X-Git-Url: https://review.openocd.org/gitweb?p=openocd.git;a=blobdiff_plain;f=src%2Fflash%2Fnor%2Fkinetis.c;h=ba3f5ea69645684e13a953d6a8363501082a1d81;hp=43075fe1b17a17d4d50b0baa9f99f555947457d0;hb=8674d3f64ae9f6159a6b5f6bb372c2b4792fca53;hpb=aa3f7887ea2283be73952f13b37e75f06a429cae diff --git a/src/flash/nor/kinetis.c b/src/flash/nor/kinetis.c index 43075fe1b1..ba3f5ea696 100644 --- a/src/flash/nor/kinetis.c +++ b/src/flash/nor/kinetis.c @@ -8,6 +8,9 @@ * Copyright (C) 2012 by Christopher D. Kilgour * * techie at whiterocker.com * * * + * Copyright (C) 2013 Nemui Trinomius * + * nemuisan_kawausogasuki@live.jp * + * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * @@ -21,15 +24,19 @@ * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * - * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif +#include "jtag/interface.h" #include "imp.h" -#include "helper/binarybuffer.h" +#include +#include +#include +#include /* * Implementation Notes @@ -45,55 +52,29 @@ * variants also have FlexNVM and FlexRAM, which always appear * together. * - * A given Kinetis chip may have 2 or 4 blocks of flash. Here we map + * A given Kinetis chip may have 1, 2 or 4 blocks of flash. Here we map * each block to a separate bank. Each block size varies by chip and * may be determined by the read-only SIM_FCFG1 register. The sector - * size within each bank/block varies by the chip granularity as - * described below. - * - * Kinetis offers four different of flash granularities applicable - * across the chip families. The granularity is apparently reflected - * by at least the reference manual suffix. For example, for chip - * MK60FN1M0VLQ12, reference manual K60P144M150SF3RM ends in "SF3RM", - * where the "3" indicates there are four flash blocks with 4kiB - * sectors. All possible granularities are indicated below. + * size within each bank/block varies by chip, and may be 1, 2 or 4k. + * The sector size may be different for flash and FlexNVM. * - * The first half of the flash (1 or 2 blocks, depending on the - * granularity) is always Program Flash and always starts at address - * 0x00000000. The "PFLSH" flag, bit 23 of the read-only SIM_FCFG2 - * register, determines whether the second half of the flash is also - * Program Flash or FlexNVM+FlexRAM. When PFLSH is set, the second - * half of flash is Program Flash and is contiguous in the memory map - * from the first half. When PFLSH is clear, the second half of flash - * is FlexNVM and always starts at address 0x10000000. FlexRAM, which - * is also present when PFLSH is clear, always starts at address - * 0x14000000. + * The first half of the flash (1 or 2 blocks) is always Program Flash + * and always starts at address 0x00000000. The "PFLSH" flag, bit 23 + * of the read-only SIM_FCFG2 register, determines whether the second + * half of the flash is also Program Flash or FlexNVM+FlexRAM. When + * PFLSH is set, the second from the first half. When PFLSH is clear, + * the second half of flash is FlexNVM and always starts at address + * 0x10000000. FlexRAM, which is also present when PFLSH is clear, + * always starts at address 0x14000000. * * The Flash Memory Module provides a register set where flash * commands are loaded to perform flash operations like erase and * program. Different commands are available depending on whether * Program Flash or FlexNVM/FlexRAM is being manipulated. Although * the commands used are quite consistent between flash blocks, the - * parameters they accept differ according to the flash granularity. - * Some Kinetis chips have different granularity between Program Flash - * and FlexNVM/FlexRAM, so flash command arguments may differ between - * blocks in the same chip. + * parameters they accept differ according to the flash sector size. * - * Although not documented as such by Freescale, it appears that bits - * 8:7 of the read-only SIM_SDID register reflect the granularity - * settings 0..3, so sector sizes and block counts are applicable - * according to the following table. */ -const struct { - unsigned pflash_sector_size_bytes; - unsigned nvm_sector_size_bytes; - unsigned num_blocks; -} kinetis_flash_params[4] = { - { 1<<10, 1<<10, 2 }, - { 2<<10, 1<<10, 2 }, - { 2<<10, 2<<10, 2 }, - { 4<<10, 4<<10, 4 } -}; /* Addressess */ #define FLEXRAM 0x14000000 @@ -102,21 +83,112 @@ const struct { #define FTFx_FCCOB3 0x40020004 #define FTFx_FPROT3 0x40020010 #define SIM_SDID 0x40048024 +#define SIM_SOPT1 0x40047000 #define SIM_FCFG1 0x4004804c #define SIM_FCFG2 0x40048050 /* Commands */ -#define FTFx_CMD_BLOCKSTAT 0x00 -#define FTFx_CMD_SECTSTAT 0x01 -#define FTFx_CMD_LWORDPROG 0x06 -#define FTFx_CMD_SECTERASE 0x09 -#define FTFx_CMD_SECTWRITE 0x0b +#define FTFx_CMD_BLOCKSTAT 0x00 +#define FTFx_CMD_SECTSTAT 0x01 +#define FTFx_CMD_LWORDPROG 0x06 +#define FTFx_CMD_SECTERASE 0x09 +#define FTFx_CMD_SECTWRITE 0x0b #define FTFx_CMD_SETFLEXRAM 0x81 +#define FTFx_CMD_MASSERASE 0x44 + +/* The older Kinetis K series uses the following SDID layout : + * Bit 31-16 : 0 + * Bit 15-12 : REVID + * Bit 11-7 : DIEID + * Bit 6-4 : FAMID + * Bit 3-0 : PINID + * + * The newer Kinetis series uses the following SDID layout : + * Bit 31-28 : FAMID + * Bit 27-24 : SUBFAMID + * Bit 23-20 : SERIESID + * Bit 19-16 : SRAMSIZE + * Bit 15-12 : REVID + * Bit 6-4 : Reserved (0) + * Bit 3-0 : PINID + * + * We assume that if bits 31-16 are 0 then it's an older + * K-series MCU. + */ + +#define KINETIS_SOPT1_RAMSIZE_MASK 0x0000F000 +#define KINETIS_SOPT1_RAMSIZE_K24FN1M 0x0000B000 + +#define KINETIS_SDID_K_SERIES_MASK 0x0000FFFF + +#define KINETIS_SDID_DIEID_MASK 0x00000F80 + +#define KINETIS_SDID_DIEID_K22FN128 0x00000680 /* smaller pflash with FTFA */ +#define KINETIS_SDID_DIEID_K22FN256 0x00000A80 +#define KINETIS_SDID_DIEID_K22FN512 0x00000E80 +#define KINETIS_SDID_DIEID_K24FN256 0x00000700 + +#define KINETIS_SDID_DIEID_K24FN1M 0x00000300 /* Detect Errata 7534 */ + +/* We can't rely solely on the FAMID field to determine the MCU + * type since some FAMID values