More printf fixes stemming from format string change in r1882.
[openocd.git] / doc / openocd.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (OpenOCD)
5 @dircategory Development
6 @direntry
7 @paragraphindent 0
8 * OpenOCD: (openocd). Open On-Chip Debugger.
9 @end direntry
10 @c %**end of header
11
12 @include version.texi
13
14 @copying
15
16 @itemize @bullet
17 @item Copyright @copyright{} 2008 The OpenOCD Project
18 @item Copyright @copyright{} 2007-2008 Spencer Oliver @email{spen@@spen-soft.co.uk}
19 @item Copyright @copyright{} 2008 Oyvind Harboe @email{oyvind.harboe@@zylin.com}
20 @item Copyright @copyright{} 2008 Duane Ellis @email{openocd@@duaneellis.com}
21 @end itemize
22
23 @quotation
24 Permission is granted to copy, distribute and/or modify this document
25 under the terms of the GNU Free Documentation License, Version 1.2 or
26 any later version published by the Free Software Foundation; with no
27 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
28 Texts. A copy of the license is included in the section entitled ``GNU
29 Free Documentation License''.
30 @end quotation
31 @end copying
32
33 @titlepage
34 @title Open On-Chip Debugger (OpenOCD)
35 @subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
36 @subtitle @value{UPDATED}
37 @page
38 @vskip 0pt plus 1filll
39 @insertcopying
40 @end titlepage
41
42 @summarycontents
43 @contents
44
45 @node Top, About, , (dir)
46 @top OpenOCD
47
48 This manual documents edition @value{EDITION} of the Open On-Chip Debugger
49 (OpenOCD) version @value{VERSION}, @value{UPDATED}.
50
51 @insertcopying
52
53 @menu
54 * About:: About OpenOCD
55 * Developers:: OpenOCD Developers
56 * Building:: Building OpenOCD
57 * JTAG Hardware Dongles:: JTAG Hardware Dongles
58 * Running:: Running OpenOCD
59 * Simple Configuration Files:: Simple Configuration Files
60 * Config File Guidelines:: Config File Guidelines
61 * About JIM-Tcl:: About JIM-Tcl
62 * Daemon Configuration:: Daemon Configuration
63 * Interface - Dongle Configuration:: Interface - Dongle Configuration
64 * Reset Configuration:: Reset Configuration
65 * Tap Creation:: Tap Creation
66 * Target Configuration:: Target Configuration
67 * Flash Configuration:: Flash Configuration
68 * NAND Flash Commands:: NAND Flash Commands
69 * General Commands:: General Commands
70 * JTAG Commands:: JTAG Commands
71 * Sample Scripts:: Sample Target Scripts
72 * TFTP:: TFTP
73 * GDB and OpenOCD:: Using GDB and OpenOCD
74 * Tcl Scripting API:: Tcl Scripting API
75 * Upgrading:: Deprecated/Removed Commands
76 * Target Library:: Target Library
77 * FAQ:: Frequently Asked Questions
78 * Tcl Crash Course:: Tcl Crash Course
79 * License:: GNU Free Documentation License
80 @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
81 @comment case issue with ``Index.html'' and ``index.html''
82 @comment Occurs when creating ``--html --no-split'' output
83 @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
84 * OpenOCD Concept Index:: Concept Index
85 * OpenOCD Command Index:: Command Index
86 @end menu
87
88 @node About
89 @unnumbered About
90 @cindex about
91
92 The Open On-Chip Debugger (OpenOCD) aims to provide debugging,
93 in-system programming and boundary-scan testing for embedded target
94 devices.
95
96 @b{JTAG:} OpenOCD uses a ``hardware interface dongle'' to communicate
97 with the JTAG (IEEE 1149.1) compliant taps on your target board.
98
99 @b{Dongles:} OpenOCD currently supports many types of hardware dongles: USB
100 based, parallel port based, and other standalone boxes that run
101 OpenOCD internally. See the section titled: @xref{JTAG Hardware Dongles}.
102
103 @b{GDB Debug:} It allows ARM7 (ARM7TDMI and ARM720t), ARM9 (ARM920T,
104 ARM922T, ARM926EJ--S, ARM966E--S), XScale (PXA25x, IXP42x) and
105 Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be
106 debugged via the GDB protocol.
107
108 @b{Flash Programing:} Flash writing is supported for external CFI
109 compatible NOR flashes (Intel and AMD/Spansion command set) and several
110 internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3, and
111 STM32x). Preliminary support for various NAND flash controllers
112 (LPC3180, Orion, S3C24xx, more) controller is included.
113
114 @node Developers
115 @chapter Developers
116 @cindex developers
117
118 OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
119 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
120 Others interested in improving the state of free and open debug and testing technology
121 are welcome to participate.
122
123 Other developers have contributed support for additional targets and flashes as well
124 as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
125
126 The main OpenOCD web site is available at @uref{http://openocd.berlios.de/web/}.
127
128 @section Coding Style
129 @cindex Coding Style
130
131 The following rules try to describe formatting and naming conventions that should be
132 followed to make the whole OpenOCD code look more consistent. The ultimate goal of
133 coding style should be readability, and these rules may be ignored for a particular
134 (small) piece of code if that makes it more readable.
135
136 @subsection Formatting rules:
137 @itemize @bullet
138 @item remove any trailing white space
139 @item use TAB characters for indentation, not spaces
140 @item displayed TAB width is 4 characters
141 @item make sure NOT to use DOS '\r\n' line feeds
142 @item do not add more than 2 empty lines to source files
143 @item do not add trailing empty lines to source files
144 @item do not use C++ style comments (//)
145 @item lines may be reasonably wide - there's no anachronistic 80 characters limit
146 @end itemize
147
148 @subsection Naming rules:
149 @itemize @bullet
150 @item identifiers use lower-case letters only
151 @item identifiers consisting of multiple words use underline characters between consecutive words
152 @item macros use upper-case letters only
153 @item structure names shall be appended with '_s'
154 @item typedefs shall be appended with '_t'
155 @end itemize
156
157 @subsection Function calls:
158 @itemize @bullet
159 @item function calls have no space between the functions name and the parameter
160 list: my_func(param1, param2, ...)
161 @end itemize
162
163 @node Building
164 @chapter Building
165 @cindex building OpenOCD
166
167 @section Pre-Built Tools
168 If you are interested in getting actual work done rather than building
169 OpenOCD, then check if your interface supplier provides binaries for
170 you. Chances are that that binary is from some SVN version that is more
171 stable than SVN trunk where bleeding edge development takes place.
172
173 @section Packagers Please Read!
174
175 You are a @b{PACKAGER} of OpenOCD if you
176
177 @enumerate
178 @item @b{Sell dongles} and include pre-built binaries
179 @item @b{Supply tools} i.e.: A complete development solution
180 @item @b{Supply IDEs} like Eclipse, or RHIDE, etc.
181 @item @b{Build packages} i.e.: RPM files, or DEB files for a Linux Distro
182 @end enumerate
183
184 As a @b{PACKAGER} - you are at the top of the food chain. You solve
185 problems for downstream users. What you fix or solve - solves hundreds
186 if not thousands of user questions. If something does not work for you
187 please let us know. That said, would also like you to follow a few
188 suggestions:
189
190 @enumerate
191 @item @b{Always build with printer ports enabled.}
192 @item @b{Try to use LIBFTDI + LIBUSB where possible. You cover more bases.}
193 @end enumerate
194
195 @itemize @bullet
196 @item @b{Why YES to LIBFTDI + LIBUSB?}
197 @itemize @bullet
198 @item @b{LESS} work - libusb perhaps already there
199 @item @b{LESS} work - identical code, multiple platforms
200 @item @b{MORE} dongles are supported
201 @item @b{MORE} platforms are supported
202 @item @b{MORE} complete solution
203 @end itemize
204 @item @b{Why not LIBFTDI + LIBUSB} (i.e.: ftd2xx instead)?
205 @itemize @bullet
206 @item @b{LESS} speed - some say it is slower
207 @item @b{LESS} complex to distribute (external dependencies)
208 @end itemize
209 @end itemize
210
211 @section Building From Source
212
213 You can download the current SVN version with an SVN client of your choice from the
214 following repositories:
215
216 @uref{svn://svn.berlios.de/openocd/trunk}
217
218 or
219
220 @uref{http://svn.berlios.de/svnroot/repos/openocd/trunk}
221
222 Using the SVN command line client, you can use the following command to fetch the
223 latest version (make sure there is no (non-svn) directory called "openocd" in the
224 current directory):
225
226 @example
227 svn checkout svn://svn.berlios.de/openocd/trunk openocd
228 @end example
229
230 Building OpenOCD requires a recent version of the GNU autotools (autoconf >= 2.59 and automake >= 1.9).
231 For building on Windows,
232 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
233 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
234 paths, resulting in obscure dependency errors (This is an observation I've gathered
235 from the logs of one user - correct me if I'm wrong).
236
237 You further need the appropriate driver files, if you want to build support for
238 a FTDI FT2232 based interface:
239
240 @itemize @bullet
241 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
242 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
243 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
244 homepage (@uref{http://www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
245 @end itemize
246
247 libftdi is supported under Windows. Do not use versions earlier than 0.14.
248
249 In general, the D2XX driver provides superior performance (several times as fast),
250 but has the draw-back of being binary-only - though that isn't that bad, as it isn't
251 a kernel module, only a user space library.
252
253 To build OpenOCD (on both Linux and Cygwin), use the following commands:
254
255 @example
256 ./bootstrap
257 @end example
258
259 Bootstrap generates the configure script, and prepares building on your system.
260
261 @example
262 ./configure [options, see below]
263 @end example
264
265 Configure generates the Makefiles used to build OpenOCD.
266
267 @example
268 make
269 make install
270 @end example
271
272 Make builds OpenOCD, and places the final executable in ./src/, the last step, ``make install'' is optional.
273
274 The configure script takes several options, specifying which JTAG interfaces
275 should be included (among other things):
276
277 @itemize @bullet
278 @item
279 @option{--enable-parport} - Enable building the PC parallel port driver.
280 @item
281 @option{--enable-parport_ppdev} - Enable use of ppdev (/dev/parportN) for parport.
282 @item
283 @option{--enable-parport_giveio} - Enable use of giveio for parport instead of ioperm.
284 @item
285 @option{--enable-amtjtagaccel} - Enable building the Amontec JTAG-Accelerator driver.
286 @item
287 @option{--enable-ecosboard} - Enable building support for eCosBoard based JTAG debugger.
288 @item
289 @option{--enable-ioutil} - Enable ioutil functions - useful for standalone OpenOCD implementations.
290 @item
291 @option{--enable-httpd} - Enable builtin httpd server - useful for standalone OpenOCD implementations.
292 @item
293 @option{--enable-ep93xx} - Enable building support for EP93xx based SBCs.
294 @item
295 @option{--enable-at91rm9200} - Enable building support for AT91RM9200 based SBCs.
296 @item
297 @option{--enable-gw16012} - Enable building support for the Gateworks GW16012 JTAG programmer.
298 @item
299 @option{--enable-ft2232_ftd2xx} - Numerous USB type ARM JTAG dongles use the FT2232C chip from this FTDICHIP.COM chip (closed source).
300 @item
301 @option{--enable-ft2232_libftdi} - An open source (free) alternative to FTDICHIP.COM ftd2xx solution (Linux, MacOS, Cygwin).
302 @item
303 @option{--with-ftd2xx-win32-zipdir=PATH} - If using FTDICHIP.COM ft2232c, point at the directory where the Win32 FTDICHIP.COM 'CDM' driver zip file was unpacked.
304 @item
305 @option{--with-ftd2xx-linux-tardir=PATH} - Linux only. Equivalent of @option{--with-ftd2xx-win32-zipdir}, where you unpacked the TAR.GZ file.
306 @item
307 @option{--with-ftd2xx-lib=shared|static} - Linux only. Default: static. Specifies how the FTDICHIP.COM libftd2xx driver should be linked. Note: 'static' only works in conjunction with @option{--with-ftd2xx-linux-tardir}. The 'shared' value is supported (12/26/2008), however you must manually install the required header files and shared libraries in an appropriate place. This uses ``libusb'' internally.
308 @item
309 @option{--enable-presto_libftdi} - Enable building support for ASIX Presto programmer using the libftdi driver.
310 @item
311 @option{--enable-presto_ftd2xx} - Enable building support for ASIX Presto programmer using the FTD2XX driver.
312 @item
313 @option{--enable-usbprog} - Enable building support for the USBprog JTAG programmer.
314 @item
315 @option{--enable-oocd_trace} - Enable building support for the OpenOCD+trace ETM capture device.
316 @item
317 @option{--enable-jlink} - Enable building support for the Segger J-Link JTAG programmer.
318 @item
319 @option{--enable-vsllink} - Enable building support for the Versaloon-Link JTAG programmer.
320 @item
321 @option{--enable-rlink} - Enable building support for the Raisonance RLink JTAG programmer.
322 @item
323 @option{--enable-arm-jtag-ew} - Enable building support for the Olimex ARM-JTAG-EW programmer.
324 @item
325 @option{--enable-dummy} - Enable building the dummy port driver.
326 @end itemize
327
328 @section Parallel Port Dongles
329
330 If you want to access the parallel port using the PPDEV interface you have to specify
331 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
332 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
333 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
334
335 The same is true for the @option{--enable-parport_giveio} option, you have to
336 use both the @option{--enable-parport} AND the @option{--enable-parport_giveio} option if you want to use giveio instead of ioperm parallel port access method.
337
338 @section FT2232C Based USB Dongles
339
340 There are 2 methods of using the FTD2232, either (1) using the
341 FTDICHIP.COM closed source driver, or (2) the open (and free) driver
342 libftdi. Some claim the (closed) FTDICHIP.COM solution is faster.
343
344 The FTDICHIP drivers come as either a (win32) ZIP file, or a (Linux)
345 TAR.GZ file. You must unpack them ``some where'' convient. As of this
346 writing (12/26/2008) FTDICHIP does not supply means to install these
347 files ``in an appropriate place'' As a result, there are two
348 ``./configure'' options that help.
349
350 Below is an example build process:
351
352 1) Check out the latest version of ``openocd'' from SVN.
353
354 2) Download & unpack either the Windows or Linux FTD2xx drivers
355 (@uref{http://www.ftdichip.com/Drivers/D2XX.htm}).
356
357 @example
358 /home/duane/ftd2xx.win32 => the Cygwin/Win32 ZIP file contents.
359 /home/duane/libftd2xx0.4.16 => the Linux TAR.GZ file contents.
360 @end example
361
362 3) Configure with these options:
363
364 @example
365 Cygwin FTDICHIP solution:
366 ./configure --prefix=/home/duane/mytools \
367 --enable-ft2232_ftd2xx \
368 --with-ftd2xx-win32-zipdir=/home/duane/ftd2xx.win32
369
370 Linux FTDICHIP solution:
371 ./configure --prefix=/home/duane/mytools \
372 --enable-ft2232_ftd2xx \
373 --with-ft2xx-linux-tardir=/home/duane/libftd2xx0.4.16
374
375 Cygwin/Linux LIBFTDI solution:
376 Assumes:
377 1a) For Windows: The Windows port of LIBUSB is in place.
378 1b) For Linux: libusb has been built/installed and is in place.
379
380 2) And libftdi has been built and installed
381 Note: libftdi - relies upon libusb.
382
383 ./configure --prefix=/home/duane/mytools \
384 --enable-ft2232_libftdi
385
386 @end example
387
388 4) Then just type ``make'', and perhaps ``make install''.
389
390
391 @section Miscellaneous Configure Options
392
393 @itemize @bullet
394 @item
395 @option{--disable-option-checking} - Ignore unrecognized @option{--enable} and @option{--with} options.
396 @item
397 @option{--enable-gccwarnings} - Enable extra gcc warnings during build.
398 Default is enabled.
399 @item
400 @option{--enable-release} - Enable building of an OpenOCD release, generally
401 this is for developers. It simply omits the svn version string when the
402 openocd @option{-v} is executed.
403 @end itemize
404
405 @node JTAG Hardware Dongles
406 @chapter JTAG Hardware Dongles
407 @cindex dongles
408 @cindex FTDI
409 @cindex wiggler
410 @cindex zy1000
411 @cindex printer port
412 @cindex USB Adapter
413 @cindex rtck
414
415 Defined: @b{dongle}: A small device that plugins into a computer and serves as
416 an adapter .... [snip]
417
418 In the OpenOCD case, this generally refers to @b{a small adapater} one
419 attaches to your computer via USB or the Parallel Printer Port. The
420 execption being the Zylin ZY1000 which is a small box you attach via
421 an ethernet cable. The Zylin ZY1000 has the advantage that it does not
422 require any drivers to be installed on the developer PC. It also has
423 a built in web interface. It supports RTCK/RCLK or adaptive clocking
424 and has a built in relay to power cycle targets remotely.
425
426
427 @section Choosing a Dongle
428
429 There are three things you should keep in mind when choosing a dongle.
430
431 @enumerate
432 @item @b{Voltage} What voltage is your target? 1.8, 2.8, 3.3, or 5V? Does your dongle support it?
433 @item @b{Connection} Printer Ports - Does your computer have one?
434 @item @b{Connection} Is that long printer bit-bang cable practical?
435 @item @b{RTCK} Do you require RTCK? Also known as ``adaptive clocking''
436 @end enumerate
437
438 @section Stand alone Systems
439
440 @b{ZY1000} See: @url{http://www.zylin.com/zy1000.html} Technically, not a
441 dongle, but a standalone box. The ZY1000 has the advantage that it does
442 not require any drivers installed on the developer PC. It also has
443 a built in web interface. It supports RTCK/RCLK or adaptive clocking
444 and has a built in relay to power cycle targets remotely.
