X-Git-Url: https://review.openocd.org/gitweb?p=openocd.git;a=blobdiff_plain;f=src%2Fflash%2Fnor%2Fstm32f2x.c;h=b46fb07869f0fba8610e771bfba4a5774a730fc9;hp=0e8cec306fbb56eb6154d51705ddf33b8d001c54;hb=23cd59cdf2a563b840e5917e36c4241ee4d988f4;hpb=2475e7b14c03b54ce641dce9b859be57b26df522 diff --git a/src/flash/nor/stm32f2x.c b/src/flash/nor/stm32f2x.c index 0e8cec306f..b46fb07869 100644 --- a/src/flash/nor/stm32f2x.c +++ b/src/flash/nor/stm32f2x.c @@ -19,10 +19,9 @@ * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * - * along with this program; if not, write to the * - * Free Software Foundation, Inc., * - * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * + * along with this program. If not, see . * ***************************************************************************/ + #ifdef HAVE_CONFIG_H #include "config.h" #endif @@ -58,19 +57,51 @@ * To reduce testing complexity and dangers of regressions, * a seperate file is used for stm32fx2x. * - * 1mByte part with 4 x 16, 1 x 64, 7 x 128kBytes sectors + * Sector sizes in kiBytes: + * 1 MiByte part with 4 x 16, 1 x 64, 7 x 128. + * 1.5 MiByte part with 4 x 16, 1 x 64, 11 x 128. + * 2 MiByte part with 4 x 16, 1 x 64, 7 x 128, 4 x 16, 1 x 64, 7 x 128. + * 1 MiByte STM32F42x/43x part with DB1M Option set: + * 4 x 16, 1 x 64, 3 x 128, 4 x 16, 1 x 64, 3 x 128. + * + * STM32F7[2|3] + * 512 kiByte part with 4 x 16, 1 x 64, 3 x 128. + * + * STM32F7[4|5] + * 1 MiByte part with 4 x 32, 1 x 128, 3 x 256. + * + * STM32F7[6|7] + * 1 MiByte part in single bank mode with 4 x 32, 1 x 128, 3 x 256. + * 1 MiByte part in dual-bank mode two banks with 4 x 16, 1 x 64, 3 x 128 each. + * 2 MiByte part in single-bank mode with 4 x 32, 1 x 128, 7 x 256. + * 2 MiByte part in dual-bank mode two banks with 4 x 16, 1 x 64, 7 x 128 each. * - * What's the protection page size??? + * Protection size is sector size. * * Tested with STM3220F-EVAL board. * - * STM32F21xx series for reference. + * STM32F4xx series for reference. * - * RM0033 - * http://www.st.com/internet/mcu/product/250192.jsp + * RM0090 + * http://www.st.com/web/en/resource/technical/document/reference_manual/DM00031020.pdf * * PM0059 - * www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/PROGRAMMING_MANUAL/CD00233952.pdf + * www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/ + * PROGRAMMING_MANUAL/CD00233952.pdf + * + * STM32F7xx series for reference. + * + * RM0385 + * http://www.st.com/web/en/resource/technical/document/reference_manual/DM00124865.pdf + * + * RM0410 + * http://www.st.com/resource/en/reference_manual/dm00224583.pdf + * + * RM0430 + * http://www.st.com/resource/en/reference_manual/dm00305666.pdf + * + * RM0431 + * http://www.st.com/resource/en/reference_manual/dm00305990.pdf * * STM32F1x series - notice that this code was copy, pasted and knocked * into a stm32f2x driver, so in case something has been converted or @@ -85,78 +116,84 @@ * */ - // Erase time can be as high as 1000ms, 10x this and it's toast... +/* Erase time can be as high as 1000ms, 10x this and it's toast... */ #define FLASH_ERASE_TIMEOUT 10000 #define FLASH_WRITE_TIMEOUT 5 +/* Mass erase time can be as high as 32 s in x8 mode. */ +#define FLASH_MASS_ERASE_TIMEOUT 33000 -#define STM32_FLASH_BASE 0x40023c00 -#define STM32_FLASH_ACR 0x40023c00 -#define STM32_FLASH_KEYR 0x40023c04 -#define STM32_FLASH_OPTKEYR 0x40023c08 -#define STM32_FLASH_SR 0x40023c0C -#define STM32_FLASH_CR 0x40023c10 -#define STM32_FLASH_OPTCR 0x40023c14 -#define STM32_FLASH_OBR 0x40023c1C - - - -/* option byte location */ - -#define STM32_OB_RDP 0x1FFFF800 -#define STM32_OB_USER 0x1FFFF802 -#define STM32_OB_DATA0 0x1FFFF804 -#define STM32_OB_DATA1 0x1FFFF806 -#define STM32_OB_WRP0 0x1FFFF808 -#define STM32_OB_WRP1 0x1FFFF80A -#define STM32_OB_WRP2 0x1FFFF80C -#define STM32_OB_WRP3 0x1FFFF80E +#define STM32_FLASH_BASE 0x40023c00 +#define STM32_FLASH_ACR 0x40023c00 +#define STM32_FLASH_KEYR 0x40023c04 +#define STM32_FLASH_OPTKEYR 0x40023c08 +#define STM32_FLASH_SR 0x40023c0C +#define STM32_FLASH_CR 0x40023c10 +#define STM32_FLASH_OPTCR 0x40023c14 +#define STM32_FLASH_OPTCR1 0x40023c18 +#define STM32_FLASH_OPTCR2 0x40023c1c /* FLASH_CR register bits */ - -#define FLASH_PG (1 << 0) -#define FLASH_SER (1 << 1) -#define FLASH_MER (1 << 2) -#define FLASH_STRT (1 << 16) -#define FLASH_PSIZE_8 (0 << 8) -#define FLASH_PSIZE_16 (1 << 8) -#define FLASH_PSIZE_32 (2 << 8) -#define FLASH_PSIZE_64 (3 << 8) -#define FLASH_SNB(a) ((a) << 3) -#define FLASH_LOCK (1 << 31) +#define FLASH_PG (1 << 0) +#define FLASH_SER (1 << 1) +#define FLASH_MER (1 << 2) /* MER/MER1 for f76x/77x */ +#define FLASH_MER1 (1 << 15) /* MER2 for f76x/77x, confusing ... */ +#define FLASH_STRT (1 << 16) +#define FLASH_PSIZE_8 (0 << 8) +#define FLASH_PSIZE_16 (1 << 8) +#define FLASH_PSIZE_32 (2 << 8) +#define FLASH_PSIZE_64 (3 << 8) +/* The sector number encoding is not straight binary for dual bank flash. */ +#define FLASH_SNB(a) ((a) << 3) +#define FLASH_LOCK (1 << 31) /* FLASH_SR register bits */ +#define FLASH_BSY (1 << 16) +#define FLASH_PGSERR (1 << 7) /* Programming sequence error */ +#define FLASH_PGPERR (1 << 6) /* Programming parallelism error */ +#define FLASH_PGAERR (1 << 5) /* Programming alignment error */ +#define FLASH_WRPERR (1 << 4) /* Write protection error */ +#define FLASH_OPERR (1 << 1) /* Operation error */ -#define FLASH_BSY (1 << 16) -#define FLASH_PGSERR (1 << 7) // Programming sequence error -#define FLASH_PGPERR (1 << 6) // Programming parallelism error -#define FLASH_PGAERR (1 << 5) // Programming alignment error -#define FLASH_WRPERR (1 << 4) // Write protection error -#define FLASH_OPERR (1 << 1) // Operation error - -#define FLASH_ERROR (FLASH_PGSERR | FLASH_PGPERR | FLASH_PGAERR| FLASH_WRPERR| FLASH_OPERR) +#define FLASH_ERROR (FLASH_PGSERR | FLASH_PGPERR | FLASH_PGAERR | FLASH_WRPERR | FLASH_OPERR) -/* STM32_FLASH_OBR bit definitions (reading) */ +/* STM32_FLASH_OPTCR register bits */ +#define OPTCR_LOCK (1 << 0) +#define OPTCR_START (1 << 1) +#define