X-Git-Url: https://review.openocd.org/gitweb?p=openocd.git;a=blobdiff_plain;f=src%2Ftarget%2Farm_adi_v5.c;h=dfbc5ade2af1958ceef83b44aea306eb7afd5ab6;hp=a15590070922fa5cf7fb511c16ed585efa7779b1;hb=dd890d4cad7c62a65d0efd04c5e0b700eeb5928d;hpb=b1a1a48b30243d3582a8443f4baf3dd500683eda diff --git a/src/target/arm_adi_v5.c b/src/target/arm_adi_v5.c index a155900709..dfbc5ade2a 100644 --- a/src/target/arm_adi_v5.c +++ b/src/target/arm_adi_v5.c @@ -24,9 +24,7 @@ * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * - * along with this program; if not, write to the * - * Free Software Foundation, Inc., * - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * + * along with this program. If not, see . * ***************************************************************************/ /** @@ -75,7 +73,9 @@ #include "jtag/interface.h" #include "arm.h" #include "arm_adi_v5.h" +#include #include +#include /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */ @@ -94,69 +94,95 @@ static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address * * ***************************************************************************/ -/** - * Select one of the APs connected to the specified DAP. The - * selection is implicitly used with future AP transactions. - * This is a NOP if the specified AP is already selected. - * - * @param dap The DAP - * @param apsel Number of the AP to (implicitly) use with further - * transactions. This normally identifies a MEM-AP. - */ -void dap_ap_select(struct adiv5_dap *dap, uint8_t ap) -{ - uint32_t new_ap = (ap << 24) & 0xFF000000; - - if (new_ap != dap->ap_current) { - dap->ap_current = new_ap; - /* Switching AP invalidates cached values. - * Values MUST BE UPDATED BEFORE AP ACCESS. - */ - dap->ap_bank_value = -1; - dap->ap_csw_value = -1; - dap->ap_tar_value = -1; - } -} - -static int dap_setup_accessport_csw(struct adiv5_dap *dap, uint32_t csw) +static int mem_ap_setup_csw(struct adiv5_ap *ap, uint32_t csw) { csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT | - dap->apcsw[dap->ap_current >> 24]; + ap->csw_default; - if (csw != dap->ap_csw_value) { + if (csw != ap->csw_value) { /* LOG_DEBUG("DAP: Set CSW %x",csw); */ - int retval = dap_queue_ap_write(dap, AP_REG_CSW, csw); + int retval = dap_queue_ap_write(ap, MEM_AP_REG_CSW, csw); if (retval != ERROR_OK) return retval; - dap->ap_csw_value = csw; + ap->csw_value = csw; } return ERROR_OK; } -static int dap_setup_accessport_tar(struct adiv5_dap *dap, uint32_t tar) +static int mem_ap_setup_tar(struct adiv5_ap *ap, uint32_t tar) { - if (tar != dap->ap_tar_value || dap->ap_csw_value & CSW_ADDRINC_MASK) { + if (!ap->tar_valid || tar != ap->tar_value) { /* LOG_DEBUG("DAP: Set TAR %x",tar); */ - int retval = dap_queue_ap_write(dap, AP_REG_TAR, tar); + int retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR, tar); if (retval != ERROR_OK) return retval; - dap->ap_tar_value = tar; + ap->tar_value = tar; + ap->tar_valid = true; } return ERROR_OK; } +static int mem_ap_read_tar(struct adiv5_ap *ap, uint32_t *tar) +{ + int retval = dap_queue_ap_read(ap, MEM_AP_REG_TAR, tar); + if (retval != ERROR_OK) { + ap->tar_valid = false; + return retval; + } + + retval = dap_run(ap->dap); + if (retval != ERROR_OK) { + ap->tar_valid = false; + return retval; + } + + ap->tar_value = *tar; + ap->tar_valid = true; + return ERROR_OK; +} + +static uint32_t mem_ap_get_tar_increment(struct adiv5_ap *ap) +{ + switch (ap->csw_value & CSW_ADDRINC_MASK) { + case CSW_ADDRINC_SINGLE: + switch (ap->csw_value & CSW_SIZE_MASK) { + case CSW_8BIT: + return 1; + case CSW_16BIT: + return 2; + case CSW_32BIT: + return 4; + } + case CSW_ADDRINC_PACKED: + return 4; + } + return 0; +} + +/* mem_ap_update_tar_cache is called after an access to MEM_AP_REG_DRW + */ +static void mem_ap_update_tar_cache(struct adiv5_ap *ap) +{ + if (!ap->tar_valid) + return; + + uint32_t inc = mem_ap_get_tar_increment(ap); + if (inc >= max_tar_block_size(ap->tar_autoincr_block, ap->tar_value)) + ap->tar_valid = false; + else + ap->tar_value += inc; +} + /** * Queue transactions setting up transfer parameters for the * currently selected MEM-AP. * - * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2 + * Subsequent transfers using registers like MEM_AP_REG_DRW or MEM_AP_REG_BD2 * initiate data reads or writes using memory or peripheral addresses. * If the CSW is configured for it, the TAR may be automatically * incremented after each transfer. * - * @todo Rename to reflect it being specifically a MEM-AP function. - * - * @param dap The DAP connected to the MEM-AP. + * @param ap The MEM-AP. * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this * matches the cached value, the register is not changed. * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this @@ -164,13 +190,13 @@ static int dap_setup_accessport_tar(struct adiv5_dap *dap, uint32_t tar) * * @return ERROR_OK if the transaction was properly queued, else a fault code. */ -int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar) +static int mem_ap_setup_transfer(struct adiv5_ap *ap, uint32_t csw, uint32_t tar) { int retval; - retval = dap_setup_accessport_csw(dap, csw); + retval = mem_ap_setup_csw(ap, csw); if (retval != ERROR_OK) return retval; - retval = dap_setup_accessport_tar(dap, tar); + retval = mem_ap_setup_tar(ap, tar); if (retval != ERROR_OK) return retval; return ERROR_OK; @@ -179,7 +205,7 @@ int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar) /** * Asynchronous (queued) read of a word from memory or a system register. * - * @param dap The DAP connected to the MEM-AP performing the read. + * @param ap The MEM-AP to access. * @param address Address of the 32-bit word to read; it must be * readable by the currently selected MEM-AP. * @param value points to where the word will be stored when the @@ -187,7 +213,7 @@ int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar) * * @return ERROR_OK for success. Otherwise a fault code. */ -int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address, +int mem_ap_read_u32(struct adiv5_ap *ap, uint32_t address, uint32_t *value) { int retval; @@ -195,19 +221,20 @@ int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address, /* Use banked addressing (REG_BDx) to avoid some link traffic * (updating TAR) when reading several consecutive addresses. */ - retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF, + retval = mem_ap_setup_transfer(ap, + CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK), address & 0xFFFFFFF0); if (retval != ERROR_OK) return retval; - return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value); + return dap_queue_ap_read(ap, MEM_AP_REG_BD0 | (address & 0xC), value); } /** * Synchronous read of a word from memory or a system register. * As a side effect, this flushes any queued transactions. * - * @param dap The DAP connected to the MEM-AP performing the read. + * @param ap The MEM-AP to access. * @param address Address of the 32-bit word to read; it must be * readable by the currently selected MEM-AP. * @param value points to where the result will be stored. @@ -215,22 +242,22 @@ int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address, * @return ERROR_OK for success; *value holds the result. * Otherwise a fault code. */ -int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address, +int mem_ap_read_atomic_u32(struct adiv5_ap *ap, uint32_t address, uint32_t *value) { int retval; - retval = mem_ap_read_u32(dap, address, value); + retval = mem_ap_read_u32(ap, address, value); if (retval != ERROR_OK) return retval; - return dap_run(dap); + return dap_run(ap->dap); } /** * Asynchronous (queued) write of a word to memory or a system register. * - * @param dap The DAP connected to the MEM-AP. + * @param ap The MEM-AP to access. * @param address Address to be written; it must be writable by * the currently selected MEM-AP. * @param value Word that will be written to the address when transaction @@ -238,7 +265,7 @@ int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address, * * @return ERROR_OK for success. Otherwise a fault code. */ -int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address, +int mem_ap_write_u32(struct adiv5_ap *ap, uint32_t address, uint32_t value) { int retval; @@ -246,12 +273,13 @@ int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address, /* Use banked addressing (REG_BDx) to avoid some link traffic * (updating TAR) when writing several consecutive addresses. */ - retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF, + retval = mem_ap_setup_transfer(ap, + CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK), address & 0xFFFFFFF0); if (retval != ERROR_OK) return retval; - return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC), + return dap_queue_ap_write(ap, MEM_AP_REG_BD0 | (address & 0xC), value); } @@ -259,28 +287,28 @@ int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address, * Synchronous write of a word to memory or a system register. * As a side effect, this flushes any queued transactions. * - * @param dap The DAP connected to the MEM-AP. + * @param ap The MEM-AP to access. * @param address Address to be written; it must be writable by * the currently selected MEM-AP. * @param value Word that will be written. * * @return ERROR_OK for success; the data was written. Otherwise a fault code. */ -int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address, +int mem_ap_write_atomic_u32(struct adiv5_ap *ap, uint32_t address, uint32_t value) { - int retval = mem_ap_write_u32(dap, address, value); + int retval = mem_ap_write_u32(ap, address, value); if (retval != ERROR_OK) return retval; - return dap_run(dap); + return dap_run(ap->dap); } /** * Synchronous write of a block of memory, using a specific access size. * - * @param dap The DAP connected to the MEM-AP. + * @param ap The MEM-AP to access. * @param buffer The data buffer to write. No particular alignment is assumed. * @param size Which access size to use, in bytes. 