445
446 @section USB FT2232 Based
447
448 There are many USB JTAG dongles on the market, many of them are based
449 on a chip from ``Future Technology Devices International'' (FTDI)
450 known as the FTDI FT2232.
451
452 See: @url{http://www.ftdichip.com} or @url{http://www.ftdichip.com/Products/FT2232H.htm}
453
454 As of 28/Nov/2008, the following are supported:
455
456 @itemize @bullet
457 @item @b{usbjtag}
458 @* Link @url{http://www.hs-augsburg.de/~hhoegl/proj/usbjtag/usbjtag.html}
459 @item @b{jtagkey}
460 @* See: @url{http://www.amontec.com/jtagkey.shtml}
461 @item @b{oocdlink}
462 @* See: @url{http://www.oocdlink.com} By Joern Kaipf
463 @item @b{signalyzer}
464 @* See: @url{http://www.signalyzer.com}
465 @item @b{evb_lm3s811}
466 @* See: @url{http://www.luminarymicro.com} - The Luminary Micro Stellaris LM3S811 eval board has an FTD2232C chip built in.
467 @item @b{olimex-jtag}
468 @* See: @url{http://www.olimex.com}
469 @item @b{flyswatter}
470 @* See: @url{http://www.tincantools.com}
471 @item @b{turtelizer2}
472 @* See: @url{http://www.ethernut.de}, or @url{http://www.ethernut.de/en/hardware/turtelizer/index.html}
473 @item @b{comstick}
474 @* Link: @url{http://www.hitex.com/index.php?id=383}
475 @item @b{stm32stick}
476 @* Link @url{http://www.hitex.com/stm32-stick}
477 @item @b{axm0432_jtag}
478 @* Axiom AXM-0432 Link @url{http://www.axman.com}
479 @end itemize
480
481 @section USB JLINK based
482 There are several OEM versions of the Segger @b{JLINK} adapter. It is
483 an example of a micro controller based JTAG adapter, it uses an
484 AT91SAM764 internally.
485
486 @itemize @bullet
487 @item @b{ATMEL SAMICE} Only works with ATMEL chips!
488 @* Link: @url{http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3892}
489 @item @b{SEGGER JLINK}
490 @* Link: @url{http://www.segger.com/jlink.html}
491 @item @b{IAR J-Link}
492 @* Link: @url{http://www.iar.com/website1/1.0.1.0/369/1/index.php}
493 @end itemize
494
495 @section USB RLINK based
496 Raisonance has an adapter called @b{RLink}. It exists in a stripped-down form on the STM32 Primer, permanently attached to the JTAG lines. It also exists on the STM32 Primer2, but that is wired for SWD and not JTAG, thus not supported.
497
498 @itemize @bullet
499 @item @b{Raisonance RLink}
500 @* Link: @url{http://www.raisonance.com/products/RLink.php}
501 @item @b{STM32 Primer}
502 @* Link: @url{http://www.stm32circle.com/resources/stm32primer.php}
503 @item @b{STM32 Primer2}
504 @* Link: @url{http://www.stm32circle.com/resources/stm32primer2.php}
505 @end itemize
506
507 @section USB Other
508 @itemize @bullet
509 @item @b{USBprog}
510 @* Link: @url{http://www.embedded-projects.net/usbprog} - which uses an Atmel MEGA32 and a UBN9604
511
512 @item @b{USB - Presto}
513 @* Link: @url{http://tools.asix.net/prg_presto.htm}
514
515 @item @b{Versaloon-Link}
516 @* Link: @url{http://www.simonqian.com/en/Versaloon}
517
518 @item @b{ARM-JTAG-EW}
519 @* Link: @url{http://www.olimex.com/dev/arm-jtag-ew.html}
520 @end itemize
521
522 @section IBM PC Parallel Printer Port Based
523
524 The two well known ``JTAG Parallel Ports'' cables are the Xilnx DLC5
525 and the MacGraigor Wiggler. There are many clones and variations of
526 these on the market.
527
528 @itemize @bullet
529
530 @item @b{Wiggler} - There are many clones of this.
531 @* Link: @url{http://www.macraigor.com/wiggler.htm}
532
533 @item @b{DLC5} - From XILINX - There are many clones of this
534 @* Link: Search the web for: ``XILINX DLC5'' - it is no longer
535 produced, PDF schematics are easily found and it is easy to make.
536
537 @item @b{Amontec - JTAG Accelerator}
538 @* Link: @url{http://www.amontec.com/jtag_accelerator.shtml}
539
540 @item @b{GW16402}
541 @* Link: @url{http://www.gateworks.com/products/avila_accessories/gw16042.php}
542
543 @item @b{Wiggler2}
544 @* Link: @url{http://www.ccac.rwth-aachen.de/~michaels/index.php/hardware/armjtag}
545
546 @item @b{Wiggler_ntrst_inverted}
547 @* Yet another variation - See the source code, src/jtag/parport.c
548
549 @item @b{old_amt_wiggler}
550 @* Unknown - probably not on the market today
551
552 @item @b{arm-jtag}
553 @* Link: Most likely @url{http://www.olimex.com/dev/arm-jtag.html} [another wiggler clone]
554
555 @item @b{chameleon}
556 @* Link: @url{http://www.amontec.com/chameleon.shtml}
557
558 @item @b{Triton}
559 @* Unknown.
560
561 @item @b{Lattice}
562 @* ispDownload from Lattice Semiconductor @url{http://www.latticesemi.com/lit/docs/devtools/dlcable.pdf}
563
564 @item @b{flashlink}
565 @* From ST Microsystems, link:
566 @url{http://www.st.com/stonline/products/literature/um/7889.pdf}
567 Title: FlashLINK JTAG programing cable for PSD and uPSD
568
569 @end itemize
570
571 @section Other...
572 @itemize @bullet
573
574 @item @b{ep93xx}
575 @* An EP93xx based Linux machine using the GPIO pins directly.
576
577 @item @b{at91rm9200}
578 @* Like the EP93xx - but an ATMEL AT91RM9200 based solution using the GPIO pins on the chip.
579
580 @end itemize
581
582 @node Running
583 @chapter Running
584 @cindex running OpenOCD
585 @cindex --configfile
586 @cindex --debug_level
587 @cindex --logfile
588 @cindex --search
589
590 The @option{--help} option shows:
591 @verbatim
592 bash$ openocd --help
593
594 --help | -h display this help
595 --version | -v display OpenOCD version
596 --file | -f use configuration file <name>
597 --search | -s dir to search for config files and scripts
598 --debug | -d set debug level <0-3>
599 --log_output | -l redirect log output to file <name>
600 --command | -c run <command>
601 --pipe | -p use pipes when talking to gdb
602 @end verbatim
603
604 By default OpenOCD reads the file configuration file ``openocd.cfg''
605 in the current directory. To specify a different (or multiple)
606 configuration file, you can use the ``-f'' option. For example:
607
608 @example
609 openocd -f config1.cfg -f config2.cfg -f config3.cfg
610 @end example
611
612 Once started, OpenOCD runs as a daemon, waiting for connections from
613 clients (Telnet, GDB, Other).
614
615 If you are having problems, you can enable internal debug messages via
616 the ``-d'' option.
617
618 Also it is possible to interleave commands w/config scripts using the
619 @option{-c} command line switch.
620
621 To enable debug output (when reporting problems or working on OpenOCD
622 itself), use the @option{-d} command line switch. This sets the
623 @option{debug_level} to "3", outputting the most information,
624 including debug messages. The default setting is "2", outputting only
625 informational messages, warnings and errors. You can also change this
626 setting from within a telnet or gdb session using @option{debug_level
627 <n>} @xref{debug_level}.
628
629 You can redirect all output from the daemon to a file using the
630 @option{-l <logfile>} switch.
631
632 Search paths for config/script files can be added to OpenOCD by using
633 the @option{-s <search>} switch. The current directory and the OpenOCD
634 target library is in the search path by default.
635
636 For details on the @option{-p} option. @xref{Connecting to GDB}.
637
638 Note! OpenOCD will launch the GDB & telnet server even if it can not
639 establish a connection with the target. In general, it is possible for
640 the JTAG controller to be unresponsive until the target is set up
641 correctly via e.g. GDB monitor commands in a GDB init script.
642
643 @node Simple Configuration Files
644 @chapter Simple Configuration Files
645 @cindex configuration
646
647 @section Outline
648 There are 4 basic ways of ``configurating'' OpenOCD to run, they are:
649
650 @enumerate
651 @item A small openocd.cfg file which ``sources'' other configuration files
652 @item A monolithic openocd.cfg file
653 @item Many -f filename options on the command line
654 @item Your Mixed Solution
655 @end enumerate
656
657 @section Small configuration file method
658
659 This is the preferred method. It is simple and works well for many
660 people. The developers of OpenOCD would encourage you to use this
661 method. If you create a new configuration please email new
662 configurations to the development list.
663
664 Here is an example of an openocd.cfg file for an ATMEL at91sam7x256
665
666 @example
667 source [find interface/signalyzer.cfg]
668
669 # Change the default telnet port...
670 telnet_port 4444
671 # GDB connects here
672 gdb_port 3333
673 # GDB can also flash my flash!
674 gdb_memory_map enable
675 gdb_flash_program enable
676
677 source [find target/sam7x256.cfg]
678 @end example
679
680 There are many example configuration scripts you can work with. You
681 should look in the directory: @t{$(INSTALLDIR)/lib/openocd}. You
682 should find:
683
684 @enumerate
685 @item @b{board} - eval board level configurations
686 @item @b{interface} - specific dongle configurations
687 @item @b{target} - the target chips
688 @item @b{tcl} - helper scripts
689 @item @b{xscale} - things specific to the xscale.
690 @end enumerate
691
692 Look first in the ``boards'' area, then the ``targets'' area. Often a board
693 configuration is a good example to work from.
694
695 @section Many -f filename options
696 Some believe this is a wonderful solution, others find it painful.
697
698 You can use a series of ``-f filename'' options on the command line,
699 OpenOCD will read each filename in sequence, for example:
700
701 @example
702 openocd -f file1.cfg -f file2.cfg -f file2.cfg
703 @end example
704
705 You can also intermix various commands with the ``-c'' command line
706 option.
707
708 @section Monolithic file
709 The ``Monolithic File'' dispenses with all ``source'' statements and
710 puts everything in one self contained (monolithic) file. This is not
711 encouraged.
712
713 Please try to ``source'' various files or use the multiple -f
714 technique.
715
716 @section Advice for you
717 Often, one uses a ``mixed approach''. Where possible, please try to
718 ``source'' common things, and if needed cut/paste parts of the
719 standard distribution configuration files as needed.
720
721 @b{REMEMBER:} The ``important parts'' of your configuration file are:
722
723 @enumerate
724 @item @b{Interface} - Defines the dongle
725 @item @b{Taps} - Defines the JTAG Taps
726 @item @b{GDB Targets} - What GDB talks to
727 @item @b{Flash Programing} - Very Helpful
728 @end enumerate
729
730 Some key things you should look at and understand are:
731
732 @enumerate
733 @item The reset configuration of your debug environment as a whole
734 @item Is there a ``work area'' that OpenOCD can use?
735 @* For ARM - work areas mean up to 10x faster downloads.
736 @item For MMU/MPU based ARM chips (i.e.: ARM9 and later) will that work area still be available?
737 @item For complex targets (multiple chips) the JTAG SPEED becomes an issue.
738 @end enumerate
739
740
741
742 @node Config File Guidelines
743 @chapter Config File Guidelines
744
745 This section/chapter is aimed at developers and integrators of
746 OpenOCD. These are guidelines for creating new boards and new target
747 configurations as of 28/Nov/2008.
748
749 However, you, the user of OpenOCD, should be somewhat familiar with
750 this section as it should help explain some of the internals of what
751 you might be looking at.
752
753 The user should find the following directories under @t{$(INSTALLDIR)/lib/openocd} :
754
755 @itemize @bullet
756 @item @b{interface}
757 @*Think JTAG Dongle. Files that configure the JTAG dongle go here.
758 @item @b{board}
759 @* Think Circuit Board, PWA, PCB, they go by many names. Board files
760 contain initialization items that are specific to a board - for
761 example: The SDRAM initialization sequence for the board, or the type
762 of external flash and what address it is found at. Any initialization
763 sequence to enable that external flash or SDRAM should be found in the
764 board file. Boards may also contain multiple targets, i.e.: Two CPUs, or
765 a CPU and an FPGA or CPLD.
766 @item @b{target}
767 @* Think chip. The ``target'' directory represents a JTAG tap (or
768 chip) OpenOCD should control, not a board. Two common types of targets
769 are ARM chips and FPGA or CPLD chips.
770 @end itemize
771
772 @b{If needed...} The user in their ``openocd.cfg'' file or the board
773 file might override a specific feature in any of the above files by
774 setting a variable or two before sourcing the target file. Or adding
775 various commands specific to their situation.
776
777 @section Interface Config Files
778
779 The user should be able to source one of these files via a command like this:
780
781 @example
782 source [find interface/FOOBAR.cfg]
783 Or:
784 openocd -f interface/FOOBAR.cfg
785 @end example
786
787 A preconfigured interface file should exist for every interface in use
788 today, that said, perhaps some interfaces have only been used by the
789 sole developer who created it.
790
791 @b{FIXME/NOTE:} We need to add support for a variable like Tcl variable
792 tcl_platform(platform), it should be called jim_platform (because it
793 is jim, not real tcl) and it should contain 1 of 3 words: ``linux'',
794 ``cygwin'' or ``mingw''
795
796 Interface files should be found in @t{$(INSTALLDIR)/lib/openocd/interface}
797
798 @section Board Config Files
799
800 @b{Note: BOARD directory NEW as of 28/nov/2008}
801
802 The user should be able to source one of these files via a command like this:
803
804 @example
805 source [find board/FOOBAR.cfg]
806 Or:
807 openocd -f board/FOOBAR.cfg
808 @end example
809
810
811 The board file should contain one or more @t{source [find
812 target/FOO.cfg]} statements along with any board specific things.
813
814 In summary the board files should contain (if present)
815
816 @enumerate
817 @item External flash configuration (i.e.: NOR flash on CS0, two NANDs on CS2)
818 @item SDRAM configuration (size, speed, etc.
819 @item Board specific IO configuration (i.e.: GPIO pins might disable a 2nd flash)
820 @item Multiple TARGET source statements
821 @item All things that are not ``inside a chip''
822 @item Things inside a chip go in a 'target' file
823 @end enumerate
824
825 @section Target Config Files
826
827 The user should be able to source one of these files via a command like this:
828
829 @example
830 source [find target/FOOBAR.cfg]
831 Or:
832 openocd -f target/FOOBAR.cfg
833 @end example
834
835 In summary the target files should contain
836
837 @enumerate
838 @item Set defaults
839 @item Create taps
840 @item Reset configuration
841 @item Work areas
842 @item CPU/Chip/CPU-Core specific features
843 @item On-Chip flash
844 @end enumerate
845
846 @subsection Important variable names
847
848 By default, the end user should never need to set these
849 variables. However, if the user needs to override a setting they only
850 need to set the variable in a simple way.
851
852 @itemize @bullet
853 @item @b{CHIPNAME}
854 @* This gives a name to the overall chip, and is used as part of the
855 tap identifier dotted name.
856 @item @b{ENDIAN}
857 @* By default little - unless the chip or board is not normally used that way.
858 @item @b{CPUTAPID}
859 @* When OpenOCD examines the JTAG chain, it will attempt to identify
860 every chip. If the @t{-expected-id} is nonzero, OpenOCD attempts
861 to verify the tap id number verses configuration file and may issue an
862 error or warning like this. The hope is that this will help to pinpoint
863 problems in OpenOCD configurations.
864
865 @example
866 Info: JTAG tap: sam7x256.cpu tap/device found: 0x3f0f0f0f (Manufacturer: 0x787, Part: 0xf0f0, Version: 0x3)
867 Error: ERROR: Tap: sam7x256.cpu - Expected id: 0x12345678, Got: 0x3f0f0f0f
868 Error: ERROR: expected: mfg: 0x33c, part: 0x2345, ver: 0x1
869 Error: ERROR: got: mfg: 0x787, part: 0xf0f0, ver: 0x3
870 @end example
871
872 @item @b{_TARGETNAME}
873 @* By convention, this variable is created by the target configuration
874 script. The board configuration file may make use of this variable to
875 configure things like a ``reset init'' script, or other things
876 specific to that board and that target.
877
878 If the chip has 2 targets, use the names @b{_TARGETNAME0},
879 @b{_TARGETNAME1}, ... etc.
880
881 @b{Remember:} The ``board file'' may include multiple targets.
882
883 At no time should the name ``target0'' (the default target name if
884 none was specified) be used. The name ``target0'' is a hard coded name
885 - the next target on the board will be some other number.
886 In the same way, avoid using target numbers even when they are
887 permitted; use the right target name(s) for your board.
888
889 The user (or board file) should reasonably be able to:
890
891 @example
892 source [find target/FOO.cfg]
893 $_TARGETNAME configure ... FOO specific parameters
894
895 source [find target/BAR.cfg]
896 $_TARGETNAME configure ... BAR specific parameters
897 @end example
898
899 @end itemize
900
901 @subsection Tcl Variables Guide Line
902 The Full Tcl/Tk language supports ``namespaces'' - JIM-Tcl does not.
903
904 Thus the rule we follow in OpenOCD is this: Variables that begin with
905 a leading underscore are temporary in nature, and can be modified and
906 used at will within a ?TARGET? configuration file.