identify multiple MCUs with + * different flash sector sizes (K20 and K22 for instance). + * Therefore we combine it with the DIEID bits which may possibly + * break if Freescale bumps the DIEID for a particular MCU. */ +#define KINETIS_K_SDID_TYPE_MASK 0x00000FF0 +#define KINETIS_K_SDID_K10_M50 0x00000000 +#define KINETIS_K_SDID_K10_M72 0x00000080 +#define KINETIS_K_SDID_K10_M100 0x00000100 +#define KINETIS_K_SDID_K10_M120 0x00000180 +#define KINETIS_K_SDID_K11 0x00000220 +#define KINETIS_K_SDID_K12 0x00000200 +#define KINETIS_K_SDID_K20_M50 0x00000010 +#define KINETIS_K_SDID_K20_M72 0x00000090 +#define KINETIS_K_SDID_K20_M100 0x00000110 +#define KINETIS_K_SDID_K20_M120 0x00000190 +#define KINETIS_K_SDID_K21_M50 0x00000230 +#define KINETIS_K_SDID_K21_M120 0x00000330 +#define KINETIS_K_SDID_K22_M50 0x00000210 +#define KINETIS_K_SDID_K22_M120 0x00000310 +#define KINETIS_K_SDID_K30_M72 0x000000A0 +#define KINETIS_K_SDID_K30_M100 0x00000120 +#define KINETIS_K_SDID_K40_M72 0x000000B0 +#define KINETIS_K_SDID_K40_M100 0x00000130 +#define KINETIS_K_SDID_K50_M72 0x000000E0 +#define KINETIS_K_SDID_K51_M72 0x000000F0 +#define KINETIS_K_SDID_K53 0x00000170 +#define KINETIS_K_SDID_K60_M100 0x00000140 +#define KINETIS_K_SDID_K60_M150 0x000001C0 +#define KINETIS_K_SDID_K70_M150 0x000001D0 + +#define KINETIS_SDID_SERIESID_MASK 0x00F00000 +#define KINETIS_SDID_SERIESID_K 0x00000000 +#define KINETIS_SDID_SERIESID_KL 0x00100000 +#define KINETIS_SDID_SERIESID_KW 0x00500000 +#define KINETIS_SDID_SERIESID_KV 0x00600000 + +#define KINETIS_SDID_SUBFAMID_MASK 0x0F000000 +#define KINETIS_SDID_SUBFAMID_KX0 0x00000000 +#define KINETIS_SDID_SUBFAMID_KX1 0x01000000 +#define KINETIS_SDID_SUBFAMID_KX2 0x02000000 +#define KINETIS_SDID_SUBFAMID_KX3 0x03000000 +#define KINETIS_SDID_SUBFAMID_KX4 0x04000000 +#define KINETIS_SDID_SUBFAMID_KX5 0x05000000 +#define KINETIS_SDID_SUBFAMID_KX6 0x06000000 + +#define KINETIS_SDID_FAMILYID_MASK 0xF0000000 +#define KINETIS_SDID_FAMILYID_K0X 0x00000000 +#define KINETIS_SDID_FAMILYID_K1X 0x10000000 +#define KINETIS_SDID_FAMILYID_K2X 0x20000000 +#define KINETIS_SDID_FAMILYID_K3X 0x30000000 +#define KINETIS_SDID_FAMILYID_K4X 0x40000000 +#define KINETIS_SDID_FAMILYID_K6X 0x60000000 +#define KINETIS_SDID_FAMILYID_K7X 0x70000000 struct kinetis_flash_bank { - unsigned granularity; unsigned bank_ordinal; uint32_t sector_size; + uint32_t max_flash_prog_size; uint32_t protection_size; uint32_t sim_sdid; @@ -129,8 +201,295 @@ struct kinetis_flash_bank { FC_FLEX_NVM, FC_FLEX_RAM, } flash_class; + + enum { + FS_PROGRAM_SECTOR = 1, + FS_PROGRAM_LONGWORD = 2, + FS_PROGRAM_PHRASE = 4, /* Unsupported */ + } flash_support; +}; + +#define MDM_REG_STAT 0x00 +#define MDM_REG_CTRL 0x04 +#define MDM_REG_ID 0xfc + +#define MDM_STAT_FMEACK (1<<0) +#define MDM_STAT_FREADY (1<<1) +#define MDM_STAT_SYSSEC (1<<2) +#define MDM_STAT_SYSRES (1<<3) +#define MDM_STAT_FMEEN (1<<5) +#define MDM_STAT_BACKDOOREN (1<<6) +#define MDM_STAT_LPEN (1<<7) +#define MDM_STAT_VLPEN (1<<8) +#define MDM_STAT_LLSMODEXIT (1<<9) +#define MDM_STAT_VLLSXMODEXIT (1<<10) +#define MDM_STAT_CORE_HALTED (1<<16) +#define MDM_STAT_CORE_SLEEPDEEP (1<<17) +#define MDM_STAT_CORESLEEPING (1<<18) + +#define MEM_CTRL_FMEIP (1<<0) +#define MEM_CTRL_DBG_DIS (1<<1) +#define MEM_CTRL_DBG_REQ (1<<2) +#define MEM_CTRL_SYS_RES_REQ (1<<3) +#define MEM_CTRL_CORE_HOLD_RES (1<<4) +#define MEM_CTRL_VLLSX_DBG_REQ (1<<5) +#define MEM_CTRL_VLLSX_DBG_ACK (1<<6) +#define MEM_CTRL_VLLSX_STAT_ACK (1<<7) + +#define MDM_ACCESS_TIMEOUT 3000 /* iterations */ + +static int kinetis_mdm_write_register(struct adiv5_dap *dap, unsigned reg, uint32_t value) +{ + int retval; + LOG_DEBUG("MDM_REG[0x%02x] <- %08" PRIX32, reg, value); + + retval = dap_queue_ap_write(dap, reg, value); + if (retval != ERROR_OK) { + LOG_DEBUG("MDM: failed to queue a write request"); + return retval; + } + + retval = dap_run(dap); + if (retval != ERROR_OK) { + LOG_DEBUG("MDM: dap_run failed"); + return retval; + } + + + return ERROR_OK; +} + +static int kinetis_mdm_read_register(struct adiv5_dap *dap, unsigned reg, uint32_t *result) +{ + int retval; + retval = dap_queue_ap_read(dap, reg, result); + if (retval != ERROR_OK) { + LOG_DEBUG("MDM: failed to queue a read request"); + return retval; + } + + retval = dap_run(dap); + if (retval != ERROR_OK) { + LOG_DEBUG("MDM: dap_run failed"); + return retval; + } + + LOG_DEBUG("MDM_REG[0x%02x]: %08" PRIX32, reg, *result); + return ERROR_OK; +} + +static int kinetis_mdm_poll_register(struct adiv5_dap *dap, unsigned reg, uint32_t mask, uint32_t value) +{ + uint32_t val; + int retval; + int timeout = MDM_ACCESS_TIMEOUT; + + do { + retval = kinetis_mdm_read_register(dap, reg, &val); + if (retval != ERROR_OK || (val & mask) == value) + return retval; + + alive_sleep(1); + } while (timeout--); + + LOG_DEBUG("MDM: polling timed out"); + return ERROR_FAIL; +} + +/* + * This function implements the procedure to mass erase the flash via + * SWD/JTAG on Kinetis K and L series of devices as it is described in + * AN4835 "Production Flash Programming Best Practices for Kinetis K- + * and L-series MCUs" Section 4.2.1 + */ +COMMAND_HANDLER(kinetis_mdm_mass_erase) +{ + struct target *target = get_current_target(CMD_CTX); + struct cortex_m_common *cortex_m = target_to_cm(target); + struct adiv5_dap *dap = cortex_m->armv7m.arm.dap; + + if (!dap) { + LOG_ERROR("Cannot perform mass erase with a high-level adapter"); + return ERROR_FAIL; + } + + int retval; + const uint8_t original_ap = dap->ap_current; + + /* + * ... Power on the processor, or if power has already been + * applied, assert the RESET pin to reset the processor. For + * devices that do not have a RESET pin, write the System + * Reset Request bit in the MDM-AP control register after + * establishing communication... + */ + + /* assert SRST */ + if (jtag_get_reset_config() & RESET_HAS_SRST) + adapter_assert_reset(); + else + LOG_WARNING("Attempting mass erase without hardware reset. This is not reliable; " + "it's recommended