X-Git-Url: https://review.openocd.org/gitweb?p=openocd.git;a=blobdiff_plain;f=src%2Fflash%2Fnor%2Fstm32lx.c;h=13db7b924a66a7fe76933bdb5c9204516c1541cd;hp=75cecce61e5c923fd8d0fed88a86fff3ea9b19f1;hb=cd72808889e426d15c07949c8fcea50dc40fe393;hpb=565f8481c7b71614a05d79ab79af8610d2535a81 diff --git a/src/flash/nor/stm32lx.c b/src/flash/nor/stm32lx.c index 75cecce61e..13db7b924a 100644 --- a/src/flash/nor/stm32lx.c +++ b/src/flash/nor/stm32lx.c @@ -36,16 +36,15 @@ /* stm32lx flash register locations */ -#define FLASH_BASE 0x40023C00 -#define FLASH_ACR 0x40023C00 -#define FLASH_PECR 0x40023C04 -#define FLASH_PDKEYR 0x40023C08 -#define FLASH_PEKEYR 0x40023C0C -#define FLASH_PRGKEYR 0x40023C10 -#define FLASH_OPTKEYR 0x40023C14 -#define FLASH_SR 0x40023C18 -#define FLASH_OBR 0x40023C1C -#define FLASH_WRPR 0x40023C20 +#define FLASH_ACR 0x00 +#define FLASH_PECR 0x04 +#define FLASH_PDKEYR 0x08 +#define FLASH_PEKEYR 0x0C +#define FLASH_PRGKEYR 0x10 +#define FLASH_OPTKEYR 0x14 +#define FLASH_SR 0x18 +#define FLASH_OBR 0x1C +#define FLASH_WRPR 0x20 /* FLASH_ACR bites */ #define FLASH_ACR__LATENCY (1<<0) @@ -86,44 +85,132 @@ #define OPTKEY2 0x24252627 /* other registers */ -#define DBGMCU_IDCODE 0xE0042000 -#define F_SIZE 0x1FF8004C -#define F_SIZE_MP 0x1FF800CC /* on 0x427 Medium+ and 0x436 HD devices */ +#define DBGMCU_IDCODE 0xE0042000 +#define DBGMCU_IDCODE_L0 0x40015800 /* Constants */ -#define FLASH_PAGE_SIZE 256 #define FLASH_SECTOR_SIZE 4096 -#define FLASH_PAGES_PER_SECTOR 16 #define FLASH_BANK0_ADDRESS 0x08000000 -/* stm32lx option byte register location */ -#define OB_RDP 0x1FF80000 -#define OB_USER 0x1FF80004 -#define OB_WRP0_1 0x1FF80008 -#define OB_WRP2_3 0x1FF8000C +/* option bytes */ +#define OPTION_BYTES_ADDRESS 0x1FF80000 -/* OB_RDP values */ -#define OB_RDP__LEVEL0 0xFF5500AA -#define OB_RDP__LEVEL1 0xFFFF0000 - -/* stm32lx RCC register locations */ -#define RCC_CR 0x40023800 -#define RCC_ICSCR 0x40023804 -#define RCC_CFGR 0x40023808 - -/* RCC_ICSCR bits */ -#define RCC_ICSCR__MSIRANGE_MASK (7<<13) +#define OPTION_BYTE_0_PR1 0xFFFF0000 +#define OPTION_BYTE_0_PR0 0xFF5500AA static int stm32lx_unlock_program_memory(struct flash_bank *bank); static int stm32lx_lock_program_memory(struct flash_bank *bank); static int stm32lx_enable_write_half_page(struct flash_bank *bank); static int stm32lx_erase_sector(struct flash_bank *bank, int sector); static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank); +static int stm32lx_mass_erase(struct flash_bank *bank); +static int stm32lx_wait_status_busy(struct flash_bank *bank, int timeout); + +struct stm32lx_rev { + uint16_t rev; + const char *str; +}; + +struct stm32lx_part_info { + uint16_t id; + const char *device_str; + const struct stm32lx_rev *revs; + size_t num_revs; + unsigned int page_size; + unsigned int pages_per_sector; + uint16_t max_flash_size_kb; + uint16_t first_bank_size_kb; /* used when has_dual_banks is true */ + bool has_dual_banks; + + uint32_t flash_base; /* Flash controller registers location */ + uint32_t fsize_base; /* Location of FSIZE register */ +}; struct stm32lx_flash_bank { int probed; - bool has_dual_banks; + uint32_t idcode; uint32_t user_bank_size; + uint32_t flash_base; + + const struct stm32lx_part_info *part_info; +}; + +static const struct stm32lx_rev stm32_416_revs[] = { + { 0x1000, "A" }, { 0x1008, "Y" }, { 0x1018, "X" }, { 0x1038, "W" }, + { 0x1078, "V" }, +}; +static const struct stm32lx_rev stm32_417_revs[] = { + { 0x1000, "A" }, { 0x1008, "Z" }, +}; +static const struct stm32lx_rev stm32_427_revs[] = { + { 0x1018, "A" }, +}; +static const struct stm32lx_rev stm32_436_revs[] = { + { 0x1000, "A" }, { 0x1008, "Z" }, { 0x1018, "Y" }, +}; + +static const