907
908 @b{EXAMPLE:} The user should be able to do this:
909
910 @example
911 # Board has 3 chips,
912 # PXA270 #1 network side, big endian
913 # PXA270 #2 video side, little endian
914 # Xilinx Glue logic
915 set CHIPNAME network
916 set ENDIAN big
917 source [find target/pxa270.cfg]
918 # variable: _TARGETNAME = network.cpu
919 # other commands can refer to the "network.cpu" tap.
920 $_TARGETNAME configure .... params for this CPU..
921
922 set ENDIAN little
923 set CHIPNAME video
924 source [find target/pxa270.cfg]
925 # variable: _TARGETNAME = video.cpu
926 # other commands can refer to the "video.cpu" tap.
927 $_TARGETNAME configure .... params for this CPU..
928
929 unset ENDIAN
930 set CHIPNAME xilinx
931 source [find target/spartan3.cfg]
932
933 # Since $_TARGETNAME is temporal..
934 # these names still work!
935 network.cpu configure ... params
936 video.cpu configure ... params
937
938 @end example
939
940 @subsection Default Value Boiler Plate Code
941
942 All target configuration files should start with this (or a modified form)
943
944 @example
945 # SIMPLE example
946 if @{ [info exists CHIPNAME] @} @{
947 set _CHIPNAME $CHIPNAME
948 @} else @{
949 set _CHIPNAME sam7x256
950 @}
951
952 if @{ [info exists ENDIAN] @} @{
953 set _ENDIAN $ENDIAN
954 @} else @{
955 set _ENDIAN little
956 @}
957
958 if @{ [info exists CPUTAPID ] @} @{
959 set _CPUTAPID $CPUTAPID
960 @} else @{
961 set _CPUTAPID 0x3f0f0f0f
962 @}
963
964 @end example
965
966 @subsection Creating Taps
967 After the ``defaults'' are choosen [see above] the taps are created.
968
969 @b{SIMPLE example:} such as an Atmel AT91SAM7X256
970
971 @example
972 # for an ARM7TDMI.
973 set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
974 jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask 0xf -expected-id $_CPUTAPID
975 @end example
976
977 @b{COMPLEX example:}
978
979 This is an SNIP/example for an STR912 - which has 3 internal taps. Key features shown:
980
981 @enumerate
982 @item @b{Unform tap names} - See: Tap Naming Convention
983 @item @b{_TARGETNAME} is created at the end where used.
984 @end enumerate
985
986 @example
987 if @{ [info exists FLASHTAPID ] @} @{
988 set _FLASHTAPID $FLASHTAPID
989 @} else @{
990 set _FLASHTAPID 0x25966041
991 @}
992 jtag newtap $_CHIPNAME flash -irlen 8 -ircapture 0x1 -irmask 0x1 -expected-id $_FLASHTAPID
993
994 if @{ [info exists CPUTAPID ] @} @{
995 set _CPUTAPID $CPUTAPID
996 @} else @{
997 set _CPUTAPID 0x25966041
998 @}
999 jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0xf -irmask 0xe -expected-id $_CPUTAPID
1000
1001
1002 if @{ [info exists BSTAPID ] @} @{
1003 set _BSTAPID $BSTAPID
1004 @} else @{
1005 set _BSTAPID 0x1457f041
1006 @}
1007 jtag newtap $_CHIPNAME bs -irlen 5 -ircapture 0x1 -irmask 0x1 -expected-id $_BSTAPID
1008
1009 set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
1010 @end example
1011
1012 @b{Tap Naming Convention}
1013
1014 See the command ``jtag newtap'' for detail, but in brief the names you should use are:
1015
1016 @itemize @bullet
1017 @item @b{tap}
1018 @item @b{cpu}
1019 @item @b{flash}
1020 @item @b{bs}
1021 @item @b{etb}
1022 @item @b{jrc}
1023 @item @b{unknownN} - it happens :-(
1024 @end itemize
1025
1026 @subsection Reset Configuration
1027
1028 Some chips have specific ways the TRST and SRST signals are
1029 managed. If these are @b{CHIP SPECIFIC} they go here, if they are
1030 @b{BOARD SPECIFIC} they go in the board file.
1031
1032 @subsection Work Areas
1033
1034 Work areas are small RAM areas used by OpenOCD to speed up downloads,
1035 and to download small snippets of code to program flash chips.
1036
1037 If the chip includes a form of ``on-chip-ram'' - and many do - define
1038 a reasonable work area and use the ``backup'' option.
1039
1040 @b{PROBLEMS:} On more complex chips, this ``work area'' may become
1041 inaccessible if/when the application code enables or disables the MMU.
1042
1043 @subsection ARM Core Specific Hacks
1044
1045 If the chip has a DCC, enable it. If the chip is an ARM9 with some
1046 special high speed download features - enable it.
1047
1048 If the chip has an ARM ``vector catch'' feature - by default enable
1049 it for Undefined Instructions, Data Abort, and Prefetch Abort, if the
1050 user is really writing a handler for those situations - they can
1051 easily disable it. Experiance has shown the ``vector catch'' is
1052 helpful - for common programing errors.
1053
1054 If present, the MMU, the MPU and the CACHE should be disabled.
1055
1056 Some ARM cores are equipped with trace support, which permits
1057 examination of the instruction and data bus activity. Trace
1058 activity is controlled through an ``Embedded Trace Module'' (ETM)
1059 on one of the core's scan chains. The ETM emits voluminous data
1060 through a ``trace port''. The trace port is accessed in one
1061 of two ways. When its signals are pinned out from the chip,
1062 boards may provide a special high speed debugging connector;
1063 software support for this is not configured by default, use
1064 the ``--enable-oocd_trace'' option. Alternatively, trace data
1065 may be stored an on-chip SRAM which is packaged as an ``Embedded
1066 Trace Buffer'' (ETB). An ETB has its own TAP, usually right after
1067 its associated ARM core. OpenOCD supports the ETM, and your
1068 target configuration should set it up with the relevant trace
1069 port: ``etb'' for chips which use that, else the board-specific
1070 option will be either ``oocd_trace'' or ``dummy''.
1071
1072 @example
1073 etm config $_TARGETNAME 16 normal full etb
1074 etb config $_TARGETNAME $_CHIPNAME.etb
1075 @end example
1076
1077 @subsection Internal Flash Configuration
1078
1079 This applies @b{ONLY TO MICROCONTROLLERS} that have flash built in.
1080
1081 @b{Never ever} in the ``target configuration file'' define any type of
1082 flash that is external to the chip. (For example a BOOT flash on
1083 Chip Select 0.) Such flash information goes in a board file - not
1084 the TARGET (chip) file.
1085
1086 Examples:
1087 @itemize @bullet
1088 @item at91sam7x256 - has 256K flash YES enable it.
1089 @item str912 - has flash internal YES enable it.
1090 @item imx27 - uses boot flash on CS0 - it goes in the board file.
1091 @item pxa270 - again - CS0 flash - it goes in the board file.
1092 @end itemize
1093
1094 @node About JIM-Tcl
1095 @chapter About JIM-Tcl
1096 @cindex JIM Tcl
1097 @cindex tcl
1098
1099 OpenOCD includes a small ``TCL Interpreter'' known as JIM-TCL. You can
1100 learn more about JIM here: @url{http://jim.berlios.de}
1101
1102 @itemize @bullet
1103 @item @b{JIM vs. Tcl}
1104 @* JIM-TCL is a stripped down version of the well known Tcl language,
1105 which can be found here: @url{http://www.tcl.tk}. JIM-Tcl has far
1106 fewer features. JIM-Tcl is a single .C file and a single .H file and
1107 impliments the basic Tcl command set along. In contrast: Tcl 8.6 is a
1108 4.2 MB .zip file containing 1540 files.
1109
1110 @item @b{Missing Features}
1111 @* Our practice has been: Add/clone the real Tcl feature if/when
1112 needed. We welcome JIM Tcl improvements, not bloat.
1113
1114 @item @b{Scripts}
1115 @* OpenOCD configuration scripts are JIM Tcl Scripts. OpenOCD's
1116 command interpreter today (28/nov/2008) is a mixture of (newer)
1117 JIM-Tcl commands, and (older) the orginal command interpreter.
1118
1119 @item @b{Commands}
1120 @* At the OpenOCD telnet command line (or via the GDB mon command) one
1121 can type a Tcl for() loop, set variables, etc.
1122
1123 @item @b{Historical Note}
1124 @* JIM-Tcl was introduced to OpenOCD in spring 2008.
1125
1126 @item @b{Need a crash course in Tcl?}
1127 @* See: @xref{Tcl Crash Course}.
1128 @end itemize
1129
1130
1131 @node Daemon Configuration
1132 @chapter Daemon Configuration
1133 The commands here are commonly found in the openocd.cfg file and are
1134 used to specify what TCP/IP ports are used, and how GDB should be
1135 supported.
1136 @section init
1137 @cindex init
1138 This command terminates the configuration stage and
1139 enters the normal command mode. This can be useful to add commands to
1140 the startup scripts and commands such as resetting the target,
1141 programming flash, etc. To reset the CPU upon startup, add "init" and
1142 "reset" at the end of the config script or at the end of the OpenOCD
1143 command line using the @option{-c} command line switch.
1144
1145 If this command does not appear in any startup/configuration file
1146 OpenOCD executes the command for you after processing all
1147 configuration files and/or command line options.
1148
1149 @b{NOTE:} This command normally occurs at or near the end of your
1150 openocd.cfg file to force OpenOCD to ``initialize'' and make the
1151 targets ready. For example: If your openocd.cfg file needs to
1152 read/write memory on your target - the init command must occur before
1153 the memory read/write commands. This includes @command{nand probe}.
1154
1155 @section TCP/IP Ports
1156 @itemize @bullet
1157 @item @b{telnet_port} <@var{number}>
1158 @cindex telnet_port
1159 @*Intended for a human. Port on which to listen for incoming telnet connections.
1160
1161 @item @b{tcl_port} <@var{number}>
1162 @cindex tcl_port
1163 @*Intended as a machine interface. Port on which to listen for
1164 incoming Tcl syntax. This port is intended as a simplified RPC
1165 connection that can be used by clients to issue commands and get the
1166 output from the Tcl engine.
1167
1168 @item @b{gdb_port} <@var{number}>
1169 @cindex gdb_port
1170 @*First port on which to listen for incoming GDB connections. The GDB port for the
1171 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
1172 @end itemize
1173
1174 @section GDB Items
1175 @itemize @bullet
1176 @item @b{gdb_breakpoint_override} <@var{hard|soft|disable}>
1177 @cindex gdb_breakpoint_override
1178 @anchor{gdb_breakpoint_override}
1179 @*Force breakpoint type for gdb 'break' commands.
1180 The raison d'etre for this option is to support GDB GUI's without
1181 a hard/soft breakpoint concept where the default OpenOCD and
1182 GDB behaviour is not sufficient. Note that GDB will use hardware
1183 breakpoints if the memory map has been set up for flash regions.
1184
1185 This option replaces older arm7_9 target commands that addressed
1186 the same issue.
1187
1188 @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
1189 @cindex gdb_detach
1190 @*Configures what OpenOCD will do when GDB detaches from the daemon.
1191 Default behaviour is <@var{resume}>
1192
1193 @item @b{gdb_memory_map} <@var{enable|disable}>
1194 @cindex gdb_memory_map
1195 @*Set to <@var{enable}> to cause OpenOCD to send the memory configuration to GDB when
1196 requested. GDB will then know when to set hardware breakpoints, and program flash
1197 using the GDB load command. @option{gdb_flash_program enable} must also be enabled
1198 for flash programming to work.
1199 Default behaviour is <@var{enable}>
1200 @xref{gdb_flash_program}.
1201
1202 @item @b{gdb_flash_program} <@var{enable|disable}>
1203 @cindex gdb_flash_program
1204 @anchor{gdb_flash_program}
1205 @*Set to <@var{enable}> to cause OpenOCD to program the flash memory when a
1206 vFlash packet is received.
1207 Default behaviour is <@var{enable}>
1208 @comment END GDB Items
1209 @end itemize
1210
1211 @node Interface - Dongle Configuration
1212 @chapter Interface - Dongle Configuration
1213 Interface commands are normally found in an interface configuration
1214 file which is sourced by your openocd.cfg file. These commands tell
1215 OpenOCD what type of JTAG dongle you have and how to talk to it.
1216 @section Simple Complete Interface Examples
1217 @b{A Turtelizer FT2232 Based JTAG Dongle}
1218 @verbatim
1219 #interface
1220 interface ft2232
1221 ft2232_device_desc "Turtelizer JTAG/RS232 Adapter A"
1222 ft2232_layout turtelizer2
1223 ft2232_vid_pid 0x0403 0xbdc8
1224 @end verbatim
1225 @b{A SEGGER Jlink}
1226 @verbatim
1227 # jlink interface
1228 interface jlink
1229 @end verbatim
1230 @b{A Raisonance RLink}
1231 @verbatim
1232 # rlink interface
1233 interface rlink
1234 @end verbatim
1235 @b{Parallel Port}
1236 @verbatim
1237 interface parport
1238 parport_port 0xc8b8
1239 parport_cable wiggler
1240 jtag_speed 0
1241 @end verbatim
1242 @b{ARM-JTAG-EW}
1243 @verbatim
1244 interface arm-jtag-ew
1245 @end verbatim
1246 @section Interface Command
1247
1248 The interface command tells OpenOCD what type of JTAG dongle you are
1249 using. Depending on the type of dongle, you may need to have one or
1250 more additional commands.
1251
1252 @itemize @bullet
1253
1254 @item @b{interface} <@var{name}>
1255 @cindex interface
1256 @*Use the interface driver <@var{name}> to connect to the
1257 target. Currently supported interfaces are
1258
1259 @itemize @minus
1260
1261 @item @b{parport}
1262 @* PC parallel port bit-banging (Wigglers, PLD download cable, ...)
1263
1264 @item @b{amt_jtagaccel}
1265 @* Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
1266 mode parallel port
1267
1268 @item @b{ft2232}
1269 @* FTDI FT2232 (USB) based devices using either the open-source libftdi or the binary only
1270 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
1271 platform. The libftdi uses libusb, and should be portable to all systems that provide
1272 libusb.
1273
1274 @item @b{ep93xx}
1275 @*Cirrus Logic EP93xx based single-board computer bit-banging (in development)
1276
1277 @item @b{presto}
1278 @* ASIX PRESTO USB JTAG programmer.
1279
1280 @item @b{usbprog}
1281 @* usbprog is a freely programmable USB adapter.
1282
1283 @item @b{gw16012}
1284 @* Gateworks GW16012 JTAG programmer.
1285
1286 @item @b{jlink}
1287 @* Segger jlink USB adapter
1288
1289 @item @b{rlink}
1290 @* Raisonance RLink USB adapter
1291
1292 @item @b{vsllink}
1293 @* vsllink is part of Versaloon which is a versatile USB programmer.
1294
1295 @item @b{arm-jtag-ew}
1296 @* Olimex ARM-JTAG-EW USB adapter
1297 @comment - End parameters
1298 @end itemize
1299 @comment - End Interface
1300 @end itemize
1301 @subsection parport options
1302
1303 @itemize @bullet
1304 @item @b{parport_port} <@var{number}>
1305 @cindex parport_port
1306 @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of
1307 the @file{/dev/parport} device
1308
1309 When using PPDEV to access the parallel port, use the number of the parallel port:
1310 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
1311 you may encounter a problem.
1312 @item @b{parport_cable} <@var{name}>
1313 @cindex parport_cable
1314 @*The layout of the parallel port cable used to connect to the target.
1315 Currently supported cables are
1316 @itemize @minus
1317 @item @b{wiggler}
1318 @cindex wiggler
1319 The original Wiggler layout, also supported by several clones, such
1320 as the Olimex ARM-JTAG
1321 @item @b{wiggler2}
1322 @cindex wiggler2
1323 Same as original wiggler except an led is fitted on D5.
1324 @item @b{wiggler_ntrst_inverted}
1325 @cindex wiggler_ntrst_inverted
1326 Same as original wiggler except TRST is inverted.
1327 @item @b{old_amt_wiggler}
1328 @cindex old_amt_wiggler
1329 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
1330 version available from the website uses the original Wiggler layout ('@var{wiggler}')
1331 @item @b{chameleon}
1332 @cindex chameleon
1333 The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to
1334 program the Chameleon itself, not a connected target.
1335 @item @b{dlc5}
1336 @cindex dlc5
1337 The Xilinx Parallel cable III.
1338 @item @b{triton}
1339 @cindex triton
1340 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
1341 This is also the layout used by the HollyGates design
1342 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
1343 @item @b{flashlink}
1344 @cindex flashlink
1345 The ST Parallel cable.
1346 @item @b{arm-jtag}
1347 @cindex arm-jtag
1348 Same as original wiggler except SRST and TRST connections reversed and
1349 TRST is also inverted.
1350 @item @b{altium}
1351 @cindex altium
1352 Altium Universal JTAG cable.
1353 @end itemize
1354 @item @b{parport_write_on_exit} <@var{on}|@var{off}>
1355 @cindex parport_write_on_exit
1356 @*This will configure the parallel driver to write a known value to the parallel
1357 interface on exiting OpenOCD
1358 @end itemize
1359
1360 @subsection amt_jtagaccel options
1361 @itemize @bullet
1362 @item @b{parport_port} <@var{number}>
1363 @cindex parport_port
1364 @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
1365 @file{/dev/parport} device
1366 @end itemize
1367 @subsection ft2232 options
1368
1369 @itemize @bullet
1370 @item @b{ft2232_device_desc} <@var{description}>
1371 @cindex ft2232_device_desc
1372 @*The USB device description of the FTDI FT2232 device. If not
1373 specified, the FTDI default value is used. This setting is only valid
1374 if compiled with FTD2XX support.
