X-Git-Url: https://review.openocd.org/gitweb?p=openocd.git;a=blobdiff_plain;f=src%2Fflash%2Fnor%2Fstm32lx.c;h=fdfaad4cf7e8102f7593312bf471b39059512129;hp=fedab300619638bcb80fb19064bf2ee5795ac0a0;hb=9bbe299b35be0e086fdafb9c44669b1c36f935f9;hpb=38e44d1361a5dbefcbbc54cc8fd8b0bd53dbc89f diff --git a/src/flash/nor/stm32lx.c b/src/flash/nor/stm32lx.c index fedab30061..fdfaad4cf7 100644 --- a/src/flash/nor/stm32lx.c +++ b/src/flash/nor/stm32lx.c @@ -19,9 +19,7 @@ * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * - * along with this program; if not, write to the * - * Free Software Foundation, Inc., * - * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * + * along with this program. If not, see . * ***************************************************************************/ #ifdef HAVE_CONFIG_H @@ -32,19 +30,19 @@ #include #include #include +#include /* stm32lx flash register locations */ -#define FLASH_BASE 0x40023C00 -#define FLASH_ACR 0x40023C00 -#define FLASH_PECR 0x40023C04 -#define FLASH_PDKEYR 0x40023C08 -#define FLASH_PEKEYR 0x40023C0C -#define FLASH_PRGKEYR 0x40023C10 -#define FLASH_OPTKEYR 0x40023C14 -#define FLASH_SR 0x40023C18 -#define FLASH_OBR 0x40023C1C -#define FLASH_WRPR 0x40023C20 +#define FLASH_ACR 0x00 +#define FLASH_PECR 0x04 +#define FLASH_PDKEYR 0x08 +#define FLASH_PEKEYR 0x0C +#define FLASH_PRGKEYR 0x10 +#define FLASH_OPTKEYR 0x14 +#define FLASH_SR 0x18 +#define FLASH_OBR 0x1C +#define FLASH_WRPR 0x20 /* FLASH_ACR bites */ #define FLASH_ACR__LATENCY (1<<0) @@ -85,42 +83,199 @@ #define OPTKEY2 0x24252627 /* other registers */ -#define DBGMCU_IDCODE 0xE0042000 -#define F_SIZE 0x1FF8004C +#define DBGMCU_IDCODE 0xE0042000 +#define DBGMCU_IDCODE_L0 0x40015800 /* Constants */ -#define FLASH_PAGE_SIZE 256 #define FLASH_SECTOR_SIZE 4096 -#define FLASH_PAGES_PER_SECTOR 16 #define FLASH_BANK0_ADDRESS 0x08000000 -/* stm32lx option byte register location */ -#define OB_RDP 0x1FF80000 -#define OB_USER 0x1FF80004 -#define OB_WRP0_1 0x1FF80008 -#define OB_WRP2_3 0x1FF8000C +/* option bytes */ +#define OPTION_BYTES_ADDRESS 0x1FF80000 -/* OB_RDP values */ -#define OB_RDP__LEVEL0 0xFF5500AA -#define OB_RDP__LEVEL1 0xFFFF0000 - -/* stm32lx RCC register locations */ -#define RCC_CR 0x40023800 -#define RCC_ICSCR 0x40023804 -#define RCC_CFGR 0x40023808 - -/* RCC_ICSCR bits */ -#define RCC_ICSCR__MSIRANGE_MASK (7<<13) +#define OPTION_BYTE_0_PR1 0xFFFF0000 +#define OPTION_BYTE_0_PR0 0xFF5500AA static int stm32lx_unlock_program_memory(struct flash_bank *bank); static int stm32lx_lock_program_memory(struct flash_bank *bank); static int stm32lx_enable_write_half_page(struct flash_bank *bank); static int stm32lx_erase_sector(struct flash_bank *bank, int sector); static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank); +static int stm32lx_lock(struct flash_bank *bank); +static int stm32lx_unlock(struct flash_bank *bank); +static int stm32lx_mass_erase(struct flash_bank *bank); +static int stm32lx_wait_until_bsy_clear_timeout(struct flash_bank *bank, int timeout); +static int stm32lx_update_part_info(struct flash_bank *bank, uint16_t flash_size_in_kb); + +struct stm32lx_rev { + uint16_t rev; + const char *str; +}; + +struct stm32lx_part_info { + uint16_t id; + const char *device_str; + const struct stm32lx_rev *revs; + size_t num_revs; + unsigned int page_size; + unsigned int pages_per_sector; + uint16_t max_flash_size_kb; + uint16_t first_bank_size_kb; /* used when has_dual_banks is true */ + bool has_dual_banks; + + uint32_t flash_base; /* Flash controller registers location */ + uint32_t fsize_base; /* Location of FSIZE register */ +}; struct stm32lx_flash_bank { - struct working_area *write_algorithm; int probed; + uint32_t idcode; + uint32_t user_bank_size; + uint32_t flash_base; + + struct stm32lx_part_info part_info; +}; + +static const struct stm32lx_rev stm32_416_revs[] = { + { 0x1000, "A" }, { 0x1008, "Y" }, { 0x1038, "W" }, { 0x1078, "V" }, +}; +static const struct stm32lx_rev stm32_417_revs[] = { + { 0x1000, "A" }, { 0x1008, "Z" }, { 0x1018, "Y" }, { 0x1038, "X" } +}; +static const struct stm32lx_rev stm32_425_revs[] = { + { 0x1000, "A" }, { 0x2000, "B" }, { 0x2008, "Y" }, +}; +static const struct stm32lx_rev stm32_427_revs[] = { + { 0x1000, "A" }, { 0x1018, "Y" }, { 0x1038, "X" }, +}; +static const struct stm32lx_rev stm32_429_revs[] = { + { 0x1000, "A" }, { 0x1018, "Z" }, +}; +static const struct stm32lx_rev stm32_436_revs[] = { + { 0x1000, "A" }, { 0x1008, "Z" }, { 0x1018, "Y" }, +}; +static const struct stm32lx_rev stm32_437_revs[] = { + { 0x1000, "A" }, +}; +static const struct stm32lx_rev stm32_447_revs[] = { + { 0x1000, "A" }, { 0x2000, "B" }, { 0x2008, "Z" }, +}; +static const struct stm32lx_rev stm32_457_revs[] = { + { 0x1000, "A" }, { 0x1008, "Z" }, +}; + +static const struct stm32lx_part_info stm32lx_parts[] = { + { + .id = 0x416, + .revs = stm32_416_revs, + .num_revs = ARRAY_SIZE(stm32_416_revs), + .device_str = "STM32L1xx (Cat.1 - Low/Medium Density)", + .page_size = 256, + .pages_per_sector = 16, + .max_flash_size_kb = 128, + .has_dual_banks = false, + .flash_base = 0x40023C00, + .fsize_base = 0x1FF8004C, + }, + { + .id = 0x417, + .revs = stm32_417_revs, + .num_revs = ARRAY_SIZE(stm32_417_revs), + .device_str = "STM32L0xx (Cat. 3)", + .page_size = 128, + .pages_per_sector = 32, + .max_flash_size_kb = 64, + .has_dual_banks = false, + .flash_base = 0x40022000, + .fsize_base = 0x1FF8007C, + }, + { + .id = 0x425, + .revs = stm32_425_revs, + .num_revs = ARRAY_SIZE(stm32_425_revs), + .device_str = "STM32L0xx (Cat. 2)", + .page_size = 