1, 2 or 4. * @param count The number of writes to do (in size units, not bytes). @@ -289,14 +317,15 @@ int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address, * should normally be true, except when writing to e.g. a FIFO. * @return ERROR_OK on success, otherwise an error code. */ -int mem_ap_write(struct adiv5_dap *dap, const uint8_t *buffer, uint32_t size, uint32_t count, +static int mem_ap_write(struct adiv5_ap *ap, const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address, bool addrinc) { + struct adiv5_dap *dap = ap->dap; size_t nbytes = size * count; const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF; uint32_t csw_size; uint32_t addr_xor; - int retval; + int retval = ERROR_OK; /* TI BE-32 Quirks mode: * Writes on big-endian TMS570 behave very strangely. Observed behavior: @@ -324,71 +353,71 @@ int mem_ap_write(struct adiv5_dap *dap, const uint8_t *buffer, uint32_t size, ui return ERROR_TARGET_UNALIGNED_ACCESS; } - if (dap->unaligned_access_bad && (address % size != 0)) + if (ap->unaligned_access_bad && (address % size != 0)) return ERROR_TARGET_UNALIGNED_ACCESS; - retval = dap_setup_accessport_tar(dap, address ^ addr_xor); - if (retval != ERROR_OK) - return retval; - while (nbytes > 0) { uint32_t this_size = size; /* Select packed transfer if possible */ - if (addrinc && dap->packed_transfers && nbytes >= 4 - && max_tar_block_size(dap->tar_autoincr_block, address) >= 4) { + if (addrinc && ap->packed_transfers && nbytes >= 4 + && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) { this_size = 4; - retval = dap_setup_accessport_csw(dap, csw_size | CSW_ADDRINC_PACKED); + retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED); } else { - retval = dap_setup_accessport_csw(dap, csw_size | csw_addrincr); + retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr); } if (retval != ERROR_OK) break; + retval = mem_ap_setup_tar(ap, address ^ addr_xor); + if (retval != ERROR_OK) + return retval; + /* How many source bytes each transfer will consume, and their location in the DRW, * depends on the type of transfer and alignment. See ARM document IHI0031C. */ uint32_t outvalue = 0; + uint32_t drw_byte_idx = address; if (dap->ti_be_32_quirks) { switch (this_size) { case 4: - outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (address++ & 3) ^ addr_xor); - outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (address++ & 3) ^ addr_xor); - outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (address++ & 3) ^ addr_xor); - outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (address++ & 3) ^ addr_xor); + outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor); + outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor); + outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor); + outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx & 3) ^ addr_xor); break; case 2: - outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (address++ & 3) ^ addr_xor); - outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (address++ & 3) ^ addr_xor); + outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx++ & 3) ^ addr_xor); + outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx & 3) ^ addr_xor); break; case 1: - outvalue |= (uint32_t)*buffer++ << 8 * (0 ^ (address++ & 3) ^ addr_xor); + outvalue |= (uint32_t)*buffer++ << 8 * (0 ^ (drw_byte_idx & 3) ^ addr_xor); break; } } else { switch (this_size) { case 4: - outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3); - outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3); + outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3); + outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3); + /* fallthrough */ case 2: - outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3); + outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3); + /* fallthrough */ case 1: - outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3); + outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx & 3); } } nbytes -= this_size; - retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue); + retval = dap_queue_ap_write(ap, MEM_AP_REG_DRW, outvalue); if (retval != ERROR_OK) break; - /* Rewrite TAR if it wrapped or we're xoring addresses */ - if (addrinc && (addr_xor || (address % dap->tar_autoincr_block < size && nbytes > 0))) { - retval = dap_setup_accessport_tar(dap, address ^ addr_xor); - if (retval != ERROR_OK) - break; - } + mem_ap_update_tar_cache(ap); + if (addrinc) + address += this_size; } /* REVISIT: Might want to have a queued version of this function that does not run. */ @@ -397,8 +426,7 @@ int mem_ap_write(struct adiv5_dap *dap, const uint8_t *buffer, uint32_t size, ui if (retval != ERROR_OK) { uint32_t tar; - if (dap_queue_ap_read(dap, AP_REG_TAR, &tar) == ERROR_OK - && dap_run(dap) == ERROR_OK) + if (mem_ap_read_tar(ap, &tar) == ERROR_OK) LOG_ERROR("Failed to write memory at 0x%08"PRIx32, tar); else LOG_ERROR("Failed to write memory and, additionally, failed to find out where"); @@ -410,7 +438,7 @@ int mem_ap_write(struct adiv5_dap *dap, const uint8_t *buffer, uint32_t size, ui /** * Synchronous read of a block of memory, using a specific access size. * - * @param dap The DAP connected to the MEM-AP. + * @param ap The MEM-AP to access. * @param buffer The data buffer to receive the data. No particular alignment is assumed. * @param size Which access size to use, in bytes. 1, 2 or 4. * @param count The number of reads to do (in size units, not bytes). @@ -419,14 +447,15 @@ int mem_ap_write(struct adiv5_dap *dap, const uint8_t *buffer, uint32_t size, ui * should normally be true, except when reading from e.g. a FIFO. * @return ERROR_OK on success, otherwise an error code. */ -int mem_ap_read(struct adiv5_dap *dap, uint8_t *buffer, uint32_t size, uint32_t count, +static int mem_ap_read(struct adiv5_ap *ap, uint8_t *buffer, uint32_t size, uint32_t count, uint32_t adr, bool addrinc) { + struct adiv5_dap *dap = ap->dap; size_t nbytes = size * count; const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF; uint32_t csw_size; uint32_t address = adr; - int retval; + int retval = ERROR_OK; /* TI BE-32 Quirks mode: * Reads on big-endian TMS570 behave strangely differently than writes. @@ -444,25 +473,20 @@ int mem_ap_read(struct adiv5_dap *dap, uint8_t *buffer, uint32_t size, uint32_t else return ERROR_TARGET_UNALIGNED_ACCESS; - if (dap->unaligned_access_bad && (adr % size != 0)) + if (ap->unaligned_access_bad && (adr % size != 0)) return ERROR_TARGET_UNALIGNED_ACCESS; /* Allocate buffer to hold the sequence of DRW reads that will be made. This is a significant * over-allocation if packed transfers are going to be used, but determining the real need at * this point would be messy. */ - uint32_t *read_buf = malloc(count * sizeof(uint32_t)); + uint32_t *read_buf = calloc(count, sizeof(uint32_t)); + /* Multiplication count * sizeof(uint32_t) may overflow, calloc() is safe */ uint32_t *read_ptr = read_buf; if (read_buf == NULL) { LOG_ERROR("Failed to allocate read buffer"); return ERROR_FAIL; } - retval = dap_setup_accessport_tar(dap, address); - if (retval != ERROR_OK) { - free(read_buf); - return retval; - } - /* Queue up all reads. Each read will store the entire DRW word in the read buffer. How many * useful bytes it contains, and their location in the word, depends on the type of transfer * and alignment. */ @@ -470,29 +494,29 @@ int mem_ap_read(struct adiv5_dap *dap, uint8_t *buffer, uint32_t size, uint32_t uint32_t this_size = size; /* Select packed transfer if possible */ - if (addrinc && dap->packed_transfers && nbytes >= 4 - && max_tar_block_size(dap->tar_autoincr_block, address) >= 4) { + if (addrinc && ap->packed_transfers && nbytes >= 4 + && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) { this_size = 4; - retval = dap_setup_accessport_csw(dap, csw_size | CSW_ADDRINC_PACKED); + retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED); } else { - retval = dap_setup_accessport_csw(dap, csw_size | csw_addrincr); + retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr); } if (retval != ERROR_OK) break; - retval = dap_queue_ap_read(dap, AP_REG_DRW, read_ptr++); + retval = mem_ap_setup_tar(ap, address); + if (retval != ERROR_OK) + break; + + retval = dap_queue_ap_read(ap, MEM_AP_REG_DRW, read_ptr++); if (retval != ERROR_OK) break; nbytes -= this_size; - address += this_size; + if (addrinc) + address += this_size; - /* Rewrite TAR if it wrapped */ - if (addrinc && address % dap->tar_autoincr_block < size && nbytes > 0) { - retval = dap_setup_accessport_tar(dap, address); - if (retval != ERROR_OK) - break; - } + mem_ap_update_tar_cache(ap); } if (retval == ERROR_OK) @@ -507,8 +531,8 @@ int mem_ap_read(struct adiv5_dap *dap, uint8_t *buffer, uint32_t size, uint32_t * at least give the caller what we have. */ if (retval != ERROR_OK) { uint32_t tar; - if (dap_queue_ap_read(dap, AP_REG_TAR, &tar) == ERROR_OK - && dap_run(dap) == ERROR_OK) { + if (mem_ap_read_tar(ap, &tar) == ERROR_OK) { + /* TAR is incremented after failed transfer on some devices (eg Cortex-M4) */ LOG_ERROR("Failed to read memory at 0x%08"PRIx32, tar); if (nbytes > tar - address) nbytes = tar - address; @@ -522,8 +546,8 @@ int mem_ap_read(struct adiv5_dap *dap, uint8_t *buffer, uint32_t size, uint32_t while (nbytes > 0) { uint32_t this_size = size; - if (addrinc && dap->packed_transfers && nbytes >= 4 - && max_tar_block_size(dap->tar_autoincr_block, address) >= 4) { + if (addrinc && ap->packed_transfers && nbytes >= 4 + && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) { this_size = 4; } @@ -532,8 +556,10 @@ int mem_ap_read(struct adiv5_dap *dap, uint8_t *buffer, uint32_t size, uint32_t case 4: *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3)); *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3)); + /* fallthrough */ case 2: *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3)); + /* fallthrough */ case 1: *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3)); } @@ -542,8 +568,10 @@ int mem_ap_read(struct adiv5_dap *dap, uint8_t *buffer, uint32_t size, uint32_t case 4: *buffer++ = *read_ptr >> 8 * (address++ & 3); *buffer++ = *read_ptr >> 8 * (address++ & 3); + /* fallthrough */ case 2: *buffer++ = *read_ptr >> 8 * (address++ & 3); + /* fallthrough */ case 1: *buffer++ = *read_ptr >> 8 * (address++ & 3); } @@ -557,296 +585,106 @@ int mem_ap_read(struct adiv5_dap *dap, uint8_t *buffer, uint32_t size, uint32_t return retval; } -/*--------------------------------------------------------------------*/ -/* Wrapping function with selection of AP */ -/*--------------------------------------------------------------------*/ -int mem_ap_sel_read_u32(struct adiv5_dap *swjdp, uint8_t ap, - uint32_t address, uint32_t *value) -{ - dap_ap_select(swjdp, ap); - return mem_ap_read_u32(swjdp, address, value); -} - -int mem_ap_sel_write_u32(struct adiv5_dap *swjdp, uint8_t ap, - uint32_t address, uint32_t value) -{ - dap_ap_select(swjdp, ap); - return mem_ap_write_u32(swjdp, address, value); -} - -int mem_ap_sel_read_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap, - uint32_t address, uint32_t *value) -{ - dap_ap_select(swjdp, ap); - return mem_ap_read_atomic_u32(swjdp, address, value); -} - -int mem_ap_sel_write_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap, - uint32_t address, uint32_t value) -{ - dap_ap_select(swjdp, ap); - return mem_ap_write_atomic_u32(swjdp, address, value); -} - -int mem_ap_sel_read_buf(struct adiv5_dap *swjdp, uint8_t ap, +int mem_ap_read_buf(struct adiv5_ap *ap, uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address) { - dap_ap_select(swjdp, ap); - return mem_ap_read(swjdp, buffer, size, count, address, true); + return mem_ap_read(ap, buffer, size, count, address, true); } -int mem_ap_sel_write_buf(struct adiv5_dap *swjdp, uint8_t ap, +int mem_ap_write_buf(struct adiv5_ap *ap, const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address) { - dap_ap_select(swjdp, ap); - return mem_ap_write(swjdp, buffer, size, count, address, true); + return mem_ap_write(ap, buffer, size, count, address, true); } -int mem_ap_sel_read_buf_noincr(struct adiv5_dap *swjdp, uint8_t ap, +int mem_ap_read_buf_noincr(struct adiv5_ap *ap, uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address) { - dap_ap_select(swjdp, ap); - return mem_ap_read(swjdp, buffer, size, count, address, false); + return mem_ap_read(ap, buffer, size, count, address, false); } -int mem_ap_sel_write_buf_noincr(struct adiv5_dap *swjdp, uint8_t ap, +int mem_ap_write_buf_noincr(struct adiv5_ap *ap, const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address) { - dap_ap_select(swjdp, ap); - return mem_ap_write(swjdp, buffer, size, count, address, false); + return mem_ap_write(ap, buffer, size, count, address, false); } -#define MDM_REG_STAT 0x00 -#define MDM_REG_CTRL 0x04 -#define MDM_REG_ID 0xfc - -#define MDM_STAT_FMEACK (1<<0) -#define MDM_STAT_FREADY (1<<1) -#define MDM_STAT_SYSSEC (1<<2) -#define MDM_STAT_SYSRES (1<<3) -#define MDM_STAT_FMEEN (1<<5) -#define MDM_STAT_BACKDOOREN (1<<6) -#define MDM_STAT_LPEN (1<<7) -#define MDM_STAT_VLPEN (1<<8) -#define MDM_STAT_LLSMODEXIT (1<<9) -#define MDM_STAT_VLLSXMODEXIT (1<<10) -#define MDM_STAT_CORE_HALTED (1<<16) -#define MDM_STAT_CORE_SLEEPDEEP (1<<17) -#define MDM_STAT_CORESLEEPING (1<<18) - -#define MEM_CTRL_FMEIP (1<<0) -#define MEM_CTRL_DBG_DIS (1<<1) -#define MEM_CTRL_DBG_REQ (1<<2) -#define MEM_CTRL_SYS_RES_REQ (1<<3) -#define MEM_CTRL_CORE_HOLD_RES (1<<4) -#define MEM_CTRL_VLLSX_DBG_REQ (1<<5) -#define MEM_CTRL_VLLSX_DBG_ACK (1<<6) -#define MEM_CTRL_VLLSX_STAT_ACK (1<<7) - -#define MDM_ACCESS_TIMEOUT 3000 /* ms */ - -/** - * - */ -int dap_syssec_kinetis_mdmap(struct adiv5_dap *dap) -{ - uint32_t val; - int retval; - int timeout = 0; - enum reset_types jtag_reset_config = jtag_get_reset_config(); - - dap_ap_select(dap, 1); - - /* first check mdm-ap id register */ - retval = dap_queue_ap_read(dap, MDM_REG_ID, &val); - if (retval != ERROR_OK) - return retval; - dap_run(dap); - - if (val != 0x001C0000) { - LOG_DEBUG("id doesn't match %08" PRIX32 " != 0x001C0000", val); - dap_ap_select(dap, 0); - return ERROR_FAIL; - } - - /* read and parse status register - * it's important that the device is out of - * reset here - */ - while (1) { - if (timeout++ > MDM_ACCESS_TIMEOUT) { - LOG_DEBUG("MDMAP : flash ready timeout"); - return ERROR_FAIL; - } - retval = dap_queue_ap_read(dap, MDM_REG_STAT, &val); - if (retval != ERROR_OK) - return retval; - dap_run(dap); +/*--------------------------------------------------------------------------*/ - LOG_DEBUG("MDM_REG_STAT %08" PRIX32, val); - if (val & MDM_STAT_FREADY) - break; - alive_sleep(1); - } - if ((val & MDM_STAT_SYSSEC)) { - LOG_DEBUG("MDMAP: system is secured, masserase needed"); +#define DAP_POWER_DOMAIN_TIMEOUT (10) - if (!(val & MDM_STAT_FMEEN)) - LOG_DEBUG("MDMAP: masserase is disabled"); - else { - /* we need to assert reset */ - if (jtag_reset_config & RESET_HAS_SRST) { - /* default to asserting srst */ - adapter_assert_reset(); - } else { - LOG_DEBUG("SRST not configured"); - dap_ap_select(dap, 0); - return ERROR_FAIL; - } - timeout = 0; - while (1) { - if (timeout++ > MDM_ACCESS_TIMEOUT) { - LOG_DEBUG("MDMAP : flash ready timeout"); - return ERROR_FAIL; - } - retval = dap_queue_ap_write(dap, MDM_REG_CTRL, MEM_CTRL_FMEIP); - if (retval != ERROR_OK) - return retval; - dap_run(dap); - /* read status register and wait for ready */ - retval = dap_queue_ap_read(dap, MDM_REG_STAT, &val); - if (retval != ERROR_OK) - return retval; - dap_run(dap); - LOG_DEBUG("MDM_REG_STAT %08" PRIX32, val); +/* FIXME don't import ... just initialize as + * part of DAP transport setup +*/ +extern const struct dap_ops jtag_dp_ops; - if ((val & 1)) - break; - alive_sleep(1); - } - timeout = 0; - while (1) { - if (timeout++ > MDM_ACCESS_TIMEOUT) { - LOG_DEBUG("MDMAP : flash ready timeout"); - return ERROR_FAIL; - } - retval = dap_queue_ap_write(dap, MDM_REG_CTRL, 0); - if (retval != ERROR_OK) - return retval; - dap_run(dap); - /* read status register */ - retval = dap_queue_ap_read(dap, MDM_REG_STAT, &val); - if (retval != ERROR_OK) - return retval; - dap_run(dap); - LOG_DEBUG("MDM_REG_STAT %08" PRIX32, val); - /* read control register and wait for ready */ - retval = dap_queue_ap_read(dap, MDM_REG_CTRL, &val); - if (retval != ERROR_OK) - return retval; - dap_run(dap); - LOG_DEBUG("MDM_REG_CTRL %08" PRIX32, val); +/*--------------------------------------------------------------------------*/ - if (val == 0x00) - break; - alive_sleep(1); - } - } +/** + * Create