1375
1376 @b{TODO:} Confirm the following: On Windows the name needs to end with
1377 a ``space A''? Or not? It has to do with the FTD2xx driver. When must
1378 this be added and when must it not be added? Why can't the code in the
1379 interface or in OpenOCD automatically add this if needed? -- Duane.
1380
1381 @item @b{ft2232_serial} <@var{serial-number}>
1382 @cindex ft2232_serial
1383 @*The serial number of the FTDI FT2232 device. If not specified, the FTDI default
1384 values are used.
1385 @item @b{ft2232_layout} <@var{name}>
1386 @cindex ft2232_layout
1387 @*The layout of the FT2232 GPIO signals used to control output-enables and reset
1388 signals. Valid layouts are
1389 @itemize @minus
1390 @item @b{usbjtag}
1391 "USBJTAG-1" layout described in the original OpenOCD diploma thesis
1392 @item @b{jtagkey}
1393 Amontec JTAGkey and JTAGkey-Tiny
1394 @item @b{signalyzer}
1395 Signalyzer
1396 @item @b{olimex-jtag}
1397 Olimex ARM-USB-OCD
1398 @item @b{m5960}
1399 American Microsystems M5960
1400 @item @b{evb_lm3s811}
1401 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
1402 SRST signals on external connector
1403 @item @b{comstick}
1404 Hitex STR9 comstick
1405 @item @b{stm32stick}
1406 Hitex STM32 Performance Stick
1407 @item @b{flyswatter}
1408 Tin Can Tools Flyswatter
1409 @item @b{turtelizer2}
1410 egnite Software turtelizer2
1411 @item @b{oocdlink}
1412 OOCDLink
1413 @item @b{axm0432_jtag}
1414 Axiom AXM-0432
1415 @end itemize
1416
1417 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
1418 @*The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
1419 default values are used. Multiple <@var{vid}>, <@var{pid}> pairs may be given, e.g.
1420 @example
1421 ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
1422 @end example
1423 @item @b{ft2232_latency} <@var{ms}>
1424 @*On some systems using FT2232 based JTAG interfaces the FT_Read function call in
1425 ft2232_read() fails to return the expected number of bytes. This can be caused by
1426 USB communication delays and has proved hard to reproduce and debug. Setting the
1427 FT2232 latency timer to a larger value increases delays for short USB packets but it
1428 also reduces the risk of timeouts before receiving the expected number of bytes.
1429 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
1430 @end itemize
1431
1432 @subsection ep93xx options
1433 @cindex ep93xx options
1434 Currently, there are no options available for the ep93xx interface.
1435
1436 @section JTAG Speed
1437 @itemize @bullet
1438 @item @b{jtag_khz} <@var{reset speed kHz}>
1439 @cindex jtag_khz
1440
1441 It is debatable if this command belongs here - or in a board
1442 configuration file. In fact, in some situations the JTAG speed is
1443 changed during the target initialisation process (i.e.: (1) slow at
1444 reset, (2) program the CPU clocks, (3) run fast)
1445
1446 Speed 0 (khz) selects RTCK method. A non-zero speed is in KHZ. Hence: 3000 is 3mhz.
1447
1448 Not all interfaces support ``rtck''. If the interface device can not
1449 support the rate asked for, or can not translate from kHz to
1450 jtag_speed, then an error is returned.
1451
1452 Make sure the JTAG clock is no more than @math{1/6th CPU-Clock}. This is
1453 especially true for synthesized cores (-S). Also see RTCK.
1454
1455 @b{NOTE: Script writers} If the target chip requires/uses RTCK -
1456 please use the command: 'jtag_rclk FREQ'. This Tcl proc (in
1457 startup.tcl) attempts to enable RTCK, if that fails it falls back to
1458 the specified frequency.
1459
1460 @example
1461 # Fall back to 3mhz if RCLK is not supported
1462 jtag_rclk 3000
1463 @end example
1464
1465 @item @b{DEPRECATED} @b{jtag_speed} - please use jtag_khz above.
1466 @cindex jtag_speed
1467 @*Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
1468 speed. The actual effect of this option depends on the JTAG interface used.
1469
1470 The speed used during reset can be adjusted using setting jtag_speed during
1471 pre_reset and post_reset events.
1472 @itemize @minus
1473
1474 @item wiggler: maximum speed / @var{number}
1475 @item ft2232: 6MHz / (@var{number}+1)
1476 @item amt jtagaccel: 8 / 2**@var{number}
1477 @item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
1478 @item rlink: 24MHz / @var{number}, but only for certain values of @var{number}
1479 @comment end speed list.
1480 @end itemize
1481
1482 @comment END command list
1483 @end itemize
1484
1485 @node Reset Configuration
1486 @chapter Reset Configuration
1487 @cindex Reset Configuration
1488
1489 Every system configuration may require a different reset
1490 configuration. This can also be quite confusing. Please see the
1491 various board files for example.
1492
1493 @section jtag_nsrst_delay <@var{ms}>
1494 @cindex jtag_nsrst_delay
1495 @*How long (in milliseconds) OpenOCD should wait after deasserting
1496 nSRST before starting new JTAG operations.
1497
1498 @section jtag_ntrst_delay <@var{ms}>
1499 @cindex jtag_ntrst_delay
1500 @*Same @b{jtag_nsrst_delay}, but for nTRST
1501
1502 The jtag_n[st]rst_delay options are useful if reset circuitry (like a
1503 big resistor/capacitor, reset supervisor, or on-chip features). This
1504 keeps the signal asserted for some time after the external reset got
1505 deasserted.
1506
1507 @section reset_config
1508
1509 @b{Note:} To maintainers and integrators: Where exactly the
1510 ``reset configuration'' goes is a good question. It touches several
1511 things at once. In the end, if you have a board file - the board file
1512 should define it and assume 100% that the DONGLE supports
1513 anything. However, that does not mean the target should not also make
1514 not of something the silicon vendor has done inside the
1515 chip. @i{Grr.... nothing is every pretty.}
1516
1517 @* @b{Problems:}
1518 @enumerate
1519 @item Every JTAG Dongle is slightly different, some dongles implement reset differently.
1520 @item Every board is also slightly different; some boards tie TRST and SRST together.
1521 @item Every chip is slightly different; some chips internally tie the two signals together.
1522 @item Some may not implement all of the signals the same way.
1523 @item Some signals might be push-pull, others open-drain/collector.
1524 @end enumerate
1525 @b{Best Case:} OpenOCD can hold the SRST (push-button-reset), then
1526 reset the TAP via TRST and send commands through the JTAG tap to halt
1527 the CPU at the reset vector before the 1st instruction is executed,
1528 and finally release the SRST signal.
1529 @*Depending on your board vendor, chip vendor, etc., these
1530 signals may have slightly different names.
1531
1532 OpenOCD defines these signals in these terms:
1533 @itemize @bullet
1534 @item @b{TRST} - is Tap Reset - and should reset only the TAP.
1535 @item @b{SRST} - is System Reset - typically equal to a reset push button.
1536 @end itemize
1537
1538 The Command:
1539
1540 @itemize @bullet
1541 @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
1542 @cindex reset_config
1543 @* The @t{reset_config} command tells OpenOCD the reset configuration
1544 of your combination of Dongle, Board, and Chips.
1545 If the JTAG interface provides SRST, but the target doesn't connect
1546 that signal properly, then OpenOCD can't use it. <@var{signals}> can
1547 be @option{none}, @option{trst_only}, @option{srst_only} or
1548 @option{trst_and_srst}.
1549
1550 [@var{combination}] is an optional value specifying broken reset
1551 signal implementations. @option{srst_pulls_trst} states that the
1552 test logic is reset together with the reset of the system (e.g. Philips
1553 LPC2000, "broken" board layout), @option{trst_pulls_srst} says that
1554 the system is reset together with the test logic (only hypothetical, I
1555 haven't seen hardware with such a bug, and can be worked around).
1556 @option{combined} implies both @option{srst_pulls_trst} and
1557 @option{trst_pulls_srst}. The default behaviour if no option given is
1558 @option{separate}.
1559
1560 The [@var{trst_type}] and [@var{srst_type}] parameters allow the
1561 driver type of the reset lines to be specified. Possible values are
1562 @option{trst_push_pull} (default) and @option{trst_open_drain} for the
1563 test reset signal, and @option{srst_open_drain} (default) and
1564 @option{srst_push_pull} for the system reset. These values only affect
1565 JTAG interfaces with support for different drivers, like the Amontec
1566 JTAGkey and JTAGAccelerator.
1567
1568 @comment - end command
1569 @end itemize
1570
1571
1572
1573 @node Tap Creation
1574 @chapter Tap Creation
1575 @cindex tap creation
1576 @cindex tap configuration
1577
1578 In order for OpenOCD to control a target, a JTAG tap must be
1579 defined/created.
1580
1581 Commands to create taps are normally found in a configuration file and
1582 are not normally typed by a human.
1583
1584 When a tap is created a @b{dotted.name} is created for the tap. Other
1585 commands use that dotted.name to manipulate or refer to the tap.
1586
1587 Tap Uses:
1588 @itemize @bullet
1589 @item @b{Debug Target} A tap can be used by a GDB debug target
1590 @item @b{Flash Programing} Some chips program the flash directly via JTAG,
1591 instead of indirectly by making a CPU do it.
1592 @item @b{Boundry Scan} Some chips support boundary scan.
1593 @end itemize
1594
1595
1596 @section jtag newtap
1597 @b{@t{jtag newtap CHIPNAME TAPNAME configparams ....}}
1598 @cindex jtag_device
1599 @cindex jtag newtap
1600 @cindex tap
1601 @cindex tap order
1602 @cindex tap geometry
1603
1604 @comment START options
1605 @itemize @bullet
1606 @item @b{CHIPNAME}
1607 @* is a symbolic name of the chip.
1608 @item @b{TAPNAME}
1609 @* is a symbol name of a tap present on the chip.
1610 @item @b{Required configparams}
1611 @* Every tap has 3 required configparams, and several ``optional
1612 parameters'', the required parameters are:
1613 @comment START REQUIRED
1614 @itemize @bullet
1615 @item @b{-irlen NUMBER} - the length in bits of the instruction register, mostly 4 or 5 bits.
1616 @item @b{-ircapture NUMBER} - the IDCODE capture command, usually 0x01.
1617 @item @b{-irmask NUMBER} - the corresponding mask for the IR register. For
1618 some devices, there are bits in the IR that aren't used. This lets you mask
1619 them off when doing comparisons. In general, this should just be all ones for
1620 the size of the IR.
1621 @comment END REQUIRED
1622 @end itemize
1623 An example of a FOOBAR Tap
1624 @example
1625 jtag newtap foobar tap -irlen 7 -ircapture 0x42 -irmask 0x55
1626 @end example
1627 Creates the tap ``foobar.tap'' with the instruction register (IR) is 7
1628 bits long, during Capture-IR 0x42 is loaded into the IR, and bits
1629 [6,4,2,0] are checked.
1630
1631 @item @b{Optional configparams}
1632 @comment START Optional
1633 @itemize @bullet
1634 @item @b{-expected-id NUMBER}
1635 @* By default it is zero. If non-zero represents the
1636 expected tap ID used when the JTAG chain is examined. Repeat
1637 the option as many times as required if multiple id's can be
1638 expected. See below.
1639 @item @b{-disable}
1640 @item @b{-enable}
1641 @* By default not specified the tap is enabled. Some chips have a
1642 JTAG route controller (JRC) that is used to enable and/or disable
1643 specific JTAG taps. You can later enable or disable any JTAG tap via
1644 the command @b{jtag tapenable DOTTED.NAME} or @b{jtag tapdisable
1645 DOTTED.NAME}
1646 @comment END Optional
1647 @end itemize
1648
1649 @comment END OPTIONS
1650 @end itemize
1651 @b{Notes:}
1652 @comment START NOTES
1653 @itemize @bullet
1654 @item @b{Technically}
1655 @* newtap is a sub command of the ``jtag'' command
1656 @item @b{Big Picture Background}
1657 @*GDB Talks to OpenOCD using the GDB protocol via
1658 TCP/IP. OpenOCD then uses the JTAG interface (the dongle) to
1659 control the JTAG chain on your board. Your board has one or more chips
1660 in a @i{daisy chain configuration}. Each chip may have one or more
1661 JTAG taps. GDB ends up talking via OpenOCD to one of the taps.
1662 @item @b{NAME Rules}
1663 @*Names follow ``C'' symbol name rules (start with alpha ...)
1664 @item @b{TAPNAME - Conventions}
1665 @itemize @bullet
1666 @item @b{tap} - should be used only FPGA or CPLD like devices with a single tap.
1667 @item @b{cpu} - the main CPU of the chip, alternatively @b{foo.arm} and @b{foo.dsp}
1668 @item @b{flash} - if the chip has a flash tap, example: str912.flash
1669 @item @b{bs} - for boundary scan if this is a seperate tap.
1670 @item @b{etb} - for an embedded trace buffer (example: an ARM ETB11)
1671 @item @b{jrc} - for JTAG route controller (example: OMAP3530 found on Beagleboards)
1672 @item @b{unknownN} - where N is a number if you have no idea what the tap is for
1673 @item @b{Other names} - Freescale IMX31 has a SDMA (smart dma) with a JTAG tap, that tap should be called the ``sdma'' tap.
1674 @item @b{When in doubt} - use the chip maker's name in their data sheet.
1675 @end itemize
1676 @item @b{DOTTED.NAME}
1677 @* @b{CHIPNAME}.@b{TAPNAME} creates the tap name, aka: the
1678 @b{Dotted.Name} is the @b{CHIPNAME} and @b{TAPNAME} combined with a
1679 dot (period); for example: @b{xilinx.tap}, @b{str912.flash},
1680 @b{omap3530.jrc}, or @b{stm32.cpu} The @b{dotted.name} is used in
1681 numerous other places to refer to various taps.
1682 @item @b{ORDER}
1683 @* The order this command appears via the config files is
1684 important.
1685 @item @b{Multi Tap Example}
1686 @* This example is based on the ST Microsystems STR912. See the ST
1687 document titled: @b{STR91xFAxxx, Section 3.15 Jtag Interface, Page:
1688 28/102, Figure 3: JTAG chaining inside the STR91xFA}.
1689
1690 @url{http://eu.st.com/stonline/products/literature/ds/13495.pdf}
1691 @*@b{checked: 28/nov/2008}
1692
1693 The diagram shows that the TDO pin connects to the flash tap, flash TDI
1694 connects to the CPU debug tap, CPU TDI connects to the boundary scan
1695 tap which then connects to the TDI pin.
1696
1697 @example
1698 # The order is...
1699 # create tap: 'str912.flash'
1700 jtag newtap str912 flash ... params ...
1701 # create tap: 'str912.cpu'
1702 jtag newtap str912 cpu ... params ...
1703 # create tap: 'str912.bs'
1704 jtag newtap str912 bs ... params ...
1705 @end example
1706
1707 @item @b{Note: Deprecated} - Index Numbers
1708 @* Prior to 28/nov/2008, JTAG taps where numbered from 0..N this
1709 feature is still present, however its use is highly discouraged and
1710 should not be counted upon. Update all of your scripts to use
1711 TAP names rather than numbers.
1712 @item @b{Multiple chips}
1713 @* If your board has multiple chips, you should be
1714 able to @b{source} two configuration files, in the proper order, and
1715 have the taps created in the proper order.
1716 @comment END NOTES
1717 @end itemize
1718 @comment at command level
1719 @comment DOCUMENT old command
1720 @section jtag_device - REMOVED
1721 @example
1722 @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
1723 @end example
1724 @cindex jtag_device
1725
1726 @* @b{Removed: 28/nov/2008} This command has been removed and replaced
1727 by the ``jtag newtap'' command. The documentation remains here so that
1728 one can easily convert the old syntax to the new syntax. About the old
1729 syntax: The old syntax is positional, i.e.: The 3rd parameter is the
1730 ``irmask''. The new syntax requires named prefixes, and supports
1731 additional options, for example ``-expected-id 0x3f0f0f0f''. Please refer to the
1732 @b{jtag newtap} command for details.
1733 @example
1734 OLD: jtag_device 8 0x01 0xe3 0xfe
1735 NEW: jtag newtap CHIPNAME TAPNAME -irlen 8 -ircapture 0x01 -irmask 0xe3
1736 @end example
1737
1738 @section Enable/Disable Taps
1739 @b{Note:} These commands are intended to be used as a machine/script
1740 interface. Humans might find the ``scan_chain'' command more helpful
1741 when querying the state of the JTAG taps.
1742
1743 @b{By default, all taps are enabled}
1744
1745 @itemize @bullet
1746 @item @b{jtag tapenable} @var{DOTTED.NAME}
1747 @item @b{jtag tapdisable} @var{DOTTED.NAME}
1748 @item @b{jtag tapisenabled} @var{DOTTED.NAME}
1749 @end itemize
1750 @cindex tap enable
1751 @cindex tap disable
1752 @cindex JRC
1753 @cindex route controller
1754
1755 These commands are used when your target has a JTAG route controller
1756 that effectively adds or removes a tap from the JTAG chain in a
1757 non-standard way.
1758
1759 The ``standard way'' to remove a tap would be to place the tap in
1760 bypass mode. But with the advent of modern chips, this is not always a
1761 good solution. Some taps operate slowly, others operate fast, and
1762 there are other JTAG clock synchronisation problems one must face. To
1763 solve that problem, the JTAG route controller was introduced. Rather
1764 than ``bypass'' the tap, the tap is completely removed from the
1765 circuit and skipped.
