granularity is apparently reflected - * by at least the reference manual suffix. For example, for chip - * MK60FN1M0VLQ12, reference manual K60P144M150SF3RM ends in "SF3RM", - * where the "3" indicates there are four flash blocks with 4kiB - * sectors. All possible granularities are indicated below. - * - * The first half of the flash (1 or 2 blocks, depending on the - * granularity) is always Program Flash and always starts at address - * 0x00000000. The "PFLSH" flag, bit 23 of the read-only SIM_FCFG2 - * register, determines whether the second half of the flash is also - * Program Flash or FlexNVM+FlexRAM. When PFLSH is set, the second - * half of flash is Program Flash and is contiguous in the memory map - * from the first half. When PFLSH is clear, the second half of flash - * is FlexNVM and always starts at address 0x10000000. FlexRAM, which - * is also present when PFLSH is clear, always starts at address - * 0x14000000. + * The first half of the flash (1 or 2 blocks) is always Program Flash + * and always starts at address 0x00000000. The "PFLSH" flag, bit 23 + * of the read-only SIM_FCFG2 register, determines whether the second + * half of the flash is also Program Flash or FlexNVM+FlexRAM. When + * PFLSH is set, the second from the first half. When PFLSH is clear, + * the second half of flash is FlexNVM and always starts at address + * 0x10000000. FlexRAM, which is also present when PFLSH is clear, + * always starts at address 0x14000000. * * The Flash Memory Module provides a register set where flash * commands are loaded to perform flash operations like erase and * program. Different commands are available depending on whether * Program Flash or FlexNVM/FlexRAM is being manipulated. Although * the commands used are quite consistent between flash blocks, the - * parameters they accept differ according to the flash granularity. - * Some Kinetis chips have different granularity between Program Flash - * and FlexNVM/FlexRAM, so flash command arguments may differ between - * blocks in the same chip. + * parameters they accept differ according to the flash sector size. * - * Although not documented as such by Freescale, it appears that bits - * 8:7 of the read-only SIM_SDID register reflect the granularity - * settings 0..3, so sector sizes and block counts are applicable - * according to the following table. */ -const struct { - unsigned pflash_sector_size_bytes; - unsigned nvm_sector_size_bytes; - unsigned num_blocks; -} kinetis_flash_params[4] = { - { 1<<10, 1<<10, 2 }, - { 2<<10, 1<<10, 2 }, - { 2<<10, 2<<10, 2 }, - { 4<<10, 4<<10, 4 } -}; + +/* Addressess */ +#define FCF_ADDRESS 0x00000400 +#define FCF_FPROT 0x8 +#define FCF_FSEC 0xc +#define FCF_FOPT 0xd +#define FCF_FDPROT 0xf +#define FCF_SIZE 0x10 + +#define FLEXRAM 0x14000000 + +#define FMC_PFB01CR 0x4001f004 +#define FTFx_FSTAT 0x40020000 +#define FTFx_FCNFG 0x40020001 +#define FTFx_FCCOB3 0x40020004 +#define FTFx_FPROT3 0x40020010 +#define FTFx_FDPROT 0x40020017 +#define SIM_SDID 0x40048024 +#define SIM_SOPT1 0x40047000 +#define SIM_FCFG1 0x4004804c +#define SIM_FCFG2 0x40048050 +#define WDOG_STCTRH 0x40052000 +#define SMC_PMCTRL 0x4007E001 +#define SMC_PMSTAT 0x4007E003 +#define MCM_PLACR 0xF000300C + +/* Values */ +#define PM_STAT_RUN 0x01 +#define PM_STAT_VLPR 0x04 +#define PM_CTRL_RUNM_RUN 0x00 + +/* Commands */ +#define FTFx_CMD_BLOCKSTAT 0x00 +#define FTFx_CMD_SECTSTAT 0x01 +#define FTFx_CMD_LWORDPROG 0x06 +#define FTFx_CMD_SECTERASE 0x09 +#define FTFx_CMD_SECTWRITE 0x0b +#define FTFx_CMD_MASSERASE 0x44 +#define FTFx_CMD_PGMPART 0x80 +#define FTFx_CMD_SETFLEXRAM 0x81 + +/* The older Kinetis K series uses the following SDID layout : + * Bit 31-16 : 0 + * Bit 15-12 : REVID + * Bit 11-7 : DIEID + * Bit 6-4 : FAMID + * Bit 3-0 : PINID + * + * The newer Kinetis series uses the following SDID layout : + * Bit 31-28 : FAMID + * Bit 27-24 : SUBFAMID + * Bit 23-20 : SERIESID + * Bit 19-16 : SRAMSIZE + * Bit 15-12 : REVID + * Bit 6-4 : Reserved (0) + * Bit 3-0 : PINID + * + * We assume that if bits 31-16 are 0 then it's an older + * K-series MCU. + */ + +#define KINETIS_SOPT1_RAMSIZE_MASK 0x0000F000 +#define KINETIS_SOPT1_RAMSIZE_K24FN1M 0x0000B000 + +#define KINETIS_SDID_K_SERIES_MASK 0x0000FFFF + +#define KINETIS_SDID_DIEID_MASK 0x00000F80 + +#define KINETIS_SDID_DIEID_K22FN128 0x00000680 /* smaller pflash with FTFA */ +#define KINETIS_SDID_DIEID_K22FN256 0x00000A80 +#define KINETIS_SDID_DIEID_K22FN512 0x00000E80 +#define KINETIS_SDID_DIEID_K24FN256 0x00000700 + +#define KINETIS_SDID_DIEID_K24FN1M 0x00000300 /* Detect Errata 7534 */ + +/* We can't rely solely on the FAMID field to determine the MCU + * type since some FAMID values identify multiple MCUs with + * different flash sector sizes (K20 and K22 for instance). + * Therefore we combine it with the DIEID bits which may possibly + * break if Freescale bumps the DIEID for a particular MCU. */ +#define KINETIS_K_SDID_TYPE_MASK 0x00000FF0 +#define KINETIS_K_SDID_K10_M50 0x00000000 +#define KINETIS_K_SDID_K10_M72 0x00000080 +#define KINETIS_K_SDID_K10_M100 0x00000100 +#define KINETIS_K_SDID_K10_M120 0x00000180 +#define KINETIS_K_SDID_K11 0x00000220 +#define KINETIS_K_SDID_K12 0x00000200 +#define KINETIS_K_SDID_K20_M50 0x00000010 +#define KINETIS_K_SDID_K20_M72 0x00000090 +#define KINETIS_K_SDID_K20_M100 0x00000110 +#define KINETIS_K_SDID_K20_M120 0x00000190 +#define KINETIS_K_SDID_K21_M50 0x00000230 +#define KINETIS_K_SDID_K21_M120 0x00000330 +#define KINETIS_K_SDID_K22_M50 0x00000210 +#define KINETIS_K_SDID_K22_M120 0x00000310 +#define KINETIS_K_SDID_K30_M72 0x000000A0 +#define KINETIS_K_SDID_K30_M100 0x00000120 +#define KINETIS_K_SDID_K40_M72 0x000000B0 +#define KINETIS_K_SDID_K40_M100 0x00000130 +#define KINETIS_K_SDID_K50_M72 0x000000E0 +#define KINETIS_K_SDID_K51_M72 0x000000F0 +#define KINETIS_K_SDID_K53 0x00000170 +#define KINETIS_K_SDID_K60_M100 0x00000140 +#define KINETIS_K_SDID_K60_M150 0x000001C0 +#define KINETIS_K_SDID_K70_M150 0x000001D0 + +#define KINETIS_SDID_SERIESID_MASK 0x00F00000 +#define KINETIS_SDID_SERIESID_K 0x00000000 +#define KINETIS_SDID_SERIESID_KL 0x00100000 +#define KINETIS_SDID_SERIESID_KW 0x00500000 +#define KINETIS_SDID_SERIESID_KV 0x00600000 + +#define KINETIS_SDID_SUBFAMID_MASK 0x0F000000 +#define KINETIS_SDID_SUBFAMID_KX0 0x00000000 +#define KINETIS_SDID_SUBFAMID_KX1 0x01000000 +#define KINETIS_SDID_SUBFAMID_KX2 0x02000000 +#define KINETIS_SDID_SUBFAMID_KX3 0x03000000 +#define KINETIS_SDID_SUBFAMID_KX4 0x04000000 +#define KINETIS_SDID_SUBFAMID_KX5 0x05000000 +#define KINETIS_SDID_SUBFAMID_KX6 0x06000000 + +#define KINETIS_SDID_FAMILYID_MASK 0xF0000000 +#define KINETIS_SDID_FAMILYID_K0X 0x00000000 +#define KINETIS_SDID_FAMILYID_K1X 0x10000000 +#define KINETIS_SDID_FAMILYID_K2X 0x20000000 +#define KINETIS_SDID_FAMILYID_K3X 0x30000000 +#define KINETIS_SDID_FAMILYID_K4X 0x40000000 +#define KINETIS_SDID_FAMILYID_K6X 0x60000000 +#define KINETIS_SDID_FAMILYID_K7X 0x70000000 struct kinetis_flash_bank { - unsigned granularity; - unsigned bank_ordinal; + bool probed; uint32_t sector_size; + uint32_t max_flash_prog_size; uint32_t protection_size; + uint32_t prog_base; /* base address for FTFx operations */ + /* same as bank->base for pflash, differs for FlexNVM */ + uint32_t protection_block; /* number of first protection block in this bank */ uint32_t sim_sdid; uint32_t sim_fcfg1; @@ -111,8 +227,493 @@ struct kinetis_flash_bank { FC_FLEX_NVM, FC_FLEX_RAM, } flash_class; + + enum { + FS_PROGRAM_SECTOR = 1, + FS_PROGRAM_LONGWORD = 2, + FS_PROGRAM_PHRASE = 4, /* Unsupported */ + FS_INVALIDATE_CACHE_K = 8, + FS_INVALIDATE_CACHE_L = 0x10, + } flash_support; }; +#define MDM_AP 1 + +#define MDM_REG_STAT 0x00 +#define MDM_REG_CTRL 0x04 +#define MDM_REG_ID 0xfc + +#define MDM_STAT_FMEACK (1<<0) +#define MDM_STAT_FREADY (1<<1) +#define MDM_STAT_SYSSEC (1<<2) +#define MDM_STAT_SYSRES (1<<3) +#define MDM_STAT_FMEEN (1<<5) +#define MDM_STAT_BACKDOOREN (1<<6) +#define MDM_STAT_LPEN (1<<7) +#define MDM_STAT_VLPEN (1<<8) +#define MDM_STAT_LLSMODEXIT (1<<9) +#define MDM_STAT_VLLSXMODEXIT (1<<10) +#define MDM_STAT_CORE_HALTED (1<<16) +#define MDM_STAT_CORE_SLEEPDEEP (1<<17) +#define MDM_STAT_CORESLEEPING (1<<18) + +#define MDM_CTRL_FMEIP (1<<0) +#define MDM_CTRL_DBG_DIS (1<<1) +#define MDM_CTRL_DBG_REQ (1<<2) +#define MDM_CTRL_SYS_RES_REQ (1<<3) +#define MDM_CTRL_CORE_HOLD_RES (1<<4) +#define MDM_CTRL_VLLSX_DBG_REQ (1<<5) +#define MDM_CTRL_VLLSX_DBG_ACK (1<<6) +#define MDM_CTRL_VLLSX_STAT_ACK (1<<7) + +#define MDM_ACCESS_TIMEOUT 500 /* msec */ + + +static bool allow_fcf_writes; +static uint8_t fcf_fopt = 0xff; + + +struct flash_driver kinetis_flash; +static int kinetis_write_inner(struct flash_bank *bank, const uint8_t *buffer, + uint32_t offset, uint32_t count); +static int kinetis_auto_probe(struct flash_bank *bank); + + +static int kinetis_mdm_write_register(struct adiv5_dap *dap, unsigned reg, uint32_t value) +{ + int retval; + LOG_DEBUG("MDM_REG[0x%02x] <- %08" PRIX32, reg, value); + + retval = dap_queue_ap_write(dap_ap(dap, MDM_AP), reg, value); + if (retval != ERROR_OK) { + LOG_DEBUG("MDM: failed to queue a write request"); + return retval; + } + + retval = dap_run(dap); + if (retval != ERROR_OK) { + LOG_DEBUG("MDM: dap_run failed"); + return retval; + } + + + return ERROR_OK; +} + +static int kinetis_mdm_read_register(struct adiv5_dap *dap, unsigned reg, uint32_t *result) +{ + int retval; + + retval = dap_queue_ap_read(dap_ap(dap, MDM_AP), reg, result); + if (retval != ERROR_OK) { + LOG_DEBUG("MDM: failed to queue a read request"); + return retval; + } + + retval = dap_run(dap); + if (retval != ERROR_OK) { + LOG_DEBUG("MDM: dap_run failed"); + return retval; + } + + LOG_DEBUG("MDM_REG[0x%02x]: %08" PRIX32, reg, *result); + return ERROR_OK; +} + +static int kinetis_mdm_poll_register(struct