X-Git-Url: https://review.openocd.org/gitweb?p=openocd.git;a=blobdiff_plain;f=src%2Fflash%2Fnor%2Fstm32f1x.c;h=601417a956e6b83fcf113da0231e936da7a81582;hp=b3f78ca405e13534684994dcf986d12548e499e5;hb=76ea15cce78111d5628b5177cd22e69f6bf08db3;hpb=9f0cba528a163645c8ecace413731c23310f2c26 diff --git a/src/flash/nor/stm32f1x.c b/src/flash/nor/stm32f1x.c index b3f78ca405..601417a956 100644 --- a/src/flash/nor/stm32f1x.c +++ b/src/flash/nor/stm32f1x.c @@ -21,7 +21,7 @@ * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * - * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H @@ -102,24 +102,36 @@ #define KEY1 0x45670123 #define KEY2 0xCDEF89AB +/* timeout values */ + +#define FLASH_WRITE_TIMEOUT 10 +#define FLASH_ERASE_TIMEOUT 100 + struct stm32x_options { uint16_t RDP; uint16_t user_options; + uint16_t user_data; uint16_t protection[4]; }; struct stm32x_flash_bank { struct stm32x_options option_bytes; - struct working_area *write_algorithm; int ppage_size; int probed; bool has_dual_banks; /* used to access dual flash bank stm32xl */ uint32_t register_base; + uint16_t default_rdp; + int user_data_offset; + int option_offset; + uint32_t user_bank_size; }; static int stm32x_mass_erase(struct flash_bank *bank); +static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id); +static int stm32x_write_block(struct flash_bank *bank, const uint8_t *buffer, + uint32_t offset, uint32_t count); /* flash bank stm32x 0 0 */ @@ -131,12 +143,12 @@ FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command) return ERROR_COMMAND_SYNTAX_ERROR; stm32x_info = malloc(sizeof(struct stm32x_flash_bank)); - bank->driver_priv = stm32x_info; - stm32x_info->write_algorithm = NULL; + bank->driver_priv = stm32x_info; stm32x_info->probed = 0; stm32x_info->has_dual_banks = false; stm32x_info->register_base = FLASH_REG_BASE_B0; + stm32x_info->user_bank_size = bank->size; return ERROR_OK; } @@ -195,7 +207,7 @@ static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout) return retval; } -int stm32x_check_operation_supported(struct flash_bank *bank) +static int stm32x_check_operation_supported(struct flash_bank *bank) { struct stm32x_flash_bank *stm32x_info = bank->driver_priv; @@ -222,7 +234,8 @@ static int stm32x_read_options(struct flash_bank *bank) if (retval != ERROR_OK) return retval; - stm32x_info->option_bytes.user_options = (uint16_t)0xFFF8 | ((optiondata >> 2) & 0x07); + stm32x_info->option_bytes.user_options = (optiondata >> stm32x_info->option_offset >> 2) & 0xffff; + stm32x_info->option_bytes.user_data = (optiondata >> stm32x_info->user_data_offset) & 0xffff; stm32x_info->option_bytes.RDP = (optiondata & (1 << OPT_READOUT)) ? 0xFFFF : 0x5AA5; if (optiondata & (1 << OPT_READOUT)) @@ -276,13 +289,13 @@ static int stm32x_erase_options(struct flash_bank *bank) if (retval != ERROR_OK) return retval; - retval = stm32x_wait_status_busy(bank, 10); + retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT); if (retval != ERROR_OK) return retval; /* clear readout protection and complementary option bytes * this will also force a device unlock if set */ - stm32x_info->option_bytes.RDP = 0x5AA5; + stm32x_info->option_bytes.RDP = stm32x_info->default_rdp; return ERROR_OK; } @@ -315,59 +328,24 @@ static int stm32x_write_options(struct flash_bank *bank) if (retval != ERROR_OK) return retval; - /* write user option byte */ - retval = target_write_u16(target, STM32_OB_USER, stm32x_info->option_bytes.user_options); - if (retval != ERROR_OK) - return retval; - - retval = stm32x_wait_status_busy(bank, 10); - if (retval != ERROR_OK) - return retval; - - /* write protection byte 1 */ - retval = target_write_u16(target, STM32_OB_WRP0, stm32x_info->option_bytes.protection[0]); - if (retval != ERROR_OK) - return retval; + uint8_t opt_bytes[16]; - retval = stm32x_wait_status_busy(bank, 10); - if (retval != ERROR_OK) - return retval; - - /* write protection byte 2 */ - retval = target_write_u16(target, STM32_OB_WRP1, stm32x_info->option_bytes.protection[1]); - if (retval != ERROR_OK) - return retval; - - retval = stm32x_wait_status_busy(bank, 10); - if (retval != ERROR_OK) - return retval; - - /* write protection byte 3 */ - retval = target_write_u16(target, STM32_OB_WRP2, stm32x_info->option_bytes.protection[2]); - if (retval != ERROR_OK) - return retval; - - retval = stm32x_wait_status_busy(bank, 10); - if (retval != ERROR_OK) - return retval; - - /* write protection byte 4 */ - retval = target_write_u16(target, STM32_OB_WRP3, stm32x_info->option_bytes.protection[3]); - if (retval != ERROR_OK) - return retval; - - retval = stm32x_wait_status_busy(bank, 10); - if (retval != ERROR_OK) - return retval; - - /* write readout protection bit */ - retval = target_write_u16(target, STM32_OB_RDP, stm32x_info->option_bytes.RDP); - if (retval != ERROR_OK) - return retval; + target_buffer_set_u16(target, opt_bytes, stm32x_info->option_bytes.RDP); + target_buffer_set_u16(target, opt_bytes + 2, stm32x_info->option_bytes.user_options); + target_buffer_set_u16(target, opt_bytes + 4, stm32x_info->option_bytes.user_data & 0xff); + target_buffer_set_u16(target, opt_bytes + 6, (stm32x_info->option_bytes.user_data >> 8) & 0xff); + target_buffer_set_u16(target, opt_bytes + 8, stm32x_info->option_bytes.protection[0]); + target_buffer_set_u16(target, opt_bytes + 10, stm32x_info->option_bytes.protection[1]); + target_buffer_set_u16(target, opt_bytes + 12, stm32x_info->option_bytes.protection[2]); + target_buffer_set_u16(target, opt_bytes + 14, stm32x_info->option_bytes.protection[3]); - retval = stm32x_wait_status_busy(bank, 10); - if (retval != ERROR_OK) + uint32_t offset = STM32_OB_RDP - bank->base; + retval = stm32x_write_block(bank, opt_bytes, offset, sizeof(opt_bytes) / 2); + if (retval != ERROR_OK) { + if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) + LOG_ERROR("working area required to erase options bytes"); return retval; + } retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK); if (retval != ERROR_OK) @@ -386,11 +364,6 @@ static int stm32x_protect_check(struct flash_bank *bank) int num_bits; int set; - if (target->state != TARGET_HALTED) { - LOG_ERROR("Target not halted"); - return ERROR_TARGET_NOT_HALTED; - } - int retval = stm32x_check_operation_supported(bank); if (ERROR_OK != retval) return retval; @@ -480,7 +453,7 @@ static int stm32x_erase(struct flash_bank *bank, int first, int last) if (retval != ERROR_OK) return retval; - retval = stm32x_wait_status_busy(bank, 100); + retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT); if (retval != ERROR_OK) return retval; @@ -588,12 +561,13 @@ static int stm32x_protect(struct flash_bank *bank, int set, int first, int last) return stm32x_write_options(bank); } -static int stm32x_write_block(struct flash_bank *bank, uint8_t *buffer, +static int stm32x_write_block(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count) { struct stm32x_flash_bank *stm32x_info = bank->driver_priv; struct target *target = bank->target; uint32_t buffer_size = 16384; + struct working_area *write_algorithm; struct working_area *source; uint32_t address = bank->base + offset; struct reg_param reg_params[5]; @@ -603,17 +577,14 @@ static int stm32x_write_block(struct flash_bank *bank, uint8_t *buffer, /* see contrib/loaders/flash/stm32f1x.S for src */ static const uint8_t stm32x_flash_write_code[] = { - /* #define STM32_FLASH_CR_OFFSET 0x10 */ /* #define STM32_FLASH_SR_OFFSET 0x0C */ /* wait_fifo: */ 0x16, 0x68, /* ldr r6, [r2, #0] */ 0x00, 0x2e, /* cmp r6, #0 */ - 0x1a, 0xd0, /* beq exit */ + 0x18, 0xd0, /* beq exit */ 0x55, 0x68, /* ldr r5, [r2, #4] */ 0xb5, 0x42, /* cmp r5, r6 */ 0xf9, 0xd0, /* beq wait_fifo */ - 0x01, 0x26, /* movs r6, #1 */ - 0x06, 0x61, /* str r6, [r0, #STM32_FLASH_CR_OFFSET] */ 0x2e, 0x88, /* ldrh r6, [r5, #0] */ 0x26, 0x80, /* strh r6, [r4, #0] */ 0x02, 0x35, /* adds r5, #2 */ @@ -635,7 +606,7 @@ static int stm32x_write_block(struct flash_bank *bank, uint8_t *buffer, 0x01, 0x39, /* subs r1, r1, #1 */ 0x00, 0x29, /* cmp r1, #0 */ 0x02, 0xd0, /* beq exit */ - 0xe3, 0xe7, /* b wait_fifo */ + 0xe5, 0xe7, /* b wait_fifo */ /* error: */ 0x00, 0x20, /* movs r0, #0 */ 0x50, 0x60, /* str r0, [r2, #4] */ @@ -646,13 +617,13 @@ static int stm32x_write_block(struct flash_bank *bank, uint8_t *buffer, /* flash write code */ if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code), - &stm32x_info->write_algorithm) != ERROR_OK) { + &write_algorithm) != ERROR_OK) { LOG_WARNING("no working area available, can't do block memory writes"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; }; - retval = target_write_buffer(target, stm32x_info->write_algorithm->address, - sizeof(stm32x_flash_write_code), (uint8_t *)stm32x_flash_write_code); + retval = target_write_buffer(target, write_algorithm->address, + sizeof(stm32x_flash_write_code), stm32x_flash_write_code); if (retval != ERROR_OK) return retval; @@ -661,33 +632,15 @@ static int stm32x_write_block(struct flash_bank *bank, uint8_t *buffer, buffer_size /= 2; buffer_size &= ~3UL; /* Make sure it's 4 byte aligned */ if (buffer_size <= 256) { - /* if we already allocated the writing code, but failed to get a + /* we already allocated the writing code, but failed to get a * buffer, free the algorithm */ - if (stm32x_info->write_algorithm) - target_free_working_area(target, stm32x_info->write_algorithm); + target_free_working_area(target, write_algorithm); LOG_WARNING("no large enough working area available, can't do block memory writes"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } }; - /* Set