1766
1767
1768 From OpenOCD's point of view, a JTAG tap is in one of 3 states:
1769
1770 @itemize @bullet
1771 @item @b{Enabled - Not In ByPass} and has a variable bit length
1772 @item @b{Enabled - In ByPass} and has a length of exactly 1 bit.
1773 @item @b{Disabled} and has a length of ZERO and is removed from the circuit.
1774 @end itemize
1775
1776 The IEEE JTAG definition has no concept of a ``disabled'' tap.
1777 @b{Historical note:} this feature was added 28/nov/2008
1778
1779 @b{jtag tapisenabled DOTTED.NAME}
1780
1781 This command returns 1 if the named tap is currently enabled, 0 if not.
1782 This command exists so that scripts that manipulate a JRC (like the
1783 OMAP3530 has) can determine if OpenOCD thinks a tap is presently
1784 enabled or disabled.
1785
1786 @page
1787 @node Target Configuration
1788 @chapter Target Configuration
1789
1790 This chapter discusses how to create a GDB debug target. Before
1791 creating a ``target'' a JTAG tap DOTTED.NAME must exist first.
1792
1793 @section targets [NAME]
1794 @b{Note:} This command name is PLURAL - not singular.
1795
1796 With NO parameter, this plural @b{targets} command lists all known
1797 targets in a human friendly form.
1798
1799 With a parameter, this plural @b{targets} command sets the current
1800 target to the given name. (i.e.: If there are multiple debug targets)
1801
1802 Example:
1803 @verbatim
1804 (gdb) mon targets
1805 CmdName Type Endian ChainPos State
1806 -- ---------- ---------- ---------- -------- ----------
1807 0: target0 arm7tdmi little 0 halted
1808 @end verbatim
1809
1810 @section target COMMANDS
1811 @b{Note:} This command name is SINGULAR - not plural. It is used to
1812 manipulate specific targets, to create targets and other things.
1813
1814 Once a target is created, a TARGETNAME (object) command is created;
1815 see below for details.
1816
1817 The TARGET command accepts these sub-commands:
1818 @itemize @bullet
1819 @item @b{create} .. parameters ..
1820 @* creates a new target, see below for details.
1821 @item @b{types}
1822 @* Lists all supported target types (perhaps some are not yet in this document).
1823 @item @b{names}
1824 @* Lists all current debug target names, for example: 'str912.cpu' or 'pxa27.cpu' example usage:
1825 @verbatim
1826 foreach t [target names] {
1827 puts [format "Target: %s\n" $t]
1828 }
1829 @end verbatim
1830 @item @b{current}
1831 @* Returns the current target. OpenOCD always has, or refers to the ``current target'' in some way.
1832 By default, commands like: ``mww'' (used to write memory) operate on the current target.
1833 @item @b{number} @b{NUMBER}
1834 @* Internally OpenOCD maintains a list of targets - in numerical index
1835 (0..N-1) this command returns the name of the target at index N.
1836 Example usage:
1837 @verbatim
1838 set thename [target number $x]
1839 puts [format "Target %d is: %s\n" $x $thename]
1840 @end verbatim
1841 @item @b{count}
1842 @* Returns the number of targets known to OpenOCD (see number above)
1843 Example:
1844 @verbatim
1845 set c [target count]
1846 for { set x 0 } { $x < $c } { incr x } {
1847 # Assuming you have created this function
1848 print_target_details $x
1849 }
1850 @end verbatim
1851
1852 @end itemize
1853
1854 @section TARGETNAME (object) commands
1855 @b{Use:} Once a target is created, an ``object name'' that represents the
1856 target is created. By convention, the target name is identical to the
1857 tap name. In a multiple target system, one can preceed many common
1858 commands with a specific target name and effect only that target.
1859 @example
1860 str912.cpu mww 0x1234 0x42
1861 omap3530.cpu mww 0x5555 123
1862 @end example
1863
1864 @b{Model:} The Tcl/Tk language has the concept of object commands. A
1865 good example is a on screen button, once a button is created a button
1866 has a name (a path in Tk terms) and that name is useable as a 1st
1867 class command. For example in Tk, one can create a button and later
1868 configure it like this:
1869
1870 @example
1871 # Create
1872 button .foobar -background red -command @{ foo @}
1873 # Modify
1874 .foobar configure -foreground blue
1875 # Query
1876 set x [.foobar cget -background]
1877 # Report
1878 puts [format "The button is %s" $x]
1879 @end example
1880
1881 In OpenOCD's terms, the ``target'' is an object just like a Tcl/Tk
1882 button. Commands available as a ``target object'' are:
1883
1884 @comment START targetobj commands.
1885 @itemize @bullet
1886 @item @b{configure} - configure the target; see Target Config/Cget Options below
1887 @item @b{cget} - query the target configuration; see Target Config/Cget Options below
1888 @item @b{curstate} - current target state (running, halt, etc.
1889 @item @b{eventlist}
1890 @* Intended for a human to see/read the currently configure target events.
1891 @item @b{Various Memory Commands} See the ``mww'' command elsewhere.
1892 @comment start memory
1893 @itemize @bullet
1894 @item @b{mww} ...
1895 @item @b{mwh} ...
1896 @item @b{mwb} ...
1897 @item @b{mdw} ...
1898 @item @b{mdh} ...
1899 @item @b{mdb} ...
1900 @comment end memory
1901 @end itemize
1902 @item @b{Memory To Array, Array To Memory}
1903 @* These are aimed at a machine interface to memory
1904 @itemize @bullet
1905 @item @b{mem2array ARRAYNAME WIDTH ADDRESS COUNT}
1906 @item @b{array2mem ARRAYNAME WIDTH ADDRESS COUNT}
1907 @* Where:
1908 @* @b{ARRAYNAME} is the name of an array variable
1909 @* @b{WIDTH} is 8/16/32 - indicating the memory access size
1910 @* @b{ADDRESS} is the target memory address
1911 @* @b{COUNT} is the number of elements to process
1912 @end itemize
1913 @item @b{Used during ``reset''}
1914 @* These commands are used internally by the OpenOCD scripts to deal
1915 with odd reset situations and are not documented here.
1916 @itemize @bullet
1917 @item @b{arp_examine}
1918 @item @b{arp_poll}
1919 @item @b{arp_reset}
1920 @item @b{arp_halt}
1921 @item @b{arp_waitstate}
1922 @end itemize
1923 @item @b{invoke-event} @b{EVENT-NAME}
1924 @* Invokes the specific event manually for the target
1925 @end itemize
1926
1927 @section Target Events
1928 At various times, certain things can happen, or you want them to happen.
1929
1930 Examples:
1931 @itemize @bullet
1932 @item What should happen when GDB connects? Should your target reset?
1933 @item When GDB tries to flash the target, do you need to enable the flash via a special command?
1934 @item During reset, do you need to write to certain memory location to reconfigure the SDRAM?
1935 @end itemize
1936
1937 All of the above items are handled by target events.
1938
1939 To specify an event action, either during target creation, or later
1940 via ``$_TARGETNAME configure'' see this example.
1941
1942 Syntactially, the option is: ``-event NAME BODY'' where NAME is a
1943 target event name, and BODY is a Tcl procedure or string of commands
1944 to execute.
1945
1946 The programmers model is the ``-command'' option used in Tcl/Tk
1947 buttons and events. Below are two identical examples, the first
1948 creates and invokes small procedure. The second inlines the procedure.
1949
1950 @example
1951 proc my_attach_proc @{ @} @{
1952 puts "RESET...."
1953 reset halt
1954 @}
1955 mychip.cpu configure -event gdb-attach my_attach_proc
1956 mychip.cpu configure -event gdb-attach @{ puts "Reset..." ; reset halt @}
1957 @end example
1958
1959 @section Current Events
1960 The following events are available:
1961 @itemize @bullet
1962 @item @b{debug-halted}
1963 @* The target has halted for debug reasons (i.e.: breakpoint)
1964 @item @b{debug-resumed}
1965 @* The target has resumed (i.e.: gdb said run)
1966 @item @b{early-halted}
1967 @* Occurs early in the halt process
1968 @item @b{examine-end}
1969 @* Currently not used (goal: when JTAG examine completes)
1970 @item @b{examine-start}
1971 @* Currently not used (goal: when JTAG examine starts)
1972 @item @b{gdb-attach}
1973 @* When GDB connects
1974 @item @b{gdb-detach}
1975 @* When GDB disconnects
1976 @item @b{gdb-end}
1977 @* When the taret has halted and GDB is not doing anything (see early halt)
1978 @item @b{gdb-flash-erase-start}
1979 @* Before the GDB flash process tries to erase the flash
1980 @item @b{gdb-flash-erase-end}
1981 @* After the GDB flash process has finished erasing the flash
1982 @item @b{gdb-flash-write-start}
1983 @* Before GDB writes to the flash
1984 @item @b{gdb-flash-write-end}
1985 @* After GDB writes to the flash
1986 @item @b{gdb-start}
1987 @* Before the taret steps, gdb is trying to start/resume the target
1988 @item @b{halted}
1989 @* The target has halted
1990 @item @b{old-gdb_program_config}
1991 @* DO NOT USE THIS: Used internally
1992 @item @b{old-pre_resume}
1993 @* DO NOT USE THIS: Used internally
1994 @item @b{reset-assert-pre}
1995 @* Before reset is asserted on the tap.
1996 @item @b{reset-assert-post}
1997 @* Reset is now asserted on the tap.
1998 @item @b{reset-deassert-pre}
1999 @* Reset is about to be released on the tap
2000 @item @b{reset-deassert-post}
2001 @* Reset has been released on the tap
2002 @item @b{reset-end}
2003 @* Currently not used.
2004 @item @b{reset-halt-post}
2005 @* Currently not usd
2006 @item @b{reset-halt-pre}
2007 @* Currently not used
2008 @item @b{reset-init}
2009 @* Used by @b{reset init} command for board-specific initialization.
2010 This is where you would configure PLLs and clocking, set up DRAM so
2011 you can download programs that don't fit in on-chip SRAM, set up pin
2012 multiplexing, and so on.
2013 @item @b{reset-start}
2014 @* Currently not used
2015 @item @b{reset-wait-pos}
2016 @* Currently not used
2017 @item @b{reset-wait-pre}
2018 @* Currently not used
2019 @item @b{resume-start}
2020 @* Before any target is resumed
2021 @item @b{resume-end}
2022 @* After all targets have resumed
2023 @item @b{resume-ok}
2024 @* Success
2025 @item @b{resumed}
2026 @* Target has resumed
2027 @item @b{tap-enable}
2028 @* Executed by @b{jtag tapenable DOTTED.NAME} command. Example:
2029 @example
2030 jtag configure DOTTED.NAME -event tap-enable @{
2031 puts "Enabling CPU"
2032 ...
2033 @}
2034 @end example
2035 @item @b{tap-disable}
2036 @*Executed by @b{jtag tapdisable DOTTED.NAME} command. Example:
2037 @example
2038 jtag configure DOTTED.NAME -event tap-disable @{
2039 puts "Disabling CPU"
2040 ...
2041 @}
2042 @end example
2043 @end itemize
2044
2045 @section target create
2046 @cindex target
2047 @cindex target creation
2048
2049 @example
2050 @b{target} @b{create} <@var{NAME}> <@var{TYPE}> <@var{PARAMS ...}>
2051 @end example
2052 @*This command creates a GDB debug target that refers to a specific JTAG tap.
2053 @comment START params
2054 @itemize @bullet
2055 @item @b{NAME}
2056 @* Is the name of the debug target. By convention it should be the tap
2057 DOTTED.NAME. This name is also used to create the target object
2058 command, and in other places the target needs to be identified.
2059 @item @b{TYPE}
2060 @* Specifies the target type, i.e.: ARM7TDMI, or Cortex-M3. Currently supported targets are:
2061 @comment START types
2062 @itemize @minus
2063 @item @b{arm7tdmi}
2064 @item @b{arm720t}
2065 @item @b{arm9tdmi}
2066 @item @b{arm920t}
2067 @item @b{arm922t}
2068 @item @b{arm926ejs}
2069 @item @b{arm966e}
2070 @item @b{cortex_m3}
2071 @item @b{feroceon}
2072 @item @b{xscale}
2073 @item @b{arm11}
2074 @item @b{mips_m4k}
2075 @comment end TYPES
2076 @end itemize
2077 @item @b{PARAMS}
2078 @*PARAMs are various target configuration parameters. The following ones are mandatory:
2079 @comment START mandatory
2080 @itemize @bullet
2081 @item @b{-endian big|little}
2082 @item @b{-chain-position DOTTED.NAME}
2083 @comment end MANDATORY
2084 @end itemize
2085 @comment END params
2086 @end itemize
2087
2088 @section Target Config/Cget Options
2089 These options can be specified when the target is created, or later
2090 via the configure option or to query the target via cget.
2091
2092 You should specify a working area if you can; typically it uses some
2093 on-chip SRAM. Such a working area can speed up many things, including bulk
2094 writes to target memory; flash operations like checking to see if memory needs
2095 to be erased; GDB memory checksumming; and may help perform otherwise
2096 unavailable operations (like some coprocessor operations on ARM7/9 systems).
2097 @itemize @bullet
2098 @item @b{-type} - returns the target type
2099 @item @b{-event NAME BODY} see Target events
2100 @item @b{-work-area-virt [ADDRESS]} specify/set the work area base address
2101 which will be used when an MMU is active.
2102 @item @b{-work-area-phys [ADDRESS]} specify/set the work area base address
2103 which will be used when an MMU is inactive.
2104 @item @b{-work-area-size [ADDRESS]} specify/set the work area
2105 @item @b{-work-area-backup [0|1]} does the work area get backed up;
2106 by default, it doesn't. When possible, use a working_area that doesn't
2107 need to be backed up, since performing a backup slows down operations.
2108 @item @b{-endian [big|little]}
2109 @item @b{-variant [NAME]} some chips have variants OpenOCD needs to know about
2110 @item @b{-chain-position DOTTED.NAME} the tap name this target refers to.
2111 @end itemize
2112 Example:
2113 @example
2114 for @{ set x 0 @} @{ $x < [target count] @} @{ incr x @} @{
2115 set name [target number $x]
2116 set y [$name cget -endian]
2117 set z [$name cget -type]
2118 puts [format "Chip %d is %s, Endian: %s, type: %s" $x $y $z]
2119 @}
2120 @end example
2121
2122 @section Target Variants
2123 @itemize @bullet
2124 @item @b{arm7tdmi}
2125 @* Unknown (please write me)
2126 @item @b{arm720t}
2127 @* Unknown (please write me) (similar to arm7tdmi)
2128 @item @b{arm9tdmi}
2129 @* Variants: @option{arm920t}, @option{arm922t} and @option{arm940t}
2130 This enables the hardware single-stepping support found on these
2131 cores.
2132 @item @b{arm920t}
2133 @* None.
2134 @item @b{arm966e}
2135 @* None (this is also used as the ARM946)
2136 @item @b{cortex_m3}
2137 @* use variant <@var{-variant lm3s}> when debugging Luminary lm3s targets. This will cause
2138 OpenOCD to use a software reset rather than asserting SRST to avoid a issue with clearing
2139 the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will
2140 be detected and the normal reset behaviour used.
2141 @item @b{xscale}
2142 @* Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},@option{pxa250}, @option{pxa255}, @option{pxa26x}.
2143 @item @b{arm11}
2144 @* Supported variants are @option{arm1136}, @option{arm1156}, @option{arm1176}
2145 @item @b{mips_m4k}
2146 @* Use variant @option{ejtag_srst} when debugging targets that do not
2147 provide a functional SRST line on the EJTAG connector. This causes
2148 OpenOCD to instead use an EJTAG software reset command to reset the
2149 processor. You still need to enable @option{srst} on the reset
2150 configuration command to enable OpenOCD hardware reset functionality.
2151 @comment END variants
2152 @end itemize
2153 @section working_area - Command Removed
2154 @cindex working_area
2155 @*@b{Please use the ``$_TARGETNAME configure -work-area-... parameters instead}
2156 @* This documentation remains because there are existing scripts that
2157 still use this that need to be converted.
2158 @example
2159 working_area target# address size backup| [virtualaddress]
2160 @end example
2161 @* The target# is a the 0 based target numerical index.
2162
2163 @node Flash Configuration
2164 @chapter Flash programming
2165 @cindex Flash Configuration
2166
2167 OpenOCD has different commands for NOR and NAND flash;
2168 the ``flash'' command works with NOR flash, while
2169 the ``nand'' command works with NAND flash.
2170 This partially reflects different hardware technologies:
2171 NOR flash usually supports direct CPU instruction and data bus access,
2172 while data from a NAND flash must be copied to memory before it can be
2173 used. (SPI flash must also be copied to memory before use.)
2174 However, the documentation also uses ``flash'' as a generic term;
2175 for example, ``Put flash configuration in board-specific files''.
2176
2177 @b{Note:} As of 28/nov/2008 OpenOCD does not know how to program a SPI
2178 flash that a micro may boot from. Perhaps you, the reader, would like to
2179 contribute support for this.
2180
2181 Flash Steps:
2182 @enumerate
2183 @item Configure via the command @b{flash bank}
2184 @* Normally this is done in a configuration file.
2185 @item Operate on the flash via @b{flash SOMECOMMAND}
2186 @* Often commands to manipulate the flash are typed by a human, or run
2187 via a script in some automated way. For example: To program the boot
2188 flash on your board.
2189 @item GDB Flashing
2190 @* Flashing via GDB requires the flash be configured via ``flash
2191 bank'', and the GDB flash features be enabled. See the daemon
2192 configuration section for more details.