you connect SRST and use ``reset_config srst_only''."); + + dap_ap_select(dap, 1); + + retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MEM_CTRL_SYS_RES_REQ); + if (retval != ERROR_OK) + return retval; + + /* + * ... Read the MDM-AP status register until the Flash Ready bit sets... + */ + retval = kinetis_mdm_poll_register(dap, MDM_REG_STAT, + MDM_STAT_FREADY | MDM_STAT_SYSRES, + MDM_STAT_FREADY); + if (retval != ERROR_OK) { + LOG_ERROR("MDM : flash ready timeout"); + return retval; + } + + /* + * ... Write the MDM-AP control register to set the Flash Mass + * Erase in Progress bit. This will start the mass erase + * process... + */ + retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, + MEM_CTRL_SYS_RES_REQ | MEM_CTRL_FMEIP); + if (retval != ERROR_OK) + return retval; + + /* As a sanity check make sure that device started mass erase procedure */ + retval = kinetis_mdm_poll_register(dap, MDM_REG_STAT, + MDM_STAT_FMEACK, MDM_STAT_FMEACK); + if (retval != ERROR_OK) + return retval; + + /* + * ... Read the MDM-AP control register until the Flash Mass + * Erase in Progress bit clears... + */ + retval = kinetis_mdm_poll_register(dap, MDM_REG_CTRL, + MEM_CTRL_FMEIP, + 0); + if (retval != ERROR_OK) + return retval; + + /* + * ... Negate the RESET signal or clear the System Reset Request + * bit in the MDM-AP control register... + */ + retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0); + if (retval != ERROR_OK) + return retval; + + if (jtag_get_reset_config() & RESET_HAS_SRST) + adapter_deassert_reset(); + + dap_ap_select(dap, original_ap); + return ERROR_OK; +} + +static const uint32_t kinetis_known_mdm_ids[] = { + 0x001C0000, /* Kinetis-K Series */ + 0x001C0020, /* Kinetis-L/M/V/E Series */ }; +/* + * This function implements the procedure to connect to + * SWD/JTAG on Kinetis K and L series of devices as it is described in + * AN4835 "Production Flash Programming Best Practices for Kinetis K- + * and L-series MCUs" Section 4.1.1 + */ +COMMAND_HANDLER(kinetis_check_flash_security_status) +{ + struct target *target = get_current_target(CMD_CTX); + struct cortex_m_common *cortex_m = target_to_cm(target); + struct adiv5_dap *dap = cortex_m->armv7m.arm.dap; + + if (!dap) { + LOG_WARNING("Cannot check flash security status with a high-level adapter"); + return ERROR_OK; + } + + uint32_t val; + int retval; + const uint8_t origninal_ap = dap->ap_current; + + dap_ap_select(dap, 1); + + + /* + * ... The MDM-AP ID register can be read to verify that the + * connection is working correctly... + */ + retval = kinetis_mdm_read_register(dap, MDM_REG_ID, &val); + if (retval != ERROR_OK) { + LOG_ERROR("MDM: failed to read ID register"); + goto fail; + } + + bool found = false; + for (size_t i = 0; i < ARRAY_SIZE(kinetis_known_mdm_ids); i++) { + if (val == kinetis_known_mdm_ids[i]) { + found = true; + break; + } + } + + if (!found) + LOG_WARNING("MDM: unknown ID %08" PRIX32, val); + + /* + * ... Read the MDM-AP status register until the Flash Ready bit sets... + */ + retval = kinetis_mdm_poll_register(dap, MDM_REG_STAT, + MDM_STAT_FREADY, + MDM_STAT_FREADY); + if (retval != ERROR_OK) { + LOG_ERROR("MDM: flash ready timeout"); + goto fail; + } + + /* + * ... Read the System Security bit to determine if security is enabled. + * If System Security = 0, then proceed. If System Security = 1, then + * communication with the internals of the processor, including the + * flash, will not be possible without issuing a mass erase command or + * unsecuring the part through other means (backdoor key unlock)... + */ + retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &val); + if (retval != ERROR_OK) { + LOG_ERROR("MDM: failed to read MDM_REG_STAT"); + goto fail; + } + + if (val & MDM_STAT_SYSSEC) { + jtag_poll_set_enabled(false); + + LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********"); + LOG_WARNING("**** ****"); + LOG_WARNING("**** Your Kinetis MCU is in secured state, which means that, ****"); + LOG_WARNING("**** with exception for very basic communication, JTAG/SWD ****"); + LOG_WARNING("**** interface will NOT work. In order to restore its ****"); + LOG_WARNING("**** functionality please issue 'kinetis mdm mass_erase' ****"); + LOG_WARNING("**** command, power cycle the MCU and restart OpenOCD. ****"); + LOG_WARNING("**** ****"); + LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********"); + } else { + LOG_INFO("MDM: Chip is unsecured. Continuing."); + jtag_poll_set_enabled(true); + } + + dap_ap_select(dap, origninal_ap); + + return ERROR_OK; + +fail: + LOG_ERROR("MDM: Failed to check security status of the MCU. Cannot proceed further"); + jtag_poll_set_enabled(false); + return retval; +} + FLASH_BANK_COMMAND_HANDLER(kinetis_flash_bank_command) { struct kinetis_flash_bank *bank_info; @@ -149,8 +508,173 @@ FLASH_BANK_COMMAND_HANDLER(kinetis_flash_bank_command) return ERROR_OK; } -static int kinetis_protect(struct flash_bank *bank, int set, int first, - int last) +/* Kinetis Program-LongWord Microcodes */ +static const uint8_t kinetis_flash_write_code[] = { + /* Params: + * r0 - workarea buffer + * r1 - target address + * r2 - wordcount + * Clobbered: + * r4 - tmp + * r5 - tmp + * r6 - tmp + * r7 - tmp + */ + + /* .L1: */ + /* for(register uint32_t i=0;itarget; + uint32_t buffer_size = 2048; /* Default minimum value */ + struct working_area *write_algorithm; + struct working_area *source; + uint32_t address = bank->base + offset; + struct reg_param reg_params[3]; + struct armv7m_algorithm armv7m_info; + int retval = ERROR_OK; + + /* Params: + * r0 - workarea buffer + * r1 - target address + * r2 - wordcount + * Clobbered: + * r4 - tmp + * r5 - tmp + * r6 - tmp + * r7 - tmp + */ + + /* Increase buffer_size if needed */ + if (buffer_size < (target->working_area_size/2)) + buffer_size = (target->working_area_size/2); + + LOG_INFO("Kinetis: FLASH Write ..."); + + /* check code alignment */ + if (offset & 0x1) { + LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset); + return