a new DAP + */ +struct adiv5_dap *dap_init(void) +{ + struct adiv5_dap *dap = calloc(1, sizeof(struct adiv5_dap)); + int i; + /* Set up with safe defaults */ + for (i = 0; i <= 255; i++) { + dap->ap[i].dap = dap; + dap->ap[i].ap_num = i; + /* memaccess_tck max is 255 */ + dap->ap[i].memaccess_tck = 255; + /* Number of bits for tar autoincrement, impl. dep. at least 10 */ + dap->ap[i].tar_autoincr_block = (1<<10); } - - dap_ap_select(dap, 0); - - return ERROR_OK; + INIT_LIST_HEAD(&dap->cmd_journal); + return dap; } -/** */ -struct dap_syssec_filter { - /** */ - uint32_t idcode; - /** */ - int (*dap_init)(struct adiv5_dap *dap); -}; - -/** */ -static struct dap_syssec_filter dap_syssec_filter_data[] = { - { 0x4BA00477, dap_syssec_kinetis_mdmap } -}; - /** - * + * Invalidate cached DP select and cached TAR and CSW of all APs */ -int dap_syssec(struct adiv5_dap *dap) +void dap_invalidate_cache(struct adiv5_dap *dap) { - unsigned int i; - struct jtag_tap *tap; - - for (i = 0; i < sizeof(dap_syssec_filter_data); i++) { - tap = dap->jtag_info->tap; - - while (tap != NULL) { - if (tap->hasidcode && (dap_syssec_filter_data[i].idcode == tap->idcode)) { - LOG_DEBUG("DAP: mdmap_init for idcode: %08" PRIx32, tap->idcode); - dap_syssec_filter_data[i].dap_init(dap); - } - tap = tap->next_tap; - } + dap->select = DP_SELECT_INVALID; + dap->last_read = NULL; + + int i; + for (i = 0; i <= 255; i++) { + /* force csw and tar write on the next mem-ap access */ + dap->ap[i].tar_valid = false; + dap->ap[i].csw_value = 0; } - - return ERROR_OK; } -/*--------------------------------------------------------------------------*/ - - -/* FIXME don't import ... just initialize as - * part of DAP transport setup -*/ -extern const struct dap_ops jtag_dp_ops; - -/*--------------------------------------------------------------------------*/ - /** * Initialize a DAP. This sets up the power domains, prepares the DP - * for further use, and arranges to use AP #0 for all AP operations - * until dap_ap-select() changes that policy. + * for further use and activates overrun checking. * * @param dap The DAP being initialized. - * - * @todo Rename this. We also need an initialization scheme which account - * for SWD transports not just JTAG; that will need to address differences - * in layering. (JTAG is useful without any debug target; but not SWD.) - * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP. */ -int ahbap_debugport_init(struct adiv5_dap *dap) +int dap_dp_init(struct adiv5_dap *dap) { - uint32_t ctrlstat; - int cnt = 0; int retval; LOG_DEBUG(" "); - /* JTAG-DP or SWJ-DP, in JTAG mode * ... for SWD mode this is patched as part * of link switchover + * FIXME: This should already be setup by the respective transport specific DAP creation. */ if (!dap->ops) dap->ops = &jtag_dp_ops; - /* Default MEM-AP setup. - * - * REVISIT AP #0 may be an inappropriate default for this. - * Should we probe, or take a hint from the caller? - * Presumably we can ignore the possibility of multiple APs. - */ - dap->ap_current = !0; - dap_ap_select(dap, 0); + dap_invalidate_cache(dap); - /* DP initialization */ + for (size_t i = 0; i < 30; i++) { + /* DP initialization */ - retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL); - if (retval != ERROR_OK) - return retval; + retval = dap_dp_read_atomic(dap, DP_CTRL_STAT, NULL); + if (retval == ERROR_OK) + break; + } retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR); if (retval != ERROR_OK) @@ -861,39 +699,25 @@ int ahbap_debugport_init(struct adiv5_dap *dap) if (retval != ERROR_OK) return retval; - retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat); + /* Check that we have debug power domains activated */ + LOG_DEBUG("DAP: wait CDBGPWRUPACK"); + retval = dap_dp_poll_register(dap, DP_CTRL_STAT, + CDBGPWRUPACK, CDBGPWRUPACK, + DAP_POWER_DOMAIN_TIMEOUT); if (retval != ERROR_OK) return retval; - retval = dap_run(dap); + + LOG_DEBUG("DAP: wait CSYSPWRUPACK"); + retval = dap_dp_poll_register(dap, DP_CTRL_STAT, + CSYSPWRUPACK, CSYSPWRUPACK, + DAP_POWER_DOMAIN_TIMEOUT); if (retval != ERROR_OK) return retval; - /* Check that we have debug power domains activated */ - while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10)) { - LOG_DEBUG("DAP: wait CDBGPWRUPACK"); - retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat); - if (retval != ERROR_OK) - return retval; - retval = dap_run(dap); - if (retval != ERROR_OK) - return retval; - alive_sleep(10); - } - - while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10)) { - LOG_DEBUG("DAP: wait CSYSPWRUPACK"); - retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat); - if (retval != ERROR_OK) - return retval; - retval = dap_run(dap); - if (retval != ERROR_OK) - return retval; - alive_sleep(10); - } - retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL); if (retval != ERROR_OK) return retval; + /* With debug power on we can activate OVERRUN checking */ dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT; retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat); @@ -903,20 +727,38 @@ int ahbap_debugport_init(struct adiv5_dap *dap) if (retval != ERROR_OK) return retval; - dap_syssec(dap); + retval = dap_run(dap); + if (retval != ERROR_OK) + return retval; + return retval; +} + +/** + * Initialize a DAP. This sets up the power domains, prepares the DP + * for further use, and arranges to use AP #0 for all AP operations + * until dap_ap-select() changes that policy. + * + * @param ap The MEM-AP being initialized. + */ +int mem_ap_init(struct adiv5_ap *ap) +{ /* check that we support packed transfers */ uint32_t csw, cfg; + int retval; + struct adiv5_dap *dap = ap->dap; - retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, 0); + ap->tar_valid = false; + ap->csw_value = 0; /* force csw and tar write */ + retval = mem_ap_setup_transfer(ap, CSW_8BIT | CSW_ADDRINC_PACKED, 0); if (retval != ERROR_OK) return retval; - retval = dap_queue_ap_read(dap, AP_REG_CSW, &csw); + retval = dap_queue_ap_read(ap, MEM_AP_REG_CSW, &csw); if (retval != ERROR_OK) return retval; - retval = dap_queue_ap_read(dap, AP_REG_CFG, &cfg); + retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &cfg); if (retval != ERROR_OK) return retval; @@ -925,17 +767,17 @@ int ahbap_debugport_init(struct adiv5_dap *dap) return retval; if (csw & CSW_ADDRINC_PACKED) - dap->packed_transfers = true; + ap->packed_transfers = true; else - dap->packed_transfers = false; + ap->packed_transfers = false; /* Packed transfers on TI BE-32 processors do not work correctly in * many cases. */ if (dap->ti_be_32_quirks) - dap->packed_transfers = false; + ap->packed_transfers = false; LOG_DEBUG("MEM_AP Packed Transfers: %s", - dap->packed_transfers ? "enabled" : "disabled"); + ap->packed_transfers ? "enabled" : "disabled"); /* The ARM ADI spec leaves implementation-defined whether unaligned * memory accesses work, only work partially, or cause a sticky error. @@ -943,7 +785,7 @@ int ahbap_debugport_init(struct adiv5_dap *dap) * and unaligned writes seem to cause a sticky error. * TODO: it would be nice to have a way to detect whether unaligned * operations are supported on other processors. */ - dap->unaligned_access_bad = dap->ti_be_32_quirks; + ap->unaligned_access_bad = dap->ti_be_32_quirks; LOG_DEBUG("MEM_AP CFG: large data %d, long address %d, big-endian %d", !!(cfg & 0x04), !!(cfg & 0x02), !!(cfg & 0x01)); @@ -962,27 +804,25 @@ static const char *class_description[16] = { "Generic IP component", "PrimeCell or System component" }; -static bool is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0) +static bool is_dap_cid_ok(uint32_t cid) { - return cid3 == 0xb1 && cid2 == 0x05 - && ((cid1 & 0x0f) == 0) && cid0 == 0x0d; + return (cid & 0xffff0fff) == 0xb105000d; } /* * This function checks the ID for each access port to find the requested Access Port type */ -int dap_find_ap(struct adiv5_dap *dap, enum ap_type type_to_find, uint8_t *ap_num_out) +int dap_find_ap(struct adiv5_dap *dap, enum ap_type type_to_find, struct adiv5_ap **ap_out) { - int ap; + int ap_num; /* Maximum AP number is 255 since the SELECT register is 8 bits */ - for (ap = 0; ap <= 255; ap++) { + for (ap_num = 0; ap_num <= 255; ap_num++) { /* read the IDR register of the Access Port */ uint32_t id_val = 0; - dap_ap_select(dap, ap); - int retval = dap_queue_ap_read(dap, AP_REG_IDR, &id_val); + int retval = dap_queue_ap_read(dap_ap(dap, ap_num), AP_REG_IDR, &id_val); if (retval != ERROR_OK) return retval; @@ -992,25 +832,27 @@ int dap_find_ap(struct adiv5_dap *dap, enum ap_type type_to_find, uint8_t *ap_nu * 31-28 : Revision * 27-24 : JEDEC bank (0x4 for ARM) * 23-17 : JEDEC code (0x3B for ARM) - * 16 : Mem-AP - * 15-8 : Reserved - * 7-0 : AP Identity (1=AHB-AP 2=APB-AP 0x10=JTAG-AP) + * 16-13 : Class (0b1000=Mem-AP) + * 12-8 : Reserved + * 7-4 : AP