adiv5_dap *dap, unsigned reg, + uint32_t mask, uint32_t value, uint32_t timeout_ms) +{ + uint32_t val; + int retval; + int64_t ms_timeout = timeval_ms() + timeout_ms; + + do { + retval = kinetis_mdm_read_register(dap, reg, &val); + if (retval != ERROR_OK || (val & mask) == value) + return retval; + + alive_sleep(1); + } while (timeval_ms() < ms_timeout); + + LOG_DEBUG("MDM: polling timed out"); + return ERROR_FAIL; +} + +/* + * This command can be used to break a watchdog reset loop when + * connecting to an unsecured target. Unlike other commands, halt will + * automatically retry as it does not know how far into the boot process + * it is when the command is called. + */ +COMMAND_HANDLER(kinetis_mdm_halt) +{ + struct target *target = get_current_target(CMD_CTX); + struct cortex_m_common *cortex_m = target_to_cm(target); + struct adiv5_dap *dap = cortex_m->armv7m.arm.dap; + int retval; + int tries = 0; + uint32_t stat; + int64_t ms_timeout = timeval_ms() + MDM_ACCESS_TIMEOUT; + + if (!dap) { + LOG_ERROR("Cannot perform halt with a high-level adapter"); + return ERROR_FAIL; + } + + while (true) { + tries++; + + kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_CORE_HOLD_RES); + + alive_sleep(1); + + retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &stat); + if (retval != ERROR_OK) { + LOG_DEBUG("MDM: failed to read MDM_REG_STAT"); + continue; + } + + /* Repeat setting MDM_CTRL_CORE_HOLD_RES until system is out of + * reset with flash ready and without security + */ + if ((stat & (MDM_STAT_FREADY | MDM_STAT_SYSSEC | MDM_STAT_SYSRES)) + == (MDM_STAT_FREADY | MDM_STAT_SYSRES)) + break; + + if (timeval_ms() >= ms_timeout) { + LOG_ERROR("MDM: halt timed out"); + return ERROR_FAIL; + } + } + + LOG_DEBUG("MDM: halt succeded after %d attempts.", tries); + + target_poll(target); + /* enable polling in case kinetis_check_flash_security_status disabled it */ + jtag_poll_set_enabled(true); + + alive_sleep(100); + + target->reset_halt = true; + target->type->assert_reset(target); + + retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0); + if (retval != ERROR_OK) { + LOG_ERROR("MDM: failed to clear MDM_REG_CTRL"); + return retval; + } + + target->type->deassert_reset(target); + + return ERROR_OK; +} + +COMMAND_HANDLER(kinetis_mdm_reset) +{ + struct target *target = get_current_target(CMD_CTX); + struct cortex_m_common *cortex_m = target_to_cm(target); + struct adiv5_dap *dap = cortex_m->armv7m.arm.dap; + int retval; + + if (!dap) { + LOG_ERROR("Cannot perform reset with a high-level adapter"); + return ERROR_FAIL; + } + + retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ); + if (retval != ERROR_OK) { + LOG_ERROR("MDM: failed to write MDM_REG_CTRL"); + return retval; + } + + retval = kinetis_mdm_poll_register(dap, MDM_REG_STAT, MDM_STAT_SYSRES, 0, 500); + if (retval != ERROR_OK) { + LOG_ERROR("MDM: failed to assert reset"); + return retval; + } + + retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0); + if (retval != ERROR_OK) { + LOG_ERROR("MDM: failed to clear MDM_REG_CTRL"); + return retval; + } + + return ERROR_OK; +} + +/* + * This function implements the procedure to mass erase the flash via + * SWD/JTAG on Kinetis K and L series of devices as it is described in + * AN4835 "Production Flash Programming Best Practices for Kinetis K- + * and L-series MCUs" Section 4.2.1. To prevent a watchdog reset loop, + * the core remains halted after this function completes as suggested + * by the application note. + */ +COMMAND_HANDLER(kinetis_mdm_mass_erase) +{ + struct target *target = get_current_target(CMD_CTX); + struct cortex_m_common *cortex_m = target_to_cm(target); + struct adiv5_dap *dap = cortex_m->armv7m.arm.dap; + + if (!dap) { + LOG_ERROR("Cannot perform mass erase with a high-level adapter"); + return ERROR_FAIL; + } + + int retval; + + /* + * ... Power on the processor, or if power has already been + * applied, assert the RESET pin to reset the processor. For + * devices that do not have a RESET pin, write the System + * Reset Request bit in the MDM-AP control register after + * establishing communication... + */ + + /* assert SRST if configured */ + bool has_srst = jtag_get_reset_config() & RESET_HAS_SRST; + if (has_srst) + adapter_assert_reset(); + + retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ); + if (retval != ERROR_OK && !has_srst) { + LOG_ERROR("MDM: failed to assert reset"); + goto deassert_reset_and_exit; + } + + /* + * ... Read the MDM-AP status register repeatedly and wait for + * stable conditions suitable for mass erase: + * - mass erase is enabled + * - flash is ready + * - reset is finished + * + * Mass erase is started as soon as all conditions are met in 32 + * subsequent status reads. + * + * In case of not stable conditions (RESET/WDOG loop in secured device) + * the user is asked for manual pressing of RESET button + * as a last resort. + */ + int cnt_mass_erase_disabled = 0; + int cnt_ready = 0; + int64_t ms_start = timeval_ms(); + bool man_reset_requested = false; + + do { + uint32_t stat = 0; + int64_t ms_elapsed = timeval_ms() - ms_start; + + if (!man_reset_requested && ms_elapsed > 100) { + LOG_INFO("MDM: Press RESET button now if possible."); + man_reset_requested = true; + } + + if (ms_elapsed > 3000) { + LOG_ERROR("MDM: waiting for mass erase conditions timed out."); + LOG_INFO("Mass erase of a secured MCU is not possible without hardware reset."); + LOG_INFO("Connect SRST, use 'reset_config srst_only' and retry."); + goto deassert_reset_and_exit; + } + retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &stat); + if (retval != ERROR_OK) { + cnt_ready = 0; + continue; + } + + if (!(stat & MDM_STAT_FMEEN)) { + cnt_ready = 0; + cnt_mass_erase_disabled++; + if (cnt_mass_erase_disabled > 10) { + LOG_ERROR("MDM: mass erase is disabled"); + goto deassert_reset_and_exit; + } + continue; + } + + if ((stat & (MDM_STAT_FREADY | MDM_STAT_SYSRES)) == MDM_STAT_FREADY) + cnt_ready++; + else + cnt_ready = 0; + + } while (cnt_ready < 32); + + /* + * ... Write the MDM-AP control register to set the Flash Mass + * Erase in Progress bit. This will start the mass erase + * process... + */ + retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ | MDM_CTRL_FMEIP); + if (retval != ERROR_OK) { + LOG_ERROR("MDM: failed to start mass erase"); + goto deassert_reset_and_exit; + } + + /* + * ... Read the MDM-AP control register until the Flash Mass + * Erase in Progress bit clears... + * Data sheed defines erase time <3.6 sec/512kB flash block. + * The biggest device has 4 pflash blocks => timeout 16 sec. + */ + retval = kinetis_mdm_poll_register(dap, MDM_REG_CTRL, MDM_CTRL_FMEIP, 0, 16000); + if (retval != ERROR_OK) { + LOG_ERROR("MDM: mass erase timeout"); + goto deassert_reset_and_exit; + } + + target_poll(target); + /* enable polling in case kinetis_check_flash_security_status disabled it */ + jtag_poll_set_enabled(true); + + alive_sleep(100); + + target->reset_halt = true; + target->type->assert_reset(target); + + /* + * ... Negate the RESET signal or clear the System Reset Request + * bit in the MDM-AP control register. + */ + retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0); + if (retval != ERROR_OK) + LOG_ERROR("MDM: failed to clear MDM_REG_CTRL"); + + target->type->deassert_reset(target); + + return retval; + +deassert_reset_and_exit: + kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0); + if (has_srst) + adapter_deassert_reset(); + return retval; +} + +static const uint32_t kinetis_known_mdm_ids[] = { + 0x001C0000, /* Kinetis-K Series */ + 0x001C0020, /* Kinetis-L/M/V/E Series */ +}; + +/* + * This function implements the procedure to connect to + * SWD/JTAG on Kinetis K and L series of devices as it is described in + * AN4835 "Production Flash Programming Best Practices for Kinetis K- + * and L-series MCUs" Section 4.1.1 + */ +COMMAND_HANDLER(kinetis_check_flash_security_status) +{ + struct target *target = get_current_target(CMD_CTX); + struct cortex_m_common *cortex_m = target_to_cm(target); + struct adiv5_dap *dap = cortex_m->armv7m.arm.dap; + + if (!dap) { + LOG_WARNING("Cannot check flash security status with a high-level adapter"); + return ERROR_OK; + } + + if (!dap->ops) + return ERROR_OK; /* too early to check, in JTAG mode ops may not be initialised */ + + uint32_t val; + int retval; + + /* + * ... The MDM-AP ID register can be read to verify that the + * connection is working correctly... + */ + retval = kinetis_mdm_read_register(dap, MDM_REG_ID, &val); + if (retval != ERROR_OK) { + LOG_ERROR("MDM: failed to read ID register"); + return ERROR_OK; + } + + if (val == 0) + return ERROR_OK; /* dap not yet initialised */ + + bool found = false; + for (size_t i = 0; i < ARRAY_SIZE(kinetis_known_mdm_ids); i++) { + if (val == kinetis_known_mdm_ids[i]) { + found = true; + break; + } + } + + if (!found) + LOG_WARNING("MDM: unknown ID %08" PRIX32, val); + + /* + * ... Read the System Security bit to determine if security is enabled. + * If System Security = 0, then proceed. If System Security = 1, then + * communication with the internals of the processor, including the + * flash, will not be possible without issuing a mass erase command or + * unsecuring the part through other means (backdoor key unlock)... + */ + retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &val); + if (retval != ERROR_OK) { + LOG_ERROR("MDM: failed to read MDM_REG_STAT"); + return ERROR_OK; + } + + /* + * System Security bit is also active for short time during reset. + * If a MCU has blank flash and runs in RESET/WDOG loop, + * System Security bit is active most of time! + * We should observe Flash Ready bit and read status several times + * to avoid false detection of secured MCU + */ + int secured_score = 0, flash_not_ready_score = 0; + + if ((val & (MDM_STAT_SYSSEC | MDM_STAT_FREADY)) != MDM_STAT_FREADY) { + uint32_t stats[32]; + int i; + + for (i = 0; i < 32; i++) { + stats[i] = MDM_STAT_FREADY; + dap_queue_ap_read(dap_ap(dap, MDM_AP), MDM_REG_STAT, &stats[i]); + } + retval = dap_run(dap); + if (retval != ERROR_OK) { + LOG_DEBUG("MDM: dap_run failed when validating secured state"); + return ERROR_OK; + } + for (i = 0; i < 32; i++) { + if (stats[i] & MDM_STAT_SYSSEC) + secured_score++; + if (!