struct stm32lx_part_info stm32lx_parts[] = { + { + .id = 0x416, + .revs = stm32_416_revs, + .num_revs = ARRAY_SIZE(stm32_416_revs), + .device_str = "STM32L1xx (Low/Medium Density)", + .page_size = 256, + .pages_per_sector = 16, + .max_flash_size_kb = 128, + .has_dual_banks = false, + .flash_base = 0x40023C00, + .fsize_base = 0x1FF8004C, + }, + { + .id = 0x417, + .revs = stm32_417_revs, + .num_revs = ARRAY_SIZE(stm32_417_revs), + .device_str = "STM32L0xx", + .page_size = 128, + .pages_per_sector = 32, + .max_flash_size_kb = 64, + .has_dual_banks = false, + .flash_base = 0x40022000, + .fsize_base = 0x1FF8007C, + }, + { + .id = 0x427, + .revs = stm32_427_revs, + .num_revs = ARRAY_SIZE(stm32_427_revs), + .device_str = "STM32L1xx (Medium+ Density)", + .page_size = 256, + .pages_per_sector = 16, + .max_flash_size_kb = 256, + .first_bank_size_kb = 192, + .has_dual_banks = true, + .flash_base = 0x40023C00, + .fsize_base = 0x1FF800CC, + }, + { + .id = 0x436, + .revs = stm32_436_revs, + .num_revs = ARRAY_SIZE(stm32_436_revs), + .device_str = "STM32L1xx (Medium+/High Density)", + .page_size = 256, + .pages_per_sector = 16, + .max_flash_size_kb = 384, + .first_bank_size_kb = 192, + .has_dual_banks = true, + .flash_base = 0x40023C00, + .fsize_base = 0x1FF800CC, + }, + { + .id = 0x437, + .device_str = "STM32L1xx (Medium+/High Density)", + .page_size = 256, + .pages_per_sector = 16, + .max_flash_size_kb = 512, + .first_bank_size_kb = 256, + .has_dual_banks = true, + .flash_base = 0x40023C00, + .fsize_base = 0x1FF800CC, + }, }; /* flash bank stm32lx 0 0 @@ -135,7 +222,7 @@ FLASH_BANK_COMMAND_HANDLER(stm32lx_flash_bank_command) return ERROR_COMMAND_SYNTAX_ERROR; /* Create the bank structure */ - stm32lx_info = malloc(sizeof(struct stm32lx_flash_bank)); + stm32lx_info = calloc(1, sizeof(*stm32lx_info)); /* Check allocation */ if (stm32lx_info == NULL) { @@ -146,7 +233,6 @@ FLASH_BANK_COMMAND_HANDLER(stm32lx_flash_bank_command) bank->driver_priv = stm32lx_info; stm32lx_info->probed = 0; - stm32lx_info->has_dual_banks = false; stm32lx_info->user_bank_size = bank->size; /* the stm32l erased value is 0x00 */ @@ -155,10 +241,37 @@ FLASH_BANK_COMMAND_HANDLER(stm32lx_flash_bank_command) return ERROR_OK; } +COMMAND_HANDLER(stm32lx_handle_mass_erase_command) +{ + int i; + + if (CMD_ARGC < 1) + return ERROR_COMMAND_SYNTAX_ERROR; + + struct flash_bank *bank; + int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); + if (ERROR_OK != retval) + return retval; + + retval = stm32lx_mass_erase(bank); + if (retval == ERROR_OK) { + /* set all sectors as erased */ + for (i = 0; i < bank->num_sectors; i++) + bank->sectors[i].is_erased = 1; + + command_print(CMD_CTX, "stm32lx mass erase complete"); + } else { + command_print(CMD_CTX, "stm32lx mass erase failed"); + } + + return retval; +} + static int stm32lx_protect_check(struct flash_bank *bank) { int retval; struct target *target = bank->target; + struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; uint32_t wrpr; @@ -166,11 +279,12 @@ static int stm32lx_protect_check(struct flash_bank *bank) * Read the WRPR word, and check each bit (corresponding to each * flash sector */ - retval = target_read_u32(target, FLASH_WRPR, &wrpr); + retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_WRPR, + &wrpr); if (retval != ERROR_OK) return retval; - for (int i = 0; i < 32; i++) { + for (int i = 0; i < bank->num_sectors; i++) { if (wrpr & (1 << i)) bank->sectors[i].is_protected = 1; else @@ -193,6 +307,9 @@ static int stm32lx_erase(struct flash_bank *bank, int first, int last) return ERROR_TARGET_NOT_HALTED; } + if ((first == 0) && (last == (bank->num_sectors - 1))) + return stm32lx_mass_erase(bank); + /* * Loop over the