OPTCR_NDBANK (1 << 29) /* not dual bank mode */ +#define OPTCR_DB1M (1 << 30) /* 1 MiB devices dual flash bank option */ +#define OPTCR_SPRMOD (1 << 31) /* switches PCROPi/nWPRi interpretation */ -#define OPT_ERROR 0 -#define OPT_READOUT 1 -#define OPT_RDWDGSW 2 -#define OPT_RDRSTSTOP 3 -#define OPT_RDRSTSTDBY 4 -#define OPT_BFB2 5 /* dual flash bank only */ +/* STM32_FLASH_OPTCR2 register bits */ +#define OPTCR2_PCROP_RDP (1 << 31) /* erase PCROP zone when decreasing RDP */ /* register unlock keys */ +#define KEY1 0x45670123 +#define KEY2 0xCDEF89AB + +/* option register unlock key */ +#define OPTKEY1 0x08192A3B +#define OPTKEY2 0x4C5D6E7F + +struct stm32x_options { + uint8_t RDP; + uint16_t user_options; /* bit 0-7 usual options, bit 8-11 extra options */ + uint32_t protection; + uint32_t boot_addr; + uint32_t optcr2_pcrop; +}; -#define KEY1 0x45670123 -#define KEY2 0xCDEF89AB - -struct stm32x_flash_bank -{ - struct working_area *write_algorithm; +struct stm32x_flash_bank { + struct stm32x_options option_bytes; int probed; + bool has_large_mem; /* F42x/43x/469/479/7xx in dual bank mode */ + bool has_extra_options; /* F42x/43x/469/479/7xx */ + bool has_boot_addr; /* F7xx */ + bool has_optcr2_pcrop; /* F72x/73x */ + int protection_bits; /* F413/423 */ + uint32_t user_bank_size; }; - /* flash bank stm32x 0 0 */ FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command) @@ -164,16 +201,13 @@ FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command) struct stm32x_flash_bank *stm32x_info; if (CMD_ARGC < 6) - { - LOG_WARNING("incomplete flash_bank stm32x configuration"); - return ERROR_FLASH_BANK_INVALID; - } + return ERROR_COMMAND_SYNTAX_ERROR; stm32x_info = malloc(sizeof(struct stm32x_flash_bank)); bank->driver_priv = stm32x_info; - stm32x_info->write_algorithm = NULL; stm32x_info->probed = 0; + stm32x_info->user_bank_size = bank->size; return ERROR_OK; } @@ -196,16 +230,14 @@ static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout) int retval = ERROR_OK; /* wait for busy to clear */ - for (;;) - { + for (;;) { retval = stm32x_get_flash_status(bank, &status); if (retval != ERROR_OK) return retval; LOG_DEBUG("status: 0x%" PRIx32 "", status); if ((status & FLASH_BSY) == 0) break; - if (timeout-- <= 0) - { + if (timeout-- <= 0) { LOG_ERROR("timed out waiting for flash"); return ERROR_FAIL; } @@ -213,15 +245,15 @@ static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout) } - if (status & FLASH_WRPERR) - { + if (status & FLASH_WRPERR) { LOG_ERROR("stm32x device protected"); retval = ERROR_FAIL; } /* Clear but report errors */ - if (status & FLASH_ERROR) - { + if (status & FLASH_ERROR) { + if (retval == ERROR_OK) + retval = ERROR_FAIL; /* If this operation fails, we ignore it and report the original * retval */ @@ -233,29 +265,238 @@ static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout) static int stm32x_unlock_reg(struct target *target) { + uint32_t ctrl; + + /* first check if not already unlocked + * otherwise writing on STM32_FLASH_KEYR will fail + */ + int retval = target_read_u32(target, STM32_FLASH_CR, &ctrl); + if (retval != ERROR_OK) + return retval; + + if ((ctrl & FLASH_LOCK) == 0) + return ERROR_OK; + /* unlock flash registers */ - int retval = target_write_u32(target, STM32_FLASH_KEYR, KEY1); + retval = target_write_u32(target, STM32_FLASH_KEYR, KEY1); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, STM32_FLASH_KEYR, KEY2); if (retval != ERROR_OK) return retval; + + retval = target_read_u32(target, STM32_FLASH_CR, &ctrl); + if (retval != ERROR_OK) + return retval; + + if (ctrl & FLASH_LOCK) { + LOG_ERROR("flash not unlocked STM32_FLASH_CR: %" PRIx32, ctrl); + return ERROR_TARGET_FAILURE; + } + + return ERROR_OK; +} + +static int stm32x_unlock_option_reg(struct target *target) +{ + uint32_t ctrl; + + int retval = target_read_u32(target, STM32_FLASH_OPTCR, &ctrl); + if (retval != ERROR_OK) + return retval; + + if ((ctrl & OPTCR_LOCK) == 0) + return ERROR_OK; + + /* unlock option registers */ + retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY1); + if (retval != ERROR_OK) + return retval; + + retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY2); + if (retval != ERROR_OK) + return retval; + + retval = target_read_u32(target, STM32_FLASH_OPTCR, &ctrl); + if (retval != ERROR_OK) + return retval; + + if (ctrl & OPTCR_LOCK) { + LOG_ERROR("options not unlocked STM32_FLASH_OPTCR: %" PRIx32, ctrl); + return ERROR_TARGET_FAILURE; + } + + return ERROR_OK; +} + +static int stm32x_read_options(struct flash_bank *bank) +{ + uint32_t optiondata; + struct stm32x_flash_bank *stm32x_info = NULL; + struct target *target = bank->target; + + stm32x_info = bank->driver_priv; + + /* read current option bytes */ + int retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata); + if (retval != ERROR_OK) + return retval; + + /* caution: F2 implements 5 bits (WDG_SW only) + * whereas F7 6 bits (IWDG_SW and WWDG_SW) in user_options */ + stm32x_info->option_bytes.user_options = optiondata & 0xfc; + stm32x_info->option_bytes.RDP = (optiondata >> 8) & 0xff; + stm32x_info->option_bytes.protection = + (optiondata >> 16) & (~(0xffff << stm32x_info->protection_bits) & 0xffff); + + if (stm32x_info->has_extra_options) { + /* F42x/43x/469/479 and 7xx have up to 4 bits of extra options */ + stm32x_info->option_bytes.user_options |= (optiondata >> 20) & + ((0xf00 << (stm32x_info->protection_bits - 12)) & 0xf00); + } + + if (stm32x_info->has_large_mem || stm32x_info->has_boot_addr) { + retval = target_read_u32(target, STM32_FLASH_OPTCR1, &optiondata); + if (retval != ERROR_OK) + return retval; + + /* FLASH_OPTCR1 has quite diffent meanings ... */ + if (stm32x_info->has_boot_addr) { + /* for F7xx it contains boot0 and boot1 */ + stm32x_info->option_bytes.boot_addr = optiondata; + } else { + /* for F42x/43x/469/479 it contains 12 additional protection bits */ + stm32x_info->option_bytes.protection |= (optiondata >> 4) & 0x00fff000; + } + } + + if (stm32x_info->has_optcr2_pcrop) { + retval = target_read_u32(target, STM32_FLASH_OPTCR2, &optiondata); + if (retval != ERROR_OK) + return retval; + + stm32x_info->option_bytes.optcr2_pcrop = optiondata; + if (stm32x_info->has_optcr2_pcrop && + (stm32x_info->option_bytes.optcr2_pcrop & ~OPTCR2_PCROP_RDP)) { + LOG_INFO("PCROP Engaged"); + } + } else { + stm32x_info->option_bytes.optcr2_pcrop = 0x0; + } + + if (stm32x_info->option_bytes.RDP != 0xAA) + LOG_INFO("Device Security Bit Set"); + + return ERROR_OK; +} + +static int stm32x_write_options(struct flash_bank *bank) +{ + struct stm32x_flash_bank *stm32x_info = NULL; + struct target *target = bank->target; + uint32_t optiondata, optiondata2; + + stm32x_info = bank->driver_priv; + + int retval = stm32x_unlock_option_reg(target); + if (retval != ERROR_OK) + return retval; + + /* rebuild option data */ + optiondata = stm32x_info->option_bytes.user_options & 0xfc; + optiondata |= stm32x_info->option_bytes.RDP << 8; + optiondata |= (stm32x_info->option_bytes.protection & + (~(0xffff << stm32x_info->protection_bits))) << 16; + + if (stm32x_info->has_extra_options) { + /* F42x/43x/469/479 and 7xx have up to 4 bits of extra options */ + optiondata |= (stm32x_info->option_bytes.user_options & + ((0xf00 << (stm32x_info->protection_bits - 12)) & 0xf00)) << 20; + } + + if (stm32x_info->has_large_mem || stm32x_info->has_boot_addr) { + if (stm32x_info->has_boot_addr) { + /* F7xx uses FLASH_OPTCR1 for boot0 and boot1 ... */ + optiondata2 = stm32x_info->option_bytes.boot_addr; + } else { + /* F42x/43x/469/479 uses FLASH_OPTCR1 for additional protection bits */ + optiondata2 = (stm32x_info->option_bytes.protection & 0x00fff000) << 4; + } + + retval = target_write_u32(target, STM32_FLASH_OPTCR1, optiondata2); + if (retval != ERROR_OK) + return retval; + } + + /* program extra pcrop register */ + if (stm32x_info->has_optcr2_pcrop) { + retval = target_write_u32(target, STM32_FLASH_OPTCR2, + stm32x_info->option_bytes.optcr2_pcrop); + if (retval != ERROR_OK) + return retval; + } + + /* program options */ + retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata); + if (retval != ERROR_OK) + return retval; + + /* start programming cycle */ + retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata | OPTCR_START); + if (retval != ERROR_OK) + return retval; + + /* wait for completion, this might trigger a security erase and take a while */ + retval = stm32x_wait_status_busy(bank, FLASH_MASS_ERASE_TIMEOUT); + if (retval != ERROR_OK) + return retval; + + /* relock registers */ + retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata | OPTCR_LOCK); + if (retval != ERROR_OK) + return retval; + return ERROR_OK; } static int stm32x_protect_check(struct flash_bank *bank) { + struct stm32x_flash_bank *stm32x_info = bank->driver_priv; + struct flash_sector *prot_blocks; + int num_prot_blocks; + + /* read write protection settings */ + int retval = stm32x_read_options(bank); + if (retval != ERROR_OK) { + LOG_DEBUG("unable to read option bytes"); + return retval; + } + + if (bank->prot_blocks) { + num_prot_blocks = bank->num_prot_blocks; + prot_blocks = bank->prot_blocks; + } else { + num_prot_blocks = bank->num_sectors; + prot_blocks = bank->sectors; + } + + for (int i = 0; i < num_prot_blocks; i++) + prot_blocks[i].is_protected = + ~(stm32x_info->option_bytes.protection >> i) & 1; + return ERROR_OK; } static int stm32x_erase(struct flash_bank *bank, int first, int last) { + struct stm32x_flash_bank *stm32x_info = bank->driver_priv; struct target *target = bank->target; int i; - if (bank->target->state != TARGET_HALTED) - { + assert((0 <= first) && (first <= last) && (last < bank->num_sectors)); + + if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } @@ -270,16 +511,21 @@ static int stm32x_erase(struct flash_bank *bank, int first, int last) To erase a sector, follow the procedure below: 1. Check that no Flash memory operation is ongoing by checking the BSY bit in the FLASH_SR register - 2. Set the SER bit and select the sector (out of the 12 sectors in the main memory block) + 2. Set the SER bit and select the sector you wish to erase (SNB) in the FLASH_CR register 3. Set the STRT bit in the FLASH_CR register 4. Wait for the BSY bit to be cleared */ - for (i = first; i <= last; i++) - { + for (i = first; i <= last; i++) { + int snb; + if (stm32x_info->has_large_mem && i >= 12) + snb = (i - 12) | 0x10; + else + snb = i; + retval = target_write_u32(target, - stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_SER | FLASH_SNB(i) | FLASH_STRT); + stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_SER | FLASH_SNB(snb) | FLASH_STRT); if (retval != ERROR_OK) return retval; @@ -299,140 +545,118 @@ static int stm32x_erase(struct flash_bank *bank, int first, int last) static int stm32x_protect(struct flash_bank *bank, int set, int first, int last) { + struct target *target = bank->target; + struct stm32x_flash_bank *stm32x_info = bank->driver_priv; + + if (target->state != TARGET_HALTED) { + LOG_ERROR("Target not halted"); + return ERROR_TARGET_NOT_HALTED; + } + + /* read protection settings */ + int retval = stm32x_read_options(bank); + if (retval != ERROR_OK) { + LOG_DEBUG("unable to read option bytes"); + return retval; + } + + for (int i = first; i <= last; i++) { + if (set) + stm32x_info->option_bytes.protection &= ~(1 << i); + else + stm32x_info->option_bytes.protection |= (1 << i); + } + + retval = stm32x_write_options(bank); + if (retval != ERROR_OK) + return retval; + return ERROR_OK; } -static int stm32x_write_block(struct flash_bank *bank, uint8_t *buffer, +static int stm32x_write_block(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count) { - struct stm32x_flash_bank *stm32x_info = bank->driver_priv; struct target *target = bank->target; uint32_t buffer_size = 16384; + struct working_area *write_algorithm; struct working_area *source; uint32_t address = bank->base + offset; struct reg_param reg_params[5]; struct armv7m_algorithm armv7m_info; int retval = ERROR_OK; - /* see