128, + .pages_per_sector = 32, + .max_flash_size_kb = 32, + .has_dual_banks = false, + .flash_base = 0x40022000, + .fsize_base = 0x1FF8007C, + }, + { + .id = 0x427, + .revs = stm32_427_revs, + .num_revs = ARRAY_SIZE(stm32_427_revs), + .device_str = "STM32L1xx (Cat.3 - Medium+ Density)", + .page_size = 256, + .pages_per_sector = 16, + .max_flash_size_kb = 256, + .has_dual_banks = false, + .flash_base = 0x40023C00, + .fsize_base = 0x1FF800CC, + }, + { + .id = 0x429, + .revs = stm32_429_revs, + .num_revs = ARRAY_SIZE(stm32_429_revs), + .device_str = "STM32L1xx (Cat.2)", + .page_size = 256, + .pages_per_sector = 16, + .max_flash_size_kb = 128, + .has_dual_banks = false, + .flash_base = 0x40023C00, + .fsize_base = 0x1FF8004C, + }, + { + .id = 0x436, + .revs = stm32_436_revs, + .num_revs = ARRAY_SIZE(stm32_436_revs), + .device_str = "STM32L1xx (Cat.4/Cat.3 - Medium+/High Density)", + .page_size = 256, + .pages_per_sector = 16, + .max_flash_size_kb = 384, + .first_bank_size_kb = 192, + .has_dual_banks = true, + .flash_base = 0x40023C00, + .fsize_base = 0x1FF800CC, + }, + { + .id = 0x437, + .revs = stm32_437_revs, + .num_revs = ARRAY_SIZE(stm32_437_revs), + .device_str = "STM32L1xx (Cat.5/Cat.6)", + .page_size = 256, + .pages_per_sector = 16, + .max_flash_size_kb = 512, + .first_bank_size_kb = 0, /* determined in runtime */ + .has_dual_banks = true, + .flash_base = 0x40023C00, + .fsize_base = 0x1FF800CC, + }, + { + .id = 0x447, + .revs = stm32_447_revs, + .num_revs = ARRAY_SIZE(stm32_447_revs), + .device_str = "STM32L0xx (Cat.5)", + .page_size = 128, + .pages_per_sector = 32, + .max_flash_size_kb = 192, + .first_bank_size_kb = 0, /* determined in runtime */ + .has_dual_banks = false, /* determined in runtime */ + .flash_base = 0x40022000, + .fsize_base = 0x1FF8007C, + }, + { + .id = 0x457, + .revs = stm32_457_revs, + .num_revs = ARRAY_SIZE(stm32_457_revs), + .device_str = "STM32L0xx (Cat.1)", + .page_size = 128, + .pages_per_sector = 32, + .max_flash_size_kb = 16, + .has_dual_banks = false, + .flash_base = 0x40022000, + .fsize_base = 0x1FF8007C, + }, }; /* flash bank stm32lx 0 0 @@ -132,7 +287,7 @@ FLASH_BANK_COMMAND_HANDLER(stm32lx_flash_bank_command) return ERROR_COMMAND_SYNTAX_ERROR; /* Create the bank structure */ - stm32lx_info = malloc(sizeof(struct stm32lx_flash_bank)); + stm32lx_info = calloc(1, sizeof(*stm32lx_info)); /* Check allocation */ if (stm32lx_info == NULL) { @@ -142,33 +297,99 @@ FLASH_BANK_COMMAND_HANDLER(stm32lx_flash_bank_command) bank->driver_priv = stm32lx_info; - stm32lx_info->write_algorithm = NULL; stm32lx_info->probed = 0; + stm32lx_info->user_bank_size = bank->size; + + /* the stm32l erased value is 0x00 */ + bank->default_padded_value = bank->erased_value = 0x00; return ERROR_OK; } +COMMAND_HANDLER(stm32lx_handle_mass_erase_command) +{ + int i; + + if (CMD_ARGC < 1) + return ERROR_COMMAND_SYNTAX_ERROR; + + struct flash_bank *bank; + int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); + if (ERROR_OK != retval) + return retval; + + retval = stm32lx_mass_erase(bank); + if (retval == ERROR_OK) { + /* set all sectors as erased */ + for (i = 0; i < bank->num_sectors; i++) + bank->sectors[i].is_erased = 1; + + command_print(CMD_CTX, "stm32lx mass erase complete"); + } else { + command_print(CMD_CTX, "stm32lx mass erase failed"); + } + + return retval; +} + +COMMAND_HANDLER(stm32lx_handle_lock_command) +{ + if (CMD_ARGC < 1) + return ERROR_COMMAND_SYNTAX_ERROR; + + struct flash_bank *bank; + int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); + if (ERROR_OK != retval) + return retval; + + retval = stm32lx_lock(bank); + + if (retval == ERROR_OK) + command_print(CMD_CTX, "STM32Lx locked, takes effect after power cycle."); + else + command_print(CMD_CTX, "STM32Lx lock failed"); + + return retval; +} + +COMMAND_HANDLER(stm32lx_handle_unlock_command) +{ + if (CMD_ARGC < 1) + return ERROR_COMMAND_SYNTAX_ERROR; + + struct flash_bank *bank; + int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); + if (ERROR_OK != retval) + return retval; + + retval = stm32lx_unlock(bank); + + if (retval == ERROR_OK) + command_print(CMD_CTX, "STM32Lx unlocked, takes effect after power cycle."); + else + command_print(CMD_CTX, "STM32Lx unlock failed"); + + return retval; +} + static int stm32lx_protect_check(struct flash_bank *bank) { int retval; struct target *target = bank->target; + struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; uint32_t wrpr; - if (target->state != TARGET_HALTED) { - LOG_ERROR("Target not halted"); - return ERROR_TARGET_NOT_HALTED; - } - /* * Read the WRPR word, and check each bit (corresponding to each * flash sector */ - retval = target_read_u32(target, FLASH_WRPR, &wrpr); + retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_WRPR, + &wrpr); if (retval != ERROR_OK) return retval; - for (int i = 0; i < 32; i++) { + for (int i = 0; i < bank->num_sectors; i++) { if (wrpr & (1 << i)) bank->sectors[i].is_protected = 1; else @@ -210,123 +431,106 @@ static int stm32lx_protect(struct flash_bank *bank, int set, int first, return ERROR_OK; } -static int stm32lx_write_half_pages(struct flash_bank *bank, uint8_t *buffer, +static int stm32lx_write_half_pages(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count) { - struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; struct target *target = bank->target; - uint32_t buffer_size = 4096 * 4; + struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; + + uint32_t hp_nb = stm32lx_info->part_info.page_size / 2; + uint32_t buffer_size = 16384; + struct working_area *write_algorithm; struct working_area *source; uint32_t address = bank->base + offset; - struct reg_param reg_params[5]; + struct reg_param reg_params[3]; struct armv7m_algorithm armv7m_info; int retval = ERROR_OK; - uint32_t reg32; - /* see contib/loaders/flash/stm32lx.s for src */ - - static const uint16_t stm32lx_flash_write_code_16[] = { - /* 00000000 : */ - 0x2300, /* 0: 2300 movs r3, #0 */ - 0xe004, /* 2: e004 b.n e */ - - /* 00000004 : */ - 0xf851, 0xcb04, /* 4: f851 cb04 ldr.w ip, [r1], #4 */ - 0xf840, 0xcb04, /* 8: f840 cb04 str.w ip, [r0], #4 */ - 0x3301, /* c: 3301 adds r3, #1 */ - - /* 0000000e : */ - 0x4293, /* e: 4293 cmp r3, r2 */ - 0xd3f8, /* 10: d3f8 bcc.n 4 */ - 0xbe00, /* 12: be00 bkpt 0x0000 */ - - }; - - /* Flip endian */ - uint8_t stm32lx_flash_write_code[sizeof(stm32lx_flash_write_code_16)]; - for (unsigned int i = 0; i < sizeof(stm32lx_flash_write_code_16) / 2; i++) { - stm32lx_flash_write_code[i * 2 + 0] = stm32lx_flash_write_code_16[i] - & 0xff; - stm32lx_flash_write_code[i * 2 + 1] = (stm32lx_flash_write_code_16[i] - >> 8) & 0xff; - } - /* Check if there is an even number of half pages (128bytes) */ - if (count % 128) { - LOG_ERROR("there should be an even number " - "of half pages = 128 bytes (count = %" PRIi32 " bytes)", count); + /* see contib/loaders/flash/stm32lx.S for src */ + + static const uint8_t stm32lx_flash_write_code[] = { + 0x92, 0x00, 0x8A, 0x18, 0x01, 0xE0, 0x08, 0xC9, 0x08, 0xC0, 0x91, 0x42, 0xFB, 0xD1, 0x00, 0xBE + }; + + /* Make sure we're performing a half-page aligned write. */ + if (count % hp_nb) { + LOG_ERROR("The byte count must be %" PRIu32 "B-aligned but count is %" PRIi32 "B)", hp_nb, count); return ERROR_FAIL; } - /* Allocate working area */ - reg32 = sizeof(stm32lx_flash_write_code); - /* Add bytes to make 4byte aligned */ - reg32 += (4 - (reg32 % 4)) % 4; - retval = target_alloc_working_area(target, reg32, - &stm32lx_info->write_algorithm); - if (retval != ERROR_OK) - return retval; + /* flash write code */ + if (target_alloc_working_area(target, sizeof(stm32lx_flash_write_code), + &write_algorithm) != ERROR_OK) { + LOG_DEBUG("no working area for block memory writes"); + return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; + } /* Write the flashing code */ retval = target_write_buffer(target, - stm32lx_info->write_algorithm->address, + write_algorithm->address, sizeof(stm32lx_flash_write_code), - (uint8_t *)stm32lx_flash_write_code); + stm32lx_flash_write_code); if (retval != ERROR_OK) { - target_free_working_area(target, stm32lx_info->write_algorithm); + target_free_working_area(target, write_algorithm); return retval; } /* Allocate half pages memory */ - while (target_alloc_working_area_try(target, buffer_size, &source) - != ERROR_OK) { + while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) { if (buffer_size > 1024) buffer_size -= 1024; else buffer_size /= 2; - if (buffer_size <= 256) { - /* if we already allocated the writing code, but failed to get a + if (buffer_size <= stm32lx_info->part_info.page_size) { + /* we already allocated the writing code, but failed to get a * buffer, free the algorithm */ - if (stm32lx_info->write_algorithm) - target_free_working_area(target, stm32lx_info->write_algorithm); + target_free_working_area(target, write_algorithm); LOG_WARNING("no large enough working area available, can't do block memory writes"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } } - LOG_DEBUG("allocated working area for data (%" PRIx32 " bytes)", buffer_size); armv7m_info.common_magic = ARMV7M_COMMON_MAGIC; - armv7m_info.core_mode = ARMV7M_MODE_ANY; + armv7m_info.core_mode = ARM_MODE_THREAD; init_reg_param(®_params[0], "r0", 32, PARAM_OUT); init_reg_param(®_params[1], "r1", 32, PARAM_OUT); init_reg_param(®_params[2], "r2", 32, PARAM_OUT); - init_reg_param(®_params[3], "r3", 32, PARAM_IN_OUT); - init_reg_param(®_params[4], "r4", 32, PARAM_OUT); /* Enable half-page write */ retval = stm32lx_enable_write_half_page(bank); if (retval != ERROR_OK) { target_free_working_area(target, source); - target_free_working_area(target, stm32lx_info->write_algorithm); + target_free_working_area(target, write_algorithm); destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); destroy_reg_param(®_params[2]); - destroy_reg_param(®_params[3]); return retval; } + struct armv7m_common *armv7m = target_to_armv7m(target); + if (armv7m == NULL) { + + /* something is very wrong if armv7m is NULL */ + LOG_ERROR("unable to get armv7m target"); + return retval; + } + + /* save any DEMCR flags and configure target to catch any Hard Faults */ + uint32_t demcr_save = armv7m->demcr; + armv7m->demcr = VC_HARDERR; + /* Loop while there are bytes to write */ while (count > 0) { uint32_t this_count; this_count = (count > buffer_size) ? buffer_size : count; /* Write the next half pages */ - retval = target_write_buffer(target, source->address, this_count, - buffer); + retval = target_write_buffer(target, source->address, this_count, buffer); if (retval != ERROR_OK) break; @@ -341,10 +545,14 @@ static int stm32lx_write_half_pages(struct flash_bank *bank, uint8_t *buffer, /* 5: Execute the bunch of code */ retval = target_run_algorithm(target, 0, NULL, sizeof(reg_params) / sizeof(*reg_params), reg_params, - stm32lx_info->write_algorithm->address, 0, 20000, &armv7m_info); + write_algorithm->address, 0, 10000, &armv7m_info); if (retval != ERROR_OK) break; + /* check for Hard Fault */ + if (armv7m->exception_number == 3) + break; + /* 6: Wait while busy */ retval = stm32lx_wait_until_bsy_clear(bank); if (retval != ERROR_OK) @@ -355,106 +563,177 @@ static int stm32lx_write_half_pages(struct flash_bank *bank, uint8_t *buffer, count -= this_count; } + /* restore previous flags */ + armv7m->demcr = demcr_save; + + if (armv7m->exception_number == 3) { + + /* the stm32l15x devices seem to have an issue when blank. + * if a ram loader is executed on a blank device it will + * Hard Fault, this issue does not happen for a already programmed device. + * A related issue is described in the stm32l151xx errata (Doc ID 17721 Rev 6 - 2.1.3). + * The workaround of handling the Hard Fault exception does work, but makes the + * loader more complicated, as a compromise we manually write the pages, programming time + * is reduced by 50% using this slower method. + */ + + LOG_WARNING("Couldn't use loader, falling back to page memory writes"); + + while (count > 0) { + uint32_t this_count; + this_count = (count > hp_nb) ? hp_nb : count; + + /* Write the next half pages */ + retval = target_write_buffer(target, address, this_count, buffer); + if (retval != ERROR_OK) + break; + + /* Wait while busy */ + retval = stm32lx_wait_until_bsy_clear(bank); + if (retval != ERROR_OK) + break; + + buffer += this_count; + address += this_count; + count -= this_count; + } + } + if (retval == ERROR_OK) retval = stm32lx_lock_program_memory(bank); target_free_working_area(target, source); - target_free_working_area(target, stm32lx_info->write_algorithm); + target_free_working_area(target, write_algorithm); destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); destroy_reg_param(®_params[2]); - destroy_reg_param(®_params[3]); return retval; } -static int stm32lx_write(struct flash_bank *bank, uint8_t *buffer, + +static int stm32lx_write(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count) { struct target *target = bank->target; + struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; + uint32_t hp_nb = stm32lx_info->part_info.page_size / 2; uint32_t halfpages_number; - uint32_t words_remaining; - uint32_t bytes_remaining; + uint32_t bytes_remaining = 0; uint32_t address = bank->base + offset; uint32_t bytes_written = 0; - int retval; + int retval, retval2; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } - if (offset & 0x1) { - LOG_ERROR("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset); + if (offset & 0x3) { + LOG_ERROR("offset 0x%" PRIx32 " breaks required 4-byte alignment", offset); return ERROR_FLASH_DST_BREAKS_ALIGNMENT; } - /* Check if there are some full half pages */ - if (((offset % 128) == 0) && (count >= 128)) { - halfpages_number = count / 128; - words_remaining = (count - 128 * halfpages_number) / 4; - bytes_remaining = (count & 0x3); - } else { - halfpages_number = 0; - words_remaining = (count / 4); - bytes_remaining = (count & 0x3); - } - - if (halfpages_number) { - retval = stm32lx_write_half_pages(bank, buffer, offset, 128 - * halfpages_number); - if (retval != ERROR_OK) - return ERROR_FAIL; - } - - bytes_written = 128 * halfpages_number; - address += bytes_written; - retval = stm32lx_unlock_program_memory(bank); if (retval != ERROR_OK) return retval; - while (words_remaining > 0) { - uint32_t value; - uint8_t *p = buffer + bytes_written; + /* first we need to write any unaligned head bytes upto + * the next 128 byte page */ + + if (offset % hp_nb) + bytes_remaining = MIN(count, hp_nb - (offset % hp_nb)); - /* Prepare the word, Little endian conversion */ - value = p[0] + (p[1] << 8) + (p[2] << 16) + (p[3] << 24); + while (bytes_remaining > 0) { + uint8_t value[4] = {0xff, 0xff, 0xff, 0xff}; - retval = target_write_u32(target, address, value); + /* copy remaining bytes into the write buffer */ + uint32_t bytes_to_write = MIN(4, bytes_remaining); + memcpy(value, buffer + bytes_written, bytes_to_write); + + retval = target_write_buffer(target, address, 4, value); if (retval != ERROR_OK) - return retval; + goto reset_pg_and_lock; - bytes_written += 4; - words_remaining--; + bytes_written += bytes_to_write; + bytes_remaining -= bytes_to_write; address += 4; retval = stm32lx_wait_until_bsy_clear(bank); if (retval != ERROR_OK) - return retval; + goto reset_pg_and_lock; + } + + offset += bytes_written; + count -= bytes_written; + + /* this should always pass this check here */ + assert((offset % hp_nb) == 0); + + /* calculate half pages */ + halfpages_number = count / hp_nb; + + if (halfpages_number) { + retval = stm32lx_write_half_pages(bank, buffer + bytes_written, offset, hp_nb * halfpages_number); + if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) { + /* attempt slow memory writes */ + LOG_WARNING("couldn't use block writes, falling back to single memory accesses"); + halfpages_number = 0; + } else { + if (retval != ERROR_OK) + return ERROR_FAIL; + } } - if (bytes_remaining) { - uint8_t last_word[4] = {0xff, 0xff, 0xff, 0xff}; + /* write any remaining bytes */ + uint32_t page_bytes_written = hp_nb * halfpages_number; + bytes_written += page_bytes_written; + address += page_bytes_written; + bytes_remaining = count - page_bytes_written; + + retval = stm32lx_unlock_program_memory(bank); + if (retval != ERROR_OK) + return retval; + + while (bytes_remaining > 0) { + uint8_t value[4] = {0xff, 0xff, 0xff, 0xff}; - /* copy the last remaining bytes into the write buffer */ - memcpy(last_word, buffer+bytes_written, bytes_remaining); + /* copy remaining bytes into the write buffer */ + uint32_t bytes_to_write = MIN(4, bytes_remaining); + memcpy(value, buffer + bytes_written, bytes_to_write); - retval = target_write_buffer(target, address, 4, last_word); + retval = target_write_buffer(target, address, 4, value); if (retval != ERROR_OK) - return retval; + goto reset_pg_and_lock; + + bytes_written += bytes_to_write; + bytes_remaining -= bytes_to_write; + address += 4; retval = stm32lx_wait_until_bsy_clear(bank); if (retval != ERROR_OK) - return retval; + goto reset_pg_and_lock; } - retval = stm32lx_lock_program_memory(bank); - if (retval != ERROR_OK) - return retval; +reset_pg_and_lock: + retval2 = stm32lx_lock_program_memory(bank); + if (retval == ERROR_OK) + retval = retval2; - return ERROR_OK; + return retval; +} + +static int stm32lx_read_id_code(struct target *target, uint32_t *id) +{ + struct armv7m_common *armv7m = target_to_armv7m(target); + int retval; + if (armv7m->arm.is_armv6m == true) + retval = target_read_u32(target, DBGMCU_IDCODE_L0, id); + else + /* read stm32 device id register */ + retval = target_read_u32(target, DBGMCU_IDCODE, id); + return retval; } static int stm32lx_probe(struct flash_bank *bank) @@ -464,62 +743,116 @@ static int stm32lx_probe(struct flash_bank *bank) int i; uint16_t flash_size_in_kb; uint32_t device_id; + uint32_t base_address = FLASH_BANK0_ADDRESS; + uint32_t second_bank_base; + unsigned int n; stm32lx_info->probed = 0; - /* read stm32 device id register */ - int retval = target_read_u32(target, DBGMCU_IDCODE, &device_id); + int retval = stm32lx_read_id_code(bank->target, &device_id); if (retval != ERROR_OK) return retval; + stm32lx_info->idcode = device_id; + LOG_DEBUG("device id = 0x%08" PRIx32 "", device_id); - /* get flash size from target. */ - retval = target_read_u16(target, F_SIZE, &flash_size_in_kb); - if (retval != ERROR_OK) { - LOG_WARNING("failed reading flash size, default to max target family"); - /* failed reading flash size, default to max target family */ - flash_size_in_kb = 0xffff; - } - - /* some variants read 0 for flash size register - * use a max flash size as a default */ - if (flash_size_in_kb == 0) - flash_size_in_kb = 0xffff; - - if ((device_id & 0xfff) == 0x416) { - /* check for early silicon */ - if (flash_size_in_kb == 0xffff) { - /* number of sectors may be incorrect on early silicon */ - LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash"); - flash_size_in_kb = 128; + for (n = 0; n < ARRAY_SIZE(stm32lx_parts); n++) { + if ((device_id & 0xfff) == stm32lx_parts[n].id) { + stm32lx_info->part_info = stm32lx_parts[n]; + break; } - } else if ((device_id & 0xfff) == 0x436) { - /* check for early silicon */ - if (flash_size_in_kb == 0xffff) { - /* number of sectors may be incorrect on early silicon */ - LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 384k flash"); + } + + if (n == ARRAY_SIZE(stm32lx_parts)) { + LOG_WARNING("Cannot identify target as a STM32L family."); + return ERROR_FAIL; + } else { + LOG_INFO("Device: %s", stm32lx_info->part_info.device_str); + } + + stm32lx_info->flash_base = stm32lx_info->part_info.flash_base; + + /* Get the flash size from target. */ + retval = target_read_u16(target, stm32lx_info->part_info.fsize_base, + &flash_size_in_kb); + + /* 0x436 devices report their flash size as a 0 or 1 code indicating 384K + * or 256K, respectively. Please see RM0038 r8 or newer and refer to + * section 30.1.1. */ + if (retval == ERROR_OK && (device_id & 0xfff) == 0x436) { + if (flash_size_in_kb == 0) flash_size_in_kb = 384; + else if (flash_size_in_kb == 1) + flash_size_in_kb = 256; + } + + /* 0x429 devices only use the lowest 8 bits of the flash size register */ + if (retval == ERROR_OK && (device_id & 0xfff) == 0x429) { + flash_size_in_kb &= 0xff; + } + + /* Failed reading flash size or flash size invalid (early silicon), + * default to max target family */ + if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) { + LOG_WARNING("STM32L flash size failed, probe inaccurate - assuming %dk flash", + stm32lx_info->part_info.max_flash_size_kb); + flash_size_in_kb = stm32lx_info->part_info.max_flash_size_kb; + } else if (flash_size_in_kb > stm32lx_info->part_info.max_flash_size_kb) { + LOG_WARNING("STM32L probed flash size assumed incorrect since FLASH_SIZE=%dk > %dk, - assuming %dk flash", + flash_size_in_kb, stm32lx_info->part_info.max_flash_size_kb, + stm32lx_info->part_info.max_flash_size_kb); + flash_size_in_kb = stm32lx_info->part_info.max_flash_size_kb; + } + + /* Overwrite default dual-bank configuration */ + retval = stm32lx_update_part_info(bank, flash_size_in_kb); + if (retval != ERROR_OK) + return ERROR_FAIL; + + if (stm32lx_info->part_info.has_dual_banks) { + /* Use the configured base address to determine if this is the first or second flash bank. + * Verify that the base address is reasonably correct and determine the flash bank size + */ + second_bank_base = base_address + + stm32lx_info->part_info.first_bank_size_kb * 1024; + if (bank->base == second_bank_base || !bank->base) { + /* This is the second bank */ + base_address = second_bank_base; + flash_size_in_kb = flash_size_in_kb - + stm32lx_info->part_info.first_bank_size_kb; + } else if (bank->base == base_address) { + /* This is the first bank */ + flash_size_in_kb = stm32lx_info->part_info.first_bank_size_kb; + } else { + LOG_WARNING("STM32L flash bank base address config is incorrect." + " 0x%" PRIx32 " but should rather be 0x%" PRIx32 " or 0x%" PRIx32, + bank->base, base_address, second_bank_base); + return ERROR_FAIL; } + LOG_INFO("STM32L flash has dual banks. Bank (%d) size is %dkb, base address is 0x%" PRIx32, + bank->bank_number, flash_size_in_kb, base_address); } else { - LOG_WARNING("Cannot identify target as a STM32L family."); - return ERROR_FAIL; + LOG_INFO("STM32L