selected sectors and erase them */ @@ -216,6 +333,9 @@ static int stm32lx_write_half_pages(struct flash_bank *bank, const uint8_t *buff uint32_t offset, uint32_t count) { struct target *target = bank->target; + struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; + + uint32_t hp_nb = stm32lx_info->part_info->page_size / 2; uint32_t buffer_size = 16384; struct working_area *write_algorithm; struct working_area *source; @@ -244,10 +364,9 @@ static int stm32lx_write_half_pages(struct flash_bank *bank, const uint8_t *buff 0x00, 0xbe, /* bkpt 0 */ }; - /* Check if there is an even number of half pages (128bytes) */ - if (count % 128) { - LOG_ERROR("there should be an even number " - "of half pages = 128 bytes (count = %" PRIi32 " bytes)", count); + /* Make sure we're performing a half-page aligned write. */ + if (count % hp_nb) { + LOG_ERROR("The byte count must be %" PRIu32 "B-aligned but count is %" PRIi32 "B)", hp_nb, count); return ERROR_FAIL; } @@ -275,7 +394,7 @@ static int stm32lx_write_half_pages(struct flash_bank *bank, const uint8_t *buff else buffer_size /= 2; - if (buffer_size <= 256) { + if (buffer_size <= stm32lx_info->part_info->page_size) { /* we already allocated the writing code, but failed to get a * buffer, free the algorithm */ target_free_working_area(target, write_algorithm); @@ -372,7 +491,7 @@ static int stm32lx_write_half_pages(struct flash_bank *bank, const uint8_t *buff while (count > 0) { uint32_t this_count; - this_count = (count > 128) ? 128 : count; + this_count = (count > hp_nb) ? hp_nb : count; /* Write the next half pages */ retval = target_write_buffer(target, address, this_count, buffer); @@ -407,7 +526,9 @@ static int stm32lx_write(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count) { struct target *target = bank->target; + struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; + uint32_t hp_nb = stm32lx_info->part_info->page_size / 2; uint32_t halfpages_number; uint32_t bytes_remaining = 0; uint32_t address = bank->base + offset; @@ -431,8 +552,8 @@ static int stm32lx_write(struct flash_bank *bank, const uint8_t *buffer, /* first we need to write any unaligned head bytes upto * the next 128 byte page */ - if (offset % 128) - bytes_remaining = MIN(count, 128 - (offset % 128)); + if (offset % hp_nb) + bytes_remaining = MIN(count, hp_nb - (offset % hp_nb)); while (bytes_remaining > 0) { uint8_t value[4] = {0xff, 0xff, 0xff, 0xff}; @@ -458,13 +579,13 @@ static int stm32lx_write(struct flash_bank *bank, const uint8_t *buffer, count -= bytes_written; /* this should always pass this check here */ - assert((offset % 128) == 0); + assert((offset % hp_nb) == 0); /* calculate half pages */ - halfpages_number = count / 128; + halfpages_number = count / hp_nb; if (halfpages_number) { - retval = stm32lx_write_half_pages(bank, buffer + bytes_written, offset, 128 * halfpages_number); + retval = stm32lx_write_half_pages(bank, buffer + bytes_written, offset, hp_nb * halfpages_number); if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) { /* attempt slow memory writes */ LOG_WARNING("couldn't use block writes, falling back to single memory accesses"); @@ -476,7 +597,7 @@ static int stm32lx_write(struct flash_bank *bank, const uint8_t *buffer, } /* write any remaining bytes */ - uint32_t page_bytes_written = 128 * halfpages_number; + uint32_t page_bytes_written = hp_nb * halfpages_number; bytes_written += page_bytes_written; address += page_bytes_written; bytes_remaining = count - page_bytes_written; @@ -513,65 +634,57 @@ reset_pg_and_lock: return retval; } +static int stm32lx_read_id_code(struct target *target, uint32_t *id) +{ + /* read stm32 device id register */ + int retval = target_read_u32(target, DBGMCU_IDCODE, id); + if (retval != ERROR_OK) + return retval; + + /* STM32L0 parts will have 0 there, try reading the L0's location for + * DBG_IDCODE in case this is an L0 part. */ + if (*id == 0) + retval = target_read_u32(target, DBGMCU_IDCODE_L0, id); + + return retval; +} + static int stm32lx_probe(struct flash_bank *bank) { struct target *target = bank->target; struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; int i; uint16_t flash_size_in_kb; - uint16_t max_flash_size_in_kb; uint32_t device_id; uint32_t base_address = FLASH_BANK0_ADDRESS; uint32_t second_bank_base; - uint32_t first_bank_size_in_kb; stm32lx_info->probed = 0; + stm32lx_info->part_info = NULL; - /* read stm32 device id register */ - int retval = target_read_u32(target, DBGMCU_IDCODE, &device_id); + int retval = stm32lx_read_id_code(bank->target, &device_id); if (retval != ERROR_OK) return retval; + stm32lx_info->idcode = device_id; + LOG_DEBUG("device id = 0x%08" PRIx32 "", device_id); - /* set max flash size depending on family */ - switch (device_id & 0xfff) { - case 0x416: - max_flash_size_in_kb = 128; - break; - case 0x427: - /* single bank, high density */ - max_flash_size_in_kb = 256; - break; - case 0x436: - /* According to ST, the devices with id 0x436 have dual bank flash and comes with - * a total flash size of 384k or 256kb. However, the first bank is always 192kb, - * and second one holds the rest. The reason is that the 256kb version is actually - * the same physical flash but only the first 256kb are verified. - */ - max_flash_size_in_kb = 384; - first_bank_size_in_kb = 192; - stm32lx_info->has_dual_banks = true; - break; - case 0x437: - /* Dual bank, high density */ - max_flash_size_in_kb = 512; - first_bank_size_in_kb = 192; - stm32lx_info->has_dual_banks = true; - break; - default: + for (unsigned int n = 0; n < ARRAY_SIZE(stm32lx_parts); n++) { + if ((device_id & 0xfff) == stm32lx_parts[n].id) + stm32lx_info->part_info = &stm32lx_parts[n]; + } + + if (!stm32lx_info->part_info) { LOG_WARNING("Cannot identify target as a STM32L family."); return ERROR_FAIL; } - /* Get the flash size from target. 0x427 and 0x436 devices use a - * different location for the Flash Size register, please see RM0038 r8 or - * newer. */ - if ((device_id & 0xfff) == 0x427 || (device_id & 0xfff) == 0x436 || - (device_id & 0xfff) == 0x437) - retval = target_read_u16(target, F_SIZE_MP, &flash_size_in_kb); - else - retval = target_read_u16(target, F_SIZE, &flash_size_in_kb); + stm32lx_info->flash_base = stm32lx_info->part_info->flash_base; + + /* Get the flash size from target. */ + retval = target_read_u16(target, stm32lx_info->part_info->fsize_base, + &flash_size_in_kb); /* 0x436 devices report their flash size as a 0 or 1 code indicating 384K * or 256K, respectively. Please see RM0038 r8 or newer and refer to @@ -587,26 +700,29 @@ static int stm32lx_probe(struct flash_bank *bank) * default to max target family */ if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) { LOG_WARNING("STM32L flash size failed, probe inaccurate - assuming %dk flash", - max_flash_size_in_kb); - flash_size_in_kb = max_flash_size_in_kb; - } else if (flash_size_in_kb > max_flash_size_in_kb) { + stm32lx_info->part_info->max_flash_size_kb); + flash_size_in_kb = stm32lx_info->part_info->max_flash_size_kb; + } else if (flash_size_in_kb > stm32lx_info->part_info->max_flash_size_kb) { LOG_WARNING("STM32L probed flash size assumed incorrect since FLASH_SIZE=%dk > %dk, - assuming %dk flash", - flash_size_in_kb, max_flash_size_in_kb, max_flash_size_in_kb); - flash_size_in_kb = max_flash_size_in_kb; + flash_size_in_kb, stm32lx_info->part_info->max_flash_size_kb, + stm32lx_info->part_info->max_flash_size_kb); + flash_size_in_kb = stm32lx_info->part_info->max_flash_size_kb; } - if (stm32lx_info->has_dual_banks) { + if (stm32lx_info->part_info->has_dual_banks) { /* Use the configured base address to determine if this is the first or second flash bank. * Verify that the base address is reasonably correct and determine the flash bank size */ - second_bank_base = base_address + first_bank_size_in_kb * 1024; + second_bank_base = base_address + + stm32lx_info->part_info->first_bank_size_kb * 1024; if (bank->base == second_bank_base) { /* This is the second bank */ base_address = second_bank_base; - flash_size_in_kb = flash_size_in_kb - first_bank_size_in_kb; + flash_size_in_kb = flash_size_in_kb - + stm32lx_info->part_info->first_bank_size_kb; } else if (bank->base == 0 || bank->base == base_address) { /* This is the first bank */ - flash_size_in_kb = first_bank_size_in_kb; + flash_size_in_kb = stm32lx_info->part_info->first_bank_size_kb; } else { LOG_WARNING("STM32L flash bank base address config is incorrect." " 0x%" PRIx32 " but should rather be 0x%" PRIx32 " or 0x%" PRIx32, @@ -626,9 +742,6 @@ static int stm32lx_probe(struct flash_bank *bank) LOG_INFO("ignoring flash probed value, using configured bank size: %dkbytes", flash_size_in_kb); } - /* STM32L - we have 32 sectors, 16 pages per sector -> 512 pages - * 16 pages for a protection area */ - /* calculate numbers of sectors (4kB per sector) */ int num_sectors = (flash_size_in_kb * 1024) / FLASH_SECTOR_SIZE; @@ -718,95 +831,56 @@ static int stm32lx_erase_check(struct flash_bank *bank) return retval; } +/* This method must return a string displaying information about the bank */ static int stm32lx_get_info(struct flash_bank *bank, char *buf, int buf_size) { - /* This method must return a string displaying information about the bank */ - - uint32_t dbgmcu_idcode; - - /* read stm32 device id register */ - int retval = target_read_u32(bank->target, DBGMCU_IDCODE, &dbgmcu_idcode); - if (retval != ERROR_OK) - return retval; - - uint16_t device_id = dbgmcu_idcode & 0xfff; - uint16_t rev_id = dbgmcu_idcode >> 16; - const char *device_str; - const char *rev_str = NULL; - - switch (device_id) { - case 0x416: - device_str = "STM32L1xx (Low/Medium Density)"; - - switch (rev_id) { - case 0x1000: - rev_str = "A"; - break; - - case 0x1008: - rev_str = "Y"; - break; - - case 0x1018: - rev_str = "X"; - break; - - case 0x1038: - rev_str = "W"; - break; - - case 0x1078: - rev_str = "V"; - break; - } - break; - - case 0x427: - device_str = "STM32L1xx (Medium+ Density)"; + struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; - switch (rev_id) { - case 0x1018: - rev_str = "A"; - break; + if (!stm32lx_info->probed) { + int retval = stm32lx_probe(bank); + if (retval != ERROR_OK) { + snprintf(buf, buf_size, + "Unable to find bank information."); + return retval; } - break; + } - case 0x436: - device_str = "STM32L1xx (Medium+/High Density)"; + const struct stm32lx_part_info *info = stm32lx_info->part_info; - switch (rev_id) { - case 0x1000: - rev_str = "A"; - break; + if (info) { + const char *rev_str = NULL; + uint16_t rev_id = stm32lx_info->idcode >> 16; - case 0x1008: - rev_str = "Z"; - break; + for (unsigned int i = 0; i < info->num_revs; i++) + if (rev_id == info->revs[i].rev) + rev_str = info->revs[i].str; - case 0x1018: - rev_str = "Y"; - break; + if (rev_str != NULL) { + snprintf(buf, buf_size, + "%s - Rev: %s", + stm32lx_info->part_info->device_str, rev_str); + } else { + snprintf(buf, buf_size, + "%s - Rev: unknown (0x%04x)", + stm32lx_info->part_info->device_str, rev_id); } - break; - case 0x437: - device_str = "STM32L1xx (Medium+/High Density)"; - break; + return ERROR_OK; + } else { + snprintf(buf, buf_size, "Cannot identify target as a STM32Lx"); - default: - snprintf(buf, buf_size, "Cannot identify target as a STM32L1"); return ERROR_FAIL; } - - if (rev_str != NULL) - snprintf(buf, buf_size, "%s - Rev: %s", device_str, rev_str); - else - snprintf(buf, buf_size, "%s - Rev: unknown (0x%04x)", device_str, rev_id); - - return ERROR_OK; } static const struct command_registration stm32lx_exec_command_handlers[] = { + { + .name = "mass_erase", + .handler = stm32lx_handle_mass_erase_command, + .mode = COMMAND_EXEC, + .usage = "bank_id", + .help = "Erase entire flash device. including available EEPROM", + }, COMMAND_REGISTRATION_DONE }; @@ -840,6 +914,7 @@ struct flash_driver stm32lx_flash = { static int stm32lx_unlock_program_memory(struct flash_bank *bank) { struct target *target = bank->target; + struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; int retval; uint32_t reg32; @@ -849,7 +924,8 @@ static int stm32lx_unlock_program_memory(struct flash_bank *bank) */ /* check flash is not already unlocked */ - retval = target_read_u32(target, FLASH_PECR, ®32); + retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, + ®32); if (retval != ERROR_OK) return retval; @@ -857,16 +933,19 @@ static int stm32lx_unlock_program_memory(struct flash_bank *bank) return ERROR_OK; /* To unlock the PECR write the 2 PEKEY to the PEKEYR register */ - retval = target_write_u32(target, FLASH_PEKEYR, PEKEY1); + retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR, + PEKEY1); if (retval != ERROR_OK) return retval; - retval = target_write_u32(target, FLASH_PEKEYR, PEKEY2); + retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR, + PEKEY2); if (retval != ERROR_OK) return retval; /* Make sure it worked */ - retval = target_read_u32(target, FLASH_PECR, ®32); + retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, + ®32); if (retval != ERROR_OK) return retval; @@ -875,15 +954,18 @@ static int stm32lx_unlock_program_memory(struct flash_bank *bank) return ERROR_FLASH_OPERATION_FAILED; } - retval = target_write_u32(target, FLASH_PRGKEYR, PRGKEY1); + retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PRGKEYR, + PRGKEY1); if (retval != ERROR_OK) return retval; - retval = target_write_u32(target, FLASH_PRGKEYR, PRGKEY2); + retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PRGKEYR, + PRGKEY2); if (retval != ERROR_OK) return retval; /* Make sure it worked */ - retval = target_read_u32(target, FLASH_PECR, ®32); + retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, + ®32); if (retval != ERROR_OK) return retval; @@ -898,6 +980,7 @@ static int stm32lx_unlock_program_memory(struct flash_bank *bank) static int stm32lx_enable_write_half_page(struct flash_bank *bank) { struct target *target = bank->target; + struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; int retval; uint32_t reg32; @@ -908,21 +991,25 @@ static int stm32lx_enable_write_half_page(struct flash_bank *bank) if (retval != ERROR_OK) return retval; - retval = target_read_u32(target, FLASH_PECR, ®32); + retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, + ®32); if (retval != ERROR_OK) return retval; reg32 |= FLASH_PECR__FPRG; - retval = target_write_u32(target, FLASH_PECR, reg32); + retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR, + reg32); if (retval != ERROR_OK) return retval; - retval = target_read_u32(target, FLASH_PECR, ®32); + retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, + ®32); if (retval != ERROR_OK) return retval; reg32 |= FLASH_PECR__PROG; - retval = target_write_u32(target, FLASH_PECR, reg32); + retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR, + reg32); return retval; } @@ -930,26 +1017,31 @@ static int