contrib/loaders/flash/stm32f2x.S for src */ - - static const uint16_t stm32x_flash_write_code_16[] = { -// 00000000 : - 0x4b07, // ldr r3, [pc, #28] (20 ) - 0x6123, // str r3, [r4, #16] - 0xf830, 0x3b02, //ldrh.w r3, [r0], #2 - 0xf821, 0x3b02, //strh.w r3, [r1], #2 - - //0000000c : - 0x68e3, //ldr r3, [r4, #12] -0xf413, 0x3f80, // tst.w r3, #65536 ; 0x10000 -0xd0fb, //beq.n c -0xf013, 0x0ff0, //tst.w r3, #240 ; 0xf0 -0xd101, //bne.n 1e -0x3a01, //subs r2, #1 -0xd1f0, //bne.n 0 - //0000001e : - 0xbe00, // bkpt 0x0000 - - //00000020 : - 0x0101, 0x0000, // .word 0x00000101 - + static const uint8_t stm32x_flash_write_code[] = { +#include "../../../contrib/loaders/flash/stm32/stm32f2x.inc" }; - // Flip endian - uint8_t stm32x_flash_write_code[sizeof(stm32x_flash_write_code_16)*2]; - for (unsigned i = 0; i < sizeof(stm32x_flash_write_code_16) / 2; i++) - { - stm32x_flash_write_code[i*2 + 0] = stm32x_flash_write_code_16[i] & 0xff; - stm32x_flash_write_code[i*2 + 1] = (stm32x_flash_write_code_16[i] >> 8) & 0xff; - } - if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code), - &stm32x_info->write_algorithm) != ERROR_OK) - { + &write_algorithm) != ERROR_OK) { LOG_WARNING("no working area available, can't do block memory writes"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; - }; + } - if ((retval = target_write_buffer(target, stm32x_info->write_algorithm->address, + retval = target_write_buffer(target, write_algorithm->address, sizeof(stm32x_flash_write_code), - (uint8_t*)stm32x_flash_write_code)) != ERROR_OK) + stm32x_flash_write_code); + if (retval != ERROR_OK) { + target_free_working_area(target, write_algorithm); return retval; + } /* memory buffer */ - while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) - { + while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) { buffer_size /= 2; - if (buffer_size <= 256) - { - /* if we already allocated the writing code, but failed to get a + if (buffer_size <= 256) { + /* we already allocated the writing code, but failed to get a * buffer, free the algorithm */ - if (stm32x_info->write_algorithm) - target_free_working_area(target, stm32x_info->write_algorithm); + target_free_working_area(target, write_algorithm); LOG_WARNING("no large enough working area available, can't do block memory writes"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } - }; + } armv7m_info.common_magic = ARMV7M_COMMON_MAGIC; - armv7m_info.core_mode = ARMV7M_MODE_ANY; + armv7m_info.core_mode = ARM_MODE_THREAD; - init_reg_param(®_params[0], "r0", 32, PARAM_OUT); - init_reg_param(®_params[1], "r1", 32, PARAM_OUT); - init_reg_param(®_params[2], "r2", 32, PARAM_OUT); - init_reg_param(®_params[3], "r3", 32, PARAM_IN_OUT); - init_reg_param(®_params[4], "r4", 32, PARAM_OUT); + init_reg_param(®_params[0], "r0", 32, PARAM_IN_OUT); /* buffer start, status (out) */ + init_reg_param(®_params[1], "r1", 32, PARAM_OUT); /* buffer end */ + init_reg_param(®_params[2], "r2", 32, PARAM_OUT); /* target address */ + init_reg_param(®_params[3], "r3", 32, PARAM_OUT); /* count (halfword-16bit) */ + init_reg_param(®_params[4], "r4", 32, PARAM_OUT); /* flash base */ - while (count > 0) - { - uint32_t thisrun_count = (count > (buffer_size / 2)) ? - (buffer_size / 2) : count; + buf_set_u32(reg_params[0].value, 0, 32, source->address); + buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size); + buf_set_u32(reg_params[2].value, 0, 32, address); + buf_set_u32(reg_params[3].value, 0, 32, count); + buf_set_u32(reg_params[4].value, 0, 32, STM32_FLASH_BASE); - if ((retval = target_write_buffer(target, source->address, - thisrun_count * 2, buffer)) != ERROR_OK) - break; + retval = target_run_flash_async_algorithm(target, buffer, count, 2, + 0, NULL, + 5, reg_params, + source->address, source->size, + write_algorithm->address, 0, + &armv7m_info); - buf_set_u32(reg_params[0].value, 0, 32, source->address); - buf_set_u32(reg_params[1].value, 0, 32, address); - buf_set_u32(reg_params[2].value, 0, 32, thisrun_count); - // R3 is a return value only - buf_set_u32(reg_params[4].value, 0, 32, STM32_FLASH_BASE); - - if ((retval = target_run_algorithm(target, 0, NULL, - sizeof(reg_params) / sizeof(*reg_params), - reg_params, - stm32x_info->write_algorithm->address, - 0, - 10000, &armv7m_info)) != ERROR_OK) - { - LOG_ERROR("error executing stm32x flash write algorithm"); - break; - } + if (retval == ERROR_FLASH_OPERATION_FAILED) { + LOG_ERROR("error executing stm32x flash write algorithm"); - uint32_t error = buf_get_u32(reg_params[3].value, 0, 32) & FLASH_ERROR; + uint32_t error = buf_get_u32(reg_params[0].value, 0, 32) & FLASH_ERROR; if (error & FLASH_WRPERR) - { LOG_ERROR("flash memory write protected"); - } - if (error != 0) - { - LOG_ERROR("flash write failed = %08x", error); + if (error != 0) { + LOG_ERROR("flash write failed = %08" PRIx32, error); /* Clear but report errors */ target_write_u32(target, STM32_FLASH_SR, error); retval = ERROR_FAIL; - break; } - - buffer += thisrun_count * 2; - address += thisrun_count * 2; - count -= thisrun_count; } target_free_working_area(target, source); - target_free_working_area(target, stm32x_info->write_algorithm); + target_free_working_area(target, write_algorithm); destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); @@ -443,7 +667,7 @@ static int stm32x_write_block(struct flash_bank *bank, uint8_t *buffer, return retval; } -static int stm32x_write(struct flash_bank *bank, uint8_t *buffer, +static int stm32x_write(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count) { struct target *target = bank->target; @@ -453,14 +677,12 @@ static int stm32x_write(struct flash_bank *bank, uint8_t *buffer, uint32_t bytes_written = 0; int retval; - if (bank->target->state != TARGET_HALTED) - { + if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } - if (offset & 0x1) - { + if (offset & 0x1) { LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset); return ERROR_FLASH_DST_BREAKS_ALIGNMENT; } @@ -470,20 +692,16 @@ static int stm32x_write(struct flash_bank *bank, uint8_t *buffer, return retval; /* multiple half words (2-byte) to be programmed? */ - if (words_remaining > 0) - { + if (words_remaining > 0) { /* try using a block write */ - if ((retval = stm32x_write_block(bank, buffer, offset, words_remaining)) != ERROR_OK) - { - if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) - { + retval = stm32x_write_block(bank, buffer, offset, words_remaining); + if (retval != ERROR_OK) { + if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) { /* if block write failed (no sufficient working area), * we use normal (slow) single dword accesses */ LOG_WARNING("couldn't use block writes, falling back to single memory accesses"); } - } - else - { + } else { buffer += words_remaining * 2; address += words_remaining * 2; words_remaining = 0; @@ -509,8 +727,7 @@ static int stm32x_write(struct flash_bank *bank, uint8_t *buffer, Double word access in case of x64 parallelism Wait for the BSY bit to be cleared */ - while (words_remaining > 0) - { + while (words_remaining > 0) { uint16_t value; memcpy(&value, buffer + bytes_written, sizeof(uint16_t)); @@ -532,8 +749,7 @@ static int stm32x_write(struct flash_bank *bank, uint8_t *buffer, address += 2; } - if (bytes_remaining) - { + if (bytes_remaining) { retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PG | FLASH_PSIZE_8); if (retval != ERROR_OK) @@ -550,72 +766,281 @@ static int stm32x_write(struct flash_bank *bank, uint8_t *buffer, return target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK); } -static void setup_sector(struct flash_bank *bank, int start, int num, int size) +static int setup_sector(struct flash_bank *bank, int start, int num, int size) { - for (int i = start; i < (start + num) ; i++) - { + + for (int i = start; i < (start + num) ; i++) { + assert(i < bank->num_sectors); bank->sectors[i].offset = bank->size; bank->sectors[i].size = size; bank->size += bank->sectors[i].size; + LOG_DEBUG("sector %d: %dkBytes", i, size >> 10); } + + return start + num; +} + +static void setup_bank(struct flash_bank *bank, int start, + uint16_t flash_size_in_kb, uint16_t max_sector_size_in_kb) +{ + int remain; + + start = setup_sector(bank, start, 4, (max_sector_size_in_kb / 8) * 1024); + start = setup_sector(bank, start, 1, (max_sector_size_in_kb / 2) * 1024); + + /* remaining sectors all of size max_sector_size_in_kb */ + remain = (flash_size_in_kb / max_sector_size_in_kb) - 1; + start = setup_sector(bank, start, remain, max_sector_size_in_kb * 1024); +} + +static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id) +{ + /* this checks for a stm32f4x errata issue where a + * stm32f2x DBGMCU_IDCODE is incorrectly returned. + * If the issue is detected target is forced to stm32f4x Rev A. + * Only effects Rev A silicon */ + + struct target *target = bank->target; + uint32_t cpuid; + + /* read stm32 device id register */ + int retval = target_read_u32(target, 0xE0042000, device_id); + if (retval != ERROR_OK) + return retval; + + if ((*device_id & 0xfff) == 0x411) { + /* read CPUID reg to check core type */ + retval = target_read_u32(target, 0xE000ED00, &cpuid); + if (retval != ERROR_OK) + return retval; + + /* check for cortex_m4 */ + if (((cpuid >> 4) & 0xFFF) == 0xC24) { + *device_id &= ~((0xFFFF << 16) | 0xfff); + *device_id |= (0x1000 << 16) | 0x413; + LOG_INFO("stm32f4x errata detected - fixing incorrect MCU_IDCODE"); + } + } + return retval; } static int stm32x_probe(struct flash_bank *bank) { struct target *target = bank->target; struct stm32x_flash_bank *stm32x_info = bank->driver_priv; - int i; - uint16_t num_pages; + int i, num_prot_blocks; + uint16_t flash_size_in_kb; + uint32_t flash_size_reg = 0x1FFF7A22; + uint16_t max_sector_size_in_kb = 128; + uint16_t max_flash_size_in_kb; uint32_t device_id; uint32_t base_address = 0x08000000; stm32x_info->probed = 0; + stm32x_info->has_large_mem = false; + stm32x_info->has_boot_addr = false; + stm32x_info->has_extra_options = false; + stm32x_info->has_optcr2_pcrop = false; + stm32x_info->protection_bits = 12; /* max. number of nWRPi bits (in FLASH_OPTCR !!!) */ + num_prot_blocks = 0; + + if (bank->sectors) { + free(bank->sectors); + bank->num_sectors = 0; + bank->sectors = NULL; + } + + if (bank->prot_blocks) { + free(bank->prot_blocks); + bank->num_prot_blocks = 0; + bank->prot_blocks = NULL; + } /* read stm32 device id register */ - int retval = target_read_u32(target, 0xE0042000, &device_id); + int retval = stm32x_get_device_id(bank, &device_id); if (retval != ERROR_OK) return retval; LOG_INFO("device id = 0x%08" PRIx32 "", device_id); - - if ((device_id & 0x7ff) != 0x411) - { - LOG_WARNING("Cannot identify target as a STM32 family, try the other STM32 drivers."); + device_id &= 0xfff; /* only bits 0-11 are used further on */ + + /* set max flash size depending on family, id taken from AN2606 */ + switch (device_id) { + case 0x411: /* F20x/21x */ + case 0x413: /* F40x/41x */ + max_flash_size_in_kb = 1024; + break; + + case 0x419: /* F42x/43x */ + case 0x434: /* F469/479 */ + stm32x_info->has_extra_options = true; + max_flash_size_in_kb = 2048; + break; + + case 0x423: /* F401xB/C */ + max_flash_size_in_kb = 256; + break; + + case 0x421: /* F446 */ + case 0x431: /* F411 */ + case 0x433: /* F401xD/E */ + case 0x441: /* F412 */ + max_flash_size_in_kb = 512; + break; + + case 0x458: /* F410 */ + max_flash_size_in_kb = 128; + break; + + case 0x449: /* F74x/75x */ + max_flash_size_in_kb = 1024; + max_sector_size_in_kb = 256; + flash_size_reg = 0x1FF0F442; + stm32x_info->has_extra_options = true; + stm32x_info->has_boot_addr = true; + break; + + case 0x451: /* F76x/77x */ + max_flash_size_in_kb = 2048; + max_sector_size_in_kb = 256; + flash_size_reg = 0x1FF0F442; + stm32x_info->has_extra_options = true; + stm32x_info->has_boot_addr = true; + break; + + case 0x452: /* F72x/73x */ + max_flash_size_in_kb = 512; + flash_size_reg = 0x1FF07A22; /* yes, 0x1FF*0*7A22, not 0x1FF*F*7A22 */ + stm32x_info->has_extra_options = true; + stm32x_info->has_boot_addr = true; + stm32x_info->has_optcr2_pcrop = true; + break; + + case 0x463: /* F413x/423x */ + max_flash_size_in_kb = 1536; + stm32x_info->has_extra_options = true; + stm32x_info->protection_bits = 15; + num_prot_blocks = 15; + break; + + default: + LOG_WARNING("Cannot identify target as a STM32 family."); return ERROR_FAIL; } - /* sectors sizes vary, handle this in a different code path - * than the rest. - */ - // Uhhh.... what to use here? + /* get flash size from target. */ + retval = target_read_u16(target, flash_size_reg, &flash_size_in_kb); - /* calculate numbers of pages*/ - num_pages = 4 + 1 + 7; + /* failed reading flash size or flash size invalid (early silicon), + * default to max target family */ + if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) { + LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash", + max_flash_size_in_kb); + flash_size_in_kb = max_flash_size_in_kb; + } - if (bank->sectors) - { - free(bank->sectors); - bank->sectors = NULL; + /* if the user sets the size manually then ignore the probed value + * this allows us to work around devices that have a invalid flash size register value */ + if (stm32x_info->user_bank_size) { + LOG_INFO("ignoring flash probed value, using configured bank size"); + flash_size_in_kb = stm32x_info->user_bank_size / 1024; } + LOG_INFO("flash size = %dkbytes", flash_size_in_kb); + + /* did we assign flash size? */ + assert(flash_size_in_kb != 0xffff); + + /* F42x/43x/469/479 1024 kiByte devices have a dual bank option */ + if ((device_id == 0x419) || (device_id == 0x434)) { + uint32_t optiondata; + retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata); + if (retval != ERROR_OK) { + LOG_DEBUG("unable to read option bytes"); + return retval; + } + if ((flash_size_in_kb > 1024) || (optiondata & OPTCR_DB1M)) { + stm32x_info->has_large_mem = true; + LOG_INFO("Dual Bank %d kiB STM32F42x/43x/469/479 found", flash_size_in_kb); + } else { + stm32x_info->has_large_mem = false; + LOG_INFO("Single Bank %d kiB STM32F42x/43x/469/479 found", flash_size_in_kb); + } + } + + /* F76x/77x devices have a dual bank option */ + if (device_id == 0x451) { + uint32_t optiondata; + retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata); + if (retval != ERROR_OK) { + LOG_DEBUG("unable to read option bytes"); + return retval; + } + if (optiondata & OPTCR_NDBANK) { + stm32x_info->has_large_mem = false; + LOG_INFO("Single Bank %d kiB STM32F76x/77x found", flash_size_in_kb); + } else { + stm32x_info->has_large_mem = true; + max_sector_size_in_kb >>= 1; /* sector size divided by 2 in dual-bank mode */ + LOG_INFO("Dual Bank %d kiB STM32F76x/77x found", flash_size_in_kb); + } + } + + /* calculate numbers of pages */ + int num_pages = flash_size_in_kb / max_sector_size_in_kb + + (stm32x_info->has_large_mem ? 8 : 4); + bank->base = base_address; bank->num_sectors = num_pages; bank->sectors = malloc(sizeof(struct flash_sector) * num_pages); - - bank->size = 0; - setup_sector(bank, 0, 4, 16 * 1024); - setup_sector(bank, 4, 1, 64 * 1024); - setup_sector(bank, 4+1, 7, 128 * 1024); - - for (i = 0; i < num_pages; i++) - { + for (i = 0; i < num_pages; i++) { bank->sectors[i].is_erased = -1; bank->sectors[i].is_protected = 0; } + bank->size = 0; + LOG_DEBUG("allocated %d sectors", num_pages); - LOG_INFO("flash size = %dkBytes", bank->size / 1024); + /* F76x/77x in dual bank mode */ + if ((device_id == 0x451) && stm32x_info->has_large_mem) + num_prot_blocks = num_pages >> 1; - stm32x_info->probed = 1; + if (num_prot_blocks) { + bank->prot_blocks = malloc(sizeof(struct flash_sector) * num_prot_blocks); + for (i = 0; i < num_prot_blocks; i++) + bank->prot_blocks[i].is_protected = 0; + LOG_DEBUG("allocated %d prot blocks", num_prot_blocks); + } + + if (stm32x_info->has_large_mem) { + /* dual-bank */ + setup_bank(bank, 0, flash_size_in_kb >> 1, max_sector_size_in_kb); + setup_bank(bank, num_pages >> 1, flash_size_in_kb >> 1, + max_sector_size_in_kb); + + /* F767x/F77x in dual mode, one protection bit refers to two adjacent sectors */ + if (device_id == 0x451) { + for (i = 0; i < num_prot_blocks; i++) { + bank->prot_blocks[i].offset = bank->sectors[i << 1].offset; + bank->prot_blocks[i].size = bank->sectors[i << 1].size + + bank->sectors[(i << 1) + 1].size; + } + } + } else { + /* single-bank */ + setup_bank(bank, 0, flash_size_in_kb, max_sector_size_in_kb); + + /* F413/F423, sectors 14 and 15 share one common protection bit */ + if (device_id == 0x463) { + for (i = 0; i < num_prot_blocks; i++) { + bank->prot_blocks[i].offset = bank->sectors[i].offset; + bank->prot_blocks[i].size = bank->sectors[i].size; + } + bank->prot_blocks[num_prot_blocks - 1].size <<= 1; + } + } + bank->num_prot_blocks = num_prot_blocks; + assert((bank->size >> 10) == flash_size_in_kb); + stm32x_info->probed = 1; return ERROR_OK; } @@ -629,54 +1054,529 @@ static int stm32x_auto_probe(struct flash_bank *bank) static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size) { - struct target *target = bank->target; - uint32_t device_id; - int printed; + uint32_t dbgmcu_idcode; /* read stm32 device id register */ - int retval = target_read_u32(target, 0xE0042000, &device_id); + int retval = stm32x_get_device_id(bank, &dbgmcu_idcode); if (retval != ERROR_OK) return retval; - if ((device_id & 0x7ff) == 0x411) - { - printed = snprintf(buf, buf_size, "stm32x (1mByte part) - Rev: "); - buf += printed; - buf_size -= printed; - - switch (device_id >> 16) - { - case 0x1000: - snprintf(buf, buf_size, "A"); - break; - - case 0x2000: - snprintf(buf, buf_size, "B"); - break; - - case 0x1001: - snprintf(buf, buf_size, "Z"); - break; - - case 0x2001: - snprintf(buf, buf_size, "Y"); - break; - - default: - snprintf(buf, buf_size, "unknown"); - break; + uint16_t device_id = dbgmcu_idcode & 0xfff; + uint16_t rev_id = dbgmcu_idcode >> 16; + const char *device_str; + const char *rev_str = NULL; + + switch (device_id) { + case 0x411: + device_str = "STM32F2xx"; + + switch (rev_id) { + case 0x1000: + rev_str = "A"; + break; + + case 