up working area. First word is write pointer, second word is read pointer, - * rest is fifo data area. */ - uint32_t wp_addr = source->address; - uint32_t rp_addr = source->address + 4; - uint32_t fifo_start_addr = source->address + 8; - uint32_t fifo_end_addr = source->address + source->size; - - uint32_t wp = fifo_start_addr; - uint32_t rp = fifo_start_addr; - - retval = target_write_u32(target, wp_addr, wp); - if (retval != ERROR_OK) - return retval; - retval = target_write_u32(target, rp_addr, rp); - if (retval != ERROR_OK) - return retval; - init_reg_param(®_params[0], "r0", 32, PARAM_IN_OUT); /* flash base (in), status (out) */ init_reg_param(®_params[1], "r1", 32, PARAM_OUT); /* count (halfword-16bit) */ init_reg_param(®_params[2], "r2", 32, PARAM_OUT); /* buffer start */ @@ -701,91 +654,14 @@ static int stm32x_write_block(struct flash_bank *bank, uint8_t *buffer, buf_set_u32(reg_params[4].value, 0, 32, address); armv7m_info.common_magic = ARMV7M_COMMON_MAGIC; - armv7m_info.core_mode = ARMV7M_MODE_ANY; + armv7m_info.core_mode = ARM_MODE_THREAD; - /* Start up algorithm on target and let it idle while writing the first chunk */ - retval = target_start_algorithm(target, 0, NULL, 5, reg_params, - stm32x_info->write_algorithm->address, - 0, + retval = target_run_flash_async_algorithm(target, buffer, count, 2, + 0, NULL, + 5, reg_params, + source->address, source->size, + write_algorithm->address, 0, &armv7m_info); - if (retval != ERROR_OK) { - LOG_ERROR("error starting stm32x flash write algorithm"); - goto cleanup; - } - - while (count > 0) { - retval = target_read_u32(target, rp_addr, &rp); - if (retval != ERROR_OK) { - LOG_ERROR("failed to get read pointer"); - break; - } - - LOG_DEBUG("count 0x%"PRIx32" wp 0x%"PRIx32" rp 0x%"PRIx32, count, wp, rp); - - if (rp == 0) { - LOG_ERROR("flash write algorithm aborted by target"); - retval = ERROR_FLASH_OPERATION_FAILED; - break; - } - - if ((rp & 1) || rp < fifo_start_addr || rp >= fifo_end_addr) { - LOG_ERROR("corrupted fifo read pointer 0x%"PRIx32, rp); - break; - } - - /* Count the number of bytes available in the fifo without - * crossing the wrap around. Make sure to not fill it completely, - * because that would make wp == rp and that's the empty condition. */ - uint32_t thisrun_bytes; - if (rp > wp) - thisrun_bytes = rp - wp - 2; - else if (rp > fifo_start_addr) - thisrun_bytes = fifo_end_addr - wp; - else - thisrun_bytes = fifo_end_addr - wp - 2; - - if (thisrun_bytes == 0) { - /* Throttle polling a bit if transfer is (much) faster than flash - * programming. The exact delay shouldn't matter as long as it's - * less than buffer size / flash speed. This is very unlikely to - * run when using high latency connections such as USB. */ - alive_sleep(10); - continue; - } - - /* Limit to the amount of data we actually want to write */ - if (thisrun_bytes > count * 2) - thisrun_bytes = count * 2; - - /* Write data to fifo */ - retval = target_write_buffer(target, wp, thisrun_bytes, buffer); - if (retval != ERROR_OK) - break; - - /* Update counters and wrap write pointer */ - buffer += thisrun_bytes; - count -= thisrun_bytes / 2; - wp += thisrun_bytes; - if (wp >= fifo_end_addr) - wp = fifo_start_addr; - - /* Store updated write pointer to target */ - retval = target_write_u32(target, wp_addr, wp); - if (retval != ERROR_OK) - break; - } - - if (retval != ERROR_OK) { - /* abort flash write algorithm on target */ - target_write_u32(target, wp_addr, 0); - } - - int retval2 = target_wait_algorithm(target, 0, NULL, 5, reg_params, - 0, 10000, &armv7m_info); - if (retval2 != ERROR_OK) { - LOG_ERROR("error waiting for stm32x flash write algorithm"); - retval = retval2; - } if (retval == ERROR_FLASH_OPERATION_FAILED) { LOG_ERROR("flash write failed at address 0x%"PRIx32, @@ -794,19 +670,18 @@ static int stm32x_write_block(struct flash_bank *bank, uint8_t *buffer, if (buf_get_u32(reg_params[0].value, 0, 32) & FLASH_PGERR) { LOG_ERROR("flash memory not erased before writing"); /* Clear but report errors */ - target_write_u32(target, STM32_FLASH_SR_B0, FLASH_PGERR); + target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), FLASH_PGERR); } if (buf_get_u32(reg_params[0].value, 0, 32) & FLASH_WRPRTERR) { LOG_ERROR("flash memory write protected"); /* Clear but report errors */ - target_write_u32(target, STM32_FLASH_SR_B0, FLASH_WRPRTERR); + target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), FLASH_WRPRTERR); } } -cleanup: target_free_working_area(target, source); - target_free_working_area(target, stm32x_info->write_algorithm); + target_free_working_area(target, write_algorithm); destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); @@ -817,15 +692,11 @@ cleanup: return