stm32lx_enable_write_half_page(struct flash_bank *bank) static int stm32lx_lock_program_memory(struct flash_bank *bank) { struct target *target = bank->target; + struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; int retval; uint32_t reg32; /* To lock the program memory, simply set the lock bit and lock PECR */ - retval = target_read_u32(target, FLASH_PECR, ®32); + retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, + ®32); if (retval != ERROR_OK) return retval; reg32 |= FLASH_PECR__PRGLOCK; - retval = target_write_u32(target, FLASH_PECR, reg32); + retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR, + reg32); if (retval != ERROR_OK) return retval; - retval = target_read_u32(target, FLASH_PECR, ®32); + retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, + ®32); if (retval != ERROR_OK) return retval; reg32 |= FLASH_PECR__PELOCK; - retval = target_write_u32(target, FLASH_PECR, reg32); + retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR, + reg32); if (retval != ERROR_OK) return retval; @@ -959,11 +1051,12 @@ static int stm32lx_lock_program_memory(struct flash_bank *bank) static int stm32lx_erase_sector(struct flash_bank *bank, int sector) { struct target *target = bank->target; + struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; int retval; uint32_t reg32; /* - * To erase a sector (i.e. FLASH_PAGES_PER_SECTOR pages), + * To erase a sector (i.e. stm32lx_info->part_info.pages_per_sector pages), * first unlock the memory, loop over the pages of this sector * and write 0x0 to its first word. */ @@ -972,9 +1065,11 @@ static int stm32lx_erase_sector(struct flash_bank *bank, int sector) if (retval != ERROR_OK) return retval; - for (int page = 0; page < FLASH_PAGES_PER_SECTOR; page++) { + for (int page = 0; page < (int)stm32lx_info->part_info->pages_per_sector; + page++) { reg32 = FLASH_PECR__PROG | FLASH_PECR__ERASE; - retval = target_write_u32(target, FLASH_PECR, reg32); + retval = target_write_u32(target, + stm32lx_info->flash_base + FLASH_PECR, reg32); if (retval != ERROR_OK) return retval; @@ -983,7 +1078,7 @@ static int stm32lx_erase_sector(struct flash_bank *bank, int sector) return retval; uint32_t addr = bank->base + bank->sectors[sector].offset + (page - * FLASH_PAGE_SIZE); + * stm32lx_info->part_info->page_size); retval = target_write_u32(target, addr, 0x0); if (retval != ERROR_OK) return retval; @@ -1000,16 +1095,25 @@ static int stm32lx_erase_sector(struct flash_bank *bank, int sector) return ERROR_OK; } +static inline int stm32lx_get_flash_status(struct flash_bank *bank, uint32_t *status) +{ + struct target *target = bank->target; + struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; + + return target_read_u32(target, stm32lx_info->flash_base + FLASH_SR, status); +} + static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank) { struct target *target = bank->target; + struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; uint32_t status; int retval = ERROR_OK; int timeout = 100; /* wait for busy to clear */ for (;;) { - retval = target_read_u32(target, FLASH_SR, &status); + retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_SR, &status); if (retval != ERROR_OK) return retval; @@ -1034,3 +1138,162 @@ static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank) return retval; } + +static int stm32lx_unlock_options_bytes(struct flash_bank *bank) +{ + struct target *target = bank->target; + struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; + int retval; + uint32_t reg32; + + /* + * Unlocking the options bytes is done by unlocking the PECR, + * then by writing the 2 FLASH_PEKEYR to the FLASH_OPTKEYR register + */ + + /* check flash is not already unlocked */ + retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, ®32); + if (retval != ERROR_OK) + return retval; + + if ((reg32 & FLASH_PECR__OPTLOCK) == 0) + return ERROR_OK; + + if ((reg32 & FLASH_PECR__PELOCK) != 0) { + + retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR, PEKEY1); + if (retval != ERROR_OK) + return retval; + + retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR, PEKEY2); + if (retval != ERROR_OK) + return retval; + } + + /* To unlock the PECR write the 2 OPTKEY to the FLASH_OPTKEYR register */ + retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_OPTKEYR, OPTKEY1); + if (retval != ERROR_OK) + return retval; + + retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_OPTKEYR, OPTKEY2); + if (retval != ERROR_OK) + return retval; + + return ERROR_OK; +} + +static int stm32lx_wait_status_busy(struct flash_bank *bank, int timeout) +{ + struct target *target = bank->target; + uint32_t status; + + int retval = ERROR_OK; + struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; + + /* wait for busy to clear */ + for (;;) { + + retval = stm32lx_get_flash_status(bank, &status); + if (retval != ERROR_OK) + return retval; + + LOG_DEBUG("status: 0x%" PRIx32 "", status); + if ((status & FLASH_SR__BSY) == 0) + break; + + if (timeout-- <= 0) { + LOG_ERROR("timed out waiting for flash"); + return ERROR_FAIL; + } + alive_sleep(1); + } + + if (status & FLASH_SR__WRPERR) { + LOG_ERROR("stm32lx device protected"); + retval = ERROR_FAIL; + } + + /* Clear but report errors */ + if (status & FLASH_SR__OPTVERR) { + /* If this operation fails, we ignore it and report the original retval */ + target_write_u32(target, stm32lx_info->flash_base + FLASH_SR, status & FLASH_SR__OPTVERR); + } + + return retval; +} + +static int stm32lx_obl_launch(struct flash_bank *bank) +{ + struct target *target = bank->target; + struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; + int retval; + + /* This will fail as the target gets immediately rebooted */ + target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR, + FLASH_PECR__OBL_LAUNCH); + + size_t tries = 10; + do { + target_halt(target); + retval = target_poll(target); + } while (--tries > 0 && + (retval != ERROR_OK || target->state != TARGET_HALTED)); + + return tries ? ERROR_OK : ERROR_FAIL; +} + +static int stm32lx_mass_erase(struct flash_bank *bank) +{ + int retval; + struct target *target = bank->target; + struct stm32lx_flash_bank *stm32lx_info = NULL; + uint32_t reg32; + + if (target->state != TARGET_HALTED) { + LOG_ERROR("Target not halted"); + return ERROR_TARGET_NOT_HALTED; + } + + stm32lx_info = bank->driver_priv; + + retval = stm32lx_unlock_options_bytes(bank); + if (retval != ERROR_OK) + return retval; + + /* mass erase flash memory */ + /* set the RDP protection level to 1 */ + retval = target_write_u32(target, OPTION_BYTES_ADDRESS, OPTION_BYTE_0_PR1); + if (retval != ERROR_OK) + return retval; + + retval = stm32lx_obl_launch(bank); + if (retval != ERROR_OK) + return retval; + + retval = stm32lx_unlock_options_bytes(bank); + if (retval != ERROR_OK) + return retval; + + /* set the RDP protection level to 0 */ + retval = target_write_u32(target, OPTION_BYTES_ADDRESS, OPTION_BYTE_0_PR0); + if (retval != ERROR_OK) + return retval; + + retval = stm32lx_wait_status_busy(bank, 30000); + if (retval != ERROR_OK) + return retval; + + retval = stm32lx_obl_launch(bank); + if (retval != ERROR_OK) + return retval; + + retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, ®32); + if (retval != ERROR_OK) + return retval; + + retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR, reg32 | FLASH_PECR__OPTLOCK); + if (retval != ERROR_OK) + return retval; + + return ERROR_OK; +}