0x2000: + rev_str = "B"; + break; + + case 0x1001: + rev_str = "Z"; + break; + + case 0x2001: + rev_str = "Y"; + break; + + case 0x2003: + rev_str = "X"; + break; + + case 0x2007: + rev_str = "1"; + break; + + case 0x200F: + rev_str = "V"; + break; + + case 0x201F: + rev_str = "2"; + break; + } + break; + + case 0x413: + case 0x419: + case 0x434: + device_str = "STM32F4xx"; + + switch (rev_id) { + case 0x1000: + rev_str = "A"; + break; + + case 0x1001: + rev_str = "Z"; + break; + + case 0x1003: + rev_str = "Y"; + break; + + case 0x1007: + rev_str = "1"; + break; + + case 0x2001: + rev_str = "3"; + break; + } + break; + + case 0x421: + device_str = "STM32F446"; + + switch (rev_id) { + case 0x1000: + rev_str = "A"; + break; + } + break; + + case 0x423: + case 0x431: + case 0x433: + case 0x458: + case 0x441: + device_str = "STM32F4xx (Low Power)"; + + switch (rev_id) { + case 0x1000: + rev_str = "A"; + break; + + case 0x1001: + rev_str = "Z"; + break; + + case 0x2000: + rev_str = "B"; + break; + + case 0x3000: + rev_str = "C"; + break; + } + break; + + case 0x449: + device_str = "STM32F7[4|5]x"; + + switch (rev_id) { + case 0x1000: + rev_str = "A"; + break; + + case 0x1001: + rev_str = "Z"; + break; + } + break; + + case 0x451: + device_str = "STM32F7[6|7]x"; + + switch (rev_id) { + case 0x1000: + rev_str = "A"; + break; + case 0x1001: + rev_str = "Z"; + break; } + break; + + case 0x452: + device_str = "STM32F7[2|3]x"; + + switch (rev_id) { + case 0x1000: + rev_str = "A"; + break; + } + break; + + case 0x463: + device_str = "STM32F4[1|2]3"; + + switch (rev_id) { + case 0x1000: + rev_str = "A"; + break; + } + break; + + default: + snprintf(buf, buf_size, "Cannot identify target as a STM32F2/4/7\n"); + return ERROR_FAIL; } + + if (rev_str != NULL) + snprintf(buf, buf_size, "%s - Rev: %s", device_str, rev_str); else - { - snprintf(buf, buf_size, "Cannot identify target as a stm32x\n"); - return ERROR_FAIL; + snprintf(buf, buf_size, "%s - Rev: unknown (0x%04x)", device_str, rev_id); + + return ERROR_OK; +} + +COMMAND_HANDLER(stm32x_handle_lock_command) +{ + struct target *target = NULL; + struct stm32x_flash_bank *stm32x_info = NULL; + + if (CMD_ARGC < 1) + return ERROR_COMMAND_SYNTAX_ERROR; + + struct flash_bank *bank; + int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); + if (ERROR_OK != retval) + return retval; + + stm32x_info = bank->driver_priv; + target = bank->target; + + if (target->state != TARGET_HALTED) { + LOG_INFO("Target not halted"); + /* return ERROR_TARGET_NOT_HALTED; */ } + if (stm32x_read_options(bank) != ERROR_OK) { + command_print(CMD_CTX, "%s failed to read options", bank->driver->name); + return ERROR_OK; + } + + /* set readout protection */ + stm32x_info->option_bytes.RDP = 0; + + if (stm32x_write_options(bank) != ERROR_OK) { + command_print(CMD_CTX, "%s failed to lock device", bank->driver->name); + return ERROR_OK; + } + + command_print(CMD_CTX, "%s locked", bank->driver->name); + return ERROR_OK; } +COMMAND_HANDLER(stm32x_handle_unlock_command) +{ + struct target *target = NULL; + struct stm32x_flash_bank *stm32x_info = NULL; + + if (CMD_ARGC < 1) + return ERROR_COMMAND_SYNTAX_ERROR; + + struct flash_bank *bank; + int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); + if (ERROR_OK != retval) + return retval; + + stm32x_info = bank->driver_priv; + target = bank->target; + + if (target->state != TARGET_HALTED) { + LOG_INFO("Target not halted"); + /* return ERROR_TARGET_NOT_HALTED; */ + } + + if (stm32x_read_options(bank) != ERROR_OK) { + command_print(CMD_CTX, "%s failed to read options", bank->driver->name); + return ERROR_OK; + } + + /* clear readout protection and complementary option bytes + * this will also force a device unlock if set */ + stm32x_info->option_bytes.RDP = 0xAA; + if (stm32x_info->has_optcr2_pcrop) { + stm32x_info->option_bytes.optcr2_pcrop = OPTCR2_PCROP_RDP | (~1U << bank->num_sectors); + } + + if (stm32x_write_options(bank) != ERROR_OK) { + command_print(CMD_CTX, "%s failed to unlock device", bank->driver->name); + return ERROR_OK; + } + + command_print(CMD_CTX, "%s unlocked.\n" + "INFO: a reset or power cycle is required " + "for the new settings to take effect.", bank->driver->name); + + return ERROR_OK; +} + +static int stm32x_mass_erase(struct flash_bank *bank) +{ + int retval; + uint32_t flash_mer; + struct target *target = bank->target; + struct stm32x_flash_bank *stm32x_info = NULL; + + if (target->state != TARGET_HALTED) { + LOG_ERROR("Target not halted"); + return ERROR_TARGET_NOT_HALTED; + } + + stm32x_info = bank->driver_priv; + + retval = stm32x_unlock_reg(target); + if (retval != ERROR_OK) + return retval; + + /* mass erase flash memory */ + if (stm32x_info->has_large_mem) + flash_mer = FLASH_MER | FLASH_MER1; + else + flash_mer = FLASH_MER; + + retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), flash_mer); + if (retval != ERROR_OK) + return retval; + retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), + flash_mer | FLASH_STRT); + if (retval != ERROR_OK) + return retval; + + retval = stm32x_wait_status_busy(bank, FLASH_MASS_ERASE_TIMEOUT); + if (retval != ERROR_OK) + return retval; + + retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK); + if (retval != ERROR_OK) + return retval; + + return ERROR_OK; +} + +COMMAND_HANDLER(stm32x_handle_mass_erase_command) +{ + int i; + + if (CMD_ARGC < 1) { + command_print(CMD_CTX, "stm32x mass_erase "); + return ERROR_COMMAND_SYNTAX_ERROR; + } + + struct flash_bank *bank; + int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); + if (ERROR_OK != retval) + return retval; + + retval = stm32x_mass_erase(bank); + if (retval == ERROR_OK) { + /* set all sectors as erased */ + for (i = 0; i < bank->num_sectors; i++) + bank->sectors[i].is_erased = 1; + + command_print(CMD_CTX, "stm32x mass erase complete"); + } else { + command_print(CMD_CTX, "stm32x mass erase failed"); + } + + return retval; +} + +COMMAND_HANDLER(stm32f2x_handle_options_read_command) +{ + int