Variant (non-zero for JTAG-AP) + * 3-0 : AP Type (0=JTAG-AP 1=AHB-AP 2=APB-AP 4=AXI-AP) */ /* Reading register for a non-existant AP should not cause an error, * but just to be sure, try to continue searching if an error does happen. */ if ((retval == ERROR_OK) && /* Register read success */ - ((id_val & 0x0FFF0000) == 0x04770000) && /* Jedec codes match */ - ((id_val & 0xFF) == type_to_find)) { /* type matches*/ + ((id_val & IDR_JEP106) == IDR_JEP106_ARM) && /* Jedec codes match */ + ((id_val & IDR_TYPE) == type_to_find)) { /* type matches*/ LOG_DEBUG("Found %s at AP index: %d (IDR=0x%08" PRIX32 ")", (type_to_find == AP_TYPE_AHB_AP) ? "AHB-AP" : (type_to_find == AP_TYPE_APB_AP) ? "APB-AP" : + (type_to_find == AP_TYPE_AXI_AP) ? "AXI-AP" : (type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown", - ap, id_val); + ap_num, id_val); - *ap_num_out = ap; + *ap_out = &dap->ap[ap_num]; return ERROR_OK; } } @@ -1018,69 +860,40 @@ int dap_find_ap(struct adiv5_dap *dap, enum ap_type type_to_find, uint8_t *ap_nu LOG_DEBUG("No %s found", (type_to_find == AP_TYPE_AHB_AP) ? "AHB-AP" : (type_to_find == AP_TYPE_APB_AP) ? "APB-AP" : + (type_to_find == AP_TYPE_AXI_AP) ? "AXI-AP" : (type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown"); return ERROR_FAIL; } -int dap_get_debugbase(struct adiv5_dap *dap, int ap, - uint32_t *out_dbgbase, uint32_t *out_apid) +int dap_get_debugbase(struct adiv5_ap *ap, + uint32_t *dbgbase, uint32_t *apid) { - uint32_t ap_old; + struct adiv5_dap *dap = ap->dap; int retval; - uint32_t dbgbase, apid; - - /* AP address is in bits 31:24 of DP_SELECT */ - if (ap >= 256) - return ERROR_COMMAND_SYNTAX_ERROR; - - ap_old = dap->ap_current; - dap_ap_select(dap, ap); - retval = dap_queue_ap_read(dap, AP_REG_BASE, &dbgbase); + retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE, dbgbase); if (retval != ERROR_OK) return retval; - retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid); + retval = dap_queue_ap_read(ap, AP_REG_IDR, apid); if (retval != ERROR_OK) return retval; retval = dap_run(dap); if (retval != ERROR_OK) return retval; - /* Excavate the device ID code */ - struct jtag_tap *tap = dap->jtag_info->tap; - while (tap != NULL) { - if (tap->hasidcode) - break; - tap = tap->next_tap; - } - if (tap == NULL || !tap->hasidcode) - return ERROR_OK; - - dap_ap_select(dap, ap_old); - - /* The asignment happens only here to prevent modification of these - * values before they are certain. */ - *out_dbgbase = dbgbase; - *out_apid = apid; - return ERROR_OK; } -int dap_lookup_cs_component(struct adiv5_dap *dap, int ap, - uint32_t dbgbase, uint8_t type, uint32_t *addr) +int dap_lookup_cs_component(struct adiv5_ap *ap, + uint32_t dbgbase, uint8_t type, uint32_t *addr, int32_t *idx) { - uint32_t ap_old; uint32_t romentry, entry_offset = 0, component_base, devtype; - int retval = ERROR_FAIL; - - if (ap >= 256) - return ERROR_COMMAND_SYNTAX_ERROR; + int retval; - ap_old = dap->ap_current; - dap_ap_select(dap, ap); + *addr = 0; do { - retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | + retval = mem_ap_read_atomic_u32(ap, (dbgbase&0xFFFFF000) | entry_offset, &romentry); if (retval != ERROR_OK) return retval; @@ -1089,464 +902,573 @@ int dap_lookup_cs_component(struct adiv5_dap *dap, int ap, + (romentry & 0xFFFFF000); if (romentry & 0x1) { - retval = mem_ap_read_atomic_u32(dap, + uint32_t c_cid1; + retval = mem_ap_read_atomic_u32(ap, component_base | 0xff4, &c_cid1); + if (retval != ERROR_OK) { + LOG_ERROR("Can't read component with base address 0x%" PRIx32 + ", the corresponding core might be turned off", component_base); + return retval; + } + if (((c_cid1 >> 4) & 0x0f) == 1) { + retval = dap_lookup_cs_component(ap, component_base, + type, addr, idx); + if (retval == ERROR_OK) + break; + if (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE) + return retval; + } + + retval = mem_ap_read_atomic_u32(ap, (component_base & 0xfffff000) | 0xfcc, &devtype); if (retval != ERROR_OK) return retval; if ((devtype & 0xff) == type) { - *addr = component_base; - retval = ERROR_OK; - break; + if (!*idx) { + *addr = component_base; + break; + } else + (*idx)--; } } entry_offset += 4; } while (romentry > 0); - dap_ap_select(dap, ap_old); + if (!*addr) + return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; - return retval; + return ERROR_OK; } -static int dap_rom_display(struct command_context *cmd_ctx, - struct adiv5_dap *dap, int ap, uint32_t dbgbase, int depth) +static int dap_read_part_id(struct adiv5_ap *ap, uint32_t component_base, uint32_t *cid, uint64_t *pid) { - int retval; - uint32_t cid0, cid1, cid2, cid3, memtype, romentry; - uint16_t entry_offset; - char tabs[7] = ""; - - if (depth > 16) { - command_print(cmd_ctx, "\tTables too deep"); - return ERROR_FAIL; - } + assert((component_base & 0xFFF) == 0); + assert(ap != NULL && cid != NULL && pid != NULL); - if (depth) - snprintf(tabs, sizeof(tabs), "[L%02d] ", depth); - - /* bit 16 of apid indicates a memory access port */ - if (dbgbase & 0x02) - command_print(cmd_ctx, "\t%sValid ROM table present", tabs); - else - command_print(cmd_ctx, "\t%sROM table in legacy format", tabs); + uint32_t cid0, cid1, cid2, cid3; + uint32_t pid0, pid1, pid2, pid3, pid4; + int retval; - /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */ - retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0); + /* IDs are in last 4K section */ + retval = mem_ap_read_u32(ap, component_base + 0xFE0, &pid0); if (retval != ERROR_OK) return retval; - retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1); + retval = mem_ap_read_u32(ap, component_base + 0xFE4, &pid1); if (retval != ERROR_OK) return retval; - retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2); + retval = mem_ap_read_u32(ap, component_base + 0xFE8, &pid2); if (retval != ERROR_OK) return retval; - retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3); + retval = mem_ap_read_u32(ap, component_base + 0xFEC, &pid3); if (retval != ERROR_OK) return retval; - retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype); + retval = mem_ap_read_u32(ap, component_base + 0xFD0, &pid4); if (retval != ERROR_OK) return retval; - retval = dap_run(dap); + retval = mem_ap_read_u32(ap, component_base + 0xFF0, &cid0); + if (retval != ERROR_OK) + return retval; + retval = mem_ap_read_u32(ap, component_base + 0xFF4, &cid1); + if (retval != ERROR_OK) + return retval; + retval = mem_ap_read_u32(ap, component_base + 0xFF8, &cid2); + if (retval != ERROR_OK) + return retval; + retval = mem_ap_read_u32(ap, component_base + 0xFFC, &cid3); if (retval != ERROR_OK) return retval; - if (!is_dap_cid_ok(cid3, cid2, cid1, cid0)) - command_print(cmd_ctx, "\t%sCID3 0x%02x" - ", CID2 0x%02x" - ", CID1 0x%02x" - ", CID0 0x%02x", - tabs, - (unsigned)cid3, (unsigned)cid2, - (unsigned)cid1, (unsigned)cid0); - if (memtype & 0x01) - command_print(cmd_ctx, "\t%sMEMTYPE system memory present on bus", tabs); - else - command_print(cmd_ctx, "\t%sMEMTYPE system memory not present: dedicated debug bus", tabs); + retval = dap_run(ap->dap); + if (retval != ERROR_OK) + return retval; + + *cid = (cid3 & 0xff) << 24 + | (cid2 & 0xff) << 16 + | (cid1 & 0xff) << 8 + | (cid0 & 0xff); + *pid = (uint64_t)(pid4 & 0xff) << 32 + | (pid3 & 0xff) << 24 + | (pid2 & 0xff) << 16 + | (pid1 & 0xff) << 8 + | (pid0 & 0xff); + + return ERROR_OK; +} + +/* The designer identity code is encoded as: + * bits 11:8 : JEP106 Bank (number of continuation codes), only valid when bit 7 is 1. + * bit 7 : Set when bits 6:0 represent a JEP106 ID and cleared when bits 6:0 represent + * a legacy ASCII Identity Code. + * bits 6:0 : JEP106 Identity Code (without parity) or legacy ASCII code according to bit 7. + * JEP106 is a standard available from jedec.org + */ + +/* Part number interpretations are from Cortex + * core specs, the CoreSight components TRM + * (ARM DDI 0314H), CoreSight System Design + * Guide (ARM DGI 0012D) and ETM specs; also + * from chip observation (e.g. TI SDTI). + */ + +/* The legacy code only used the part number field to identify CoreSight peripherals. + * This meant that the same part number from two different manufacturers looked the same. + * It is desirable for all future additions to identify with both part number and JEP106. + * "ANY_ID" is a wildcard (any JEP106) only to preserve legacy behavior for legacy entries. + */ + +#define ANY_ID 0x1000 + +#define ARM_ID 0x4BB + +static const struct { + uint16_t designer_id; + uint16_t part_num; + const char *type; + const char *full; +} dap_partnums[] = { + { ARM_ID, 0x000, "Cortex-M3 SCS", "(System Control Space)", }, + { ARM_ID, 0x001, "Cortex-M3 ITM", "(Instrumentation Trace Module)", }, + { ARM_ID, 0x002, "Cortex-M3 DWT", "(Data Watchpoint and Trace)", }, + { ARM_ID, 0x003, "Cortex-M3 FPB", "(Flash Patch and Breakpoint)", }, + { ARM_ID, 0x008, "Cortex-M0 