(stats[i] & MDM_STAT_FREADY)) + flash_not_ready_score++; + } + } + + if (flash_not_ready_score <= 8 && secured_score > 24) { + jtag_poll_set_enabled(false); + + LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********"); + LOG_WARNING("**** ****"); + LOG_WARNING("**** Your Kinetis MCU is in secured state, which means that, ****"); + LOG_WARNING("**** with exception for very basic communication, JTAG/SWD ****"); + LOG_WARNING("**** interface will NOT work. In order to restore its ****"); + LOG_WARNING("**** functionality please issue 'kinetis mdm mass_erase' ****"); + LOG_WARNING("**** command, power cycle the MCU and restart OpenOCD. ****"); + LOG_WARNING("**** ****"); + LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********"); + + } else if (flash_not_ready_score > 24) { + jtag_poll_set_enabled(false); + LOG_WARNING("**** Your Kinetis MCU is probably locked-up in RESET/WDOG loop. ****"); + LOG_WARNING("**** Common reason is a blank flash (at least a reset vector). ****"); + LOG_WARNING("**** Issue 'kinetis mdm halt' command or if SRST is connected ****"); + LOG_WARNING("**** and configured, use 'reset halt' ****"); + LOG_WARNING("**** If MCU cannot be halted, it is likely secured and running ****"); + LOG_WARNING("**** in RESET/WDOG loop. Issue 'kinetis mdm mass_erase' ****"); + + } else { + LOG_INFO("MDM: Chip is unsecured. Continuing."); + jtag_poll_set_enabled(true); + } + + return ERROR_OK; +} + FLASH_BANK_COMMAND_HANDLER(kinetis_flash_bank_command) { struct kinetis_flash_bank *bank_info; @@ -131,147 +732,479 @@ FLASH_BANK_COMMAND_HANDLER(kinetis_flash_bank_command) return ERROR_OK; } -static int kinetis_protect(struct flash_bank *bank, int set, int first, - int last) +/* Disable the watchdog on Kinetis devices */ +int kinetis_disable_wdog(struct target *target, uint32_t sim_sdid) { - LOG_WARNING("kinetis_protect not supported yet"); - /* FIXME: TODO */ + struct working_area *wdog_algorithm; + struct armv7m_algorithm armv7m_info; + uint16_t wdog; + int retval; - if (bank->target->state != TARGET_HALTED) { + static const uint8_t kinetis_unlock_wdog_code[] = { +#include "../../../contrib/loaders/watchdog/armv7m_kinetis_wdog.inc" + }; + + /* Decide whether the connected device needs watchdog disabling. + * Disable for all Kx and KVx devices, return if it is a KLx */ + + if ((sim_sdid & KINETIS_SDID_SERIESID_MASK) == KINETIS_SDID_SERIESID_KL) + return ERROR_OK; + + /* The connected device requires watchdog disabling. */ + retval = target_read_u16(target, WDOG_STCTRH, &wdog); + if (retval != ERROR_OK) + return retval; + + if ((wdog & 0x1) == 0) { + /* watchdog already disabled */ + return ERROR_OK; + } + LOG_INFO("Disabling Kinetis watchdog (initial WDOG_STCTRLH = 0x%x)", wdog); + + if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } - return ERROR_FLASH_BANK_INVALID; + retval = target_alloc_working_area(target, sizeof(kinetis_unlock_wdog_code), &wdog_algorithm); + if (retval != ERROR_OK) + return retval; + + retval = target_write_buffer(target, wdog_algorithm->address, + sizeof(kinetis_unlock_wdog_code), (uint8_t *)kinetis_unlock_wdog_code); + if (retval != ERROR_OK) { + target_free_working_area(target, wdog_algorithm); + return retval; + } + + armv7m_info.common_magic = ARMV7M_COMMON_MAGIC; + armv7m_info.core_mode = ARM_MODE_THREAD; + + retval = target_run_algorithm(target, 0, NULL, 0, NULL, wdog_algorithm->address, + wdog_algorithm->address + (sizeof(kinetis_unlock_wdog_code) - 2), + 10000, &armv7m_info); + + if (retval != ERROR_OK) + LOG_ERROR("error executing kinetis wdog unlock algorithm"); + + retval = target_read_u16(target, WDOG_STCTRH, &wdog); + if (retval != ERROR_OK) + return retval; + LOG_INFO("WDOG_STCTRLH = 0x%x", wdog); + + target_free_working_area(target, wdog_algorithm); + + return retval; } -static int kinetis_protect_check(struct flash_bank *bank) +COMMAND_HANDLER(kinetis_disable_wdog_handler) { - struct kinetis_flash_bank *kinfo = bank->driver_priv; + int result; + uint32_t sim_sdid; + struct target *target = get_current_target(CMD_CTX); - if (bank->target->state != TARGET_HALTED) { - LOG_ERROR("Target not halted"); - return ERROR_TARGET_NOT_HALTED; + if (CMD_ARGC > 0) + return ERROR_COMMAND_SYNTAX_ERROR; + + result = target_read_u32(target, SIM_SDID, &sim_sdid); + if (result != ERROR_OK) { + LOG_ERROR("Failed to read SIMSDID"); + return result; } - if (kinfo->flash_class == FC_PFLASH) { - int result; - uint8_t buffer[4]; - uint32_t fprot, psec; - int i, b; + result = kinetis_disable_wdog(target, sim_sdid); + return result; +} + + +static int kinetis_ftfx_decode_error(uint8_t fstat) +{ + if (fstat & 0x20) { + LOG_ERROR("Flash operation failed, illegal command"); + return ERROR_FLASH_OPER_UNSUPPORTED; - /* read protection register FTFx_FPROT */ - result = target_read_memory(bank->target, 0x40020010, 1, 4, buffer); + } else if (fstat & 0x10) + LOG_ERROR("Flash operation failed, protection violated"); + else if (fstat & 0x40) + LOG_ERROR("Flash operation failed, read collision"); + + else if (fstat & 0x80) + return ERROR_OK; + + else + LOG_ERROR("Flash operation timed out"); + + return ERROR_FLASH_OPERATION_FAILED; +} + + +static int kinetis_ftfx_prepare(struct target *target) +{ + int result, i; + uint8_t fstat; + + /* wait until busy */ + for (i = 0; i < 50; i++) { + result = target_read_u8(target, FTFx_FSTAT, &fstat); if (result != ERROR_OK) return result; - fprot = target_buffer_get_u32(bank->target, buffer); + if (fstat & 0x80) + break; + } - /* - * Every bit protects 1/32 of the full flash (not necessarily - * just this bank), but we enforce the bank ordinals for - * PFlash to start at zero. - */ - b = kinfo->bank_ordinal * (bank->size / kinfo->protection_size); - for (psec = 0, i = 0; i < bank->num_sectors; i++) { - if ((fprot >> b) & 1) - bank->sectors[i].is_protected = 0; - else - bank->sectors[i].is_protected = 1; + if ((fstat & 0x80) == 0) { + LOG_ERROR("Flash controller is busy"); + return ERROR_FLASH_OPERATION_FAILED; + } + if (fstat != 0x80) { + /* reset error flags */ + result = target_write_u8(target, FTFx_FSTAT, 0x70); + } + return result; +} - psec += bank->sectors[i].size; +/* Kinetis Program-LongWord Microcodes */ +static const uint8_t kinetis_flash_write_code[] = { +#include "../../../contrib/loaders/flash/kinetis/kinetis_flash.inc" +}; - if (psec >= kinfo->protection_size) { - psec = 0; - b++; - } +/* Program LongWord Block Write */ +static int kinetis_write_block(struct flash_bank *bank, const uint8_t *buffer, + uint32_t offset, uint32_t wcount) +{ + struct target *target = bank->target; + uint32_t buffer_size = 2048; /* Default minimum value */ + struct working_area *write_algorithm; + struct working_area *source; + struct kinetis_flash_bank *kinfo = bank->driver_priv; + uint32_t address = kinfo->prog_base + offset; + uint32_t end_address; + struct reg_param reg_params[5]; + struct armv7m_algorithm armv7m_info; + int retval; + uint8_t fstat; + + /* Increase buffer_size if needed */ + if (buffer_size < (target->working_area_size/2)) + buffer_size = (target->working_area_size/2); + + /* allocate working area with flash programming code */ + if (target_alloc_working_area(target, sizeof(kinetis_flash_write_code), + &write_algorithm) != ERROR_OK) { + LOG_WARNING("no working area available, can't do block memory writes"); + return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; + } + + retval = target_write_buffer(target, write_algorithm->address, + sizeof(kinetis_flash_write_code), kinetis_flash_write_code); + if (retval != ERROR_OK) + return retval; + + /* memory buffer */ + while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) { + buffer_size /= 4; + if (buffer_size <= 256) { + /* free working area, write algorithm already allocated */ + target_free_working_area(target, write_algorithm); + + LOG_WARNING("No large enough working area available, can't do block memory writes"); + return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } - } else { - LOG_ERROR("Protection checks for FlexNVM not yet supported"); + } + + armv7m_info.common_magic = ARMV7M_COMMON_MAGIC; + armv7m_info.core_mode = ARM_MODE_THREAD; + + init_reg_param(®_params[0], "r0", 32, PARAM_IN_OUT); /* address */ + init_reg_param(®_params[1], "r1", 32, PARAM_OUT); /* word count */ + init_reg_param(®_params[2], "r2", 32, PARAM_OUT); + init_reg_param(®_params[3], "r3", 32, PARAM_OUT); + init_reg_param(®_params[4], "r4", 32, PARAM_OUT); + + buf_set_u32(reg_params[0].value, 0, 32, address); + buf_set_u32(reg_params[1].value, 0, 32, wcount); + buf_set_u32(reg_params[2].value, 0, 32, source->address); + buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size); + buf_set_u32(reg_params[4].value, 0, 32, FTFx_FSTAT); + + retval = target_run_flash_async_algorithm(target, buffer, wcount, 4, + 0, NULL, + 5, reg_params, + source->address, source->size, + write_algorithm->address, 0, + &armv7m_info); + + if (retval == ERROR_FLASH_OPERATION_FAILED) { + end_address = buf_get_u32(reg_params[0].value, 0, 32); + + LOG_ERROR("Error writing flash at %08" PRIx32, end_address); + + retval = target_read_u8(target, FTFx_FSTAT, &fstat); + if (retval == ERROR_OK) { + retval = kinetis_ftfx_decode_error(fstat); + + /* reset error flags */ + target_write_u8(target, FTFx_FSTAT, 0x70); + } + } else if (retval != ERROR_OK) + LOG_ERROR("Error