retval; + struct flash_bank *bank; + struct stm32x_flash_bank *stm32x_info = NULL; + + if (CMD_ARGC != 1) { + command_print(CMD_CTX, "stm32f2x options_read "); + return ERROR_COMMAND_SYNTAX_ERROR; + } + + retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); + if (ERROR_OK != retval) + return retval; + + retval = stm32x_read_options(bank); + if (ERROR_OK != retval) + return retval; + + stm32x_info = bank->driver_priv; + if (stm32x_info->has_extra_options) { + if (stm32x_info->has_boot_addr) { + uint32_t boot_addr = stm32x_info->option_bytes.boot_addr; + + command_print(CMD_CTX, "stm32f2x user_options 0x%03X," + " boot_add0 0x%04X, boot_add1 0x%04X", + stm32x_info->option_bytes.user_options, + boot_addr & 0xffff, (boot_addr & 0xffff0000) >> 16); + if (stm32x_info->has_optcr2_pcrop) { + command_print(CMD_CTX, "stm32f2x optcr2_pcrop 0x%08X", + stm32x_info->option_bytes.optcr2_pcrop); + } + } else { + command_print(CMD_CTX, "stm32f2x user_options 0x%03X", + stm32x_info->option_bytes.user_options); + } + } else { + command_print(CMD_CTX, "stm32f2x user_options 0x%02X", + stm32x_info->option_bytes.user_options); + + } + + return retval; +} + +COMMAND_HANDLER(stm32f2x_handle_options_write_command) +{ + int retval; + struct flash_bank *bank; + struct stm32x_flash_bank *stm32x_info = NULL; + uint16_t user_options, boot_addr0, boot_addr1, options_mask; + + if (CMD_ARGC < 1) { + command_print(CMD_CTX, "stm32f2x options_write ..."); + return ERROR_COMMAND_SYNTAX_ERROR; + } + + retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); + if (ERROR_OK != retval) + return retval; + + retval = stm32x_read_options(bank); + if (ERROR_OK != retval) + return retval; + + stm32x_info = bank->driver_priv; + if (stm32x_info->has_boot_addr) { + if (CMD_ARGC != 4) { + command_print(CMD_CTX, "stm32f2x options_write " + " "); + return ERROR_COMMAND_SYNTAX_ERROR; + } + COMMAND_PARSE_NUMBER(u16, CMD_ARGV[2], boot_addr0); + COMMAND_PARSE_NUMBER(u16, CMD_ARGV[3], boot_addr1); + stm32x_info->option_bytes.boot_addr = boot_addr0 | (((uint32_t) boot_addr1) << 16); + } else { + if (CMD_ARGC != 2) { + command_print(CMD_CTX, "stm32f2x options_write "); + return ERROR_COMMAND_SYNTAX_ERROR; + } + } + + COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], user_options); + options_mask = !stm32x_info->has_extra_options ? ~0xfc : + ~(((0xf00 << (stm32x_info->protection_bits - 12)) | 0xff) & 0xffc); + if (user_options & options_mask) { + command_print(CMD_CTX, "stm32f2x invalid user_options"); + return ERROR_COMMAND_ARGUMENT_INVALID; + } + + stm32x_info->option_bytes.user_options = user_options; + + if (stm32x_write_options(bank) != ERROR_OK) { + command_print(CMD_CTX, "stm32f2x failed to write options"); + return ERROR_OK; + } + + /* switching between single- and dual-bank modes requires re-probe */ + /* ... and reprogramming of whole flash */ + stm32x_info->probed = 0; + + command_print(CMD_CTX, "stm32f2x write options complete.\n" + "INFO: a reset or power cycle is required " + "for the new settings to take effect."); + return retval; +} + +COMMAND_HANDLER(stm32f2x_handle_optcr2_write_command) +{ + int retval; + struct flash_bank *bank; + struct stm32x_flash_bank *stm32x_info = NULL; + uint32_t optcr2_pcrop; + + if (CMD_ARGC != 2) { + command_print(CMD_CTX, "stm32f2x optcr2_write "); + return ERROR_COMMAND_SYNTAX_ERROR; + } + + retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); + if (ERROR_OK != retval) + return retval; + + stm32x_info = bank->driver_priv; + if (!stm32x_info->has_optcr2_pcrop) { + command_print(CMD_CTX, "no optcr2 register"); + return ERROR_COMMAND_ARGUMENT_INVALID; + } + + command_print(CMD_CTX, "INFO: To disable PCROP, set PCROP_RDP" + " with PCROPi bits STILL SET, then\nlock device and" + " finally unlock it. Clears PCROP and mass erases flash."); + + retval = stm32x_read_options(bank); + if (ERROR_OK != retval) + return retval; + + COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], optcr2_pcrop); + stm32x_info->option_bytes.optcr2_pcrop = optcr2_pcrop; + + if (stm32x_write_options(bank) != ERROR_OK) { + command_print(CMD_CTX, "stm32f2x failed to write options"); + return ERROR_OK; + } + + command_print(CMD_CTX, "stm32f2x optcr2_write complete."); + return retval; +} + static const struct command_registration stm32x_exec_command_handlers[] = { + { + .name = "lock", + .handler = stm32x_handle_lock_command, + .mode = COMMAND_EXEC, + .usage = "bank_id", + .help = "Lock entire flash device.", + }, + { + .name = "unlock", + .handler = stm32x_handle_unlock_command, + .mode = COMMAND_EXEC, + .usage = "bank_id", + .help = "Unlock entire protected flash device.", + }, + { + .name = "mass_erase", + .handler = stm32x_handle_mass_erase_command, + .mode = COMMAND_EXEC, + .usage = "bank_id", + .help = "Erase entire flash device.", + }, + { + .name = "options_read", + .handler = stm32f2x_handle_options_read_command, + .mode = COMMAND_EXEC, + .usage = "bank_id", + .help = "Read and display device option bytes.", + }, + { + .name = "options_write", + .handler = stm32f2x_handle_options_write_command, + .mode = COMMAND_EXEC, + .usage = "bank_id user_options [ boot_add0 boot_add1 ]", + .help = "Write option bytes", + }, + { + .name = "optcr2_write", + .handler = stm32f2x_handle_optcr2_write_command, + .mode = COMMAND_EXEC, + .usage = "bank_id optcr2", + .help = "Write optcr2 word", + }, + COMMAND_REGISTRATION_DONE }; @@ -685,6 +1585,7 @@ static const struct command_registration stm32x_command_handlers[] = { .name = "stm32f2x", .mode = COMMAND_ANY, .help = "stm32f2x flash command group", + .usage = "", .chain = stm32x_exec_command_handlers, }, COMMAND_REGISTRATION_DONE @@ -700,7 +1601,8 @@ struct flash_driver stm32f2x_flash = { .read = default_flash_read, .probe = stm32x_probe, .auto_probe = stm32x_auto_probe, - .erase_check = default_flash_mem_blank_check, + .erase_check = default_flash_blank_check, .protect_check = stm32x_protect_check, .info = get_stm32x_info, + .free_driver_priv = default_flash_free_driver_priv, };