ERROR_FLASH_DST_BREAKS_ALIGNMENT; + } + + /* allocate working area with flash programming code */ + if (target_alloc_working_area(target, sizeof(kinetis_flash_write_code), + &write_algorithm) != ERROR_OK) { + LOG_WARNING("no working area available, can't do block memory writes"); + return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; + } + + retval = target_write_buffer(target, write_algorithm->address, + sizeof(kinetis_flash_write_code), kinetis_flash_write_code); + if (retval != ERROR_OK) + return retval; + + /* memory buffer */ + while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) { + buffer_size /= 4; + if (buffer_size <= 256) { + /* free working area, write algorithm already allocated */ + target_free_working_area(target, write_algorithm); + + LOG_WARNING("No large enough working area available, can't do block memory writes"); + return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; + } + } + + armv7m_info.common_magic = ARMV7M_COMMON_MAGIC; + armv7m_info.core_mode = ARM_MODE_THREAD; + + init_reg_param(®_params[0], "r0", 32, PARAM_OUT); /* *pLW (*buffer) */ + init_reg_param(®_params[1], "r1", 32, PARAM_OUT); /* faddr */ + init_reg_param(®_params[2], "r2", 32, PARAM_OUT); /* number of words to program */ + + /* write code buffer and use Flash programming code within kinetis */ + /* Set breakpoint to 0 with time-out of 1000 ms */ + while (wcount > 0) { + uint32_t thisrun_count = (wcount > (buffer_size / 4)) ? (buffer_size / 4) : wcount; + + retval = target_write_buffer(target, source->address, thisrun_count * 4, buffer); + if (retval != ERROR_OK) + break; + + buf_set_u32(reg_params[0].value, 0, 32, source->address); + buf_set_u32(reg_params[1].value, 0, 32, address); + buf_set_u32(reg_params[2].value, 0, 32, thisrun_count); + + retval = target_run_algorithm(target, 0, NULL, 3, reg_params, + write_algorithm->address, 0, 100000, &armv7m_info); + if (retval != ERROR_OK) { + LOG_ERROR("Error executing kinetis Flash programming algorithm"); + retval = ERROR_FLASH_OPERATION_FAILED; + break; + } + + buffer += thisrun_count * 4; + address += thisrun_count * 4; + wcount -= thisrun_count; + } + + target_free_working_area(target, source); + target_free_working_area(target, write_algorithm); + + destroy_reg_param(®_params[0]); + destroy_reg_param(®_params[1]); + destroy_reg_param(®_params[2]); + + return retval; +} + +static int kinetis_protect(struct flash_bank *bank, int set, int first, int last) { LOG_WARNING("kinetis_protect not supported yet"); /* FIXME: TODO */ @@ -213,52 +737,53 @@ static int kinetis_protect_check(struct flash_bank *bank) return ERROR_OK; } -static int kinetis_ftfx_command(struct flash_bank *bank, uint32_t w0, - uint32_t w1, uint32_t w2, uint8_t *ftfx_fstat) +static int kinetis_ftfx_command(struct flash_bank *bank, uint8_t fcmd, uint32_t faddr, + uint8_t fccob4, uint8_t fccob5, uint8_t fccob6, uint8_t fccob7, + uint8_t fccob8, uint8_t fccob9, uint8_t fccoba, uint8_t fccobb, + uint8_t *ftfx_fstat) { - uint8_t buffer[12]; + uint8_t command[12] = {faddr & 0xff, (faddr >> 8) & 0xff, (faddr >> 16) & 0xff, fcmd, + fccob7, fccob6, fccob5, fccob4, + fccobb, fccoba, fccob9, fccob8}; int result, i; + uint8_t buffer; /* wait for done */ for (i = 0; i < 50; i++) { result = - target_read_memory(bank->target, FTFx_FSTAT, 1, 1, buffer); + target_read_memory(bank->target, FTFx_FSTAT, 1, 1, &buffer); if (result != ERROR_OK) return result; - if (buffer[0] & 0x80) + if (buffer & 0x80) break; - buffer[0] = 0x00; + buffer = 0x00; } - if (buffer[0] != 0x80) { + if (buffer != 0x80) { /* reset error flags */ - buffer[0] = 0x30; + buffer = 0x30; result = - target_write_memory(bank->target, FTFx_FSTAT, 1, 1, buffer); + target_write_memory(bank->target, FTFx_FSTAT, 1, 1, &buffer); if (result != ERROR_OK) return result; } - target_buffer_set_u32(bank->target, buffer, w0); - target_buffer_set_u32(bank->target, buffer + 4, w1); - target_buffer_set_u32(bank->target, buffer + 8, w2); - - result = target_write_memory(bank->target, FTFx_FCCOB3, 4, 3, buffer); + result = target_write_memory(bank->target, FTFx_FCCOB3, 4, 3, command); if (result != ERROR_OK) return result; /* start command */ - buffer[0] = 0x80; - result = target_write_memory(bank->target, FTFx_FSTAT, 1, 1, buffer); + buffer = 0x80; + result = target_write_memory(bank->target, FTFx_FSTAT, 1, 1, &buffer); if (result != ERROR_OK) return result; /* wait for done */ - for (i = 0; i < 50; i++) { + for (i = 0; i < 240; i++) { /* Need longtime for "Mass Erase" Command Nemui Changed */ result = target_read_memory(bank->target, FTFx_FSTAT, 1, 1, ftfx_fstat); @@ -271,19 +796,41 @@ static int kinetis_ftfx_command(struct flash_bank *bank, uint32_t w0, if ((*ftfx_fstat & 0xf0) != 0x80) { LOG_ERROR - ("ftfx command failed FSTAT: %02X W0: %08X W1: %08X W2: %08X", - *ftfx_fstat, w0, w1, w2); - + ("ftfx command failed FSTAT: %02X FCCOB: %02X%02X%02X%02X %02X%02X%02X%02X %02X%02X%02X%02X", + *ftfx_fstat, command[3], command[2], command[1], command[0], + command[7], command[6], command[5], command[4], + command[11], command[10], command[9], command[8]); return ERROR_FLASH_OPERATION_FAILED; } return ERROR_OK; } +COMMAND_HANDLER(kinetis_securing_test) +{ + int result; + uint8_t ftfx_fstat; + struct target *target = get_current_target(CMD_CTX); + struct flash_bank *bank = NULL; + + result = get_flash_bank_by_addr(target, 0x00000000, true, &bank); + if (result != ERROR_OK) + return result; + + assert(bank != NULL); + + if (target->state != TARGET_HALTED) { + LOG_ERROR("Target not halted"); + return ERROR_TARGET_NOT_HALTED; + } + + return kinetis_ftfx_command(bank, FTFx_CMD_SECTERASE, bank->base + 0x00000400, + 0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat); +} + static int kinetis_erase(struct flash_bank *bank, int first, int last) { int result, i; - uint32_t w0 = 0, w1 = 0, w2 = 0; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); @@ -301,9 +848,8 @@ static int kinetis_erase(struct flash_bank *bank, int first, int last) for (i = first; i <= last; i++) { uint8_t ftfx_fstat; /* set command and sector address */ - w0 = (FTFx_CMD_SECTERASE << 24) | (bank->base + bank->sectors[i].offset); - - result = kinetis_ftfx_command(bank, w0, w1, w2, &ftfx_fstat); + result = kinetis_ftfx_command(bank, FTFx_CMD_SECTERASE, bank->base + bank->sectors[i].offset, + 0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat); if (result != ERROR_OK) { LOG_WARNING("erase sector %d failed", i); @@ -321,28 +867,33 @@ static int kinetis_erase(struct flash_bank *bank, int first, int last) return ERROR_OK; } -static int kinetis_write(struct flash_bank *bank, uint8_t *buffer, +static int kinetis_write(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count) { unsigned int i, result, fallback = 0; uint8_t buf[8]; - uint32_t wc, w0 = 0, w1 = 0, w2 = 0; + uint32_t wc; struct kinetis_flash_bank *kinfo = bank->driver_priv; + uint8_t *new_buffer = NULL; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } - if (kinfo->flash_class == FC_FLEX_NVM) { + if (!(kinfo->flash_support & FS_PROGRAM_SECTOR)) { + /* fallback to longword write */ + fallback = 1; + LOG_WARNING("This device supports Program Longword execution only."); + LOG_DEBUG("flash write into PFLASH @08%" PRIX32, offset); + + } else if (kinfo->flash_class == FC_FLEX_NVM) { uint8_t ftfx_fstat; - LOG_DEBUG("flash write into FlexNVM @%08X", offset); + LOG_DEBUG("flash write into FlexNVM @%08" PRIX32, offset); /* make flex ram available */ - w0 = (FTFx_CMD_SETFLEXRAM << 24) | 0x00ff0000; - - result = kinetis_ftfx_command(bank, w0, w1, w2, &ftfx_fstat); + result = kinetis_ftfx_command(bank, FTFx_CMD_SETFLEXRAM, 0x00ff0000, 0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat); if (result != ERROR_OK) return ERROR_FLASH_OPERATION_FAILED; @@ -357,33 +908,34 @@ static int kinetis_write(struct flash_bank *bank, uint8_t *buffer, /* fallback to longword write */ fallback = 1; - LOG_WARNING("ram not ready, fallback to slow longword write (FCNFG: %02X)", - buf[0]); + LOG_WARNING("ram not ready, fallback to slow longword write (FCNFG: %02X)", buf[0]); } } else { - LOG_DEBUG("flash write into PFLASH @08%X", offset); + LOG_DEBUG("flash write into PFLASH @08%" PRIX32, offset); } /* program section command */ if (fallback == 0) { - unsigned prog_section_bytes = kinfo->sector_size >> 8; - for (i = 0; i < count; i += kinfo->sector_size) { - /* - * The largest possible Kinetis "section" is - * 16 bytes. A full Kinetis sector is always - * 256 "section"s. - */ + /* + * Kinetis uses different terms for the granularity of + * sector writes, e.g. "phrase" or "128 bits". We use + * the generic term "chunk". The largest possible + * Kinetis "chunk" is 16 bytes (128 bits). + */ + unsigned prog_section_chunk_bytes = kinfo->sector_size >> 8; + unsigned prog_size_bytes = kinfo->max_flash_prog_size; + for (i = 0; i < count; i += prog_size_bytes) { uint8_t residual_buffer[16]; uint8_t ftfx_fstat; - uint32_t section_count = 256; + uint32_t section_count = prog_size_bytes / prog_section_chunk_bytes; uint32_t residual_wc = 0; /* * Assume the word count covers an entire * sector. */ - wc = kinfo->sector_size / 4; + wc = prog_size_bytes / 4; /* * If bytes to be programmed are less than the @@ -392,30 +944,30 @@ static int kinetis_write(struct flash_bank *bank, uint8_t *buffer, * residual buffer so that a full "section" * may always be programmed. */ - if ((count - i) < kinfo->sector_size) { + if ((count - i) < prog_size_bytes) { /* number of bytes to program beyond full section */ - unsigned residual_bc = (count-i) % prog_section_bytes; + unsigned residual_bc = (count-i) % prog_section_chunk_bytes; /* number of complete words to copy directly from buffer */ wc = (count - i) / 4; /* number of total sections to write, including residual */ - section_count = DIV_ROUND_UP((count-i), prog_section_bytes); + section_count = DIV_ROUND_UP((count-i), prog_section_chunk_bytes); /* any residual bytes delivers a whole residual section */ - residual_wc = (residual_bc ? prog_section_bytes : 0)/4; + residual_wc = (residual_bc ? prog_section_chunk_bytes : 0)/4; /* clear residual buffer then populate residual bytes */ - (void) memset(residual_buffer, 0xff, prog_section_bytes); + (void) memset(residual_buffer, 0xff, prog_section_chunk_bytes); (void) memcpy(residual_buffer, &buffer[i+4*wc], residual_bc); } - LOG_DEBUG("write section @ %08X with length %d bytes", - offset + i, (count - i)); + LOG_DEBUG("write section @ %08" PRIX32 " with length %" PRIu32 " bytes", + offset + i, (uint32_t)wc*4); /* write data to flexram as whole-words */ result = target_write_memory(bank->target, FLEXRAM, 4, wc, - buffer + i); + buffer + i); if (result != ERROR_OK) { LOG_ERROR("target_write_memory failed"); @@ -425,9 +977,9 @@ static int kinetis_write(struct flash_bank *bank, uint8_t *buffer, /* write the residual words to the flexram */ if (residual_wc) { result = target_write_memory(bank->target, - FLEXRAM+4*wc, - 4, residual_wc, - residual_buffer); + FLEXRAM+4*wc, + 4, residual_wc, + residual_buffer); if (result != ERROR_OK) { LOG_ERROR("target_write_memory failed"); @@ -436,35 +988,57 @@ static int kinetis_write(struct flash_bank *bank, uint8_t *buffer, } /* execute section-write command */ - w0 = (FTFx_CMD_SECTWRITE << 24) | (bank->base + offset + i); - w1 = section_count << 16; - - result = kinetis_ftfx_command(bank, w0, w1, w2, &ftfx_fstat); + result = kinetis_ftfx_command(bank, FTFx_CMD_SECTWRITE, bank->base + offset + i, + section_count>>8, section_count, 0, 0, + 0, 0, 0, 0, &ftfx_fstat); if (result != ERROR_OK) return ERROR_FLASH_OPERATION_FAILED; } } /* program longword command, not supported in "SF3" devices */ - else if (kinfo->granularity != 3) { - for (i = 0; i < count; i += 4) { - uint8_t ftfx_fstat; + else if (kinfo->flash_support & FS_PROGRAM_LONGWORD) { + if (count & 0x3) { + uint32_t old_count = count; + count = (old_count | 3) + 1; + new_buffer = malloc(count); + if (new_buffer == NULL) { + LOG_ERROR("odd number of bytes to write