2193 @end enumerate
2194
2195 @section Flash commands
2196 @cindex Flash commands
2197 @subsection flash banks
2198 @b{flash banks}
2199 @cindex flash banks
2200 @*List configured flash banks
2201 @*@b{NOTE:} the singular form: 'flash bank' is used to configure the flash banks.
2202 @subsection flash info
2203 @b{flash info} <@var{num}>
2204 @cindex flash info
2205 @*Print info about flash bank <@option{num}>
2206 @subsection flash probe
2207 @b{flash probe} <@var{num}>
2208 @cindex flash probe
2209 @*Identify the flash, or validate the parameters of the configured flash. Operation
2210 depends on the flash type.
2211 @subsection flash erase_check
2212 @b{flash erase_check} <@var{num}>
2213 @cindex flash erase_check
2214 @*Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
2215 updates the erase state information displayed by @option{flash info}. That means you have
2216 to issue an @option{erase_check} command after erasing or programming the device to get
2217 updated information.
2218 @subsection flash protect_check
2219 @b{flash protect_check} <@var{num}>
2220 @cindex flash protect_check
2221 @*Check protection state of sectors in flash bank <num>.
2222 @option{flash erase_sector} using the same syntax.
2223 @subsection flash erase_sector
2224 @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
2225 @cindex flash erase_sector
2226 @anchor{flash erase_sector}
2227 @*Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
2228 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may
2229 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
2230 the CFI driver).
2231 @subsection flash erase_address
2232 @b{flash erase_address} <@var{address}> <@var{length}>
2233 @cindex flash erase_address
2234 @*Erase sectors starting at <@var{address}> for <@var{length}> bytes
2235 @subsection flash write_bank
2236 @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
2237 @cindex flash write_bank
2238 @anchor{flash write_bank}
2239 @*Write the binary <@var{file}> to flash bank <@var{num}>, starting at
2240 <@option{offset}> bytes from the beginning of the bank.
2241 @subsection flash write_image
2242 @b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
2243 @cindex flash write_image
2244 @anchor{flash write_image}
2245 @*Write the image <@var{file}> to the current target's flash bank(s). A relocation
2246 [@var{offset}] can be specified and the file [@var{type}] can be specified
2247 explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
2248 (ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
2249 if the @option{erase} parameter is given.
2250 @subsection flash protect
2251 @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
2252 @cindex flash protect
2253 @*Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
2254 <@var{last}> of @option{flash bank} <@var{num}>.
2255
2256 @subsection mFlash commands
2257 @cindex mFlash commands
2258 @itemize @bullet
2259 @item @b{mflash probe}
2260 @cindex mflash probe
2261 Probe mflash.
2262 @item @b{mflash write} <@var{num}> <@var{file}> <@var{offset}>
2263 @cindex mflash write
2264 Write the binary <@var{file}> to mflash bank <@var{num}>, starting at
2265 <@var{offset}> bytes from the beginning of the bank.
2266 @item @b{mflash dump} <@var{num}> <@var{file}> <@var{offset}> <@var{size}>
2267 @cindex mflash dump
2268 Dump <size> bytes, starting at <@var{offset}> bytes from the beginning of the <@var{num}> bank
2269 to a <@var{file}>.
2270 @end itemize
2271
2272 @section flash bank command
2273 The @b{flash bank} command is used to configure one or more flash chips (or banks in OpenOCD terms)
2274
2275 @example
2276 @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
2277 <@var{bus_width}> <@var{target}> [@var{driver_options ...}]
2278 @end example
2279 @cindex flash bank
2280 @*Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
2281 and <@var{bus_width}> bytes using the selected flash <driver>.
2282
2283 @subsection External Flash - cfi options
2284 @cindex cfi options
2285 CFI flashes are external flash chips - often they are connected to a
2286 specific chip select on the CPU. By default, at hard reset, most
2287 CPUs have the ablity to ``boot'' from some flash chip - typically
2288 attached to the CPU's CS0 pin.
2289
2290 For other chip selects: OpenOCD does not know how to configure, or
2291 access a specific chip select. Instead you, the human, might need to
2292 configure additional chip selects via other commands (like: mww) , or
2293 perhaps configure a GPIO pin that controls the ``write protect'' pin
2294 on the flash chip.
2295
2296 @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
2297 <@var{target}> [@var{jedec_probe}|@var{x16_as_x8}]
2298 @*CFI flashes require the name or number of the target they're connected to
2299 as an additional
2300 argument. The CFI driver makes use of a working area (specified for the target)
2301 to significantly speed up operation.
2302
2303 @var{chip_width} and @var{bus_width} are specified in bytes.
2304
2305 The @var{jedec_probe} option is used to detect certain non-CFI flash ROMs, like AM29LV010 and similar types.
2306
2307 @var{x16_as_x8} ???
2308
2309 @subsection Internal Flash (Microcontrollers)
2310 @subsubsection lpc2000 options
2311 @cindex lpc2000 options
2312
2313 @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target}> <@var{variant}>
2314 <@var{clock}> [@var{calc_checksum}]
2315 @*LPC flashes don't require the chip and bus width to be specified. Additional
2316 parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
2317 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx),
2318 the name or number of the target this flash belongs to (first is 0),
2319 the frequency at which the core
2320 is currently running (in kHz - must be an integral number), and the optional keyword
2321 @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
2322 vector table.
2323
2324
2325 @subsubsection at91sam7 options
2326 @cindex at91sam7 options
2327
2328 @b{flash bank at91sam7} 0 0 0 0 <@var{target}>
2329 @*AT91SAM7 flashes only require the @var{target}, all other values are looked up after
2330 reading the chip-id and type.
2331
2332 @subsubsection str7 options
2333 @cindex str7 options
2334
2335 @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target}> <@var{variant}>
2336 @*variant can be either STR71x, STR73x or STR75x.
2337
2338 @subsubsection str9 options
2339 @cindex str9 options
2340
2341 @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target}>
2342 @*The str9 needs the flash controller to be configured prior to Flash programming, e.g.
2343 @example
2344 str9x flash_config 0 4 2 0 0x80000
2345 @end example
2346 This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
2347
2348 @subsubsection str9 options (str9xpec driver)
2349
2350 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target}>
2351 @*Before using the flash commands the turbo mode must be enabled using str9xpec
2352 @option{enable_turbo} <@var{num>.}
2353
2354 Only use this driver for locking/unlocking the device or configuring the option bytes.
2355 Use the standard str9 driver for programming. @xref{STR9 specific commands}.
2356
2357 @subsubsection Stellaris (LM3Sxxx) options
2358 @cindex Stellaris (LM3Sxxx) options
2359
2360 @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target}>
2361 @*Stellaris flash plugin only require the @var{target}.
2362
2363 @subsubsection stm32x options
2364 @cindex stm32x options
2365
2366 @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target}>
2367 @*stm32x flash plugin only require the @var{target}.
2368
2369 @subsubsection aduc702x options
2370 @cindex aduc702x options
2371
2372 @b{flash bank aduc702x} 0 0 0 0 <@var{target}>
2373 @*The aduc702x flash plugin works with Analog Devices model numbers ADUC7019 through ADUC7028. The setup command only requires the @var{target} argument (all devices in this family have the same memory layout).
2374
2375 @subsection mFlash Configuration
2376 @cindex mFlash Configuration
2377 @b{mflash bank} <@var{soc}> <@var{base}> <@var{chip_width}> <@var{bus_width}>
2378 <@var{RST pin}> <@var{WP pin}> <@var{DPD pin}> <@var{target}>
2379 @cindex mflash bank
2380 @*Configures a mflash for <@var{soc}> host bank at
2381 <@var{base}>. <@var{chip_width}> and <@var{bus_width}> are bytes
2382 order. Pin number format is dependent on host GPIO calling convention.
2383 If WP or DPD pin was not used, write -1. Currently, mflash bank
2384 support s3c2440 and pxa270.
2385
2386 (ex. of s3c2440) mflash <@var{RST pin}> is GPIO B1, <@var{WP pin}> and <@var{DPD pin}> are not used.
2387 @example
2388 mflash bank s3c2440 0x10000000 2 2 1b -1 -1 0
2389 @end example
2390 (ex. of pxa270) mflash <@var{RST pin}> is GPIO 43, <@var{DPD pin}> is not used and <@var{DPD pin}> is GPIO 51.
2391 @example
2392 mflash bank pxa270 0x08000000 2 2 43 -1 51 0
2393 @end example
2394
2395 @section Microcontroller specific Flash Commands
2396
2397 @subsection AT91SAM7 specific commands
2398 @cindex AT91SAM7 specific commands
2399 The flash configuration is deduced from the chip identification register. The flash
2400 controller handles erases automatically on a page (128/265 byte) basis, so erase is
2401 not necessary for flash programming. AT91SAM7 processors with less than 512K flash
2402 only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
2403 that can be erased separatly. Only an EraseAll command is supported by the controller
2404 for each flash plane and this is called with
2405 @itemize @bullet
2406 @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
2407 @*bulk erase flash planes first_plane to last_plane.
2408 @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
2409 @cindex at91sam7 gpnvm
2410 @*set or clear a gpnvm bit for the processor
2411 @end itemize
2412
2413 @subsection STR9 specific commands
2414 @cindex STR9 specific commands
2415 @anchor{STR9 specific commands}
2416 These are flash specific commands when using the str9xpec driver.
2417 @itemize @bullet
2418 @item @b{str9xpec enable_turbo} <@var{num}>
2419 @cindex str9xpec enable_turbo
2420 @*enable turbo mode, will simply remove the str9 from the chain and talk
2421 directly to the embedded flash controller.
2422 @item @b{str9xpec disable_turbo} <@var{num}>
2423 @cindex str9xpec disable_turbo
2424 @*restore the str9 into JTAG chain.
2425 @item @b{str9xpec lock} <@var{num}>
2426 @cindex str9xpec lock
2427 @*lock str9 device. The str9 will only respond to an unlock command that will
2428 erase the device.
2429 @item @b{str9xpec unlock} <@var{num}>
2430 @cindex str9xpec unlock
2431 @*unlock str9 device.
2432 @item @b{str9xpec options_read} <@var{num}>
2433 @cindex str9xpec options_read
2434 @*read str9 option bytes.
2435 @item @b{str9xpec options_write} <@var{num}>
2436 @cindex str9xpec options_write
2437 @*write str9 option bytes.
2438 @end itemize
2439
2440 Note: Before using the str9xpec driver here is some background info to help
2441 you better understand how the drivers works. OpenOCD has two flash drivers for
2442 the str9.
2443 @enumerate
2444 @item
2445 Standard driver @option{str9x} programmed via the str9 core. Normally used for
2446 flash programming as it is faster than the @option{str9xpec} driver.
2447 @item
2448 Direct programming @option{str9xpec} using the flash controller. This is an
2449 ISC compilant (IEEE 1532) tap connected in series with the str9 core. The str9
2450 core does not need to be running to program using this flash driver. Typical use
2451 for this driver is locking/unlocking the target and programming the option bytes.
2452 @end enumerate
2453
2454 Before we run any commands using the @option{str9xpec} driver we must first disable
2455 the str9 core. This example assumes the @option{str9xpec} driver has been
2456 configured for flash bank 0.
2457 @example
2458 # assert srst, we do not want core running
2459 # while accessing str9xpec flash driver
2460 jtag_reset 0 1
2461 # turn off target polling
2462 poll off
2463 # disable str9 core
2464 str9xpec enable_turbo 0
2465 # read option bytes
2466 str9xpec options_read 0
2467 # re-enable str9 core
2468 str9xpec disable_turbo 0
2469 poll on
2470 reset halt
2471 @end example
2472 The above example will read the str9 option bytes.
2473 When performing a unlock remember that you will not be able to halt the str9 - it
2474 has been locked. Halting the core is not required for the @option{str9xpec} driver
2475 as mentioned above, just issue the commands above manually or from a telnet prompt.
2476
2477 @subsection STR9 configuration
2478 @cindex STR9 configuration
2479 @itemize @bullet
2480 @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
2481 <@var{BBADR}> <@var{NBBADR}>
2482 @cindex str9x flash_config
2483 @*Configure str9 flash controller.
2484 @example
2485 e.g. str9x flash_config 0 4 2 0 0x80000
2486 This will setup
2487 BBSR - Boot Bank Size register
2488 NBBSR - Non Boot Bank Size register
2489 BBADR - Boot Bank Start Address register
2490 NBBADR - Boot Bank Start Address register
2491 @end example
2492 @end itemize
2493
2494 @subsection STR9 option byte configuration
2495 @cindex STR9 option byte configuration
2496 @itemize @bullet
2497 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
2498 @cindex str9xpec options_cmap
2499 @*configure str9 boot bank.
2500 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
2501 @cindex str9xpec options_lvdthd
2502 @*configure str9 lvd threshold.
2503 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
2504 @cindex str9xpec options_lvdsel
2505 @*configure str9 lvd source.
2506 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
2507 @cindex str9xpec options_lvdwarn
2508 @*configure str9 lvd reset warning source.
2509 @end itemize
2510
2511 @subsection STM32x specific commands
2512 @cindex STM32x specific commands
2513
2514 These are flash specific commands when using the stm32x driver.
2515 @itemize @bullet
2516 @item @b{stm32x lock} <@var{num}>
2517 @cindex stm32x lock
2518 @*lock stm32 device.
2519 @item @b{stm32x unlock} <@var{num}>
2520 @cindex stm32x unlock
2521 @*unlock stm32 device.
2522 @item @b{stm32x options_read} <@var{num}>
2523 @cindex stm32x options_read
2524 @*read stm32 option bytes.
2525 @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
2526 <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
2527 @cindex stm32x options_write
2528 @*write stm32 option bytes.
2529 @item @b{stm32x mass_erase} <@var{num}>
2530 @cindex stm32x mass_erase
2531 @*mass erase flash memory.
2532 @end itemize
2533
2534 @subsection Stellaris specific commands
2535 @cindex Stellaris specific commands
2536
2537 These are flash specific commands when using the Stellaris driver.
2538 @itemize @bullet
2539 @item @b{stellaris mass_erase} <@var{num}>
2540 @cindex stellaris mass_erase
2541 @*mass erase flash memory.
2542 @end itemize
2543
2544 @node NAND Flash Commands
2545 @chapter NAND Flash Commands
2546 @cindex NAND
2547
2548 Compared to NOR or SPI flash, NAND devices are inexpensive
2549 and high density. Today's NAND chips, and multi-chip modules,
2550 commonly hold multiple GigaBytes of data.
2551
2552 NAND chips consist of a number of ``erase blocks'' of a given
2553 size (such as 128 KBytes), each of which is divided into a
2554 number of pages (of perhaps 512 or 2048 bytes each). Each
2555 page of a NAND flash has an ``out of band'' (OOB) area to hold
2556 Error Correcting Code (ECC) and other metadata, usually 16 bytes
2557 of OOB for every 512 bytes of page data.
2558
2559 One key characteristic of NAND flash is that its error rate
2560 is higher than that of NOR flash. In normal operation, that
2561 ECC is used to correct and detect errors. However, NAND
2562 blocks can also wear out and become unusable; those blocks
2563 are then marked "bad". NAND chips are even shipped from the
2564 manufacturer with a few bad blocks. The highest density chips
2565 use a technology (MLC) that wears out more quickly, so ECC
2566 support is increasingly important as a way to detect blocks
2567 that have begun to fail, and help to preserve data integrity
2568 with techniques such as wear leveling.
2569
2570 Software is used to manage the ECC. Some controllers don't
2571 support ECC directly; in those cases, software ECC is used.
2572 Other controllers speed up the ECC calculations with hardware.
2573 Single-bit error correction hardware is routine. Controllers
2574 geared for newer MLC chips may correct 4 or more errors for
2575 every 512 bytes of data.
2576
2577 You will need to make sure that any data you write using
2578 OpenOCD includes the apppropriate kind of ECC. For example,
2579 that may mean passing the @code{oob_softecc} flag when
2580 writing NAND data, or ensuring that the correct hardware
2581 ECC mode is used.
2582
2583 The basic steps for using NAND devices include:
2584 @enumerate
2585 @item Declare via the command @command{nand device}
2586 @* Do this in a board-specific configuration file,
2587 passing parameters as needed by the controller.
2588 @item Configure each device using @command{nand probe}.
2589 @* Do this only after the associated target is set up,
2590 such as in its reset-init script or in procures defined
2591 to access that device.
2592 @item Operate on the flash via @command{nand subcommand}
2593 @* Often commands to manipulate the flash are typed by a human, or run
2594 via a script in some automated way. Common task include writing a
2595 boot loader, operating system, or other data needed to initialize or
2596 de-brick a board.
2597 @end enumerate
2598
2599 @section NAND Configuration Commands
2600 @cindex NAND configuration
2601
2602 NAND chips must be declared in configuration scripts,
2603 plus some additional configuration that's done after
2604 OpenOCD has initialized.
2605
2606 @deffn {Config Command} {nand device} controller target [configparams...]
2607 Declares a NAND device, which can be read and written to
2608 after it has been configured through @command{nand probe}.
2609 In OpenOCD, devices are single chips; this is unlike some
2610 operating systems, which may manage multiple chips as if
2611 they were a single (larger) device.
2612 In some cases, configuring a device will activate extra
2613 commands; see the controller-specific documentation.
2614
2615 @b{NOTE:} This command is not available after OpenOCD
2616 initialization has completed. Use it in board specific
2617 configuration files, not interactively.
2618
2619 @itemize @bullet
2620 @item @var{controller} ... identifies a the controller driver
2621 associated with the NAND device being declared.
2622 @xref{NAND Driver List}.