flash size is %dkb, base address is 0x%" PRIx32, flash_size_in_kb, base_address); } - /* STM32L - we have 32 sectors, 16 pages per sector -> 512 pages - * 16 pages for a protection area */ + /* if the user sets the size manually then ignore the probed value + * this allows us to work around devices that have a invalid flash size register value */ + if (stm32lx_info->user_bank_size) { + flash_size_in_kb = stm32lx_info->user_bank_size / 1024; + LOG_INFO("ignoring flash probed value, using configured bank size: %dkbytes", flash_size_in_kb); + } /* calculate numbers of sectors (4kB per sector) */ int num_sectors = (flash_size_in_kb * 1024) / FLASH_SECTOR_SIZE; - LOG_INFO("flash size = %dkbytes", flash_size_in_kb); if (bank->sectors) { free(bank->sectors); bank->sectors = NULL; } - bank->base = FLASH_BANK0_ADDRESS; bank->size = flash_size_in_kb * 1024; + bank->base = base_address; bank->num_sectors = num_sectors; bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors); if (bank->sectors == NULL) { @@ -549,126 +882,62 @@ static int stm32lx_auto_probe(struct flash_bank *bank) return stm32lx_probe(bank); } -static int stm32lx_erase_check(struct flash_bank *bank) -{ - struct target *target = bank->target; - const int buffer_size = 4096; - int i; - uint32_t nBytes; - int retval = ERROR_OK; - - if (bank->target->state != TARGET_HALTED) { - LOG_ERROR("Target not halted"); - return ERROR_TARGET_NOT_HALTED; - } - - uint8_t *buffer = malloc(buffer_size); - if (buffer == NULL) { - LOG_ERROR("failed to allocate read buffer"); - return ERROR_FAIL; - } - - for (i = 0; i < bank->num_sectors; i++) { - uint32_t j; - bank->sectors[i].is_erased = 1; - - /* Loop chunk by chunk over the sector */ - for (j = 0; j < bank->sectors[i].size; j += buffer_size) { - uint32_t chunk; - chunk = buffer_size; - if (chunk > (j - bank->sectors[i].size)) - chunk = (j - bank->sectors[i].size); - - retval = target_read_memory(target, bank->base - + bank->sectors[i].offset + j, 4, chunk / 4, buffer); - if (retval != ERROR_OK) - break; - - for (nBytes = 0; nBytes < chunk; nBytes++) { - if (buffer[nBytes] != 0x00) { - bank->sectors[i].is_erased = 0; - break; - } - } - } - if (retval != ERROR_OK) - break; - } - free(buffer); - - return retval; -} - +/* This method must return a string displaying information about the bank */ static int stm32lx_get_info(struct flash_bank *bank, char *buf, int buf_size) { - /* This method must return a string displaying information about the bank */ - - struct target *target = bank->target; - uint32_t device_id; - int printed; - - /* read stm32 device id register */ - int retval = target_read_u32(target, DBGMCU_IDCODE, &device_id); - if (retval != ERROR_OK) - return retval; - - if ((device_id & 0xfff) == 0x416) { - printed = snprintf(buf, buf_size, "stm32lx - Rev: "); - buf += printed; - buf_size -= printed; - - switch (device_id >> 16) { - case 0x1000: - snprintf(buf, buf_size, "A"); - break; - - case 0x1008: - snprintf(buf, buf_size, "Y"); - break; - - case 0x1018: - snprintf(buf, buf_size, "X"); - break; - - case 0x1038: - snprintf(buf, buf_size, "W"); - break; - - case 0x1078: - snprintf(buf, buf_size, "V"); - break; - - default: - snprintf(buf, buf_size, "unknown"); - break; + struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; + const struct stm32lx_part_info *info = &stm32lx_info->part_info; + uint16_t rev_id = stm32lx_info->idcode >> 16; + const char *rev_str = NULL; + + if (!stm32lx_info->probed) { + int retval = stm32lx_probe(bank); + if (retval != ERROR_OK) { + snprintf(buf, buf_size, + "Unable to find bank information."); + return retval; } - } else if ((device_id & 0xfff) == 0x436) { - printed = snprintf(buf, buf_size, "stm32lx (HD) - Rev: "); - buf += printed; - buf_size -= printed; - - switch (device_id >> 16) { - case 0x1000: - snprintf(buf, buf_size, "A"); - break; + } - case 0x1008: - snprintf(buf, buf_size, "Z"); - break; + for (unsigned int i = 0; i < info->num_revs; i++) + if (rev_id == info->revs[i].rev) + rev_str = info->revs[i].str; - default: - snprintf(buf, buf_size, "unknown"); - break; - } + if (rev_str != NULL) { + snprintf(buf, buf_size, + "%s - Rev: %s", + info->device_str, rev_str); } else { - snprintf(buf, buf_size, "Cannot identify target as a stm32lx"); - return ERROR_FAIL; + snprintf(buf, buf_size, + "%s - Rev: unknown (0x%04x)", + info->device_str, rev_id); } return ERROR_OK; } static const struct command_registration stm32lx_exec_command_handlers[] = { + { + .name = "mass_erase", + .handler = stm32lx_handle_mass_erase_command, + .mode = COMMAND_EXEC, + .usage = "bank_id", + .help = "Erase entire flash device. including available EEPROM", + }, + { + .name = "lock", + .handler = stm32lx_handle_lock_command, + .mode = COMMAND_EXEC, + .usage = "bank_id", + .help = "Increase the readout protection to Level 1.", + }, + { + .name = "unlock", + .handler = stm32lx_handle_unlock_command, + .mode = COMMAND_EXEC, + .usage = "bank_id", + .help = "Lower the readout protection from Level 1 to 0.", + }, COMMAND_REGISTRATION_DONE }; @@ -693,7 +962,7 @@ struct flash_driver stm32lx_flash = { .read = default_flash_read, .probe = stm32lx_probe, .auto_probe = stm32lx_auto_probe, - .erase_check = stm32lx_erase_check, + .erase_check = default_flash_blank_check, .protect_check = stm32lx_protect_check, .info = stm32lx_get_info, }; @@ -702,6 +971,7 @@ struct flash_driver stm32lx_flash = { static int stm32lx_unlock_program_memory(struct flash_bank *bank) { struct target *target = bank->target; + struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; int