SCS", "(System Control Space)", }, + { ARM_ID, 0x00a, "Cortex-M0 DWT", "(Data Watchpoint and Trace)", }, + { ARM_ID, 0x00b, "Cortex-M0 BPU", "(Breakpoint Unit)", }, + { ARM_ID, 0x00c, "Cortex-M4 SCS", "(System Control Space)", }, + { ARM_ID, 0x00d, "CoreSight ETM11", "(Embedded Trace)", }, + { ARM_ID, 0x00e, "Cortex-M7 FPB", "(Flash Patch and Breakpoint)", }, + { ARM_ID, 0x490, "Cortex-A15 GIC", "(Generic Interrupt Controller)", }, + { ARM_ID, 0x4a1, "Cortex-A53 ROM", "(v8 Memory Map ROM Table)", }, + { ARM_ID, 0x4a2, "Cortex-A57 ROM", "(ROM Table)", }, + { ARM_ID, 0x4a3, "Cortex-A53 ROM", "(v7 Memory Map ROM Table)", }, + { ARM_ID, 0x4a4, "Cortex-A72 ROM", "(ROM Table)", }, + { ARM_ID, 0x4a9, "Cortex-A9 ROM", "(ROM Table)", }, + { ARM_ID, 0x4af, "Cortex-A15 ROM", "(ROM Table)", }, + { ARM_ID, 0x4c0, "Cortex-M0+ ROM", "(ROM Table)", }, + { ARM_ID, 0x4c3, "Cortex-M3 ROM", "(ROM Table)", }, + { ARM_ID, 0x4c4, "Cortex-M4 ROM", "(ROM Table)", }, + { ARM_ID, 0x4c7, "Cortex-M7 PPB ROM", "(Private Peripheral Bus ROM Table)", }, + { ARM_ID, 0x4c8, "Cortex-M7 ROM", "(ROM Table)", }, + { ARM_ID, 0x4b5, "Cortex-R5 ROM", "(ROM Table)", }, + { ARM_ID, 0x470, "Cortex-M1 ROM", "(ROM Table)", }, + { ARM_ID, 0x471, "Cortex-M0 ROM", "(ROM Table)", }, + { ARM_ID, 0x906, "CoreSight CTI", "(Cross Trigger)", }, + { ARM_ID, 0x907, "CoreSight ETB", "(Trace Buffer)", }, + { ARM_ID, 0x908, "CoreSight CSTF", "(Trace Funnel)", }, + { ARM_ID, 0x909, "CoreSight ATBR", "(Advanced Trace Bus Replicator)", }, + { ARM_ID, 0x910, "CoreSight ETM9", "(Embedded Trace)", }, + { ARM_ID, 0x912, "CoreSight TPIU", "(Trace Port Interface Unit)", }, + { ARM_ID, 0x913, "CoreSight ITM", "(Instrumentation Trace Macrocell)", }, + { ARM_ID, 0x914, "CoreSight SWO", "(Single Wire Output)", }, + { ARM_ID, 0x917, "CoreSight HTM", "(AHB Trace Macrocell)", }, + { ARM_ID, 0x920, "CoreSight ETM11", "(Embedded Trace)", }, + { ARM_ID, 0x921, "Cortex-A8 ETM", "(Embedded Trace)", }, + { ARM_ID, 0x922, "Cortex-A8 CTI", "(Cross Trigger)", }, + { ARM_ID, 0x923, "Cortex-M3 TPIU", "(Trace Port Interface Unit)", }, + { ARM_ID, 0x924, "Cortex-M3 ETM", "(Embedded Trace)", }, + { ARM_ID, 0x925, "Cortex-M4 ETM", "(Embedded Trace)", }, + { ARM_ID, 0x930, "Cortex-R4 ETM", "(Embedded Trace)", }, + { ARM_ID, 0x931, "Cortex-R5 ETM", "(Embedded Trace)", }, + { ARM_ID, 0x932, "CoreSight MTB-M0+", "(Micro Trace Buffer)", }, + { ARM_ID, 0x941, "CoreSight TPIU-Lite", "(Trace Port Interface Unit)", }, + { ARM_ID, 0x950, "Cortex-A9 PTM", "(Program Trace Macrocell)", }, + { ARM_ID, 0x955, "Cortex-A5 ETM", "(Embedded Trace)", }, + { ARM_ID, 0x95a, "Cortex-A72 ETM", "(Embedded Trace)", }, + { ARM_ID, 0x95b, "Cortex-A17 PTM", "(Program Trace Macrocell)", }, + { ARM_ID, 0x95d, "Cortex-A53 ETM", "(Embedded Trace)", }, + { ARM_ID, 0x95e, "Cortex-A57 ETM", "(Embedded Trace)", }, + { ARM_ID, 0x95f, "Cortex-A15 PTM", "(Program Trace Macrocell)", }, + { ARM_ID, 0x961, "CoreSight TMC", "(Trace Memory Controller)", }, + { ARM_ID, 0x962, "CoreSight STM", "(System Trace Macrocell)", }, + { ARM_ID, 0x975, "Cortex-M7 ETM", "(Embedded Trace)", }, + { ARM_ID, 0x9a0, "CoreSight PMU", "(Performance Monitoring Unit)", }, + { ARM_ID, 0x9a1, "Cortex-M4 TPIU", "(Trace Port Interface Unit)", }, + { ARM_ID, 0x9a4, "CoreSight GPR", "(Granular Power Requester)", }, + { ARM_ID, 0x9a5, "Cortex-A5 PMU", "(Performance Monitor Unit)", }, + { ARM_ID, 0x9a7, "Cortex-A7 PMU", "(Performance Monitor Unit)", }, + { ARM_ID, 0x9a8, "Cortex-A53 CTI", "(Cross Trigger)", }, + { ARM_ID, 0x9a9, "Cortex-M7 TPIU", "(Trace Port Interface Unit)", }, + { ARM_ID, 0x9ae, "Cortex-A17 PMU", "(Performance Monitor Unit)", }, + { ARM_ID, 0x9af, "Cortex-A15 PMU", "(Performance Monitor Unit)", }, + { ARM_ID, 0x9b7, "Cortex-R7 PMU", "(Performance Monitor Unit)", }, + { ARM_ID, 0x9d3, "Cortex-A53 PMU", "(Performance Monitor Unit)", }, + { ARM_ID, 0x9d7, "Cortex-A57 PMU", "(Performance Monitor Unit)", }, + { ARM_ID, 0x9d8, "Cortex-A72 PMU", "(Performance Monitor Unit)", }, + { ARM_ID, 0xc05, "Cortex-A5 Debug", "(Debug Unit)", }, + { ARM_ID, 0xc07, "Cortex-A7 Debug", "(Debug Unit)", }, + { ARM_ID, 0xc08, "Cortex-A8 Debug", "(Debug Unit)", }, + { ARM_ID, 0xc09, "Cortex-A9 Debug", "(Debug Unit)", }, + { ARM_ID, 0xc0e, "Cortex-A17 Debug", "(Debug Unit)", }, + { ARM_ID, 0xc0f, "Cortex-A15 Debug", "(Debug Unit)", }, + { ARM_ID, 0xc14, "Cortex-R4 Debug", "(Debug Unit)", }, + { ARM_ID, 0xc15, "Cortex-R5 Debug", "(Debug Unit)", }, + { ARM_ID, 0xc17, "Cortex-R7 Debug", "(Debug Unit)", }, + { ARM_ID, 0xd03, "Cortex-A53 Debug", "(Debug Unit)", }, + { ARM_ID, 0xd07, "Cortex-A57 Debug", "(Debug Unit)", }, + { ARM_ID, 0xd08, "Cortex-A72 Debug", "(Debug Unit)", }, + { 0x097, 0x9af, "MSP432 ROM", "(ROM Table)" }, + { 0x09f, 0xcd0, "Atmel CPU with DSU", "(CPU)" }, + { 0x0c1, 0x1db, "XMC4500 ROM", "(ROM Table)" }, + { 0x0c1, 0x1df, "XMC4700/4800 ROM", "(ROM Table)" }, + { 0x0c1, 0x1ed, "XMC1000 ROM", "(ROM Table)" }, + { 0x0E5, 0x000, "SHARC+/Blackfin+", "", }, + { 0x0F0, 0x440, "Qualcomm QDSS Component v1", "(Qualcomm Designed CoreSight Component v1)", }, + { 0x3eb, 0x181, "Tegra 186 ROM", "(ROM Table)", }, + { 0x3eb, 0x211, "Tegra 210 ROM", "(ROM Table)", }, + { 0x3eb, 0x202, "Denver ETM", "(Denver Embedded Trace)", }, + { 0x3eb, 0x302, "Denver Debug", "(Debug Unit)", }, + { 0x3eb, 0x402, "Denver PMU", "(Performance Monitor Unit)", }, + /* legacy comment: 0x113: what? */ + { ANY_ID, 0x120, "TI SDTI", "(System Debug Trace Interface)", }, /* from OMAP3 memmap */ + { ANY_ID, 0x343, "TI DAPCTL", "", }, /* from OMAP3 memmap */ +}; + +static int dap_rom_display(struct command_context *cmd_ctx, + struct adiv5_ap *ap, uint32_t dbgbase, int depth) +{ + int retval; + uint64_t pid; + uint32_t cid; + char tabs[16] = ""; + + if (depth > 16) { + command_print(cmd_ctx, "\tTables too deep"); + return ERROR_FAIL; + } + + if (depth) + snprintf(tabs, sizeof(tabs), "[L%02d] ", depth); + + uint32_t base_addr = dbgbase & 0xFFFFF000; + command_print(cmd_ctx, "\t\tComponent base address 0x%08" PRIx32, base_addr); + + retval = dap_read_part_id(ap, base_addr, &cid, &pid); + if (retval != ERROR_OK) { + command_print(cmd_ctx, "\t\tCan't read component, the corresponding core might be turned off"); + return ERROR_OK; /* Don't abort recursion */ + } + + if (!is_dap_cid_ok(cid)) { + command_print(cmd_ctx, "\t\tInvalid CID 0x%08" PRIx32, cid); + return ERROR_OK; /* Don't abort recursion */ + } + + /* component may take multiple 4K pages */ + uint32_t size = (pid >> 36) & 0xf; + if (size > 0) + command_print(cmd_ctx, "\t\tStart address 0x%08" PRIx32, (uint32_t)(base_addr - 0x1000 * size)); + + command_print(cmd_ctx, "\t\tPeripheral ID 0x%010" PRIx64, pid); + + uint8_t class = (cid >> 12) & 0xf; + uint16_t part_num = pid & 0xfff; + uint16_t designer_id = ((pid >> 32) & 0xf) << 8 | ((pid >> 12) & 0xff); + + if (designer_id & 0x80) { + /* JEP106 code */ + command_print(cmd_ctx, "\t\tDesigner is 0x%03" PRIx16 ", %s", + designer_id, jep106_manufacturer(designer_id >> 8, designer_id & 0x7f)); + } else { + /* Legacy ASCII ID, clear invalid bits */ + designer_id &= 0x7f; + command_print(cmd_ctx, "\t\tDesigner ASCII code 0x%02" PRIx16 ", %s", + designer_id, designer_id == 0x41 ? "ARM" : ""); + } + + /* default values to be overwritten upon finding a match */ + const char *type = "Unrecognized"; + const char *full = ""; + + /* search dap_partnums[] array for a match */ + for (unsigned entry = 0; entry < ARRAY_SIZE(dap_partnums); entry++) { - /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */ - for (entry_offset = 0; ; entry_offset += 4) { - retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry); + if ((dap_partnums[entry].designer_id != designer_id) && (dap_partnums[entry].designer_id != ANY_ID)) + continue; + + if (dap_partnums[entry].part_num != part_num) + continue; + + type = dap_partnums[entry].type; + full = dap_partnums[entry].full; + break; + } + + command_print(cmd_ctx, "\t\tPart is 0x%" PRIx16", %s %s", part_num, type, full); + command_print(cmd_ctx, "\t\tComponent class is 0x%" PRIx8 ", %s", class, class_description[class]); + + if (class == 1) { /* ROM Table */ + uint32_t memtype; + retval = mem_ap_read_atomic_u32(ap, base_addr | 0xFCC, &memtype); if (retval != ERROR_OK) return retval; - command_print(cmd_ctx, "\t%sROMTABLE[0x%x] = 0x%" PRIx32 "", - tabs, entry_offset, romentry); - if (romentry & 0x01) { - uint32_t c_cid0, c_cid1, c_cid2, c_cid3; - uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4; - uint32_t component_base; - unsigned part_num; - char *type, *full; - - component_base = (dbgbase & 0xFFFFF000) + (romentry & 0xFFFFF000); - - /* IDs are in last 4K section */ - retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE0, &c_pid0); - if (retval != ERROR_OK) { - command_print(cmd_ctx, "\t%s\tCan't read component with base