and no memory " + "for padding buffer"); + return ERROR_FAIL; + } + LOG_INFO("odd number of bytes to write (%" PRIu32 "), extending to %" PRIu32 " " + "and padding with 0xff", old_count, count); + memset(new_buffer, 0xff, count); + buffer = memcpy(new_buffer, buffer, old_count); + } - LOG_DEBUG("write longword @ %08X", offset + i); + uint32_t words_remaining = count / 4; - w0 = (FTFx_CMD_LWORDPROG << 24) | (bank->base + offset + i); - if (count - i < 4) { - uint32_t padding = 0xffffffff; - memcpy(&padding, buffer + i, count - i); - w1 = buf_get_u32(&padding, 0, 32); - } else { - w1 = buf_get_u32(buffer + i, 0, 32); - } + /* try using a block write */ + int retval = kinetis_write_block(bank, buffer, offset, words_remaining); - result = kinetis_ftfx_command(bank, w0, w1, w2, &ftfx_fstat); + if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) { + /* if block write failed (no sufficient working area), + * we use normal (slow) single word accesses */ + LOG_WARNING("couldn't use block writes, falling back to single " + "memory accesses"); - if (result != ERROR_OK) - return ERROR_FLASH_OPERATION_FAILED; + for (i = 0; i < count; i += 4) { + uint8_t ftfx_fstat; + + LOG_DEBUG("write longword @ %08" PRIX32, (uint32_t)(offset + i)); + + uint8_t padding[4] = {0xff, 0xff, 0xff, 0xff}; + memcpy(padding, buffer + i, MIN(4, count-i)); + + result = kinetis_ftfx_command(bank, FTFx_CMD_LWORDPROG, bank->base + offset + i, + padding[3], padding[2], padding[1], padding[0], + 0, 0, 0, 0, &ftfx_fstat); + + if (result != ERROR_OK) + return ERROR_FLASH_OPERATION_FAILED; + } } } else { LOG_ERROR("Flash write strategy not implemented"); @@ -477,33 +1051,191 @@ static int kinetis_write(struct flash_bank *bank, uint8_t *buffer, static int kinetis_read_part_info(struct flash_bank *bank) { int result, i; - uint8_t buf[4]; uint32_t offset = 0; uint8_t fcfg1_nvmsize, fcfg1_pfsize, fcfg1_eesize, fcfg2_pflsh; uint32_t nvm_size = 0, pf_size = 0, ee_size = 0; - unsigned granularity, num_blocks = 0, num_pflash_blocks = 0, num_nvm_blocks = 0, - first_nvm_bank = 0, reassign = 0; + unsigned num_blocks = 0, num_pflash_blocks = 0, num_nvm_blocks = 0, first_nvm_bank = 0, + reassign = 0, pflash_sector_size_bytes = 0, nvm_sector_size_bytes = 0; + struct target *target = bank->target; struct kinetis_flash_bank *kinfo = bank->driver_priv; - result = target_read_memory(bank->target, SIM_SDID, 1, 4, buf); + result = target_read_u32(target, SIM_SDID, &kinfo->sim_sdid); if (result != ERROR_OK) return result; - kinfo->sim_sdid = target_buffer_get_u32(bank->target, buf); - granularity = (kinfo->sim_sdid >> 7) & 0x03; - result = target_read_memory(bank->target, SIM_FCFG1, 1, 4, buf); + if ((kinfo->sim_sdid & (~KINETIS_SDID_K_SERIES_MASK)) == 0) { + /* older K-series MCU */ + uint32_t mcu_type = kinfo->sim_sdid & KINETIS_K_SDID_TYPE_MASK; + + switch (mcu_type) { + case KINETIS_K_SDID_K10_M50: + case KINETIS_K_SDID_K20_M50: + /* 1kB sectors */ + pflash_sector_size_bytes = 1<<10; + nvm_sector_size_bytes = 1<<10; + num_blocks = 2; + kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR; + break; + case KINETIS_K_SDID_K10_M72: + case KINETIS_K_SDID_K20_M72: + case KINETIS_K_SDID_K30_M72: + case KINETIS_K_SDID_K30_M100: + case KINETIS_K_SDID_K40_M72: + case KINETIS_K_SDID_K40_M100: + case KINETIS_K_SDID_K50_M72: + /* 2kB sectors, 1kB FlexNVM sectors */ + pflash_sector_size_bytes = 2<<10; + nvm_sector_size_bytes = 1<<10; + num_blocks = 2; + kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR; + kinfo->max_flash_prog_size = 1<<10; + break; + case KINETIS_K_SDID_K10_M100: + case KINETIS_K_SDID_K20_M100: + case KINETIS_K_SDID_K11: + case KINETIS_K_SDID_K12: + case KINETIS_K_SDID_K21_M50: + case KINETIS_K_SDID_K22_M50: + case KINETIS_K_SDID_K51_M72: + case KINETIS_K_SDID_K53: + case KINETIS_K_SDID_K60_M100: + /* 2kB sectors */ + pflash_sector_size_bytes = 2<<10; + nvm_sector_size_bytes = 2<<10; + num_blocks = 2; + kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR; + break; + case KINETIS_K_SDID_K21_M120: + case KINETIS_K_SDID_K22_M120: + /* 4kB sectors (MK21FN1M0, MK21FX512, MK22FN1M0, MK22FX512) */ + pflash_sector_size_bytes = 4<<10; + kinfo->max_flash_prog_size = 1<<10; + nvm_sector_size_bytes = 4<<10; + num_blocks = 2; + kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR; + break; + case KINETIS_K_SDID_K10_M120: + case KINETIS_K_SDID_K20_M120: + case KINETIS_K_SDID_K60_M150: + case KINETIS_K_SDID_K70_M150: + /* 4kB sectors */ + pflash_sector_size_bytes = 4<<10; + nvm_sector_size_bytes = 4<<10; + num_blocks = 4; + kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR; + break; + default: + LOG_ERROR("Unsupported K-family FAMID"); + } + } else { + /* Newer K-series or KL series MCU */ + switch (kinfo->sim_sdid & KINETIS_SDID_SERIESID_MASK) { + case KINETIS_SDID_SERIESID_K: + switch (kinfo->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) { + case KINETIS_SDID_FAMILYID_K0X | KINETIS_SDID_SUBFAMID_KX2: + /* K02FN64, K02FN128: FTFA, 2kB sectors */ + pflash_sector_size_bytes = 2<<10; + num_blocks = 1; + kinfo->flash_support = FS_PROGRAM_LONGWORD; + break; + + case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX2: { + /* MK24FN1M reports as K22, this should detect it (according to errata note 1N83J) */ + uint32_t sopt1; + result = target_read_u32(target, SIM_SOPT1, &sopt1); + if (result != ERROR_OK) + return result; + + if (((kinfo->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN1M) && + ((sopt1 & KINETIS_SOPT1_RAMSIZE_MASK) == KINETIS_SOPT1_RAMSIZE_K24FN1M)) { + /* MK24FN1M */ + pflash_sector_size_bytes = 4<<10; + num_blocks = 2; + kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR; + kinfo->max_flash_prog_size = 1<<10; + break; + } + if ((kinfo->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN128 + || (kinfo->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN256 + || (kinfo->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN512) { + /* K22 with new-style SDID - smaller pflash with FTFA, 2kB