retval; uint32_t reg32; @@ -710,17 +980,29 @@ static int stm32lx_unlock_program_memory(struct flash_bank *bank) * then by writing the 2 PRGKEY to the PRGKEYR register */ + /* check flash is not already unlocked */ + retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, + ®32); + if (retval != ERROR_OK) + return retval; + + if ((reg32 & FLASH_PECR__PRGLOCK) == 0) + return ERROR_OK; + /* To unlock the PECR write the 2 PEKEY to the PEKEYR register */ - retval = target_write_u32(target, FLASH_PEKEYR, PEKEY1); + retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR, + PEKEY1); if (retval != ERROR_OK) return retval; - retval = target_write_u32(target, FLASH_PEKEYR, PEKEY2); + retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR, + PEKEY2); if (retval != ERROR_OK) return retval; /* Make sure it worked */ - retval = target_read_u32(target, FLASH_PECR, ®32); + retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, + ®32); if (retval != ERROR_OK) return retval; @@ -729,15 +1011,18 @@ static int stm32lx_unlock_program_memory(struct flash_bank *bank) return ERROR_FLASH_OPERATION_FAILED; } - retval = target_write_u32(target, FLASH_PRGKEYR, PRGKEY1); + retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PRGKEYR, + PRGKEY1); if (retval != ERROR_OK) return retval; - retval = target_write_u32(target, FLASH_PRGKEYR, PRGKEY2); + retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PRGKEYR, + PRGKEY2); if (retval != ERROR_OK) return retval; /* Make sure it worked */ - retval = target_read_u32(target, FLASH_PECR, ®32); + retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, + ®32); if (retval != ERROR_OK) return retval; @@ -745,12 +1030,14 @@ static int stm32lx_unlock_program_memory(struct flash_bank *bank) LOG_ERROR("PRGLOCK is not cleared :("); return ERROR_FLASH_OPERATION_FAILED; } + return ERROR_OK; } static int stm32lx_enable_write_half_page(struct flash_bank *bank) { struct target *target = bank->target; + struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; int retval; uint32_t reg32; @@ -761,21 +1048,25 @@ static int stm32lx_enable_write_half_page(struct flash_bank *bank) if (retval != ERROR_OK) return retval; - retval = target_read_u32(target, FLASH_PECR, ®32); + retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, + ®32); if (retval != ERROR_OK) return retval; reg32 |= FLASH_PECR__FPRG; - retval = target_write_u32(target, FLASH_PECR, reg32); + retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR, + reg32); if (retval != ERROR_OK) return retval; - retval = target_read_u32(target, FLASH_PECR, ®32); + retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, + ®32); if (retval != ERROR_OK) return retval; reg32 |= FLASH_PECR__PROG; - retval = target_write_u32(target, FLASH_PECR, reg32); + retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR, + reg32); return retval; } @@ -783,26 +1074,31 @@ static int stm32lx_enable_write_half_page(struct flash_bank *bank) static int stm32lx_lock_program_memory(struct flash_bank *bank) { struct target *target = bank->target; + struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; int retval; uint32_t reg32; /* To lock the program memory, simply set the lock bit and lock PECR */ - retval = target_read_u32(target, FLASH_PECR, ®32); + retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, + ®32); if (retval != ERROR_OK) return retval; reg32 |= FLASH_PECR__PRGLOCK; - retval = target_write_u32(target, FLASH_PECR, reg32); + retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR, + reg32); if (retval != ERROR_OK) return retval; - retval = target_read_u32(target, FLASH_PECR, ®32); + retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, + ®32); if (retval != ERROR_OK) return retval; reg32 |= FLASH_PECR__PELOCK; - retval = target_write_u32(target, FLASH_PECR, reg32); + retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR, + reg32); if (retval != ERROR_OK) return retval; @@ -812,11 +1108,12 @@ static int stm32lx_lock_program_memory(struct flash_bank *bank) static int stm32lx_erase_sector(struct flash_bank *bank, int sector) { struct target *target = bank->target; + struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; int retval; uint32_t reg32; /* - * To erase a sector (i.e. FLASH_PAGES_PER_SECTOR pages), + * To erase a sector (i.e. stm32lx_info->part_info.pages_per_sector pages), * first unlock the memory, loop over the pages of this sector * and write 0x0 to its first word. */ @@ -825,9 +1122,11 @@ static int stm32lx_erase_sector(struct flash_bank *bank, int sector) if (retval != ERROR_OK) return retval; - for (int page = 0; page < FLASH_PAGES_PER_SECTOR; page++) { + for (int page = 0; page < (int)stm32lx_info->part_info.pages_per_sector; + page++) { reg32 = FLASH_PECR__PROG | FLASH_PECR__ERASE; - retval = target_write_u32(target, FLASH_PECR, reg32); + retval = target_write_u32(target, + stm32lx_info->flash_base + FLASH_PECR, reg32); if (retval != ERROR_OK) return retval; @@ -836,7 +1135,7 @@ static int stm32lx_erase_sector(struct flash_bank *bank, int sector) return retval; uint32_t addr = bank->base + bank->sectors[sector].offset + (page - * FLASH_PAGE_SIZE); + * stm32lx_info->part_info.page_size); retval = target_write_u32(target, addr, 0x0); if (retval != ERROR_OK) return retval; @@ -853,21 +1152,79 @@ static int stm32lx_erase_sector(struct flash_bank *bank, int sector) return ERROR_OK; } +static inline int stm32lx_get_flash_status(struct flash_bank *bank, uint32_t *status) +{ + struct target *target = bank->target; + struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; + + return