address 0x%" PRIx32 - ", the corresponding core might be turned off", tabs, component_base); - continue; - } - c_pid0 &= 0xff; - retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE4, &c_pid1); - if (retval != ERROR_OK) - return retval; - c_pid1 &= 0xff; - retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE8, &c_pid2); - if (retval != ERROR_OK) - return retval; - c_pid2 &= 0xff; - retval = mem_ap_read_atomic_u32(dap, component_base + 0xFEC, &c_pid3); - if (retval != ERROR_OK) - return retval; - c_pid3 &= 0xff; - retval = mem_ap_read_atomic_u32(dap, component_base + 0xFD0, &c_pid4); - if (retval != ERROR_OK) - return retval; - c_pid4 &= 0xff; - retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF0, &c_cid0); - if (retval != ERROR_OK) - return retval; - c_cid0 &= 0xff; - retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF4, &c_cid1); - if (retval != ERROR_OK) - return retval; - c_cid1 &= 0xff; - retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF8, &c_cid2); - if (retval != ERROR_OK) - return retval; - c_cid2 &= 0xff; - retval = mem_ap_read_atomic_u32(dap, component_base + 0xFFC, &c_cid3); + if (memtype & 0x01) + command_print(cmd_ctx, "\t\tMEMTYPE system memory present on bus"); + else + command_print(cmd_ctx, "\t\tMEMTYPE system memory not present: dedicated debug bus"); + + /* Read ROM table entries from base address until we get 0x00000000 or reach the reserved area */ + for (uint16_t entry_offset = 0; entry_offset < 0xF00; entry_offset += 4) { + uint32_t romentry; + retval = mem_ap_read_atomic_u32(ap, base_addr | entry_offset, &romentry); if (retval != ERROR_OK) return retval; - c_cid3 &= 0xff; - - command_print(cmd_ctx, "\t\tComponent base address 0x%" PRIx32 ", " - "start address 0x%" PRIx32, component_base, - /* component may take multiple 4K pages */ - (uint32_t)(component_base - 0x1000*(c_pid4 >> 4))); - command_print(cmd_ctx, "\t\tComponent class is 0x%" PRIx8 ", %s", - (uint8_t)((c_cid1 >> 4) & 0xf), - /* See ARM IHI 0029B Table 3-3 */ - class_description[(c_cid1 >> 4) & 0xf]); - - /* CoreSight component? */ - if (((c_cid1 >> 4) & 0x0f) == 9) { - uint32_t devtype; - unsigned minor; - char *major = "Reserved", *subtype = "Reserved"; - - retval = mem_ap_read_atomic_u32(dap, - (component_base & 0xfffff000) | 0xfcc, - &devtype); + command_print(cmd_ctx, "\t%sROMTABLE[0x%x] = 0x%" PRIx32 "", + tabs, entry_offset, romentry); + if (romentry & 0x01) { + /* Recurse */ + retval = dap_rom_display(cmd_ctx, ap, base_addr + (romentry & 0xFFFFF000), depth + 1); if (retval != ERROR_OK) return retval; - minor = (devtype >> 4) & 0x0f; - switch (devtype & 0x0f) { - case 0: - major = "Miscellaneous"; - switch (minor) { - case 0: - subtype = "other"; - break; - case 4: - subtype = "Validation component"; - break; - } - break; - case 1: - major = "Trace Sink"; - switch (minor) { - case 0: - subtype = "other"; - break; - case 1: - subtype = "Port"; - break; - case 2: - subtype = "Buffer"; - break; - } - break; - case 2: - major = "Trace Link"; - switch (minor) { - case 0: - subtype = "other"; - break; - case 1: - subtype = "Funnel, router"; - break; - case 2: - subtype = "Filter"; - break; - case 3: - subtype = "FIFO, buffer"; - break; - } - break; - case 3: - major = "Trace Source"; - switch (minor) { - case 0: - subtype = "other"; - break; - case 1: - subtype = "Processor"; - break; - case 2: - subtype = "DSP"; - break; - case 3: - subtype = "Engine/Coprocessor"; - break; - case 4: - subtype = "Bus"; - break; - } - break; - case 4: - major = "Debug Control"; - switch (minor) { - case 0: - subtype = "other"; - break; - case 1: - subtype = "Trigger Matrix"; - break; - case 2: - subtype = "Debug Auth"; - break; - } - break; - case 5: - major = "Debug Logic"; - switch (minor) { - case 0: - subtype = "other"; - break; - case 1: - subtype = "Processor"; - break; - case 2: - subtype = "DSP"; - break; - case 3: - subtype = "Engine/Coprocessor"; - break; - } - break; - } - command_print(cmd_ctx, "\t\tType is 0x%02" PRIx8 ", %s, %s", - (uint8_t)(devtype & 0xff), - major, subtype); - /* REVISIT also show 0xfc8 DevId */ + } else if (romentry != 0) { + command_print(cmd_ctx, "\t\tComponent not present"); + } else { + command_print(cmd_ctx, "\t%s\tEnd of ROM table", tabs); + break; } + } + } else if (class == 9) { /* CoreSight component */ + const char *major = "Reserved", *subtype = "Reserved"; - if (!is_dap_cid_ok(cid3, cid2, cid1, cid0)) - command_print(cmd_ctx, - "\t\tCID3 0%02x" - ", CID2 0%02x" - ", CID1 0%02x" - ", CID0 0%02x", - (int)c_cid3, - (int)c_cid2, - (int)c_cid1, - (int)c_cid0); - command_print(cmd_ctx, - "\t\tPeripheral ID[4..0] = hex " - "%02x %02x %02x %02x %02x", - (int)c_pid4, (int)c_pid3, (int)c_pid2, - (int)c_pid1, (int)c_pid0); - - /* Part number interpretations are from Cortex - * core specs, the CoreSight components TRM - * (ARM DDI 0314H), CoreSight System Design - * Guide (ARM DGI 0012D) and ETM specs; also - * from chip observation (e.g. TI SDTI). - */ - part_num = (c_pid0 & 0xff); - part_num |= (c_pid1 & 0x0f) << 8; - switch (part_num) { - case 0x000: - type = "Cortex-M3 NVIC"; - full = "(Interrupt Controller)"; + uint32_t devtype; + retval = mem_ap_read_atomic_u32(ap, base_addr | 0xFCC, &devtype); + if (retval != ERROR_OK) + return retval; + unsigned minor = (devtype >> 4) & 0x0f; + switch (devtype & 0x0f) { + case 0: + major = "Miscellaneous"; + switch (minor) { + case 0: + subtype = "other"; break; - case 0x001: - type = "Cortex-M3 ITM"; - full = "(Instrumentation Trace Module)"; + case 4: + subtype = "Validation component"; break; - case 0x002: - type = "Cortex-M3 DWT"; - full = "(Data Watchpoint and Trace)"; + } + break; + case 1: + major = "Trace Sink"; + switch (minor) { + case 0: + subtype = "other"; break; - case 0x003: - type = "Cortex-M3 FBP"; - full = "(Flash Patch and Breakpoint)"; + case 1: + subtype = "Port"; break; - case 0x00c: - type = "Cortex-M4 SCS"; - full = "(System Control Space)"; + case 2: + subtype = "Buffer"; break; - case 0x00d: - type = "CoreSight ETM11"; - full = "(Embedded Trace)"; + case 3: + subtype = "Router"; break; - /* case 0x113: what? */ - case 0x120: /* from OMAP3 memmap */ - type = "TI SDTI"; - full = "(System Debug Trace Interface)"; + } + break; + case 2: + major = "Trace Link"; + switch (minor) { + case 0: + subtype = "other"; break; - case 0x343: /* from OMAP3 memmap */ - type = "TI DAPCTL"; - full = ""; + case 1: + subtype = "Funnel, router"; break; - case 0x906: - type = "Coresight CTI"; - full = "(Cross Trigger)"; + case 2: + subtype = "Filter"; break; - case 0x907: - type = "Coresight ETB"; - full = "(Trace Buffer)"; + case 3: + subtype = "FIFO, buffer"; break; - case 0x908: - type = "Coresight CSTF"; - full = "(Trace Funnel)"; + } + break; + case 3: + major = "Trace Source"; + switch (minor) { + case 0: + subtype = "other"; break; - case 0x910: - type = "CoreSight ETM9"; - full = "(Embedded Trace)"; + case 1: + subtype = "Processor"; break; - case 0x912: - type = "Coresight TPIU"; - full = "(Trace Port Interface Unit)"; + case 2: + subtype = "DSP"; break; - case 0x913: - type = "Coresight ITM"; - full = "(Instrumentation Trace Macrocell)"; + case 3: + subtype = "Engine/Coprocessor"; break; - case 0x921: - type = "Cortex-A8 ETM"; - full = "(Embedded Trace)"; + case 4: + subtype = "Bus"; break; - case 0x922: - type = "Cortex-A8 CTI"; - full = "(Cross Trigger)"; + case 6: + subtype = "Software"; break; - case 0x923: - type = "Cortex-M3 TPIU"; - full = "(Trace Port Interface Unit)"; + } + break; + case 4: + major = "Debug Control"; + switch (minor) { + case 0: + subtype = "other"; break; - case 0x924: - type = "Cortex-M3 ETM"; - full = "(Embedded Trace)"; + case 1: + subtype = "Trigger Matrix"; break; - case 0x925: - type = "Cortex-M4 ETM"; - full = "(Embedded Trace)"; + case 2: + subtype = "Debug Auth"; break; - case 0x930: - type = "Cortex-R4 ETM"; - full = "(Embedded Trace)"; + case 3: + subtype = "Power Requestor"; break; - case 0x950: - type = "CoreSight Component"; - full = "(unidentified Cortex-A9 component)"; + } + break; + case 5: + major = "Debug Logic"; + switch (minor) { + case 0: + subtype = "other"; break; - case 0x9a0: - type = "CoreSight PMU"; - full = "(Performance Monitoring Unit)"; + case 1: + subtype = "Processor"; break; - case 0x9a1: - type = "Cortex-M4 TPUI"; - full = "(Trace Port Interface Unit)"; + case 2: + subtype = "DSP"; break; - case 0xc08: - type = "Cortex-A8 Debug"; - full = "(Debug Unit)"; + case 3: + subtype = "Engine/Coprocessor"; break; - case 0xc09: - type = "Cortex-A9 Debug"; - full = "(Debug Unit)"; + case 4: + subtype = "Bus"; break; - default: - type = "-*- unrecognized -*-"; - full = ""; + case 5: + subtype = "Memory"; break; } - command_print(cmd_ctx, "\t\tPart is %s %s", - type, full); - - /* ROM Table? */ - if (((c_cid1 >> 4) & 0x0f) == 