sectors */ + pflash_sector_size_bytes = 2<<10; + num_blocks = 2; /* 1 or 2 blocks */ + kinfo->flash_support = FS_PROGRAM_LONGWORD; + break; + } + LOG_ERROR("Unsupported Kinetis K22 DIEID"); + break; + } + case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX4: + pflash_sector_size_bytes = 4<<10; + if ((kinfo->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN256) { + /* K24FN256 - smaller pflash with FTFA */ + num_blocks = 1; + kinfo->flash_support = FS_PROGRAM_LONGWORD; + break; + } + /* K24FN1M without errata 7534 */ + num_blocks = 2; + kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR; + kinfo->max_flash_prog_size = 1<<10; + break; + + case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX3: + case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX1: /* errata 7534 - should be K63 */ + /* K63FN1M0 */ + case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX4: + case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX2: /* errata 7534 - should be K64 */ + /* K64FN1M0, K64FX512 */ + pflash_sector_size_bytes = 4<<10; + nvm_sector_size_bytes = 4<<10; + kinfo->max_flash_prog_size = 1<<10; + num_blocks = 2; + kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR; + break; + + case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX6: + /* K26FN2M0 */ + case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX6: + /* K66FN2M0, K66FX1M0 */ + pflash_sector_size_bytes = 4<<10; + nvm_sector_size_bytes = 4<<10; + kinfo->max_flash_prog_size = 1<<10; + num_blocks = 4; + kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR; + break; + default: + LOG_ERROR("Unsupported Kinetis FAMILYID SUBFAMID"); + } + break; + case KINETIS_SDID_SERIESID_KL: + /* KL-series */ + pflash_sector_size_bytes = 1<<10; + nvm_sector_size_bytes = 1<<10; + num_blocks = 1; + kinfo->flash_support = FS_PROGRAM_LONGWORD; + break; + default: + LOG_ERROR("Unsupported K-series"); + } + } + + if (pflash_sector_size_bytes == 0) { + LOG_ERROR("MCU is unsupported, SDID 0x%08" PRIx32, kinfo->sim_sdid); + return ERROR_FLASH_OPER_UNSUPPORTED; + } + + result = target_read_u32(target, SIM_FCFG1, &kinfo->sim_fcfg1); if (result != ERROR_OK) return result; - kinfo->sim_fcfg1 = target_buffer_get_u32(bank->target, buf); - result = target_read_memory(bank->target, SIM_FCFG2, 1, 4, buf); + result = target_read_u32(target, SIM_FCFG2, &kinfo->sim_fcfg2); if (result != ERROR_OK) return result; - kinfo->sim_fcfg2 = target_buffer_get_u32(bank->target, buf); fcfg2_pflsh = (kinfo->sim_fcfg2 >> 23) & 0x01; - LOG_DEBUG("SDID: %08X FCFG1: %08X FCFG2: %08X", kinfo->sim_sdid, - kinfo->sim_fcfg1, kinfo->sim_fcfg2); + LOG_DEBUG("SDID: 0x%08" PRIX32 " FCFG1: 0x%08" PRIX32 " FCFG2: 0x%08" PRIX32, kinfo->sim_sdid, + kinfo->sim_fcfg1, kinfo->sim_fcfg2); fcfg1_nvmsize = (uint8_t)((kinfo->sim_fcfg1 >> 28) & 0x0f); fcfg1_pfsize = (uint8_t)((kinfo->sim_fcfg1 >> 24) & 0x0f); @@ -519,9 +1251,10 @@ static int kinetis_read_part_info(struct flash_bank *bank) nvm_size = 1 << (14 + (fcfg1_nvmsize >> 1)); break; case 0x0f: - if (granularity == 3) + if (pflash_sector_size_bytes >= 4<<10) nvm_size = 512<<10; else + /* K20_100 */ nvm_size = 256<<10; break; default: @@ -558,7 +1291,7 @@ static int kinetis_read_part_info(struct flash_bank *bank) pf_size = 1 << (14 + (fcfg1_pfsize >> 1)); break; case 0x0f: - if (granularity == 3) + if (pflash_sector_size_bytes >= 4<<10) pf_size = 1024<<10; else if (fcfg2_pflsh) pf_size = 512<<10; @@ -570,16 +1303,15 @@ static int kinetis_read_part_info(struct flash_bank *bank) break; } - LOG_DEBUG("FlexNVM: %d PFlash: %d FlexRAM: %d PFLSH: %d", + LOG_DEBUG("FlexNVM: %" PRIu32 " PFlash: %" PRIu32 " FlexRAM: %" PRIu32 " PFLSH: %d", nvm_size, pf_size, ee_size, fcfg2_pflsh); - num_blocks = kinetis_flash_params[granularity].num_blocks; num_pflash_blocks = num_blocks / (2 - fcfg2_pflsh); first_nvm_bank = num_pflash_blocks; num_nvm_blocks = num_blocks - num_pflash_blocks; LOG_DEBUG("%d blocks total: %d PFlash, %d FlexNVM", - num_blocks, num_pflash_blocks, num_nvm_blocks); + num_blocks, num_pflash_blocks, num_nvm_blocks); /* * If the flash class is already assigned, verify the @@ -589,15 +1321,11 @@ static int kinetis_read_part_info(struct flash_bank *bank) if (kinfo->bank_ordinal != (unsigned) bank->bank_number) { LOG_WARNING("Flash ordinal/bank number mismatch"); reassign = 1; - } else if (kinfo->granularity != granularity) { - LOG_WARNING("Flash granularity mismatch"); - reassign = 1; } else { switch (kinfo->flash_class) { case FC_PFLASH: if (kinfo->bank_ordinal >= first_nvm_bank) { - LOG_WARNING("Class mismatch, bank %d is not PFlash", - bank->bank_number); + LOG_WARNING("Class mismatch, bank %d is not PFlash", bank->bank_number); reassign = 1; } else if (bank->size != (pf_size / num_pflash_blocks)) { LOG_WARNING("PFlash size mismatch"); @@ -606,8 +1334,7 @@ static int kinetis_read_part_info(struct flash_bank *bank) (0x00000000 + bank->size * kinfo->bank_ordinal)) { LOG_WARNING("PFlash address range mismatch"); reassign = 1; - } else if (kinfo->sector_size != - kinetis_flash_params[granularity].pflash_sector_size_bytes) { + } else if (kinfo->sector_size != pflash_sector_size_bytes) { LOG_WARNING("PFlash sector size mismatch"); reassign = 1; } else { @@ -617,19 +1344,17 @@ static int kinetis_read_part_info(struct flash_bank *bank) break; case FC_FLEX_NVM: if ((kinfo->bank_ordinal >= num_blocks) || - (kinfo->bank_ordinal < first_nvm_bank)) { - LOG_WARNING("Class mismatch, bank %d is not FlexNVM", - bank->bank_number); + (kinfo->bank_ordinal < first_nvm_bank)) { + LOG_WARNING("Class mismatch, bank %d is not FlexNVM", bank->bank_number); reassign = 1; } else if (bank->size != (nvm_size / num_nvm_blocks)) { LOG_WARNING("FlexNVM size mismatch"); reassign = 1; } else if (bank->base != - (0x10000000 + bank->size * kinfo->bank_ordinal)) { + (0x10000000 + bank->size * kinfo->bank_ordinal)) { LOG_WARNING("FlexNVM address range mismatch"); reassign = 1; - } else if (kinfo->sector_size != - kinetis_flash_params[granularity].nvm_sector_size_bytes) { + } else