target_read_u32(target, stm32lx_info->flash_base + FLASH_SR, status); +} + static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank) +{ + return stm32lx_wait_until_bsy_clear_timeout(bank, 100); +} + +static int stm32lx_unlock_options_bytes(struct flash_bank *bank) +{ + struct target *target = bank->target; + struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; + int retval; + uint32_t reg32; + + /* + * Unlocking the options bytes is done by unlocking the PECR, + * then by writing the 2 FLASH_PEKEYR to the FLASH_OPTKEYR register + */ + + /* check flash is not already unlocked */ + retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, ®32); + if (retval != ERROR_OK) + return retval; + + if ((reg32 & FLASH_PECR__OPTLOCK) == 0) + return ERROR_OK; + + if ((reg32 & FLASH_PECR__PELOCK) != 0) { + + retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR, PEKEY1); + if (retval != ERROR_OK) + return retval; + + retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR, PEKEY2); + if (retval != ERROR_OK) + return retval; + } + + /* To unlock the PECR write the 2 OPTKEY to the FLASH_OPTKEYR register */ + retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_OPTKEYR, OPTKEY1); + if (retval != ERROR_OK) + return retval; + + retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_OPTKEYR, OPTKEY2); + if (retval != ERROR_OK) + return retval; + + return ERROR_OK; +} + +static int stm32lx_wait_until_bsy_clear_timeout(struct flash_bank *bank, int timeout) { struct target *target = bank->target; + struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; uint32_t status; int retval = ERROR_OK; - int timeout = 100; /* wait for busy to clear */ for (;;) { - retval = target_read_u32(target, FLASH_SR, &status); + retval = stm32lx_get_flash_status(bank, &status); if (retval != ERROR_OK) return retval; + LOG_DEBUG("status: 0x%" PRIx32 "", status); if ((status & FLASH_SR__BSY) == 0) break; + if (timeout-- <= 0) { LOG_ERROR("timed out waiting for flash"); return ERROR_FAIL; @@ -885,5 +1242,139 @@ static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank) retval = ERROR_FAIL; } + /* Clear but report errors */ + if (status & FLASH_SR__OPTVERR) { + /* If this operation fails, we ignore it and report the original retval */ + target_write_u32(target, stm32lx_info->flash_base + FLASH_SR, status & FLASH_SR__OPTVERR); + } + return retval; } + +static int stm32lx_obl_launch(struct flash_bank *bank) +{ + struct target *target = bank->target; + struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; + int retval; + + /* This will fail as the target gets immediately rebooted */ + target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR, + FLASH_PECR__OBL_LAUNCH); + + size_t tries = 10; + do { + target_halt(target); + retval = target_poll(target); + } while (--tries > 0 && + (retval != ERROR_OK || target->state != TARGET_HALTED)); + + return tries ? ERROR_OK : ERROR_FAIL; +} + +static int stm32lx_lock(struct flash_bank *bank) +{ + int retval; + struct target *target = bank->target; + + if (target->state != TARGET_HALTED) { + LOG_ERROR("Target not halted"); + return ERROR_TARGET_NOT_HALTED; + } + + retval = stm32lx_unlock_options_bytes(bank); + if (retval != ERROR_OK) + return retval; + + /* set the RDP protection level to 1 */ + retval = target_write_u32(target, OPTION_BYTES_ADDRESS, OPTION_BYTE_0_PR1); + if (retval != ERROR_OK) + return retval; + + return ERROR_OK; +} + +static int stm32lx_unlock(struct flash_bank *bank) +{ + int retval; + struct target *target = bank->target; + + if (target->state != TARGET_HALTED) { + LOG_ERROR("Target not halted"); + return ERROR_TARGET_NOT_HALTED; + } + + retval = stm32lx_unlock_options_bytes(bank); + if (retval != ERROR_OK) + return retval; + + /* set the RDP protection level to 0 */ + retval = target_write_u32(target, OPTION_BYTES_ADDRESS, OPTION_BYTE_0_PR0); + if (retval != ERROR_OK) + return retval; + + retval = stm32lx_wait_until_bsy_clear_timeout(bank, 30000); + if (retval != ERROR_OK) + return retval; + + return ERROR_OK; +} + +static int stm32lx_mass_erase(struct flash_bank *bank) +{ + int retval; + struct target *target = bank->target; + struct stm32lx_flash_bank *stm32lx_info = NULL; + uint32_t reg32; + + if (target->state != TARGET_HALTED) { + LOG_ERROR("Target not halted"); + return ERROR_TARGET_NOT_HALTED; + } + + stm32lx_info = bank->driver_priv; + + retval = stm32lx_lock(bank); + if (retval != ERROR_OK) + return retval; + + retval = stm32lx_obl_launch(bank); + if (retval != ERROR_OK) + return retval; + + retval = stm32lx_unlock(bank); + if (retval != ERROR_OK) + return retval; + + retval = stm32lx_obl_launch(bank); + if (retval != ERROR_OK) + return retval; + + retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, ®32); + if (retval != ERROR_OK) + return retval; + + retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR, reg32 | FLASH_PECR__OPTLOCK); + if (retval != ERROR_OK) + return retval; + + return ERROR_OK; +} + +static int stm32lx_update_part_info(struct flash_bank *bank, uint16_t flash_size_in_kb) +{ + struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; + + switch (stm32lx_info->part_info.id) { + case 0x447: /* STM32L0xx (Cat.5) devices */ + if (flash_size_in_kb == 192 || flash_size_in_kb == 128) { + stm32lx_info->part_info.first_bank_size_kb = flash_size_in_kb / 2; + stm32lx_info->part_info.has_dual_banks = true; + } + break; + case 0x437: /* STM32L1xx (Cat.5/Cat.6) */ + stm32lx_info->part_info.first_bank_size_kb = flash_size_in_kb / 2; + break; + } + + return ERROR_OK; +}