2623 @item @var{target} ... names the target used when issuing
2624 commands to the NAND controller.
2625 @comment Actually, it's currently a controller-specific parameter...
2626 @item @var{configparams} ... controllers may support, or require,
2627 additional parameters. See the controller-specific documentation
2628 for more information.
2629 @end itemize
2630 @end deffn
2631
2632 @deffn Command {nand list}
2633 Prints a one-line summary of each device declared
2634 using @command{nand device}, numbered from zero.
2635 Note that un-probed devices show no details.
2636 @end deffn
2637
2638 @deffn Command {nand probe} num
2639 Probes the specified device to determine key characteristics
2640 like its page and block sizes, and how many blocks it has.
2641 The @var{num} parameter is the value shown by @command{nand list}.
2642 You must (successfully) probe a device before you can use
2643 it with most other NAND commands.
2644 @end deffn
2645
2646 @section Erasing, Reading, Writing to NAND Flash
2647
2648 @deffn Command {nand dump} num filename offset length [oob_option]
2649 @cindex NAND reading
2650 Reads binary data from the NAND device and writes it to the file,
2651 starting at the specified offset.
2652 The @var{num} parameter is the value shown by @command{nand list}.
2653
2654 Use a complete path name for @var{filename}, so you don't depend
2655 on the directory used to start the OpenOCD server.
2656
2657 The @var{offset} and @var{length} must be exact multiples of the
2658 device's page size. They describe a data region; the OOB data
2659 associated with each such page may also be accessed.
2660
2661 @b{NOTE:} At the time this text was written, no error correction
2662 was done on the data that's read, unless raw access was disabled
2663 and the underlying NAND controller driver had a @code{read_page}
2664 method which handled that error correction.
2665
2666 By default, only page data is saved to the specified file.
2667 Use an @var{oob_option} parameter to save OOB data:
2668 @itemize @bullet
2669 @item no oob_* parameter
2670 @*Output file holds only page data; OOB is discarded.
2671 @item @code{oob_raw}
2672 @*Output file interleaves page data and OOB data;
2673 the file will be longer than "length" by the size of the
2674 spare areas associated with each data page.
2675 Note that this kind of "raw" access is different from
2676 what's implied by @command{nand raw_access}, which just
2677 controls whether a hardware-aware access method is used.
2678 @item @code{oob_only}
2679 @*Output file has only raw OOB data, and will
2680 be smaller than "length" since it will contain only the
2681 spare areas associated with each data page.
2682 @end itemize
2683 @end deffn
2684
2685 @deffn Command {nand erase} num ...
2686 @cindex NAND erasing
2687 @b{NOTE:} Syntax is in flux.
2688 @end deffn
2689
2690 @deffn Command {nand write} num filename offset [option...]
2691 @cindex NAND writing
2692 Writes binary data from the file into the specified NAND device,
2693 starting at the specified offset. Those pages should already
2694 have been erased; you can't change zero bits to one bits.
2695 The @var{num} parameter is the value shown by @command{nand list}.
2696
2697 Use a complete path name for @var{filename}, so you don't depend
2698 on the directory used to start the OpenOCD server.
2699
2700 The @var{offset} must be an exact multiple of the device's page size.
2701 All data in the file will be written, assuming it doesn't run
2702 past the end of the device.
2703 Only full pages are written, and any extra space in the last
2704 page will be filled with 0xff bytes. (That includes OOB data,
2705 if that's being written.)
2706
2707 @b{NOTE:} At the time this text was written, bad blocks are
2708 ignored. That is, this routine will not skip bad blocks,
2709 but will instead try to write them. This can cause problems.
2710
2711 Provide at most one @var{option} parameter. With some
2712 NAND drivers, the meanings of these parameters may change
2713 if @command{nand raw_access} was used to disable hardware ECC.
2714 @itemize @bullet
2715 @item no oob_* parameter
2716 @*File has only page data, which is written.
2717 If raw acccess is in use, the OOB area will not be written.
2718 Otherwise, if the underlying NAND controller driver has
2719 a @code{write_page} routine, that routine may write the OOB
2720 with hardware-computed ECC data.
2721 @item @code{oob_only}
2722 @*File has only raw OOB data, which is written to the OOB area.
2723 Each page's data area stays untouched. @i{This can be a dangerous
2724 option}, since it can invalidate the ECC data.
2725 You may need to force raw access to use this mode.
2726 @item @code{oob_raw}
2727 @*File interleaves data and OOB data, both of which are written
2728 If raw access is enabled, the data is written first, then the
2729 un-altered OOB.
2730 Otherwise, if the underlying NAND controller driver has
2731 a @code{write_page} routine, that routine may modify the OOB
2732 before it's written, to include hardware-computed ECC data.
2733 @item @code{oob_softecc}
2734 @*File has only page data, which is written.
2735 The OOB area is filled with 0xff, except for a standard 1-bit
2736 software ECC code stored in conventional locations.
2737 You might need to force raw access to use this mode, to prevent
2738 the underlying driver from applying hardware ECC.
2739 @item @code{oob_softecc_kw}
2740 @*File has only page data, which is written.
2741 The OOB area is filled with 0xff, except for a 4-bit software ECC
2742 specific to the boot ROM in Marvell Kirkwood SoCs.
2743 You might need to force raw access to use this mode, to prevent
2744 the underlying driver from applying hardware ECC.
2745 @end itemize
2746 @end deffn
2747
2748 @section Other NAND commands
2749 @cindex NAND other commands
2750
2751 @deffn Command {nand check_bad} num ...
2752 @b{NOTE:} Syntax is in flux.
2753 @end deffn
2754
2755 @deffn Command {nand info} num
2756 The @var{num} parameter is the value shown by @command{nand list}.
2757 This prints the one-line summary from "nand list", plus for
2758 devices which have been probed this also prints any known
2759 status for each block.
2760 @end deffn
2761
2762 @deffn Command {nand raw_access} num <enable|disable>
2763 Sets or clears an flag affecting how page I/O is done.
2764 The @var{num} parameter is the value shown by @command{nand list}.
2765
2766 This flag is cleared (disabled) by default, but changing that
2767 value won't affect all NAND devices. The key factor is whether
2768 the underlying driver provides @code{read_page} or @code{write_page}
2769 methods. If it doesn't provide those methods, the setting of
2770 this flag is irrelevant; all access is effectively ``raw''.
2771
2772 When those methods exist, they are normally used when reading
2773 data (@command{nand dump} or reading bad block markers) or
2774 writing it (@command{nand write}). However, enabling
2775 raw access (setting the flag) prevents use of those methods,
2776 bypassing hardware ECC logic.
2777 @i{This can be a dangerous option}, since writing blocks
2778 with the wrong ECC data can cause them to be marked as bad.
2779 @end deffn
2780
2781 @section NAND Drivers; Driver-specific Options and Commands
2782 @anchor{NAND Driver List}
2783 As noted above, the @command{nand device} command allows
2784 driver-specific options and behaviors.
2785 Some controllers also activate controller-specific commands.
2786
2787 @deffn {NAND Driver} lpc3180
2788 These controllers require an extra @command{nand device}
2789 parameter: the clock rate used by the controller.
2790 @deffn Command {nand lpc3180 select} num [mlc|slc]
2791 Configures use of the MLC or SLC controller mode.
2792 MLC implies use of hardware ECC.
2793 The @var{num} parameter is the value shown by @command{nand list}.
2794 @end deffn
2795
2796 At this writing, this driver includes @code{write_page}
2797 and @code{read_page} methods. Using @command{nand raw_access}
2798 to disable those methods will prevent use of hardware ECC
2799 in the MLC controller mode, but won't change SLC behavior.
2800 @end deffn
2801 @comment current lpc3180 code won't issue 5-byte address cycles
2802
2803 @deffn {NAND Driver} orion
2804 These controllers require an extra @command{nand device}
2805 parameter: the address of the controller.
2806 @example
2807 nand device orion 0xd8000000
2808 @end example
2809 These controllers don't define any specialized commands.
2810 At this writing, their drivers don't include @code{write_page}
2811 or @code{read_page} methods, so @command{nand raw_access} won't
2812 change any behavior.
2813 @end deffn
2814
2815 @deffn {NAND Driver} {s3c2410, s3c2412, s3c2440, s3c2443}
2816 These S3C24xx family controllers don't have any special
2817 @command{nand device} options, and don't define any
2818 specialized commands.
2819 At this writing, their drivers don't include @code{write_page}
2820 or @code{read_page} methods, so @command{nand raw_access} won't
2821 change any behavior.
2822 @end deffn
2823
2824 @node General Commands
2825 @chapter General Commands
2826 @cindex commands
2827
2828 The commands documented in this chapter here are common commands that
2829 you, as a human, may want to type and see the output of. Configuration type
2830 commands are documented elsewhere.
2831
2832 Intent:
2833 @itemize @bullet
2834 @item @b{Source Of Commands}
2835 @* OpenOCD commands can occur in a configuration script (discussed
2836 elsewhere) or typed manually by a human or supplied programatically,
2837 or via one of several TCP/IP Ports.
2838
2839 @item @b{From the human}
2840 @* A human should interact with the telnet interface (default port: 4444,
2841 or via GDB, default port 3333)
2842
2843 To issue commands from within a GDB session, use the @option{monitor}
2844 command, e.g. use @option{monitor poll} to issue the @option{poll}
2845 command. All output is relayed through the GDB session.
2846
2847 @item @b{Machine Interface}
2848 The Tcl interface's intent is to be a machine interface. The default Tcl
2849 port is 5555.
2850 @end itemize
2851
2852
2853 @section Daemon Commands
2854
2855 @subsection sleep [@var{msec}]
2856 @cindex sleep
2857 @*Wait for n milliseconds before resuming. Useful in connection with script files
2858 (@var{script} command and @var{target_script} configuration).
2859
2860 @subsection shutdown
2861 @cindex shutdown
2862 @*Close the OpenOCD daemon, disconnecting all clients (GDB, telnet, other).
2863
2864 @subsection debug_level [@var{n}]
2865 @cindex debug_level
2866 @anchor{debug_level}
2867 @*Display or adjust debug level to n<0-3>
2868
2869 @subsection fast [@var{enable|disable}]
2870 @cindex fast
2871 @*Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
2872 downloads and fast memory access will work if the JTAG interface isn't too fast and
2873 the core doesn't run at a too low frequency. Note that this option only changes the default
2874 and that the indvidual options, like DCC memory downloads, can be enabled and disabled
2875 individually.
2876
2877 The target specific "dangerous" optimisation tweaking options may come and go
2878 as more robust and user friendly ways are found to ensure maximum throughput
2879 and robustness with a minimum of configuration.
2880
2881 Typically the "fast enable" is specified first on the command line:
2882
2883 @example
2884 openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
2885 @end example
2886
2887 @subsection echo <@var{message}>
2888 @cindex echo
2889 @*Output message to stdio. e.g. echo "Programming - please wait"
2890
2891 @subsection log_output <@var{file}>
2892 @cindex log_output
2893 @*Redirect logging to <file> (default: stderr)
2894
2895 @subsection script <@var{file}>
2896 @cindex script
2897 @*Execute commands from <file>
2898 See also: ``source [find FILENAME]''
2899
2900 @section Target state handling
2901 @subsection power <@var{on}|@var{off}>
2902 @cindex reg
2903 @*Turn power switch to target on/off.
2904 No arguments: print status.
2905 Not all interfaces support this.
2906
2907 @subsection reg [@option{#}|@option{name}] [value]
2908 @cindex reg
2909 @*Access a single register by its number[@option{#}] or by its [@option{name}].
2910 No arguments: list all available registers for the current target.
2911 Number or name argument: display a register.
2912 Number or name and value arguments: set register value.
2913
2914 @subsection poll [@option{on}|@option{off}]
2915 @cindex poll
2916 @*Poll the target for its current state. If the target is in debug mode, architecture
2917 specific information about the current state is printed. An optional parameter
2918 allows continuous polling to be enabled and disabled.
2919
2920 @subsection halt [@option{ms}]
2921 @cindex halt
2922 @*Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds.
2923 Default [@option{ms}] is 5 seconds if no arg given.
2924 Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
2925 will stop OpenOCD from waiting.
2926
2927 @subsection wait_halt [@option{ms}]
2928 @cindex wait_halt
2929 @*Wait for the target to enter debug mode. Optional [@option{ms}] is
2930 a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
2931 arg is given.
2932
2933 @subsection resume [@var{address}]
2934 @cindex resume
2935 @*Resume the target at its current code position, or at an optional address.
2936 OpenOCD will wait 5 seconds for the target to resume.
2937
2938 @subsection step [@var{address}]
2939 @cindex step
2940 @*Single-step the target at its current code position, or at an optional address.
2941
2942 @subsection reset [@option{run}|@option{halt}|@option{init}]
2943 @cindex reset
2944 @*Perform a hard-reset. The optional parameter specifies what should happen after the reset.
2945
2946 With no arguments a "reset run" is executed
2947 @itemize @minus
2948 @item @b{run}
2949 @cindex reset run
2950 @*Let the target run.
2951 @item @b{halt}
2952 @cindex reset halt
2953 @*Immediately halt the target (works only with certain configurations).
2954 @item @b{init}
2955 @cindex reset init
2956 @*Immediately halt the target, and execute the reset script (works only with certain
2957 configurations)
2958 @end itemize
2959
2960 @subsection soft_reset_halt
2961 @cindex reset
2962 @*Requesting target halt and executing a soft reset. This is often used
2963 when a target cannot be reset and halted. The target, after reset is
2964 released begins to execute code. OpenOCD attempts to stop the CPU and
2965 then sets the program counter back to the reset vector. Unfortunately
2966 the code that was executed may have left the hardware in an unknown
2967 state.
2968
2969
2970 @section Memory access commands
2971 @subsection meminfo
2972 display available RAM memory.
2973 @subsection Memory peek/poke type commands
2974 These commands allow accesses of a specific size to the memory
2975 system. Often these are used to configure the current target in some
2976 special way. For example - one may need to write certian values to the
2977 SDRAM controller to enable SDRAM.
2978
2979 @enumerate
2980 @item To change the current target see the ``targets'' (plural) command
2981 @item In system level scripts these commands are deprecated, please use the TARGET object versions.
2982 @end enumerate
2983
2984 @itemize @bullet
2985 @item @b{mdw} <@var{addr}> [@var{count}]
2986 @cindex mdw
2987 @*display memory words (32bit)
2988 @item @b{mdh} <@var{addr}> [@var{count}]
2989 @cindex mdh
2990 @*display memory half-words (16bit)
2991 @item @b{mdb} <@var{addr}> [@var{count}]
2992 @cindex mdb
2993 @*display memory bytes (8bit)
2994 @item @b{mww} <@var{addr}> <@var{value}>
2995 @cindex mww
2996 @*write memory word (32bit)
2997 @item @b{mwh} <@var{addr}> <@var{value}>
2998 @cindex mwh
2999 @*write memory half-word (16bit)
3000 @item @b{mwb} <@var{addr}> <@var{value}>
3001 @cindex mwb
3002 @*write memory byte (8bit)
3003 @end itemize
3004
3005 @section Image loading commands
3006 @subsection load_image
3007 @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
3008 @cindex load_image
3009 @anchor{load_image}
3010 @*Load image <@var{file}> to target memory at <@var{address}>
3011 @subsection fast_load_image
3012 @b{fast_load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
3013 @cindex fast_load_image
3014 @anchor{fast_load_image}
3015 @*Normally you should be using @b{load_image} or GDB load. However, for
3016 testing purposes or when I/O overhead is significant(OpenOCD running on an embedded
3017 host), storing the image in memory and uploading the image to the target
3018 can be a way to upload e.g. multiple debug sessions when the binary does not change.
3019 Arguments are the same as @b{load_image}, but the image is stored in OpenOCD host
3020 memory, i.e. does not affect target. This approach is also useful when profiling
3021 target programming performance as I/O and target programming can easily be profiled
3022 separately.
3023 @subsection fast_load
3024 @b{fast_load}
3025 @cindex fast_image
3026 @anchor{fast_image}
3027 @*Loads an image stored in memory by @b{fast_load_image} to the current target. Must be preceeded by fast_load_image.
3028 @subsection dump_image
3029 @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
3030 @cindex dump_image
3031 @anchor{dump_image}
3032 @*Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
3033 (binary) <@var{file}>.
3034 @subsection verify_image
3035 @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
3036 @cindex verify_image
3037 @*Verify <@var{file}> against target memory starting at <@var{address}>.
3038 This will first attempt a comparison using a CRC checksum, if this fails it will try a binary compare.
3039
3040
3041 @section Breakpoint commands
3042 @cindex Breakpoint commands
3043 @itemize @bullet
3044 @item @b{bp} <@var{addr}> <@var{len}> [@var{hw}]
3045 @cindex bp
3046 @*set breakpoint <address> <length> [hw]
3047 @item @b{rbp} <@var{addr}>
3048 @cindex rbp
3049 @*remove breakpoint <adress>
3050 @item @b{wp} <@var{addr}> <@var{len}> <@var{r}|@var{w}|@var{a}> [@var{value}] [@var{mask}]
3051 @cindex wp
3052 @*set watchpoint <address> <length> <r/w/a> [value] [mask]
3053 @item @b{rwp} <@var{addr}>
3054 @cindex rwp
3055 @*remove watchpoint <adress>
3056 @end itemize
3057
3058 @section Misc Commands
3059 @cindex Other Target Commands
3060 @itemize
3061 @item @b{profile} <@var{seconds}> <@var{gmon.out}>
3062
3063 Profiling samples the CPU's program counter as quickly as possible, which is useful for non-intrusive stochastic profiling.