executing kinetis Flash programming algorithm"); + + target_free_working_area(target, source); + target_free_working_area(target, write_algorithm); + + destroy_reg_param(®_params[0]); + destroy_reg_param(®_params[1]); + destroy_reg_param(®_params[2]); + destroy_reg_param(®_params[3]); + destroy_reg_param(®_params[4]); + + return retval; +} + +static int kinetis_protect(struct flash_bank *bank, int set, int first, int last) +{ + int i; + + if (allow_fcf_writes) { + LOG_ERROR("Protection setting is possible with 'kinetis fcf_source protection' only!"); + return ERROR_FAIL; + } + + if (!bank->prot_blocks || bank->num_prot_blocks == 0) { + LOG_ERROR("No protection possible for current bank!"); return ERROR_FLASH_BANK_INVALID; } + for (i = first; i < bank->num_prot_blocks && i <= last; i++) + bank->prot_blocks[i].is_protected = set; + + LOG_INFO("Protection bits will be written at the next FCF sector erase or write."); + LOG_INFO("Do not issue 'flash info' command until protection is written,"); + LOG_INFO("doing so would re-read protection status from MCU."); + return ERROR_OK; } -static int kinetis_ftfx_command(struct flash_bank *bank, uint32_t w0, - uint32_t w1, uint32_t w2, uint8_t *ftfx_fstat) +static int kinetis_protect_check(struct flash_bank *bank) { - uint8_t buffer[12]; - int result, i; + struct kinetis_flash_bank *kinfo = bank->driver_priv; + int result; + int i, b; + uint32_t fprot; - /* wait for done */ - for (i = 0; i < 50; i++) { - result = - target_read_memory(bank->target, 0x40020000, 1, 1, buffer); + if (kinfo->flash_class == FC_PFLASH) { + /* read protection register */ + result = target_read_u32(bank->target, FTFx_FPROT3, &fprot); if (result != ERROR_OK) return result; - if (buffer[0] & 0x80) - break; + /* Every bit protects 1/32 of the full flash (not necessarily just this bank) */ - buffer[0] = 0x00; - } + } else if (kinfo->flash_class == FC_FLEX_NVM) { + uint8_t fdprot; - if (buffer[0] != 0x80) { - /* reset error flags */ - buffer[0] = 0x30; - result = - target_write_memory(bank->target, 0x40020000, 1, 1, buffer); + /* read protection register */ + result = target_read_u8(bank->target, FTFx_FDPROT, &fdprot); if (result != ERROR_OK) return result; + + fprot = fdprot; + + } else { + LOG_ERROR("Protection checks for FlexRAM not supported"); + return ERROR_FLASH_BANK_INVALID; + } + + b = kinfo->protection_block; + for (i = 0; i < bank->num_prot_blocks; i++) { + if ((fprot >> b) & 1) + bank->prot_blocks[i].is_protected = 0; + else + bank->prot_blocks[i].is_protected = 1; + + b++; } - target_buffer_set_u32(bank->target, buffer, w0); - target_buffer_set_u32(bank->target, buffer + 4, w1); - target_buffer_set_u32(bank->target, buffer + 8, w2); + return ERROR_OK; +} + + +static int kinetis_fill_fcf(struct flash_bank *bank, uint8_t *fcf) +{ + uint32_t fprot = 0xffffffff; + uint8_t fsec = 0xfe; /* set MCU unsecure */ + uint8_t fdprot = 0xff; + int i; + uint32_t pflash_bit; + uint8_t dflash_bit; + struct flash_bank *bank_iter; + struct kinetis_flash_bank *kinfo; + + memset(fcf, 0xff, FCF_SIZE); + + pflash_bit = 1; + dflash_bit = 1; + + /* iterate over all kinetis banks */ + /* current bank is bank 0, it contains FCF */ + for (bank_iter = bank; bank_iter; bank_iter = bank_iter->next) { + if (bank_iter->driver != &kinetis_flash + || bank_iter->target != bank->target) + continue; + + kinetis_auto_probe(bank_iter); + + kinfo = bank->driver_priv; + if (!kinfo) + continue; + + if (kinfo->flash_class == FC_PFLASH) { + for (i = 0; i < bank_iter->num_prot_blocks; i++) { + if (bank_iter->prot_blocks[i].is_protected == 1) + fprot &= ~pflash_bit; + + pflash_bit <<= 1; + } + + } else if (kinfo->flash_class == FC_FLEX_NVM) { + for (i = 0; i < bank_iter->num_prot_blocks; i++) { + if (bank_iter->prot_blocks[i].is_protected == 1) + fdprot &= ~dflash_bit; + + dflash_bit <<= 1; + } + + } + } - result = target_write_memory(bank->target, 0x40020004, 4, 3, buffer); + target_buffer_set_u32(bank->target, fcf + FCF_FPROT, fprot); + fcf[FCF_FSEC] = fsec; + fcf[FCF_FOPT] = fcf_fopt; + fcf[FCF_FDPROT] = fdprot; + return ERROR_OK; +} +static int kinetis_ftfx_command(struct target *target, uint8_t fcmd, uint32_t faddr, + uint8_t fccob4, uint8_t fccob5, uint8_t fccob6, uint8_t fccob7, + uint8_t fccob8, uint8_t fccob9, uint8_t fccoba, uint8_t fccobb, + uint8_t *ftfx_fstat) +{ + uint8_t command[12] = {faddr & 0xff, (faddr >> 8) & 0xff, (faddr >> 16) & 0xff, fcmd, + fccob7, fccob6, fccob5, fccob4, + fccobb, fccoba, fccob9, fccob8}; + int result; + uint8_t fstat; + int64_t ms_timeout = timeval_ms() + 250; + + result = target_write_memory(target, FTFx_FCCOB3, 4, 3, command); if (result != ERROR_OK) return result; /* start command */ - buffer[0] = 0x80; - result = target_write_memory(bank->target, 0x40020000, 1, 1, buffer); + result = target_write_u8(target, FTFx_FSTAT, 0x80); if (result != ERROR_OK) return result; /* wait for done */ - for (i = 0; i < 50; i++) { - result = - target_read_memory(bank->target, 0x40020000, 1, 1, ftfx_fstat); + do { + result = target_read_u8(target, FTFx_FSTAT, &fstat); if (result != ERROR_OK) return result; - if (*ftfx_fstat & 0x80) + if (fstat & 0x80) break; - } - if ((*ftfx_fstat & 0xf0) != 0x80) { - LOG_ERROR - ("ftfx command failed FSTAT: %02X W0: %08X W1: %08X W2: %08X", - *ftfx_fstat, w0, w1, w2); + } while (timeval_ms() < ms_timeout); - return ERROR_FLASH_OPERATION_FAILED; + if (ftfx_fstat) + *ftfx_fstat = fstat; + + if ((fstat & 0xf0) != 0x80) { + LOG_DEBUG("ftfx command failed FSTAT: %02X FCCOB: %02X%02X%02X%02X %02X%02X%02X%02X %02X%02X%02X%02X", + fstat, command[3], command[2], command[1], command[0], + command[7], command[6], command[5], command[4], + command[11], command[10], command[9], command[8]); + + return kinetis_ftfx_decode_error(fstat); } return ERROR_OK; } -static int kinetis_erase(struct flash_bank *bank, int first, int last) + +static int kinetis_check_run_mode(struct target *target) { int result, i; - uint32_t w0 = 0, w1 = 0, w2 = 0; + uint8_t pmctrl, pmstat; - if (bank->target->state != TARGET_HALTED) { + if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } + result = target_read_u8(target, SMC_PMSTAT, &pmstat); + if (result != ERROR_OK) + return result; + + if (pmstat == PM_STAT_RUN) + return ERROR_OK; + + if (pmstat == PM_STAT_VLPR) { + /* It is safe to switch from VLPR to RUN mode without changing clock */ + LOG_INFO("Switching from VLPR to RUN mode."); + pmctrl = PM_CTRL_RUNM_RUN; + result = target_write_u8(target, SMC_PMCTRL, pmctrl); + if (result != ERROR_OK) + return result; + + for (i = 100; i; i--) { + result = target_read_u8(target, SMC_PMSTAT, &pmstat); + if (result != ERROR_OK) + return result; + + if (pmstat == PM_STAT_RUN) + return ERROR_OK; + } + } + + LOG_ERROR("Flash operation not possible in current run mode: SMC_PMSTAT: 0x%x", pmstat); + LOG_ERROR("Issue a 'reset init' command."); + return ERROR_TARGET_NOT_HALTED; +} + + +static void kinetis_invalidate_flash_cache(struct flash_bank *bank) +{ + struct kinetis_flash_bank *kinfo = bank->driver_priv; + + if (kinfo->flash_support & FS_INVALIDATE_CACHE_K) + target_write_u8(bank->target, FMC_PFB01CR + 2, 0xf0); + + else if (kinfo->flash_support & FS_INVALIDATE_CACHE_L) + target_write_u8(bank->target, MCM_PLACR + 1, 0x04); + + return; +} + + +static int kinetis_erase(struct flash_bank *bank, int first, int last) +{ + int result, i; + struct kinetis_flash_bank *kinfo = bank->driver_priv; + + result = kinetis_check_run_mode(bank->target); + if (result != ERROR_OK) + return result; + + /* reset error flags */ + result = kinetis_ftfx_prepare(bank->target); + if (result != ERROR_OK) + return result; + if ((first > bank->num_sectors) || (last > bank->num_sectors)) return ERROR_FLASH_OPERATION_FAILED; @@ -281,11 +1214,9 @@ static int kinetis_erase(struct flash_bank *bank, int first, int last) * block. Should be quicker. */ for (i = first; i <= last; i++) { - uint8_t ftfx_fstat; /* set command and sector address */ - w0 = (0x09 << 24) | (bank->base + bank->sectors[i].offset); - - result = kinetis_ftfx_command(bank, w0, w1, w2, &ftfx_fstat); + result = kinetis_ftfx_command(bank->target, FTFx_CMD_SECTERASE, kinfo->prog_base + bank->sectors[i].offset, + 0, 0, 0, 0, 0, 0, 0, 0, NULL); if (result != ERROR_OK) { LOG_WARNING("erase sector %d failed", i); @@ -293,166 +1224,569 @@ static int kinetis_erase(struct flash_bank *bank, int first, int last) } bank->sectors[i].is_erased = 1; - } - if (first == 0) { - LOG_WARNING - ("flash configuration field erased, please reset the device"); + if (bank->base == 0 + && bank->sectors[i].offset <= FCF_ADDRESS + && bank->sectors[i].offset + bank->sectors[i].size > FCF_ADDRESS + FCF_SIZE) { + if (allow_fcf_writes) { + LOG_WARNING("Flash Configuration Field erased, DO NOT reset or power off the device"); + LOG_WARNING("until correct FCF is programmed or MCU gets security lock."); + } else { + uint8_t fcf_buffer[FCF_SIZE]; + + kinetis_fill_fcf(bank, fcf_buffer); + result = kinetis_write_inner(bank, fcf_buffer, FCF_ADDRESS, FCF_SIZE); + if (result != ERROR_OK) + LOG_WARNING("Flash Configuration Field write failed"); + bank->sectors[i].is_erased = 0; + } + } } + kinetis_invalidate_flash_cache(bank); + return ERROR_OK; } -static int kinetis_write(struct flash_bank *bank, uint8_t *buffer, +static int kinetis_make_ram_ready(struct target *target) +{ + int result; + uint8_t ftfx_fcnfg; + + /* check if ram ready */ + result = target_read_u8(target, FTFx_FCNFG, &ftfx_fcnfg); + if (result != ERROR_OK) + return result; + + if (ftfx_fcnfg & (1 << 1)) + return ERROR_OK; /* ram ready */ + + /* make flex ram available */ + result = kinetis_ftfx_command(target, FTFx_CMD_SETFLEXRAM, 0x00ff0000, + 0, 0, 0, 0, 0, 0, 0, 0, NULL); + if (result != ERROR_OK) + return ERROR_FLASH_OPERATION_FAILED; + + /* check again */ + result = target_read_u8(target, FTFx_FCNFG, &ftfx_fcnfg); + if (result != ERROR_OK) + return result; + + if (ftfx_fcnfg & (1 << 1)) + return ERROR_OK; /* ram ready */ + + return ERROR_FLASH_OPERATION_FAILED; +} + + +static int kinetis_write_sections(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count) { - unsigned int i, result, fallback = 0; - uint8_t buf[8]; - uint32_t wc, w0 = 0, w1 = 0, w2 = 0; + int result = ERROR_OK; struct kinetis_flash_bank *kinfo = bank->driver_priv; + uint8_t *buffer_aligned = NULL; + /* + * Kinetis uses different terms for the granularity of + * sector writes, e.g. "phrase" or "128 bits". We use + * the generic term "chunk". The largest possible + * Kinetis "chunk" is 16 bytes (128 bits). + */ + uint32_t prog_section_chunk_bytes = kinfo->sector_size >> 8; + uint32_t prog_size_bytes = kinfo->max_flash_prog_size; + + while (count > 0) { + uint32_t size = prog_size_bytes - offset % prog_size_bytes; + uint32_t align_begin = offset % prog_section_chunk_bytes; + uint32_t align_end; + uint32_t size_aligned; + uint16_t chunk_count; + uint8_t ftfx_fstat; - if (bank->target->state != TARGET_HALTED) { - LOG_ERROR("Target not halted"); - return ERROR_TARGET_NOT_HALTED; + if (size > count) + size = count; + + align_end = (align_begin + size) % prog_section_chunk_bytes; + if (align_end) + align_end = prog_section_chunk_bytes - align_end; + + size_aligned = align_begin + size + align_end; + chunk_count = size_aligned / prog_section_chunk_bytes; + + if (size != size_aligned) { + /* aligned section: the first, the last or the only */ + if (!buffer_aligned) + buffer_aligned = malloc(prog_size_bytes); + + memset(buffer_aligned, 0xff, size_aligned); + memcpy(buffer_aligned + align_begin, buffer, size); + + result = target_write_memory(bank->target, FLEXRAM, + 4, size_aligned / 4, buffer_aligned); + + LOG_DEBUG("section @ %08" PRIx32 " aligned begin %" PRIu32 ", end %" PRIu32, + bank->base + offset, align_begin, align_end); + } else + result = target_write_memory(bank->target, FLEXRAM, + 4, size_aligned / 4, buffer); + + LOG_DEBUG("write section @ %08" PRIx32 " with length %" PRIu32 " bytes", + bank->base + offset, size); + + if (result != ERROR_OK) { + LOG_ERROR("target_write_memory failed"); + break; + } + + /* execute section-write command */ + result = kinetis_ftfx_command(bank->target, FTFx_CMD_SECTWRITE, + kinfo->prog_base + offset - align_begin, + chunk_count>>8, chunk_count, 0, 0, + 0, 0, 0, 0, &ftfx_fstat); + + if (result != ERROR_OK) { + LOG_ERROR("Error writing section at %08" PRIx32, bank->base + offset); + break; + } + + if (ftfx_fstat & 0x01) + LOG_ERROR("Flash write error at %08" PRIx32, bank->base + offset); + + buffer += size; + offset += size; + count -= size; + } + + free(buffer_aligned); + return result; +} + + +static int kinetis_write_inner(struct flash_bank *bank, const uint8_t *buffer, + uint32_t offset, uint32_t count) +{ + int result, fallback = 0; + struct kinetis_flash_bank *kinfo = bank->driver_priv; + + if (!(kinfo->flash_support & FS_PROGRAM_SECTOR)) { + /* fallback to longword write */ + fallback = 1; + LOG_WARNING("This device supports Program Longword execution only."); + } else { + result = kinetis_make_ram_ready(bank->target); + if (result != ERROR_OK) { + fallback = 1; + LOG_WARNING("FlexRAM not ready, fallback to slow longword write."); + } + } + + LOG_DEBUG("flash write @08%" PRIx32, bank->base + offset); + + if (fallback == 0) { + /* program section command */ + kinetis_write_sections(bank, buffer, offset, count); } + else if (kinfo->flash_support & FS_PROGRAM_LONGWORD) { + /* program longword command, not supported in FTFE */ + uint8_t *new_buffer = NULL; + + /* check word alignment */ + if (offset & 0x3) { + LOG_ERROR("offset 0x%" PRIx32 " breaks the required alignment", offset); + return ERROR_FLASH_DST_BREAKS_ALIGNMENT; + } - if (kinfo->flash_class == FC_FLEX_NVM) { - uint8_t ftfx_fstat; + if (count & 0x3) { + uint32_t old_count = count; + count = (old_count | 3) + 1; + new_buffer = malloc(count); + if (new_buffer == NULL) { + LOG_ERROR("odd number of bytes to write and no memory " + "for padding buffer"); + return ERROR_FAIL; + } + LOG_INFO("odd number of bytes to write (%" PRIu32 "), extending to %" PRIu32 " " + "and padding with 0xff", old_count, count); + memset(new_buffer + old_count, 0xff, count - old_count); + buffer = memcpy(new_buffer, buffer, old_count); + } - LOG_DEBUG("flash write into FlexNVM @%08X", offset); + uint32_t words_remaining = count / 4; - /* make flex ram available */ - w0 = (0x81 << 24) | 0x00ff0000; + kinetis_disable_wdog(bank->target, kinfo->sim_sdid); - result = kinetis_ftfx_command(bank, w0, w1, w2, &ftfx_fstat); + /* try using a block write */ + result = kinetis_write_block(bank, buffer, offset, words_remaining); - if (result != ERROR_OK) - return ERROR_FLASH_OPERATION_FAILED; + if (result == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) { + /* if block write failed (no sufficient working area), + * we use normal (slow) single word accesses */ + LOG_WARNING("couldn't use block writes, falling back to single " + "memory accesses"); - /* check if ram ready */ - result = target_read_memory(bank->target, 0x40020001, 1, 1, buf); + while (words_remaining) { + uint8_t ftfx_fstat; - if (result != ERROR_OK) - return result; + LOG_DEBUG("write longword @ %08" PRIx32, (uint32_t)(bank->base + offset)); - if (!(buf[0] & (1 << 1))) { - /* fallback to longword write */ - fallback = 1; + result = kinetis_ftfx_command(bank->target, FTFx_CMD_LWORDPROG, kinfo->prog_base + offset, + buffer[3], buffer[2], buffer[1], buffer[0], + 0, 0, 0, 0, &ftfx_fstat); + + if (result != ERROR_OK) { + LOG_ERROR("Error writing longword at %08" PRIx32, bank->base + offset); + break; + } + + if (ftfx_fstat & 0x01) + LOG_ERROR("Flash write error at %08" PRIx32, bank->base + offset); - LOG_WARNING("ram not ready, fallback to slow longword write (FCNFG: %02X)", - buf[0]); + buffer += 4; + offset += 4; + words_remaining--; + } } + free(new_buffer); } else { - LOG_DEBUG("flash write into PFLASH @08%X", offset); + LOG_ERROR("Flash write strategy not implemented"); + return ERROR_FLASH_OPERATION_FAILED; } + kinetis_invalidate_flash_cache(bank); + return result; +} - /* program section command */ - if (fallback == 0) { - unsigned prog_section_bytes = kinfo->sector_size >> 8; - for (i = 0; i < count; i += kinfo->sector_size) { - uint8_t ftfx_fstat; - - wc = kinfo->sector_size / 4; - if ((count - i) < kinfo->sector_size) { - wc = count - i; - wc /= 4; - } +static int kinetis_write(struct flash_bank *bank, const uint8_t *buffer, + uint32_t offset, uint32_t count) +{ + int result; + bool set_fcf = false; + int sect = 0; - LOG_DEBUG("write section @ %08X with length %d", - offset + i, wc * 4); + result = kinetis_check_run_mode(bank->target); + if (result != ERROR_OK) + return result; - /* write data to flexram */ - result = - target_write_memory(bank->target, 0x14000000, 4, wc, - buffer + i); + /* reset error flags */ + result = kinetis_ftfx_prepare(bank->target); + if (result != ERROR_OK) + return result; - if (result != ERROR_OK) { - LOG_ERROR("target_write_memory failed"); + if (bank->base == 0 && !allow_fcf_writes) { + if (bank->sectors[1].offset <= FCF_ADDRESS) + sect = 1; /* 1kb sector, FCF in 2nd sector */ - return result; - } + if (offset < bank->sectors[sect].offset + bank->sectors[sect].size + && offset + count > bank->sectors[sect].offset) + set_fcf = true; /* write to any part of sector with FCF */ + } - /* execute section command */ - w0 = (0x0b << 24) | (bank->base + offset + i); - w1 = ((wc * 4 / prog_section_bytes) << 16); + if (set_fcf) { + uint8_t fcf_buffer[FCF_SIZE]; + uint8_t fcf_current[FCF_SIZE]; - result = kinetis_ftfx_command(bank, w0, w1, w2, &ftfx_fstat); + kinetis_fill_fcf(bank, fcf_buffer); + if (offset < FCF_ADDRESS) { + /* write part preceding FCF */ + result = kinetis_write_inner(bank, buffer, offset, FCF_ADDRESS - offset); if (result != ERROR_OK) - return ERROR_FLASH_OPERATION_FAILED; + return result; } - } - /* program longword command, not supported in "SF3" devices */ - else if (kinfo->granularity != 3) { - for (i = 0; i < count; i += 4) { - uint8_t ftfx_fstat; - LOG_DEBUG("write longword @ %08X", offset + i); + result = target_read_memory(bank->target, FCF_ADDRESS, 4, FCF_SIZE / 4, fcf_current); + if (result == ERROR_OK && memcmp(fcf_current, fcf_buffer, FCF_SIZE) == 0) + set_fcf = false; - w0 = (0x06 << 24) | (bank->base + offset + i); - w1 = buf_get_u32(buffer + offset + i, 0, 32); + if (set_fcf) { + /* write FCF if differs from flash - eliminate multiple writes */ + result = kinetis_write_inner(bank, fcf_buffer, FCF_ADDRESS, FCF_SIZE); + if (result != ERROR_OK) + return result; + } - result = kinetis_ftfx_command(bank, w0, w1, w2, &ftfx_fstat); + LOG_WARNING("Flash Configuration Field written."); + LOG_WARNING("Reset or power off the device to make settings effective."); - if (result != ERROR_OK) - return ERROR_FLASH_OPERATION_FAILED; + if (offset + count > FCF_ADDRESS + FCF_SIZE) { + uint32_t delta = FCF_ADDRESS + FCF_SIZE - offset; + /* write part after FCF */ + result = kinetis_write_inner(bank, buffer + delta, FCF_ADDRESS + FCF_SIZE, count - delta); } - } else { - LOG_ERROR("Flash write strategy not implemented"); - return ERROR_FLASH_OPERATION_FAILED; - } + return result; - return ERROR_OK; + } else + /* no FCF fiddling, normal write */ + return kinetis_write_inner(bank, buffer, offset, count); } -static int kinetis_read_part_info(struct flash_bank *bank) + +static int kinetis_probe(struct flash_bank *bank) { int result, i; - uint8_t buf[4]; - uint32_t offset = 0; - uint8_t fcfg1_nvmsize, fcfg1_pfsize, fcfg1_eesize, fcfg2_pflsh; - uint32_t nvm_size = 0, pf_size = 0, ee_size = 0; - unsigned granularity, num_blocks = 