if (kinfo->sector_size != nvm_sector_size_bytes) { LOG_WARNING("FlexNVM sector size mismatch"); reassign = 1; } else { @@ -639,8 +1364,7 @@ static int kinetis_read_part_info(struct flash_bank *bank) break; case FC_FLEX_RAM: if (kinfo->bank_ordinal != num_blocks) { - LOG_WARNING("Class mismatch, bank %d is not FlexRAM", - bank->bank_number); + LOG_WARNING("Class mismatch, bank %d is not FlexRAM", bank->bank_number); reassign = 1; } else if (bank->size != ee_size) { LOG_WARNING("FlexRAM size mismatch"); @@ -648,13 +1372,11 @@ static int kinetis_read_part_info(struct flash_bank *bank) } else if (bank->base != FLEXRAM) { LOG_WARNING("FlexRAM address mismatch"); reassign = 1; - } else if (kinfo->sector_size != - kinetis_flash_params[granularity].nvm_sector_size_bytes) { + } else if (kinfo->sector_size != nvm_sector_size_bytes) { LOG_WARNING("FlexRAM sector size mismatch"); reassign = 1; } else { - LOG_DEBUG("FlexRAM bank %d already configured okay", - kinfo->bank_ordinal); + LOG_DEBUG("FlexRAM bank %d already configured okay", kinfo->bank_ordinal); } break; @@ -672,28 +1394,26 @@ static int kinetis_read_part_info(struct flash_bank *bank) if (!reassign) return ERROR_OK; - kinfo->granularity = granularity; - if ((unsigned)bank->bank_number < num_pflash_blocks) { /* pflash, banks start at address zero */ kinfo->flash_class = FC_PFLASH; bank->size = (pf_size / num_pflash_blocks); bank->base = 0x00000000 + bank->size * bank->bank_number; - kinfo->sector_size = kinetis_flash_params[granularity].pflash_sector_size_bytes; + kinfo->sector_size = pflash_sector_size_bytes; kinfo->protection_size = pf_size / 32; } else if ((unsigned)bank->bank_number < num_blocks) { /* nvm, banks start at address 0x10000000 */ kinfo->flash_class = FC_FLEX_NVM; bank->size = (nvm_size / num_nvm_blocks); bank->base = 0x10000000 + bank->size * (bank->bank_number - first_nvm_bank); - kinfo->sector_size = kinetis_flash_params[granularity].nvm_sector_size_bytes; + kinfo->sector_size = nvm_sector_size_bytes; kinfo->protection_size = 0; /* FIXME: TODO: depends on DEPART bits, chip */ } else if ((unsigned)bank->bank_number == num_blocks) { LOG_ERROR("FlexRAM support not yet implemented"); return ERROR_FLASH_OPER_UNSUPPORTED; } else { LOG_ERROR("Cannot determine parameters for bank %d, only %d banks on device", - bank->bank_number, num_blocks); + bank->bank_number, num_blocks); return ERROR_FLASH_BANK_INVALID; } @@ -702,6 +1422,17 @@ static int kinetis_read_part_info(struct flash_bank *bank) bank->sectors = NULL; } + if (kinfo->sector_size == 0) { + LOG_ERROR("Unknown sector size for bank %d", bank->bank_number); + return ERROR_FLASH_BANK_INVALID; + } + + if (kinfo->flash_support & FS_PROGRAM_SECTOR + && kinfo->max_flash_prog_size == 0) { + kinfo->max_flash_prog_size = kinfo->sector_size; + /* Program section size is equal to sector size by default */ + } + bank->num_sectors = bank->size / kinfo->sector_size; assert(bank->num_sectors > 0); bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors); @@ -764,14 +1495,10 @@ static int kinetis_blank_check(struct flash_bank *bank) if (kinfo->flash_class == FC_PFLASH) { int result; - uint32_t w0 = 0, w1 = 0, w2 = 0; uint8_t ftfx_fstat; /* check if whole bank is blank */ - w0 = (FTFx_CMD_BLOCKSTAT << 24) | bank->base; - w1 = 0; /* "normal margin" */ - - result = kinetis_ftfx_command(bank, w0, w1, w2, &ftfx_fstat); + result = kinetis_ftfx_command(bank, FTFx_CMD_BLOCKSTAT, bank->base, 0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat); if (result != ERROR_OK) return result; @@ -780,10 +1507,9 @@ static int kinetis_blank_check(struct flash_bank *bank) /* the whole bank is not erased, check sector-by-sector */ int i; for (i = 0; i < bank->num_sectors; i++) { - w0 = (FTFx_CMD_SECTSTAT << 24) | (bank->base + bank->sectors[i].offset); - w1 = (0x100 << 16) | 0; /* normal margin */ - - result = kinetis_ftfx_command(bank, w0, w1, w2, &ftfx_fstat); + /* normal margin */ + result = kinetis_ftfx_command(bank, FTFx_CMD_SECTSTAT, bank->base + bank->sectors[i].offset, + 1, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat); if (result == ERROR_OK) { bank->sectors[i].is_erased = !(ftfx_fstat & 0x01); @@ -806,26 +1532,63 @@ static int kinetis_blank_check(struct flash_bank *bank) return ERROR_OK; } -static int kinetis_flash_read(struct flash_bank *bank, - uint8_t *buffer, uint32_t offset, uint32_t count) -{ - LOG_WARNING("kinetis_flash_read not supported yet"); +static const struct command_registration kinetis_securtiy_command_handlers[] = { + { + .name = "check_security", + .mode = COMMAND_EXEC, + .help = "", + .usage = "", + .handler = kinetis_check_flash_security_status, + }, + { + .name = "mass_erase", + .mode = COMMAND_EXEC, + .help = "", + .usage = "", + .handler = kinetis_mdm_mass_erase, + }, + { + .name = "test_securing", + .mode = COMMAND_EXEC, + .help = "", + .usage = "", + .handler = kinetis_securing_test, + }, + COMMAND_REGISTRATION_DONE +}; + +static const struct command_registration kinetis_exec_command_handlers[] = { + { + .name = "mdm", + .mode = COMMAND_ANY, + .help = "", + .usage = "", + .chain = kinetis_securtiy_command_handlers, + }, + COMMAND_REGISTRATION_DONE +}; + +static const struct command_registration kinetis_command_handler[] = { + { + .name = "kinetis", + .mode = COMMAND_ANY, + .help = "kinetis NAND flash controller commands", + .usage = "", + .chain = kinetis_exec_command_handlers, + }, + COMMAND_REGISTRATION_DONE +}; - if (bank->target->state != TARGET_HALTED) { - LOG_ERROR("Target not halted"); - return ERROR_TARGET_NOT_HALTED; - } - return ERROR_FLASH_OPERATION_FAILED; -} struct flash_driver kinetis_flash = { .name = "kinetis", + .commands = kinetis_command_handler, .flash_bank_command = kinetis_flash_bank_command, .erase = kinetis_erase, .protect = kinetis_protect, .write = kinetis_write, - .read = kinetis_flash_read, + .read = default_flash_read, .probe = kinetis_probe, .auto_probe = kinetis_auto_probe, .erase_check = kinetis_blank_check,