retval; } -static int stm32x_write(struct flash_bank *bank, uint8_t *buffer, +static int stm32x_write(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count) { struct target *target = bank->target; - uint32_t words_remaining = (count / 2); - uint32_t bytes_remaining = (count & 0x00000001); - uint32_t address = bank->base + offset; - uint32_t bytes_written = 0; - int retval; + uint8_t *new_buffer = NULL; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); @@ -833,190 +704,266 @@ static int stm32x_write(struct flash_bank *bank, uint8_t *buffer, } if (offset & 0x1) { - LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset); + LOG_ERROR("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset); return ERROR_FLASH_DST_BREAKS_ALIGNMENT; } + /* If there's an odd number of bytes, the data has to be padded. Duplicate + * the buffer and use the normal code path with a single block write since + * it's probably cheaper than to special case the last odd write using + * discrete accesses. */ + if (count & 1) { + new_buffer = malloc(count + 1); + if (new_buffer == NULL) { + LOG_ERROR("odd number of bytes to write and no memory for padding buffer"); + return ERROR_FAIL; + } + LOG_INFO("odd number of bytes to write, padding with 0xff"); + buffer = memcpy(new_buffer, buffer, count); + new_buffer[count++] = 0xff; + } + + uint32_t words_remaining = count / 2; + int retval, retval2; + /* unlock flash registers */ retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1); if (retval != ERROR_OK) - return retval; + goto cleanup; retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2); if (retval != ERROR_OK) - return retval; + goto cleanup; - /* multiple half words (2-byte) to be programmed? */ - if (words_remaining > 0) { - /* try using a block write */ - retval = stm32x_write_block(bank, buffer, offset, words_remaining); - if (retval != ERROR_OK) { - if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) { - /* if block write failed (no sufficient working area), - * we use normal (slow) single dword accesses */ - LOG_WARNING("couldn't use block writes, falling back to single memory accesses"); - } - } else { - buffer += words_remaining * 2; - address += words_remaining * 2; - words_remaining = 0; + retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PG); + if (retval != ERROR_OK) + goto cleanup; + + /* try using a block write */ + retval = stm32x_write_block(bank, buffer, offset, words_remaining); + + if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) { + /* if block write failed (no sufficient working area), + * we use normal (slow) single halfword accesses */ + LOG_WARNING("couldn't use block writes, falling back to single memory accesses"); + + while (words_remaining > 0) { + uint16_t value; + memcpy(&value, buffer, sizeof(uint16_t)); + + retval = target_write_u16(target, bank->base + offset, value); + if (retval != ERROR_OK) + goto reset_pg_and_lock; + + retval = stm32x_wait_status_busy(bank, 5); + if (retval != ERROR_OK) + goto reset_pg_and_lock; + + words_remaining--; + buffer += 2; + offset += 2; } } - if ((retval != ERROR_OK) && (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE)) - return retval; +reset_pg_and_lock: + retval2 = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK); + if (retval == ERROR_OK) + retval = retval2; - while (words_remaining > 0) { - uint16_t value; - memcpy(&value, buffer + bytes_written, sizeof(uint16_t)); +cleanup: + if (new_buffer) + free(new_buffer); - retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PG); - if (retval != ERROR_OK) - return retval; - retval = target_write_u16(target, address, value); - if (retval != ERROR_OK) - return retval; + return retval; +} - retval = stm32x_wait_status_busy(bank, 5); - if (retval != ERROR_OK) - return retval; +static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id) +{ + /* This check the device CPUID core register to detect + * the M0 from the M3 devices. */ + + struct target *target = bank->target; + uint32_t cpuid, device_id_register = 0; + + /* Get the CPUID from the ARM Core + * http://infocenter.arm.com/help/topic/com.arm.doc.ddi0432c/DDI0432C_cortex_m0_r0p0_trm.pdf 4.2.1 */ + int retval = target_read_u32(target, 0xE000ED00, &cpuid); + if (retval != ERROR_OK) + return retval; - bytes_written += 2; - words_remaining--; - address += 2; + if (((cpuid >> 4) & 0xFFF) == 0xC20) { + /* 0xC20 is M0 devices */ + device_id_register = 0x40015800; + } else if (((cpuid >> 4) & 0xFFF) == 0xC23) { + /* 0xC23 is M3 devices */ + device_id_register = 0xE0042000; + } else if (((cpuid >> 4) & 0xFFF) == 0xC24) { + /* 0xC24 is M4 devices */ + device_id_register = 0xE0042000; + } else { + LOG_ERROR("Cannot identify target as a stm32x"); + return ERROR_FAIL; } - if (bytes_remaining) { - uint16_t value = 0xffff; - memcpy(&value, buffer + bytes_written, bytes_remaining); + /* read stm32 device id register */ + retval = target_read_u32(target, device_id_register, device_id); + if (retval != ERROR_OK) + return retval; - retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PG); - if (retval != ERROR_OK) - return retval; - retval = target_write_u16(target, address, value); - if (retval != ERROR_OK) - return retval; + return retval; +} - retval = stm32x_wait_status_busy(bank, 5); - if (retval != ERROR_OK) - return retval; +static int stm32x_get_flash_size(struct flash_bank *bank, uint16_t *flash_size_in_kb) +{ + struct target *target = bank->target; + uint32_t cpuid, flash_size_reg; + + int retval = target_read_u32(target, 0xE000ED00, &cpuid); + if (retval != ERROR_OK) + return retval; + + if (((cpuid >> 4) & 0xFFF) == 0xC20) { + /* 0xC20 is M0 devices */ + flash_size_reg = 0x1FFFF7CC; + } else if (((cpuid >> 4) & 0xFFF) == 0xC23) { + /* 0xC23 is M3 devices */ + flash_size_reg = 0x1FFFF7E0; + } else if (((cpuid >> 4) & 0xFFF) == 0xC24) { + /* 0xC24 is M4 devices */ + flash_size_reg = 0x1FFFF7CC; + } else { + LOG_ERROR("Cannot identify target as a stm32x"); + return ERROR_FAIL; } - return target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK); + retval = target_read_u16(target, flash_size_reg, flash_size_in_kb); + if (retval != ERROR_OK) + return retval; + + return retval; } static int stm32x_probe(struct flash_bank *bank) { - struct target *target = bank->target; struct stm32x_flash_bank *stm32x_info = bank->driver_priv; int i; uint16_t flash_size_in_kb; + uint16_t max_flash_size_in_kb; uint32_t device_id; int page_size; uint32_t base_address = 0x08000000; stm32x_info->probed = 0; stm32x_info->register_base = FLASH_REG_BASE_B0; + stm32x_info->user_data_offset = 10; + stm32x_info->option_offset = 0; + + /* default factory protection level */ + stm32x_info->default_rdp = 0x5AA5; /* read stm32 device id register */ - int retval = target_read_u32(target, 0xE0042000, &device_id); + int retval = stm32x_get_device_id(bank, &device_id); if (retval != ERROR_OK) return retval; - LOG_INFO("device id = 0x%08" PRIx32 "", device_id); - /* get flash size from target. */ - retval = target_read_u16(target, 0x1FFFF7E0, &flash_size_in_kb); - if (retval != ERROR_OK) { - LOG_WARNING("failed reading flash size, default to max target family"); - /* failed reading flash size, default to max target family */ - flash_size_in_kb = 0xffff; - } + LOG_INFO("device id = 0x%08" PRIx32 "", device_id); - if ((device_id & 0xfff) == 0x410) { - /* medium density - we have 1k pages - * 4 pages for a protection area */ + /* set page size, protection granularity and max flash size depending on family */ + switch (device_id & 0xfff) { + case 0x410: /* medium density */ page_size = 1024; stm32x_info->ppage_size = 4; - - /* check for early silicon */ - if (flash_size_in_kb == 0xffff) { - /* number of sectors incorrect on revA */ - LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash"); - flash_size_in_kb = 128; - } - } else if ((device_id & 0xfff) == 0x412) { - /* low density - we have 1k pages - * 4 pages for a protection area */ + max_flash_size_in_kb = 128; + break; + case 0x412: /* low density */ page_size = 1024; stm32x_info->ppage_size = 4; - - /* check for early silicon */ - if (flash_size_in_kb == 0xffff) { - /* number of sectors incorrect on revA */ - LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 32k flash"); - flash_size_in_kb = 32; - } - } else if ((device_id & 0xfff) == 0x414) { - /* high density - we have 2k pages - * 2 pages for a protection area */ + max_flash_size_in_kb = 32; + break; + case 0x414: /* high density */ page_size = 2048; stm32x_info->ppage_size = 2; - - /* check for early silicon */ - if (flash_size_in_kb == 0xffff) { - /* number of sectors incorrect on revZ */ - LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 512k flash"); - flash_size_in_kb = 512; - } - } else if ((device_id & 0xfff) == 0x418) { - /* connectivity line density - we have 2k pages - * 2 pages for a protection area */ + max_flash_size_in_kb = 512; + break; + case 0x418: /* connectivity line density */ page_size = 2048; stm32x_info->ppage_size = 2; - - /* check for early silicon */ - if (flash_size_in_kb == 0xffff) { - /* number of sectors incorrect on revZ */ - LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 256k flash"); - flash_size_in_kb = 256; - } - } else if ((device_id & 0xfff) == 0x420) { - /* value line density - we have 1k pages - * 4 pages for a protection area */ + max_flash_size_in_kb = 256; + break; + case 0x420: /* value line density */ page_size = 1024; stm32x_info->ppage_size = 4; - - /* check for early silicon */ - if (flash_size_in_kb == 0xffff) { - /* number of sectors may be incorrrect on early silicon */ - LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash"); - flash_size_in_kb = 128; - } - } else if ((device_id & 0xfff) == 0x428) { - /* value line High density - we have 2k pages - * 4 pages for a protection area */ + max_flash_size_in_kb = 128; + break; + case 0x422: /* stm32f30x */ + page_size = 2048; + stm32x_info->ppage_size = 2; + max_flash_size_in_kb = 256; + stm32x_info->user_data_offset = 16; + stm32x_info->option_offset = 6; + stm32x_info->default_rdp = 0x55AA; + break; + case 0x428: /* value line High density */ page_size = 2048; stm32x_info->ppage_size = 4; - - /* check for early silicon */ - if (flash_size_in_kb == 0xffff) { - /* number of sectors may be incorrrect on early silicon */ - LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash"); - flash_size_in_kb = 128; - } - } else if ((device_id & 0xfff) == 0x430) { - /* xl line density - we have 2k pages - * 2 pages for a protection area */ + max_flash_size_in_kb = 128; + break; + case 0x430: /* xl line density (dual flash banks) */ page_size = 2048; stm32x_info->ppage_size = 2; + max_flash_size_in_kb = 1024; stm32x_info->has_dual_banks = true; + break; + case 0x432: /* stm32f37x */ + page_size = 2048; + stm32x_info->ppage_size = 2; + max_flash_size_in_kb = 256; + stm32x_info->user_data_offset = 16; + stm32x_info->option_offset = 6; + stm32x_info->default_rdp = 0x55AA; + break; + case 0x438: /* stm32f33x */ + page_size = 2048; + stm32x_info->ppage_size = 2; + max_flash_size_in_kb = 64; + stm32x_info->user_data_offset = 16; + stm32x_info->option_offset = 6; + stm32x_info->default_rdp = 0x55AA; + break; + case 0x440: /* stm32f05x */ + case 0x444: /* stm32f03x */ + case 0x445: /* stm32f04x */ + page_size = 1024; + stm32x_info->ppage_size = 4; + max_flash_size_in_kb = 64; + stm32x_info->user_data_offset = 16; + stm32x_info->option_offset = 6; + stm32x_info->default_rdp = 0x55AA; + break; + case 0x448: /* stm32f07x */ + page_size = 2048; + stm32x_info->ppage_size = 4; + max_flash_size_in_kb = 128; + stm32x_info->user_data_offset = 16; + stm32x_info->option_offset = 6; + stm32x_info->default_rdp = 0x55AA; + break; + default: + LOG_WARNING("Cannot identify target as a STM32 family."); + return ERROR_FAIL; + } - /* check for early silicon */ - if (flash_size_in_kb == 0xffff) { - /* number of sectors may be incorrrect on early silicon */ - LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 1024k flash"); - flash_size_in_kb = 1024; - } + /* get flash size from target. */ + retval = stm32x_get_flash_size(bank, &flash_size_in_kb); + + /* failed reading flash size or flash size invalid (early silicon), + * default to max target family */ + if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) { + LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash", + max_flash_size_in_kb); + flash_size_in_kb = max_flash_size_in_kb; + } + if (stm32x_info->has_dual_banks) { /* split reported size into matching bank */ if (bank->base != 0x08080000) { /* bank 0 will be fixed 512k */ @@ -1027,9 +974,13 @@ static int stm32x_probe(struct flash_bank *bank) stm32x_info->register_base = FLASH_REG_BASE_B1; base_address = 0x08080000; } - } else { - LOG_WARNING("Cannot identify target as a STM32 family."); - return ERROR_FAIL; + } + + /* if the user sets the size manually then ignore the probed value + * this allows us to work around devices that have a invalid flash size register value */ + if (stm32x_info->user_bank_size) { + LOG_INFO("ignoring flash probed value, using configured bank size"); + flash_size_in_kb = stm32x_info->user_bank_size / 1024; } LOG_INFO("flash size = %dkbytes", flash_size_in_kb); @@ -1082,146 +1033,233 @@ COMMAND_HANDLER(stm32x_handle_part_id_command) static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size) { - struct target *target = bank->target; - uint32_t device_id; - int printed; + uint32_t dbgmcu_idcode; - /* read stm32 device id register */ - int retval = target_read_u32(target, 0xE0042000, &device_id); + /* read stm32 device id register */ + int retval = stm32x_get_device_id(bank, &dbgmcu_idcode); if (retval != ERROR_OK) return retval; - if ((device_id & 0xfff) == 0x410) { - printed = snprintf(buf, buf_size, "stm32x (Medium Density) - Rev: "); - buf += printed; - buf_size -= printed; + uint16_t device_id = dbgmcu_idcode & 0xfff; + uint16_t rev_id = dbgmcu_idcode >> 16; + const char *device_str; + const char *rev_str = NULL; - switch (device_id >> 16) { - case 0x0000: - snprintf(buf, buf_size, "A"); - break; + switch (device_id) { + case 0x410: + device_str = "STM32F10x (Medium Density)"; - case 0x2000: - snprintf(buf, buf_size, "B"); - break; + switch (rev_id) { + case 0x0000: + rev_str = "A"; + break; - case 0x2001: - snprintf(buf, buf_size, "Z"); - break; + case 0x2000: + rev_str = "B"; + break; - case 0x2003: - snprintf(buf, buf_size, "Y"); - break; + case 0x2001: + rev_str = "Z"; + break; - default: - snprintf(buf, buf_size, "unknown"); - break; + case 0x2003: + rev_str = "Y"; + break; } - } else if ((device_id & 0xfff) == 0x412) { - printed = snprintf(buf, buf_size, "stm32x (Low Density) - Rev: "); - buf += printed; - buf_size -= printed; - - switch (device_id >> 16) { - case 0x1000: - snprintf(buf, buf_size, "A"); - break; - - default: - snprintf(buf, buf_size, "unknown"); - break; + break; + + case 0x412: + device_str = "STM32F10x (Low Density)"; + + switch (rev_id) { + case 0x1000: + rev_str = "A"; + break; } - } else if ((device_id & 0xfff) == 0x414) { - printed = snprintf(buf, buf_size, "stm32x (High Density) - Rev: "); - buf += printed; - buf_size -= printed; - - switch (device_id >> 16) { - case 0x1000: - snprintf(buf, buf_size, "A"); - break; - - case 0x1001: - snprintf(buf, buf_size, "Z"); - break; - - default: - snprintf(buf, buf_size, "unknown"); - break; + break; + + case 0x414: + device_str = "STM32F10x (High Density)"; + + switch (rev_id) { + case 0x1000: + rev_str = "A"; + break; + + case 0x1001: + rev_str = "Z"; + break; + + case 0x1003: + rev_str = "Y"; + break; } - } else if ((device_id & 0xfff) == 0x418) { - printed = snprintf(buf, buf_size, "stm32x (Connectivity) - Rev: "); - buf += printed; - buf_size -= printed; - - switch (device_id >> 16) { - case 0x1000: - snprintf(buf, buf_size, "A"); - break; - - case 0x1001: - snprintf(buf, buf_size, "Z"); - break; - - default: - snprintf(buf, buf_size, "unknown"); - break; + break; + + case 0x418: + device_str = "STM32F10x (Connectivity)"; + + switch (rev_id) { + case 0x1000: + rev_str = "A"; + break; + + case 0x1001: + rev_str = "Z"; + break; } - } else if ((device_id & 0xfff) == 0x420) { - printed = snprintf(buf, buf_size, "stm32x (Value) - Rev: "); - buf += printed; - buf_size -= printed; - - switch (device_id >> 16) { - case 0x1000: - snprintf(buf, buf_size, "A"); - break; - - case 0x1001: - snprintf(buf, buf_size, "Z"); - break; - - default: - snprintf(buf, buf_size, "unknown"); - break; + break; + + case 0x420: + device_str = "STM32F100 (Low/Medium Density)"; + + switch (rev_id) { + case 0x1000: + rev_str = "A"; + break; + + case 0x1001: + rev_str = "Z"; + break; } - } else if ((device_id & 0xfff) == 0x428) { - printed = snprintf(buf, buf_size, "stm32x (Value HD) - Rev: "); - buf += printed; - buf_size -= printed; - - switch (device_id >> 16) { - case 0x1000: - snprintf(buf, buf_size, "A"); - break; - - case 0x1001: - snprintf(buf, buf_size, "Z"); - break; - - default: - snprintf(buf, buf_size, "unknown"); - break; + break; + + case 0x422: + device_str = "STM32F30x"; + + switch (rev_id) { + case 0x1000: + rev_str = "A"; + break; + + case 0x1001: + rev_str = "Z"; + break; + + case 0x1003: + rev_str = "Y"; + break; + + case 0x2000: + rev_str = "B"; + break; } - } else if ((device_id & 0xfff) == 0x430) { - printed = snprintf(buf, buf_size, "stm32x (XL) - Rev: "); - buf += printed; - buf_size -= printed; - - switch (device_id >> 16) { - case 0x1000: - snprintf(buf, buf_size, "A"); - break; - - default: - snprintf(buf, buf_size, "unknown"); - break; + break; + + case 0x428: + device_str = "STM32F100 (High Density)"; + + switch (rev_id) { + case 0x1000: + rev_str = "A"; + break; + + case 0x1001: + rev_str = "Z"; + break; } - } else { - snprintf(buf, buf_size, "Cannot identify target as a stm32x\n"); + break; + + case 0x430: + device_str = "STM32F10x (XL Density)"; + + switch (rev_id) { + case 0x1000: + rev_str = "A"; + break; + } + break; + + case 0x432: + device_str = "STM32F37x"; + + switch (rev_id) { + case 0x1000: + rev_str = "A"; + break; + + case 0x2000: + rev_str = "B"; + break; + } + break; + + case 0x438: + device_str = "STM32F33x"; + + switch (rev_id) { + case 0x1000: + rev_str = "A"; + break; + } + break; + + case 0x444: + device_str = "STM32F03x"; + + switch (rev_id) { + case 0x1000: + rev_str = "1.0"; + break; + + case 0x2000: + rev_str = "2.0"; + break; + } + break; + + case 0x440: + device_str = "STM32F05x"; + + switch (rev_id) { + case 0x1000: + rev_str = "1.0"; + break; + + case 0x2000: + rev_str = "2.0"; + break; + } + break; + + case 0x445: + device_str = "STM32F04x"; + + switch (rev_id) { + case 0x1000: + rev_str = "1.0"; + break; + + case 0x2000: + rev_str = "2.0"; + break; + } + break; + + case 0x448: + device_str = "STM32F07x"; + + switch (rev_id) { + case 0x1000: + rev_str = "1.0"; + break; + + case 0x2000: + rev_str = "2.0"; + break; + } + break; + + default: + snprintf(buf, buf_size, "Cannot identify target as a STM32F0/1/3\n"); return ERROR_FAIL; } + if (rev_str != NULL) + snprintf(buf, buf_size, "%s - Rev: %s", device_str, rev_str); + else + snprintf(buf, buf_size, "%s - Rev: unknown (0x%04x)", device_str, rev_id); + return ERROR_OK; } @@ -1341,36 +1379,46 @@ COMMAND_HANDLER(stm32x_handle_options_read_command) return retval; command_print(CMD_CTX, "Option Byte: 0x%" PRIx32 "", optionbyte); - if (buf_get_u32((uint8_t *)&optionbyte, OPT_ERROR, 1)) + int user_data = optionbyte; + + if (optionbyte >> OPT_ERROR & 1) command_print(CMD_CTX, "Option Byte Complement Error"); - if (buf_get_u32((uint8_t *)&optionbyte, OPT_READOUT, 1)) + if (optionbyte >> OPT_READOUT & 1) command_print(CMD_CTX, "Readout Protection On"); else command_print(CMD_CTX, "Readout Protection Off"); - if (buf_get_u32((uint8_t *)&optionbyte, OPT_RDWDGSW, 1)) + /* user option bytes are offset depending on variant */ + optionbyte >>= stm32x_info->option_offset; + + if (optionbyte >> OPT_RDWDGSW & 1) command_print(CMD_CTX, "Software Watchdog"); else command_print(CMD_CTX, "Hardware Watchdog"); - if (buf_get_u32((uint8_t *)&optionbyte, OPT_RDRSTSTOP, 1)) + if (optionbyte >> OPT_RDRSTSTOP & 1) command_print(CMD_CTX, "Stop: No reset generated"); else command_print(CMD_CTX, "Stop: Reset generated"); - if (buf_get_u32((uint8_t *)&optionbyte, OPT_RDRSTSTDBY, 1)) + if (optionbyte >> OPT_RDRSTSTDBY & 1) command_print(CMD_CTX, "Standby: No reset generated"); else command_print(CMD_CTX, "Standby: Reset generated"); if (stm32x_info->has_dual_banks) { - if (buf_get_u32((uint8_t *)&optionbyte, OPT_BFB2, 1)) + if (optionbyte >> OPT_BFB2 & 1) command_print(CMD_CTX, "Boot: Bank 0"); else command_print(CMD_CTX, "Boot: Bank 1"); } + command_print(CMD_CTX, "User Option0: 0x%02" PRIx8, + (uint8_t)((user_data >> stm32x_info->user_data_offset) & 0xff)); + command_print(CMD_CTX, "User Option1: 0x%02" PRIx8, + (uint8_t)((user_data >> (stm32x_info->user_data_offset + 8)) & 0xff)); + return ERROR_OK; } @@ -1378,9 +1426,9 @@ COMMAND_HANDLER(stm32x_handle_options_write_command) { struct target *target = NULL; struct stm32x_flash_bank *stm32x_info = NULL; - uint16_t optionbyte = 0xF8; + uint16_t optionbyte; - if (CMD_ARGC < 4) + if (CMD_ARGC < 2) return ERROR_COMMAND_SYNTAX_ERROR; struct flash_bank *bank; @@ -1401,34 +1449,41 @@ COMMAND_HANDLER(stm32x_handle_options_write_command) if (ERROR_OK != retval) return retval; - /* REVISIT: ignores some options which we will display... - * and doesn't insist on the specified syntax. - */ - - /* OPT_RDWDGSW */ - if (strcmp(CMD_ARGV[1], "SWWDG") == 0) - optionbyte |= (1 << 0); - else /* REVISIT must be "HWWDG" then ... */ - optionbyte &= ~(1 << 0); - - /* OPT_RDRSTSTOP */ - if (strcmp(CMD_ARGV[2], "NORSTSTOP") == 0) - optionbyte |= (1 << 1); - else /* REVISIT must be "RSTSTNDBY" then ... */ - optionbyte &= ~(1 << 1); - - /* OPT_RDRSTSTDBY */ - if (strcmp(CMD_ARGV[3], "NORSTSTNDBY") == 0) - optionbyte |= (1 << 2); - else /* REVISIT must be "RSTSTOP" then ... */ - optionbyte &= ~(1 << 2); - - if (CMD_ARGC > 4 && stm32x_info->has_dual_banks) { - /* OPT_BFB2 */ - if (strcmp(CMD_ARGV[4], "BOOT0") == 0) - optionbyte |= (1 << 3); - else - optionbyte &= ~(1 << 3); + retval = stm32x_read_options(bank); + if (ERROR_OK != retval) + return retval; + + /* start with current options */ + optionbyte = stm32x_info->option_bytes.user_options; + + /* skip over flash bank */ + CMD_ARGC--; + CMD_ARGV++; + + while (CMD_ARGC) { + if (strcmp("SWWDG", CMD_ARGV[0]) == 0) + optionbyte |= (1 << 0); + else if (strcmp("HWWDG", CMD_ARGV[0]) == 0) + optionbyte &= ~(1 << 0); + else if (strcmp("NORSTSTOP", CMD_ARGV[0]) == 0) + optionbyte |= (1 << 1); + else if (strcmp("RSTSTOP", CMD_ARGV[0]) == 0) + optionbyte &= ~(1 << 1); + else if (strcmp("NORSTSTNDBY", CMD_ARGV[0]) == 0) + optionbyte |= (1 << 2); + else if (strcmp("RSTSTNDBY", CMD_ARGV[0]) == 0) + optionbyte &= ~(1 << 2); + else if (stm32x_info->has_dual_banks) { + if (strcmp("BOOT0", CMD_ARGV[0]) == 0) + optionbyte |= (1 << 3); + else if (strcmp("BOOT1", CMD_ARGV[0]) == 0) + optionbyte &= ~(1 << 3); + else + return ERROR_COMMAND_SYNTAX_ERROR; + } else + return ERROR_COMMAND_SYNTAX_ERROR; + CMD_ARGC--; + CMD_ARGV++; } if (stm32x_erase_options(bank) != ERROR_OK) { @@ -1476,7 +1531,7 @@ static int stm32x_mass_erase(struct flash_bank *bank) if (retval != ERROR_OK) return retval; - retval = stm32x_wait_status_busy(bank, 100); + retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT); if (retval != ERROR_OK) return retval; @@ -1574,7 +1629,7 @@ struct flash_driver stm32f1x_flash = { .read = default_flash_read, .probe = stm32x_probe, .auto_probe = stm32x_auto_probe, - .erase_check = default_flash_mem_blank_check, + .erase_check = default_flash_blank_check, .protect_check = stm32x_protect_check, .info = get_stm32x_info, };