0, num_pflash_blocks = 0, num_nvm_blocks = 0, - first_nvm_bank = 0, reassign = 0; + uint8_t fcfg1_nvmsize, fcfg1_pfsize, fcfg1_eesize, fcfg1_depart; + uint8_t fcfg2_maxaddr0, fcfg2_pflsh, fcfg2_maxaddr1; + uint32_t nvm_size = 0, pf_size = 0, df_size = 0, ee_size = 0; + unsigned num_blocks = 0, num_pflash_blocks = 0, num_nvm_blocks = 0, first_nvm_bank = 0, + pflash_sector_size_bytes = 0, nvm_sector_size_bytes = 0; + struct target *target = bank->target; struct kinetis_flash_bank *kinfo = bank->driver_priv; - result = target_read_memory(bank->target, 0x40048024, 1, 4, buf); + kinfo->probed = false; + + result = target_read_u32(target, SIM_SDID, &kinfo->sim_sdid); if (result != ERROR_OK) return result; - kinfo->sim_sdid = target_buffer_get_u32(bank->target, buf); - granularity = (kinfo->sim_sdid >> 7) & 0x03; - result = target_read_memory(bank->target, 0x4004804c, 1, 4, buf); + + if ((kinfo->sim_sdid & (~KINETIS_SDID_K_SERIES_MASK)) == 0) { + /* older K-series MCU */ + uint32_t mcu_type = kinfo->sim_sdid & KINETIS_K_SDID_TYPE_MASK; + + switch (mcu_type) { + case KINETIS_K_SDID_K10_M50: + case KINETIS_K_SDID_K20_M50: + /* 1kB sectors */ + pflash_sector_size_bytes = 1<<10; + nvm_sector_size_bytes = 1<<10; + num_blocks = 2; + kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE_K; + break; + case KINETIS_K_SDID_K10_M72: + case KINETIS_K_SDID_K20_M72: + case KINETIS_K_SDID_K30_M72: + case KINETIS_K_SDID_K30_M100: + case KINETIS_K_SDID_K40_M72: + case KINETIS_K_SDID_K40_M100: + case KINETIS_K_SDID_K50_M72: + /* 2kB sectors, 1kB FlexNVM sectors */ + pflash_sector_size_bytes = 2<<10; + nvm_sector_size_bytes = 1<<10; + num_blocks = 2; + kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE_K; + kinfo->max_flash_prog_size = 1<<10; + break; + case KINETIS_K_SDID_K10_M100: + case KINETIS_K_SDID_K20_M100: + case KINETIS_K_SDID_K11: + case KINETIS_K_SDID_K12: + case KINETIS_K_SDID_K21_M50: + case KINETIS_K_SDID_K22_M50: + case KINETIS_K_SDID_K51_M72: + case KINETIS_K_SDID_K53: + case KINETIS_K_SDID_K60_M100: + /* 2kB sectors */ + pflash_sector_size_bytes = 2<<10; + nvm_sector_size_bytes = 2<<10; + num_blocks = 2; + kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE_K; + break; + case KINETIS_K_SDID_K21_M120: + case KINETIS_K_SDID_K22_M120: + /* 4kB sectors (MK21FN1M0, MK21FX512, MK22FN1M0, MK22FX512) */ + pflash_sector_size_bytes = 4<<10; + kinfo->max_flash_prog_size = 1<<10; + nvm_sector_size_bytes = 4<<10; + num_blocks = 2; + kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE_K; + break; + case KINETIS_K_SDID_K10_M120: + case KINETIS_K_SDID_K20_M120: + case KINETIS_K_SDID_K60_M150: + case KINETIS_K_SDID_K70_M150: + /* 4kB sectors */ + pflash_sector_size_bytes = 4<<10; + nvm_sector_size_bytes = 4<<10; + num_blocks = 4; + kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE_K; + break; + default: + LOG_ERROR("Unsupported K-family FAMID"); + } + } else { + /* Newer K-series or KL series MCU */ + switch (kinfo->sim_sdid & KINETIS_SDID_SERIESID_MASK) { + case KINETIS_SDID_SERIESID_K: + switch (kinfo->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) { + case KINETIS_SDID_FAMILYID_K0X | KINETIS_SDID_SUBFAMID_KX2: + /* K02FN64, K02FN128: FTFA, 2kB sectors */ + pflash_sector_size_bytes = 2<<10; + num_blocks = 1; + kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE_K; + break; + + case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX2: { + /* MK24FN1M reports as K22, this should detect it (according to errata note 1N83J) */ + uint32_t sopt1; + result = target_read_u32(target, SIM_SOPT1, &sopt1); + if (result != ERROR_OK) + return result; + + if (((kinfo->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN1M) && + ((sopt1 & KINETIS_SOPT1_RAMSIZE_MASK) == KINETIS_SOPT1_RAMSIZE_K24FN1M)) { + /* MK24FN1M */ + pflash_sector_size_bytes = 4<<10; + num_blocks = 2; + kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE_K; + kinfo->max_flash_prog_size = 1<<10; + break; + } + if ((kinfo->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN128 + || (kinfo->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN256 + || (kinfo->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN512) { + /* K22 with new-style SDID - smaller pflash with FTFA, 2kB sectors */ + pflash_sector_size_bytes = 2<<10; + /* autodetect 1 or 2 blocks */ + kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE_K; + break; + } + LOG_ERROR("Unsupported Kinetis K22 DIEID"); + break; + } + case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX4: + pflash_sector_size_bytes = 4<<10; + if ((kinfo->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN256) { + /* K24FN256 - smaller pflash with FTFA */ + num_blocks = 1; + kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE_K; + break; + } + /* K24FN1M without errata 7534 */ + num_blocks = 2; + kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE_K; + kinfo->max_flash_prog_size = 1<<10; + break; + + case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX3: + case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX1: /* errata 7534 - should be K63 */ + /* K63FN1M0 */ + case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX4: + case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX2: /* errata 7534 - should be K64 */ + /* K64FN1M0, K64FX512 */ + pflash_sector_size_bytes = 4<<10; + nvm_sector_size_bytes = 4<<10; + kinfo->max_flash_prog_size = 1<<10; + num_blocks = 2; + kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE_K; + break; + + case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX6: + /* K26FN2M0 */ + case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX6: + /* K66FN2M0, K66FX1M0 */ + pflash_sector_size_bytes = 4<<10; + nvm_sector_size_bytes = 4<<10; + kinfo->max_flash_prog_size = 1<<10; + num_blocks = 4; + kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE_K; + break; + default: + LOG_ERROR("Unsupported Kinetis FAMILYID SUBFAMID"); + } + break; + + case KINETIS_SDID_SERIESID_KL: + /* KL-series */ + pflash_sector_size_bytes = 1<<10; + nvm_sector_size_bytes = 1<<10; + /* autodetect 1 or 2 blocks */ + kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE_L; + break; + + case KINETIS_SDID_SERIESID_KV: + /* KV-series */ + switch (kinfo->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) { + case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX0: + /* KV10: FTFA, 1kB sectors */ + pflash_sector_size_bytes = 1<<10; + num_blocks = 1; + kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE_L; + break; + + case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX1: + /* KV11: FTFA, 2kB sectors */ + pflash_sector_size_bytes = 2<<10; + num_blocks = 1; + kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE_L; + break; + + case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX0: + /* KV30: FTFA, 2kB sectors, 1 block */ + case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX1: + /* KV31: FTFA, 2kB sectors, 2 blocks */ + pflash_sector_size_bytes = 2<<10; + /* autodetect 1 or 2 blocks */ + kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE_K; + break; + + case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX2: + case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX4: + case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX6: + /* KV4x: FTFA, 4kB sectors */ + pflash_sector_size_bytes = 4<<10; + num_blocks = 1; + kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE_K; + break; + + default: + LOG_ERROR("Unsupported KV FAMILYID SUBFAMID"); + } + break; + + default: + LOG_ERROR("Unsupported K-series"); + } + } + + if (pflash_sector_size_bytes == 0) { + LOG_ERROR("MCU is unsupported, SDID 0x%08" PRIx32, kinfo->sim_sdid); + return ERROR_FLASH_OPER_UNSUPPORTED; + } + + result = target_read_u32(target, SIM_FCFG1, &kinfo->sim_fcfg1); if (result != ERROR_OK) return result; - kinfo->sim_fcfg1 = target_buffer_get_u32(bank->target, buf); - result = target_read_memory(bank->target, 0x40048050, 1, 4, buf); + + result = target_read_u32(target, SIM_FCFG2, &kinfo->sim_fcfg2); if (result != ERROR_OK) return result; - kinfo->sim_fcfg2 = target_buffer_get_u32(bank->target, buf); - fcfg2_pflsh = (kinfo->sim_fcfg2 >> 23) & 0x01; - LOG_DEBUG("SDID: %08X FCFG1: %08X FCFG2: %08X", kinfo->sim_sdid, - kinfo->sim_fcfg1, kinfo->sim_fcfg2); + LOG_DEBUG("SDID: 0x%08" PRIX32 " FCFG1: 0x%08" PRIX32 " FCFG2: 0x%08" PRIX32, kinfo->sim_sdid, + kinfo->sim_fcfg1, kinfo->sim_fcfg2); fcfg1_nvmsize = (uint8_t)((kinfo->sim_fcfg1 >> 28) & 0x0f); fcfg1_pfsize = (uint8_t)((kinfo->sim_fcfg1 >> 24) & 0x0f); fcfg1_eesize = (uint8_t)((kinfo->sim_fcfg1 >> 16) & 0x0f); + fcfg1_depart = (uint8_t)((kinfo->sim_fcfg1 >> 8) & 0x0f); + + fcfg2_pflsh = (uint8_t)((kinfo->sim_fcfg2 >> 23) & 0x01); + fcfg2_maxaddr0 = (uint8_t)((kinfo->sim_fcfg2 >> 24) & 0x7f); + fcfg2_maxaddr1 = (uint8_t)((kinfo->sim_fcfg2 >> 16) & 0x7f); + + if (num_blocks == 0) + num_blocks = fcfg2_maxaddr1 ? 