1) { - retval = dap_rom_display(cmd_ctx, dap, ap, component_base, depth + 1); - if (retval != ERROR_OK) - return retval; - } - } else { - if (romentry) - command_print(cmd_ctx, "\t\tComponent not present"); - else + break; + case 6: + major = "Perfomance Monitor"; + switch (minor) { + case 0: + subtype = "other"; + break; + case 1: + subtype = "Processor"; + break; + case 2: + subtype = "DSP"; + break; + case 3: + subtype = "Engine/Coprocessor"; break; + case 4: + subtype = "Bus"; + break; + case 5: + subtype = "Memory"; + break; + } + break; } + command_print(cmd_ctx, "\t\tType is 0x%02" PRIx8 ", %s, %s", + (uint8_t)(devtype & 0xff), + major, subtype); + /* REVISIT also show 0xfc8 DevId */ } - command_print(cmd_ctx, "\t%s\tEnd of ROM table", tabs); + return ERROR_OK; } static int dap_info_command(struct command_context *cmd_ctx, - struct adiv5_dap *dap, int ap) + struct adiv5_ap *ap) { int retval; - uint32_t dbgbase = 0, apid = 0; /* Silence gcc by initializing */ - int romtable_present = 0; + uint32_t dbgbase, apid; uint8_t mem_ap; - uint32_t ap_old; - retval = dap_get_debugbase(dap, ap, &dbgbase, &apid); + /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */ + retval = dap_get_debugbase(ap, &dbgbase, &apid); if (retval != ERROR_OK) return retval; - ap_old = dap->ap_current; - dap_ap_select(dap, ap); - - /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */ - mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0)); command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid); - if (apid) { - switch (apid&0x0F) { - case 0: - command_print(cmd_ctx, "\tType is JTAG-AP"); - break; - case 1: - command_print(cmd_ctx, "\tType is MEM-AP AHB"); - break; - case 2: - command_print(cmd_ctx, "\tType is MEM-AP APB"); - break; - default: - command_print(cmd_ctx, "\tUnknown AP type"); - break; - } + if (apid == 0) { + command_print(cmd_ctx, "No AP found at this ap 0x%x", ap->ap_num); + return ERROR_FAIL; + } - /* NOTE: a MEM-AP may have a single CoreSight component that's - * not a ROM table ... or have no such components at all. - */ - if (mem_ap) - command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32, dbgbase); - } else - command_print(cmd_ctx, "No AP found at this ap 0x%x", ap); - - romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF)); - if (romtable_present) { - dap_rom_display(cmd_ctx, dap, ap, dbgbase, 0); - } else - command_print(cmd_ctx, "\tNo ROM table present"); - dap_ap_select(dap, ap_old); + switch (apid & (IDR_JEP106 | IDR_TYPE)) { + case IDR_JEP106_ARM | AP_TYPE_JTAG_AP: + command_print(cmd_ctx, "\tType is JTAG-AP"); + break; + case IDR_JEP106_ARM | AP_TYPE_AHB_AP: + command_print(cmd_ctx, "\tType is MEM-AP AHB"); + break; + case IDR_JEP106_ARM | AP_TYPE_APB_AP: + command_print(cmd_ctx, "\tType is MEM-AP APB"); + break; + case IDR_JEP106_ARM | AP_TYPE_AXI_AP: + command_print(cmd_ctx, "\tType is MEM-AP AXI"); + break; + default: + command_print(cmd_ctx, "\tUnknown AP type"); + break; + } + + /* NOTE: a MEM-AP may have a single CoreSight component that's + * not a ROM table ... or have no such components at all. + */ + mem_ap = (apid & IDR_CLASS) == AP_CLASS_MEM_AP; + if (mem_ap) { + command_print(cmd_ctx, "MEM-AP BASE 0x%8.8" PRIx32, dbgbase); + + if (dbgbase == 0xFFFFFFFF || (dbgbase & 0x3) == 0x2) { + command_print(cmd_ctx, "\tNo ROM table present"); + } else { + if (dbgbase & 0x01) + command_print(cmd_ctx, "\tValid ROM table present"); + else + command_print(cmd_ctx, "\tROM table in legacy format"); + + dap_rom_display(cmd_ctx, ap, dbgbase & 0xFFFFF000, 0); + } + } return ERROR_OK; } +int adiv5_jim_configure(struct target *target, Jim_GetOptInfo *goi) +{ + struct adiv5_private_config *pc; + const char *arg; + jim_wide ap_num; + int e; + + /* check if argv[0] is for us */ + arg = Jim_GetString(goi->argv[0], NULL); + if (strcmp(arg, "-ap-num")) + return JIM_CONTINUE; + + e = Jim_GetOpt_String(goi, &arg, NULL); + if (e != JIM_OK) + return e; + + if (goi->argc == 0) { + Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-ap-num ?ap-number? ..."); + return JIM_ERR; + } + + e = Jim_GetOpt_Wide(goi, &ap_num); + if (e != JIM_OK) + return e; + + if (target->private_config == NULL) { + pc = calloc(1, sizeof(struct adiv5_private_config)); + target->private_config = pc; + pc->ap_num = ap_num; + } + + + return JIM_OK; +} + COMMAND_HANDLER(handle_dap_info_command) { struct target *target = get_current_target(CMD_CTX); @@ -1560,12 +1482,14 @@ COMMAND_HANDLER(handle_dap_info_command) break; case 1: COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel); + if (apsel >= 256) + return ERROR_COMMAND_SYNTAX_ERROR; break; default: return ERROR_COMMAND_SYNTAX_ERROR; } - return dap_info_command(CMD_CTX, dap, apsel); + return dap_info_command(CMD_CTX, &dap->ap[apsel]); } COMMAND_HANDLER(dap_baseaddr_command) @@ -1591,14 +1515,12 @@ COMMAND_HANDLER(dap_baseaddr_command) return ERROR_COMMAND_SYNTAX_ERROR; } - dap_ap_select(dap, apsel); - /* NOTE: assumes we're talking to a MEM-AP, which * has a base address. There are other kinds of AP, * though they're not common for now. This should * use the ID register to verify it's a MEM-AP. */ - retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr); + retval = dap_queue_ap_read(dap_ap(dap, apsel), MEM_AP_REG_BASE, &baseaddr); if (retval != ERROR_OK) return retval; retval = dap_run(dap); @@ -1620,7 +1542,7 @@ COMMAND_HANDLER(dap_memaccess_command) switch (CMD_ARGC) { case 0: - memaccess_tck = dap->memaccess_tck; + memaccess_tck = dap->ap[dap->apsel].memaccess_tck; break; case 1: COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck); @@ -1628,10 +1550,10 @@ COMMAND_HANDLER(dap_memaccess_command) default: return ERROR_COMMAND_SYNTAX_ERROR; } - dap->memaccess_tck = memaccess_tck; + dap->ap[dap->apsel].memaccess_tck = memaccess_tck; command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck", - dap->memaccess_tck); + dap->ap[dap->apsel].memaccess_tck); return ERROR_OK; } @@ -1647,7 +1569,7 @@ COMMAND_HANDLER(dap_apsel_command) switch (CMD_ARGC) { case 0: - apsel = 0; + apsel = dap->apsel; break; case 1: COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel); @@ -1660,9 +1582,8 @@ COMMAND_HANDLER(dap_apsel_command) } dap->apsel = apsel; - dap_ap_select(dap, apsel); - retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid); + retval = dap_queue_ap_read(dap_ap(dap, apsel), AP_REG_IDR, &apid); if (retval != ERROR_OK) return retval; retval = dap_run(dap); @@ -1681,7 +1602,7 @@ COMMAND_HANDLER(dap_apcsw_command) struct arm *arm = target_to_arm(target); struct adiv5_dap *dap = arm->dap; - uint32_t apcsw = dap->apcsw[dap->apsel], sprot = 0; + uint32_t apcsw = dap->ap[dap->apsel].csw_default, sprot = 0; switch (CMD_ARGC) { case 0: @@ -1701,7 +1622,7 @@ COMMAND_HANDLER(dap_apcsw_command) default: return ERROR_COMMAND_SYNTAX_ERROR; } - dap->apcsw[dap->apsel] = apcsw; + dap->ap[dap->apsel].csw_default = apcsw; return 0; } @@ -1731,9 +1652,7 @@ COMMAND_HANDLER(dap_apid_command) return ERROR_COMMAND_SYNTAX_ERROR; } - dap_ap_select(dap, apsel); - - retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid); + retval = dap_queue_ap_read(dap_ap(dap, apsel), AP_REG_IDR, &apid); if (retval != ERROR_OK) return retval; retval = dap_run(dap); @@ -1745,6 +1664,45 @@ COMMAND_HANDLER(dap_apid_command) return retval; } +COMMAND_HANDLER(dap_apreg_command) +{ + struct target *target = get_current_target(CMD_CTX); + struct arm *arm = target_to_arm(target); + struct adiv5_dap *dap = arm->dap; + + uint32_t apsel, reg, value; + int retval; + + if (CMD_ARGC < 2 || CMD_ARGC > 3) + return ERROR_COMMAND_SYNTAX_ERROR; + + COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel); + /* AP address is in bits 31:24 of DP_SELECT */ + if (apsel >= 256) + return ERROR_COMMAND_SYNTAX_ERROR; + + COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg); + if (reg >= 256 || (reg & 3)) + return ERROR_COMMAND_SYNTAX_ERROR; + + if (CMD_ARGC == 3) { + COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value); + retval = dap_queue_ap_write(dap_ap(dap, apsel), reg, value); + } else { + retval = dap_queue_ap_read(dap_ap(dap, apsel), reg, &value); + } + if (retval == ERROR_OK) + retval = dap_run(dap); + + if (retval != ERROR_OK) + return retval; + + if (CMD_ARGC == 2) + command_print(CMD_CTX, "0x%08" PRIx32, value); + + return retval; +} + COMMAND_HANDLER(dap_ti_be_32_quirks_command) { struct target *target = get_current_target(CMD_CTX); @@ -1804,6 +1762,14 @@ static const struct command_registration dap_commands[] = { "(default currently selected AP)", .usage = "[ap_num]", }, + { + .name = "apreg", + .handler = dap_apreg_command, + .mode = COMMAND_EXEC, + .help = "read/write a register from AP " + "(reg is byte address of a word register, like 0 4 8...)", + .usage = "ap_num reg [value]", + }, { .name = "baseaddr", .handler = dap_baseaddr_command,