2 : 1; + else if (fcfg2_maxaddr1 == 0 && num_blocks >= 2) { + num_blocks = 1; + LOG_WARNING("MAXADDR1 is zero, number of flash banks adjusted to 1"); + } else if (fcfg2_maxaddr1 != 0 && num_blocks == 1) { + num_blocks = 2; + LOG_WARNING("MAXADDR1 is non zero, number of flash banks adjusted to 2"); + } /* when the PFLSH bit is set, there is no FlexNVM/FlexRAM */ if (!fcfg2_pflsh) { switch (fcfg1_nvmsize) { case 0x03: + case 0x05: case 0x07: case 0x09: case 0x0b: nvm_size = 1 << (14 + (fcfg1_nvmsize >> 1)); break; case 0x0f: - if (granularity == 3) + if (pflash_sector_size_bytes >= 4<<10) nvm_size = 512<<10; else + /* K20_100 */ nvm_size = 256<<10; break; default: @@ -477,6 +1811,30 @@ static int kinetis_read_part_info(struct flash_bank *bank) ee_size = 0; break; } + + switch (fcfg1_depart) { + case 0x01: + case 0x02: + case 0x03: + case 0x04: + case 0x05: + case 0x06: + df_size = nvm_size - (4096 << fcfg1_depart); + break; + case 0x08: + df_size = 0; + break; + case 0x09: + case 0x0a: + case 0x0b: + case 0x0c: + case 0x0d: + df_size = 4096 << (fcfg1_depart & 0x7); + break; + default: + df_size = nvm_size; + break; + } } switch (fcfg1_pfsize) { @@ -489,178 +1847,158 @@ static int kinetis_read_part_info(struct flash_bank *bank) pf_size = 1 << (14 + (fcfg1_pfsize >> 1)); break; case 0x0f: - if (granularity == 3) - pf_size = 1024<<10; - else if (fcfg2_pflsh) - pf_size = 512<<10; + /* a peculiar case: Freescale states different sizes for 0xf + * K02P64M100SFARM 128 KB ... duplicate of code 0x7 + * K22P121M120SF8RM 256 KB ... duplicate of code 0x9 + * K22P121M120SF7RM 512 KB ... duplicate of code 0xb + * K22P100M120SF5RM 1024 KB ... duplicate of code 0xd + * K26P169M180SF5RM 2048 KB ... the only unique value + * fcfg2_maxaddr0 seems to be the only clue to pf_size + * Checking fcfg2_maxaddr0 later in this routine is pointless then + */ + if (fcfg2_pflsh) + pf_size = ((uint32_t)fcfg2_maxaddr0 << 13) * num_blocks; else - pf_size = 256<<10; + pf_size = ((uint32_t)fcfg2_maxaddr0 << 13) * num_blocks / 2; + if (pf_size != 2048<<10) + LOG_WARNING("SIM_FCFG1 PFSIZE = 0xf: please check if pflash is %u KB", pf_size>>10); + break; default: pf_size = 0; break; } - LOG_DEBUG("FlexNVM: %d PFlash: %d FlexRAM: %d PFLSH: %d", + LOG_DEBUG("FlexNVM: %" PRIu32 " PFlash: %" PRIu32 " FlexRAM: %" PRIu32 " PFLSH: %d", nvm_size, pf_size, ee_size, fcfg2_pflsh); - num_blocks = kinetis_flash_params[granularity].num_blocks; num_pflash_blocks = num_blocks / (2 - fcfg2_pflsh); first_nvm_bank = num_pflash_blocks; num_nvm_blocks = num_blocks - num_pflash_blocks; LOG_DEBUG("%d blocks total: %d PFlash, %d FlexNVM", - num_blocks, num_pflash_blocks, num_nvm_blocks); - - /* - * If the flash class is already assigned, verify the - * parameters. - */ - if (kinfo->flash_class != FC_AUTO) { - if (kinfo->bank_ordinal != (unsigned) bank->bank_number) { - LOG_WARNING("Flash ordinal/bank number mismatch"); - reassign = 1; - } else if (kinfo->granularity != granularity) { - LOG_WARNING("Flash granularity mismatch"); - reassign = 1; - } else { - switch (kinfo->flash_class) { - case FC_PFLASH: - if (kinfo->bank_ordinal >= first_nvm_bank) { - LOG_WARNING("Class mismatch, bank %d is not PFlash", - bank->bank_number); - reassign = 1; - } else if (bank->size != (pf_size / num_pflash_blocks)) { - LOG_WARNING("PFlash size mismatch"); - reassign = 1; - } else if (bank->base != - (0x00000000 + bank->size * kinfo->bank_ordinal)) { - LOG_WARNING("PFlash address range mismatch"); - reassign = 1; - } else if (kinfo->sector_size != - kinetis_flash_params[granularity].pflash_sector_size_bytes) { - LOG_WARNING("PFlash sector size mismatch"); - reassign = 1; - } else { - LOG_DEBUG("PFlash bank %d already configured okay", - kinfo->bank_ordinal); - } - break; - case FC_FLEX_NVM: - if ((kinfo->bank_ordinal >= num_blocks) || - (kinfo->bank_ordinal < first_nvm_bank)) { - LOG_WARNING("Class mismatch, bank %d is not FlexNVM", - bank->bank_number); - reassign = 1; - } else if (bank->size != (nvm_size / num_nvm_blocks)) { - LOG_WARNING("FlexNVM size mismatch"); - reassign = 1; - } else if (bank->base != - (0x10000000 + bank->size * kinfo->bank_ordinal)) { - LOG_WARNING("FlexNVM address range mismatch"); - reassign = 1; - } else if (kinfo->sector_size != - kinetis_flash_params[granularity].nvm_sector_size_bytes) { - LOG_WARNING("FlexNVM sector size mismatch"); - reassign = 1; - } else { - LOG_DEBUG("FlexNVM bank %d already configured okay", - kinfo->bank_ordinal); - } - break; - case FC_FLEX_RAM: - if (kinfo->bank_ordinal != num_blocks) { - LOG_WARNING("Class mismatch, bank %d is not FlexRAM", - bank->bank_number); - reassign = 1; - } else if (bank->size != ee_size) { - LOG_WARNING("FlexRAM size mismatch"); - reassign = 1; - } else if (bank->base != 0x14000000) { - LOG_WARNING("FlexRAM address mismatch"); - reassign = 1; - } else if (kinfo->sector_size != - kinetis_flash_params[granularity].nvm_sector_size_bytes) { - LOG_WARNING("FlexRAM sector size mismatch"); - reassign = 1; - } else { - LOG_DEBUG("FlexRAM bank %d already configured okay", - kinfo->bank_ordinal); - } - default: - LOG_WARNING("Unknown or inconsistent flash class"); - reassign = 1; - break; - } - } - } else { - LOG_INFO("Probing flash info for bank %d", bank->bank_number); - reassign = 1; - } + num_blocks, num_pflash_blocks, num_nvm_blocks); - if (!reassign) - return ERROR_OK; - - kinfo->granularity = granularity; + LOG_INFO("Probing flash info for bank %d", bank->bank_number); if ((unsigned)bank->bank_number < num_pflash_blocks) { /* pflash, banks start at address zero */ kinfo->flash_class = FC_PFLASH; bank->size = (pf_size / num_pflash_blocks); bank->base = 0x00000000 + bank->size * bank->bank_number; - kinfo->sector_size = kinetis_flash_params[granularity].pflash_sector_size_bytes; - kinfo->protection_size = pf_size / 32; + kinfo->prog_base = bank->base; + kinfo->sector_size = pflash_sector_size_bytes; + /* pflash is divided into 32 protection areas for + * parts with more than 32K of PFlash. For parts with + * less the protection unit is set to 1024 bytes */ + kinfo->protection_size = MAX(pf_size / 32, 1024); + bank->num_prot_blocks = 32 / num_pflash_blocks; + kinfo->protection_block = bank->num_prot_blocks * bank->bank_number; + } else if ((unsigned)bank->bank_number < num_blocks) { /* nvm, banks start at address 0x10000000 */ + unsigned nvm_ord = bank->bank_number - first_nvm_bank; + uint32_t limit; + kinfo->flash_class = FC_FLEX_NVM; bank->size = (nvm_size / num_nvm_blocks); - bank->base = 0x10000000 + bank->size * (bank->bank_number - first_nvm_bank); - kinfo->sector_size = kinetis_flash_params[granularity].nvm_sector_size_bytes; - kinfo->protection_size = 0; /* FIXME: TODO: depends on DEPART bits, chip */ + bank->base = 0x10000000 + bank->size * nvm_ord; + kinfo->prog_base = 0x00800000 + bank->size * nvm_ord; + kinfo->sector_size = nvm_sector_size_bytes; + if (df_size == 0) { + kinfo->protection_size = 0; + } else { + for (i = df_size; ~i & 1; i >>= 1) + ; + if (i == 1) + kinfo->protection_size = df_size / 8; /* data flash size = 2^^n */ + else + kinfo->protection_size = nvm_size / 8; /* TODO: verify on SF1, not documented in RM */ + } + bank->num_prot_blocks = 8 / num_nvm_blocks; + kinfo->protection_block = bank->num_prot_blocks * nvm_ord; + + /* EEPROM backup part of FlexNVM is not accessible, use df_size as a limit */ + if (df_size > bank->size * nvm_ord) + limit = df_size - bank->size * nvm_ord; + else + limit = 0; + + if (bank->size > limit) { + bank->size = limit; + LOG_DEBUG("FlexNVM bank %d limited to 0x%08" PRIx32 " due to active EEPROM backup", + bank->bank_number, limit); + } + } else if ((unsigned)bank->bank_number == num_blocks) { LOG_ERROR("FlexRAM support not yet implemented"); return ERROR_FLASH_OPER_UNSUPPORTED; } else { LOG_ERROR("Cannot determine parameters for bank %d, only %d banks on device", - bank->bank_number, num_blocks); + bank->bank_number, num_blocks); return ERROR_FLASH_BANK_INVALID; } + if (bank->bank_number == 0 && ((uint32_t)fcfg2_maxaddr0 << 13) != bank->size) + LOG_WARNING("MAXADDR0 0x%02" PRIx8 " check failed," + " please report to OpenOCD mailing list", fcfg2_maxaddr0); + if (fcfg2_pflsh) { + if (bank->bank_number == 1 && ((uint32_t)fcfg2_maxaddr1 << 13) != bank->size) + LOG_WARNING("MAXADDR1 0x%02" PRIx8 " check failed," + " please report to OpenOCD mailing list", fcfg2_maxaddr1); + } else { + if ((unsigned)bank->bank_number == first_nvm_bank + && ((uint32_t)fcfg2_maxaddr1 << 13) != df_size) + LOG_WARNING("FlexNVM MAXADDR1 0x%02" PRIx8 " check failed," + " please report to OpenOCD mailing list", fcfg2_maxaddr1); + } + if (bank->sectors) { free(bank->sectors); bank->sectors = NULL; } + if (bank->prot_blocks) { + free(bank->prot_blocks); + bank->prot_blocks = NULL; + } - bank->num_sectors = bank->size / kinfo->sector_size; - assert(bank->num_sectors > 0); - bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors); + if (kinfo->sector_size == 0) { + LOG_ERROR("Unknown sector size for bank %d", bank->bank_number); + return ERROR_FLASH_BANK_INVALID; + } - for (i = 0; i < bank->num_sectors; i++) { - bank->sectors[i].offset = offset; - bank->sectors[i].size = kinfo->sector_size; - offset += kinfo->sector_size; - bank->sectors[i].is_erased = -1; - bank->sectors[i].is_protected = 1; + if (kinfo->flash_support & FS_PROGRAM_SECTOR + && kinfo->max_flash_prog_size == 0) { + kinfo->max_flash_prog_size = kinfo->sector_size; + /* Program section size is equal to sector size by default */ } - return ERROR_OK; -} + bank->num_sectors = bank->size / kinfo->sector_size; -static int kinetis_probe(struct flash_bank *bank) -{ - if (bank->target->state != TARGET_HALTED) { - LOG_WARNING("Cannot communicate... target not halted."); - return ERROR_TARGET_NOT_HALTED; + if (bank->num_sectors > 0) { + /* FlexNVM bank can be used for EEPROM backup therefore zero sized */ + bank->sectors = alloc_block_array(0, kinfo->sector_size, bank->num_sectors); + if (!bank->sectors) + return ERROR_FAIL; + + bank->prot_blocks = alloc_block_array(0, kinfo->protection_size, bank->num_prot_blocks); + if (!bank->prot_blocks) + return ERROR_FAIL; + + } else { + bank->num_prot_blocks = 0; } - return kinetis_read_part_info(bank); + kinfo->probed = true; + + return ERROR_OK; } static int kinetis_auto_probe(struct flash_bank *bank) { struct kinetis_flash_bank *kinfo = bank->driver_priv; - if (kinfo->sim_sdid) + if (kinfo && kinfo->probed) return ERROR_OK; return kinetis_probe(bank); @@ -685,34 +2023,46 @@ static int kinetis_info(struct flash_bank *bank, char *buf, int buf_size) static int kinetis_blank_check(struct flash_bank *bank) { struct kinetis_flash_bank *kinfo = bank->driver_priv; + int result; - if (bank->target->state != TARGET_HALTED) { - LOG_ERROR("Target not halted"); - return ERROR_TARGET_NOT_HALTED; - } + /* suprisingly blank check does not work in VLPR and HSRUN modes */ + result = kinetis_check_run_mode(bank->target); + if (result != ERROR_OK) + return result; - if (kinfo->flash_class == FC_PFLASH) { - int result; - uint32_t w0 = 0, w1 = 0, w2 = 0; + /* reset error flags */ + result = kinetis_ftfx_prepare(bank->target); + if (result != ERROR_OK) + return result; + + if (kinfo->flash_class == FC_PFLASH || kinfo->flash_class == FC_FLEX_NVM) { + bool block_dirty = false; uint8_t ftfx_fstat; - /* check if whole bank is blank */ - w0 = (0x00 << 24) | bank->base; - w1 = 0; /* "normal margin" */ + if (kinfo->flash_class == FC_FLEX_NVM) { + uint8_t fcfg1_depart = (uint8_t)((kinfo->sim_fcfg1 >> 8) & 0x0f); + /* block operation cannot be used on FlexNVM when EEPROM backup partition is set */ + if (fcfg1_depart != 0xf && fcfg1_depart != 0) + block_dirty = true; + } - result = kinetis_ftfx_command(bank, w0, w1, w2, &ftfx_fstat); + if (!block_dirty) { + /* check if whole bank is blank */ + result = kinetis_ftfx_command(bank->target, FTFx_CMD_BLOCKSTAT, kinfo->prog_base, + 0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat); - if (result != ERROR_OK) - return result; + if (result != ERROR_OK || (ftfx_fstat & 0x01)) + block_dirty = true; + } - if (ftfx_fstat & 0x01) { + if (block_dirty) { /* the whole bank is not erased, check sector-by-sector */ int i; for (i = 0; i < bank->num_sectors; i++) { - w0 = (0x01 << 24) | (bank->base + bank->sectors[i].offset); - w1 = (0x100 << 16) | 0; /* normal margin */ - - result = kinetis_ftfx_command(bank, w0, w1, w2, &ftfx_fstat); + /* normal margin */ + result = kinetis_ftfx_command(bank->target, FTFx_CMD_SECTSTAT, + kinfo->prog_base + bank->sectors[i].offset, + 1, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat); if (result == ERROR_OK) { bank->sectors[i].is_erased = !(ftfx_fstat & 0x01); @@ -728,33 +2078,288 @@ static int kinetis_blank_check(struct flash_bank *bank) bank->sectors[i].is_erased = 1; } } else { - LOG_WARNING("kinetis_blank_check not supported yet for FlexNVM"); + LOG_WARNING("kinetis_blank_check not supported yet for FlexRAM"); return ERROR_FLASH_OPERATION_FAILED; } return ERROR_OK; } -static int kinetis_flash_read(struct flash_bank *bank, - uint8_t *buffer, uint32_t offset, uint32_t count) + +COMMAND_HANDLER(kinetis_nvm_partition) { - LOG_WARNING("kinetis_flash_read not supported yet"); + int result, i; + unsigned long par, log2 = 0, ee1 = 0, ee2 = 0; + enum { SHOW_INFO, DF_SIZE, EEBKP_SIZE } sz_type = SHOW_INFO; + bool enable; + uint8_t load_flex_ram = 1; + uint8_t ee_size_code = 0x3f; + uint8_t flex_nvm_partition_code = 0; + uint8_t ee_split = 3; + struct target *target = get_current_target(CMD_CTX); + struct flash_bank *bank; + struct kinetis_flash_bank *kinfo; + uint32_t sim_fcfg1; - if (bank->target->state != TARGET_HALTED) { - LOG_ERROR("Target not halted"); - return ERROR_TARGET_NOT_HALTED; + if (CMD_ARGC >= 2) { + if (strcmp(CMD_ARGV[0], "dataflash") == 0) + sz_type = DF_SIZE; + else if (strcmp(CMD_ARGV[0], "eebkp") == 0) + sz_type = EEBKP_SIZE; + + par = strtoul(CMD_ARGV[1], NULL, 10); + while (par >> (log2 + 3)) + log2++; } + switch (sz_type) { + case SHOW_INFO: + result = target_read_u32(target, SIM_FCFG1, &sim_fcfg1); + if (result != ERROR_OK) + return result; - return ERROR_FLASH_OPERATION_FAILED; + flex_nvm_partition_code = (uint8_t)((sim_fcfg1 >> 8) & 0x0f); + switch (flex_nvm_partition_code) { + case 0: + command_print(CMD_CTX, "No EEPROM backup, data flash only"); + break; + case 1: + case 2: + case 3: + case 4: + case 5: + case 6: + command_print(CMD_CTX, "EEPROM backup %d KB", 4 << flex_nvm_partition_code); + break; + case 8: + command_print(CMD_CTX, "No data flash, EEPROM backup only"); + break; + case 0x9: + case 0xA: + case 0xB: + case 0xC: + case 0xD: + case 0xE: + command_print(CMD_CTX, "data flash %d KB", 4 << (flex_nvm_partition_code & 7)); + break; + case 0xf: + command_print(CMD_CTX, "No EEPROM backup, data flash only (DEPART not set)"); + break; + default: + command_print(CMD_CTX, "Unsupported EEPROM backup size code 0x%02" PRIx8, flex_nvm_partition_code); + } + return ERROR_OK; + + case DF_SIZE: + flex_nvm_partition_code = 0x8 | log2; + break; + + case EEBKP_SIZE: + flex_nvm_partition_code = log2; + break; + } + + if (CMD_ARGC == 3) + ee1 = ee2 = strtoul(CMD_ARGV[2], NULL, 10) / 2; + else if (CMD_ARGC >= 4) { + ee1 = strtoul(CMD_ARGV[2], NULL, 10); + ee2 = strtoul(CMD_ARGV[3], NULL, 10); + } + + enable = ee1 + ee2 > 0; + if (enable) { + for (log2 = 2; ; log2++) { + if (ee1 + ee2 == (16u << 10) >> log2) + break; + if (ee1 + ee2 > (16u << 10) >> log2 || log2 >= 9) { + LOG_ERROR("Unsupported EEPROM size"); + return ERROR_FLASH_OPERATION_FAILED; + } + } + + if (ee1 * 3 == ee2) + ee_split = 1; + else if (ee1 * 7 == ee2) + ee_split = 0; + else if (ee1 != ee2) { + LOG_ERROR("Unsupported EEPROM sizes ratio"); + return ERROR_FLASH_OPERATION_FAILED; + } + + ee_size_code = log2 | ee_split << 4; + } + + if (CMD_ARGC >= 5) + COMMAND_PARSE_ON_OFF(CMD_ARGV[4], enable); + if (enable) + load_flex_ram = 0; + + LOG_INFO("DEPART 0x%" PRIx8 ", EEPROM size code 0x%" PRIx8, + flex_nvm_partition_code, ee_size_code); + + result = kinetis_check_run_mode(target); + if (result != ERROR_OK) + return result; + + /* reset error flags */ + result = kinetis_ftfx_prepare(target); + if (result != ERROR_OK) + return result; + + result = kinetis_ftfx_command(target, FTFx_CMD_PGMPART, load_flex_ram, + ee_size_code, flex_nvm_partition_code, 0, 0, + 0, 0, 0, 0, NULL); + if (result != ERROR_OK) + return result; + + command_print(CMD_CTX, "FlexNVM partition set. Please reset MCU."); + + for (i = 1; i < 4; i++) { + bank = get_flash_bank_by_num_noprobe(i); + if (bank == NULL) + break; + + kinfo = bank->driver_priv; + if (kinfo && kinfo->flash_class == FC_FLEX_NVM) + kinfo->probed = false; /* re-probe before next use */ + } + + command_print(CMD_CTX, "FlexNVM banks will be re-probed to set new data flash size."); + return ERROR_OK; +} + +COMMAND_HANDLER(kinetis_fcf_source_handler) +{ + if (CMD_ARGC > 1) + return ERROR_COMMAND_SYNTAX_ERROR; + + if (CMD_ARGC == 1) { + if (strcmp(CMD_ARGV[0], "write") == 0) + allow_fcf_writes = true; + else if (strcmp(CMD_ARGV[0], "protection") == 0) + allow_fcf_writes = false; + else + return ERROR_COMMAND_SYNTAX_ERROR; + } + + if (allow_fcf_writes) { + command_print(CMD_CTX, "Arbitrary Flash Configuration Field writes enabled."); + command_print(CMD_CTX, "Protection info writes to FCF disabled."); + LOG_WARNING("BEWARE: incorrect flash configuration may permanently lock the device."); + } else { + command_print(CMD_CTX, "Protection info writes to Flash Configuration Field enabled."); + command_print(CMD_CTX, "Arbitrary FCF writes disabled. Mode safe from unwanted locking of the device."); + } + + return ERROR_OK; } +COMMAND_HANDLER(kinetis_fopt_handler) +{ + if (CMD_ARGC > 1) + return ERROR_COMMAND_SYNTAX_ERROR; + + if (CMD_ARGC == 1) + fcf_fopt = (uint8_t)strtoul(CMD_ARGV[0], NULL, 0); + else + command_print(CMD_CTX, "FCF_FOPT 0x%02" PRIx8, fcf_fopt); + + return ERROR_OK; +} + + +static const struct command_registration kinetis_security_command_handlers[] = { + { + .name = "check_security", + .mode = COMMAND_EXEC, + .help = "Check status of device security lock", + .usage = "", + .handler = kinetis_check_flash_security_status, + }, + { + .name = "halt", + .mode = COMMAND_EXEC, + .help = "Issue a halt via the MDM-AP", + .usage = "", + .handler = kinetis_mdm_halt, + }, + { + .name = "mass_erase", + .mode = COMMAND_EXEC, + .help = "Issue a complete flash erase via the MDM-AP", + .usage = "", + .handler = kinetis_mdm_mass_erase, + }, + { .name = "reset", + .mode = COMMAND_EXEC, + .help = "Issue a reset via the MDM-AP", + .usage = "", + .handler = kinetis_mdm_reset, + }, + COMMAND_REGISTRATION_DONE +}; + +static const struct command_registration kinetis_exec_command_handlers[] = { + { + .name = "mdm", + .mode = COMMAND_ANY, + .help = "MDM-AP command group", + .usage = "", + .chain = kinetis_security_command_handlers, + }, + { + .name = "disable_wdog", + .mode = COMMAND_EXEC, + .help = "Disable the watchdog timer", + .usage = "", + .handler = kinetis_disable_wdog_handler, + }, + { + .name = "nvm_partition", + .mode = COMMAND_EXEC, + .help = "Show/set data flash or EEPROM backup size in kilobytes," + " set two EEPROM sizes in bytes and FlexRAM loading during reset", + .usage = "('info'|'dataflash' size|'eebkp' size) [eesize1 eesize2] ['on'|'off']", + .handler = kinetis_nvm_partition, + }, + { + .name = "fcf_source", + .mode = COMMAND_EXEC, + .help = "Use protection as a source for Flash Configuration Field or allow writing arbitrary values to the FCF" + " Mode 'protection' is safe from unwanted locking of the device.", + .usage = "['protection'|'write']", + .handler = kinetis_fcf_source_handler, + }, + { + .name = "fopt", + .mode = COMMAND_EXEC, + .help = "FCF_FOPT value source in 'kinetis fcf_source protection' mode", + .usage = "[num]", + .handler = kinetis_fopt_handler, + }, + COMMAND_REGISTRATION_DONE +}; + +static const struct command_registration kinetis_command_handler[] = { + { + .name = "kinetis", + .mode = COMMAND_ANY, + .help = "Kinetis flash controller commands", + .usage = "", + .chain = kinetis_exec_command_handlers, + }, + COMMAND_REGISTRATION_DONE +}; + + + struct flash_driver kinetis_flash = { .name = "kinetis", + .commands = kinetis_command_handler, .flash_bank_command = kinetis_flash_bank_command, .erase = kinetis_erase, .protect = kinetis_protect, .write = kinetis_write, - .read = kinetis_flash_read, + .read = default_flash_read, .probe = kinetis_probe, .auto_probe = kinetis_auto_probe, .erase_check = kinetis_blank_check,