3064
3065 @end itemize
3066
3067 @section Target Specific Commands
3068 @cindex Target Specific Commands
3069
3070
3071 @page
3072 @section Architecture Specific Commands
3073 @cindex Architecture Specific Commands
3074
3075 @subsection ARMV4/5 specific commands
3076 @cindex ARMV4/5 specific commands
3077
3078 These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
3079 or Intel XScale (XScale isn't supported yet).
3080 @itemize @bullet
3081 @item @b{armv4_5 reg}
3082 @cindex armv4_5 reg
3083 @*Display a list of all banked core registers, fetching the current value from every
3084 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
3085 register value.
3086 @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
3087 @cindex armv4_5 core_mode
3088 @*Displays the core_mode, optionally changing it to either ARM or Thumb mode.
3089 The target is resumed in the currently set @option{core_mode}.
3090 @end itemize
3091
3092 @subsection ARM7/9 specific commands
3093 @cindex ARM7/9 specific commands
3094
3095 These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
3096 ARM920T or ARM926EJ-S.
3097 @itemize @bullet
3098 @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
3099 @cindex arm7_9 dbgrq
3100 @*Enable use of the DBGRQ bit to force entry into debug mode. This should be
3101 safe for all but ARM7TDMI--S cores (like Philips LPC).
3102 @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
3103 @cindex arm7_9 fast_memory_access
3104 @anchor{arm7_9 fast_memory_access}
3105 @*Allow OpenOCD to read and write memory without checking completion of
3106 the operation. This provides a huge speed increase, especially with USB JTAG
3107 cables (FT2232), but might be unsafe if used with targets running at very low
3108 speeds, like the 32kHz startup clock of an AT91RM9200.
3109 @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
3110 @cindex arm7_9 dcc_downloads
3111 @*Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
3112 amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
3113 unsafe, especially with targets running at very low speeds. This command was introduced
3114 with OpenOCD rev. 60, and requires a few bytes of working area.
3115 @end itemize
3116
3117 @subsection ARM720T specific commands
3118 @cindex ARM720T specific commands
3119
3120 @itemize @bullet
3121 @item @b{arm720t cp15} <@var{num}> [@var{value}]
3122 @cindex arm720t cp15
3123 @*display/modify cp15 register <@option{num}> [@option{value}].
3124 @item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
3125 @cindex arm720t md<bhw>_phys
3126 @*Display memory at physical address addr.
3127 @item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
3128 @cindex arm720t mw<bhw>_phys
3129 @*Write memory at physical address addr.
3130 @item @b{arm720t virt2phys} <@var{va}>
3131 @cindex arm720t virt2phys
3132 @*Translate a virtual address to a physical address.
3133 @end itemize
3134
3135 @subsection ARM9TDMI specific commands
3136 @cindex ARM9TDMI specific commands
3137
3138 @itemize @bullet
3139 @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
3140 @cindex arm9tdmi vector_catch
3141 @*Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
3142 @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
3143 @option{irq} @option{fiq}.
3144
3145 Can also be used on other ARM9 based cores such as ARM966, ARM920T and ARM926EJ-S.
3146 @end itemize
3147
3148 @subsection ARM966E specific commands
3149 @cindex ARM966E specific commands
3150
3151 @itemize @bullet
3152 @item @b{arm966e cp15} <@var{num}> [@var{value}]
3153 @cindex arm966e cp15
3154 @*display/modify cp15 register <@option{num}> [@option{value}].
3155 @end itemize
3156
3157 @subsection ARM920T specific commands
3158 @cindex ARM920T specific commands
3159
3160 @itemize @bullet
3161 @item @b{arm920t cp15} <@var{num}> [@var{value}]
3162 @cindex arm920t cp15
3163 @*display/modify cp15 register <@option{num}> [@option{value}].
3164 @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
3165 @cindex arm920t cp15i
3166 @*display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
3167 @item @b{arm920t cache_info}
3168 @cindex arm920t cache_info
3169 @*Print information about the caches found. This allows to see whether your target
3170 is an ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
3171 @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
3172 @cindex arm920t md<bhw>_phys
3173 @*Display memory at physical address addr.
3174 @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
3175 @cindex arm920t mw<bhw>_phys
3176 @*Write memory at physical address addr.
3177 @item @b{arm920t read_cache} <@var{filename}>
3178 @cindex arm920t read_cache
3179 @*Dump the content of ICache and DCache to a file.
3180 @item @b{arm920t read_mmu} <@var{filename}>
3181 @cindex arm920t read_mmu
3182 @*Dump the content of the ITLB and DTLB to a file.
3183 @item @b{arm920t virt2phys} <@var{va}>
3184 @cindex arm920t virt2phys
3185 @*Translate a virtual address to a physical address.
3186 @end itemize
3187
3188 @subsection ARM926EJ-S specific commands
3189 @cindex ARM926EJ-S specific commands
3190
3191 @itemize @bullet
3192 @item @b{arm926ejs cp15} <@var{num}> [@var{value}]
3193 @cindex arm926ejs cp15
3194 @*display/modify cp15 register <@option{num}> [@option{value}].
3195 @item @b{arm926ejs cache_info}
3196 @cindex arm926ejs cache_info
3197 @*Print information about the caches found.
3198 @item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
3199 @cindex arm926ejs md<bhw>_phys
3200 @*Display memory at physical address addr.
3201 @item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
3202 @cindex arm926ejs mw<bhw>_phys
3203 @*Write memory at physical address addr.
3204 @item @b{arm926ejs virt2phys} <@var{va}>
3205 @cindex arm926ejs virt2phys
3206 @*Translate a virtual address to a physical address.
3207 @end itemize
3208
3209 @subsection CORTEX_M3 specific commands
3210 @cindex CORTEX_M3 specific commands
3211
3212 @itemize @bullet
3213 @item @b{cortex_m3 maskisr} <@var{on}|@var{off}>
3214 @cindex cortex_m3 maskisr
3215 @*Enable masking (disabling) interrupts during target step/resume.
3216 @end itemize
3217
3218 @page
3219 @section Debug commands
3220 @cindex Debug commands
3221 The following commands give direct access to the core, and are most likely
3222 only useful while debugging OpenOCD.
3223 @itemize @bullet
3224 @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
3225 @cindex arm7_9 write_xpsr
3226 @*Immediately write either the current program status register (CPSR) or the saved
3227 program status register (SPSR), without changing the register cache (as displayed
3228 by the @option{reg} and @option{armv4_5 reg} commands).
3229 @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
3230 <@var{0=cpsr},@var{1=spsr}>
3231 @cindex arm7_9 write_xpsr_im8
3232 @*Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
3233 operation (similar to @option{write_xpsr}).
3234 @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
3235 @cindex arm7_9 write_core_reg
3236 @*Write a core register, without changing the register cache (as displayed by the
3237 @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
3238 encoding of the [M4:M0] bits of the PSR.
3239 @end itemize
3240
3241 @section Target Requests
3242 @cindex Target Requests
3243 OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
3244 See libdcc in the contrib dir for more details.
3245 @itemize @bullet
3246 @item @b{target_request debugmsgs} <@var{enable}|@var{disable}|@var{charmsg}>
3247 @cindex target_request debugmsgs
3248 @*Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running. @var{charmsg} receives messages if Linux kernel ``Kernel low-level debugging via EmbeddedICE DCC channel'' option is enabled.
3249 @end itemize
3250
3251 @node JTAG Commands
3252 @chapter JTAG Commands
3253 @cindex JTAG Commands
3254 Generally most people will not use the bulk of these commands. They
3255 are mostly used by the OpenOCD developers or those who need to
3256 directly manipulate the JTAG taps.
3257
3258 In general these commands control JTAG taps at a very low level. For
3259 example if you need to control a JTAG Route Controller (i.e.: the
3260 OMAP3530 on the Beagle Board has one) you might use these commands in
3261 a script or an event procedure.
3262 @section Commands
3263 @cindex Commands
3264 @itemize @bullet
3265 @item @b{scan_chain}
3266 @cindex scan_chain
3267 @*Print current scan chain configuration.
3268 @item @b{jtag_reset} <@var{trst}> <@var{srst}>
3269 @cindex jtag_reset
3270 @*Toggle reset lines.
3271 @item @b{endstate} <@var{tap_state}>
3272 @cindex endstate
3273 @*Finish JTAG operations in <@var{tap_state}>.
3274 @item @b{runtest} <@var{num_cycles}>
3275 @cindex runtest
3276 @*Move to Run-Test/Idle, and execute <@var{num_cycles}>
3277 @item @b{statemove} [@var{tap_state}]
3278 @cindex statemove
3279 @*Move to current endstate or [@var{tap_state}]
3280 @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
3281 @cindex irscan
3282 @*Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
3283 @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
3284 @cindex drscan
3285 @*Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
3286 @item @b{verify_ircapture} <@option{enable}|@option{disable}>
3287 @cindex verify_ircapture
3288 @*Verify value captured during Capture-IR. Default is enabled.
3289 @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
3290 @cindex var
3291 @*Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
3292 @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
3293 @cindex field
3294 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
3295 @end itemize
3296
3297 @section Tap states
3298 @cindex Tap states
3299 Available tap_states are:
3300 @itemize @bullet
3301 @item @b{RESET}
3302 @cindex RESET
3303 @item @b{IDLE}
3304 @cindex IDLE
3305 @item @b{DRSELECT}
3306 @cindex DRSELECT
3307 @item @b{DRCAPTURE}
3308 @cindex DRCAPTURE
3309 @item @b{DRSHIFT}
3310 @cindex DRSHIFT
3311 @item @b{DREXIT1}
3312 @cindex DREXIT1
3313 @item @b{DRPAUSE}
3314 @cindex DRPAUSE
3315 @item @b{DREXIT2}
3316 @cindex DREXIT2
3317 @item @b{DRUPDATE}
3318 @cindex DRUPDATE
3319 @item @b{IRSELECT}
3320 @cindex IRSELECT
3321 @item @b{IRCAPTURE}
3322 @cindex IRCAPTURE
3323 @item @b{IRSHIFT}
3324 @cindex IRSHIFT
3325 @item @b{IREXIT1}
3326 @cindex IREXIT1
3327 @item @b{IRPAUSE}
3328 @cindex IRPAUSE
3329 @item @b{IREXIT2}
3330 @cindex IREXIT2
3331 @item @b{IRUPDATE}
3332 @cindex IRUPDATE
3333 @end itemize
3334
3335
3336 @node TFTP
3337 @chapter TFTP
3338 @cindex TFTP
3339 If OpenOCD runs on an embedded host(as ZY1000 does), then TFTP can
3340 be used to access files on PCs (either the developer's PC or some other PC).
3341
3342 The way this works on the ZY1000 is to prefix a filename by
3343 "/tftp/ip/" and append the TFTP path on the TFTP
3344 server (tftpd). E.g. "load_image /tftp/10.0.0.96/c:\temp\abc.elf" will
3345 load c:\temp\abc.elf from the developer pc (10.0.0.96) into memory as
3346 if the file was hosted on the embedded host.
3347
3348 In order to achieve decent performance, you must choose a TFTP server
3349 that supports a packet size bigger than the default packet size (512 bytes). There
3350 are numerous TFTP servers out there (free and commercial) and you will have to do
3351 a bit of googling to find something that fits your requirements.
3352
3353 @node Sample Scripts
3354 @chapter Sample Scripts
3355 @cindex scripts
3356
3357 This page shows how to use the Target Library.
3358
3359 The configuration script can be divided into the following sections:
3360 @itemize @bullet
3361 @item Daemon configuration
3362 @item Interface
3363 @item JTAG scan chain
3364 @item Target configuration
3365 @item Flash configuration
3366 @end itemize
3367
3368 Detailed information about each section can be found at OpenOCD configuration.
3369
3370 @section AT91R40008 example
3371 @cindex AT91R40008 example
3372 To start OpenOCD with a target script for the AT91R40008 CPU and reset
3373 the CPU upon startup of the OpenOCD daemon.
3374 @example
3375 openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset
3376 @end example
3377
3378
3379 @node GDB and OpenOCD
3380 @chapter GDB and OpenOCD
3381 @cindex GDB and OpenOCD
3382 OpenOCD complies with the remote gdbserver protocol, and as such can be used
3383 to debug remote targets.
3384
3385 @section Connecting to GDB
3386 @cindex Connecting to GDB
3387 @anchor{Connecting to GDB}
3388 Use GDB 6.7 or newer with OpenOCD if you run into trouble. For
3389 instance GDB 6.3 has a known bug that produces bogus memory access
3390 errors, which has since been fixed: look up 1836 in
3391 @url{http://sourceware.org/cgi-bin/gnatsweb.pl?database=gdb}
3392
3393 @*OpenOCD can communicate with GDB in two ways:
3394 @enumerate
3395 @item
3396 A socket (TCP/IP) connection is typically started as follows:
3397 @example
3398 target remote localhost:3333
3399 @end example
3400 This would cause GDB to connect to the gdbserver on the local pc using port 3333.
3401 @item
3402 A pipe connection is typically started as follows:
3403 @example
3404 target remote | openocd --pipe
3405 @end example
3406 This would cause GDB to run OpenOCD and communicate using pipes (stdin/stdout).
3407 Using this method has the advantage of GDB starting/stopping OpenOCD for the debug
3408 session.
3409 @end enumerate
3410
3411 @*To see a list of available OpenOCD commands type @option{monitor help} on the
3412 GDB command line.
3413
3414 OpenOCD supports the gdb @option{qSupported} packet, this enables information
3415 to be sent by the GDB remote server (i.e. OpenOCD) to GDB. Typical information includes
3416 packet size and the device's memory map.
3417
3418 Previous versions of OpenOCD required the following GDB options to increase
3419 the packet size and speed up GDB communication:
3420 @example
3421 set remote memory-write-packet-size 1024
3422 set remote memory-write-packet-size fixed
3423 set remote memory-read-packet-size 1024
3424 set remote memory-read-packet-size fixed
3425 @end example
3426 This is now handled in the @option{qSupported} PacketSize and should not be required.
3427
3428 @section Programming using GDB
3429 @cindex Programming using GDB
3430
3431 By default the target memory map is sent to GDB. This can be disabled by
3432 the following OpenOCD configuration option:
3433 @example
3434 gdb_memory_map disable
3435 @end example
3436 For this to function correctly a valid flash configuration must also be set
3437 in OpenOCD. For faster performance you should also configure a valid
3438 working area.
3439
3440 Informing GDB of the memory map of the target will enable GDB to protect any
3441 flash areas of the target and use hardware breakpoints by default. This means
3442 that the OpenOCD option @option{gdb_breakpoint_override} is not required when
3443 using a memory map. @xref{gdb_breakpoint_override}.
3444
3445 To view the configured memory map in GDB, use the GDB command @option{info mem}
3446 All other unassigned addresses within GDB are treated as RAM.
3447
3448 GDB 6.8 and higher set any memory area not in the memory map as inaccessible.
3449 This can be changed to the old behaviour by using the following GDB command
3450 @example
3451 set mem inaccessible-by-default off
3452 @end example
3453
3454 If @option{gdb_flash_program enable} is also used, GDB will be able to
3455 program any flash memory using the vFlash interface.
3456
3457 GDB will look at the target memory map when a load command is given, if any
3458 areas to be programmed lie within the target flash area the vFlash packets
3459 will be used.
3460
3461 If the target needs configuring before GDB programming, an event
3462 script can be executed:
3463 @example
3464 $_TARGETNAME configure -event EVENTNAME BODY
3465 @end example
3466
3467 To verify any flash programming the GDB command @option{compare-sections}
3468 can be used.
3469
3470 @node Tcl Scripting API
3471 @chapter Tcl Scripting API
3472 @cindex Tcl Scripting API
3473 @cindex Tcl scripts
3474 @section API rules
3475
3476 The commands are stateless. E.g. the telnet command line has a concept
3477 of currently active target, the Tcl API proc's take this sort of state
3478 information as an argument to each proc.
3479
3480 There are three main types of return values: single value, name value
3481 pair list and lists.
3482
3483 Name value pair. The proc 'foo' below returns a name/value pair
3484 list.
3485
3486 @verbatim
3487
3488 > set foo(me) Duane
3489 > set foo(you) Oyvind
3490 > set foo(mouse) Micky
3491 > set foo(duck) Donald
3492
3493 If one does this:
3494
3495 > set foo
3496
3497 The result is:
3498
3499 me Duane you Oyvind mouse Micky duck Donald
3500
3501 Thus, to get the names of the associative array is easy:
3502
3503 foreach { name value } [set foo] {
3504 puts "Name: $name, Value: $value"
3505 }
3506 @end verbatim
3507
3508 Lists returned must be relatively small. Otherwise a range
3509 should be passed in to the proc in question.
3510
3511 @section Internal low-level Commands
3512
3513 By low-level, the intent is a human would not directly use these commands.
3514
3515 Low-level commands are (should be) prefixed with "openocd_", e.g. openocd_flash_banks
3516 is the low level API upon which "flash banks" is implemented.
3517
3518 @itemize @bullet
3519 @item @b{ocd_mem2array} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
3520
3521 Read memory and return as a Tcl array for script processing
3522 @item @b{ocd_array2mem} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
3523
3524 Convert a Tcl array to memory locations and write the values
3525 @item @b{ocd_flash_banks} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}> <@var{target}> [@option{driver options} ...]
3526
3527 Return information about the flash banks
3528 @end itemize
3529
3530 OpenOCD commands can consist of two words, e.g. "flash banks". The
3531 startup.tcl "unknown" proc will translate this into a Tcl proc
3532 called "flash_banks".
3533
3534 @section OpenOCD specific Global Variables
3535
3536 @subsection HostOS
3537
3538 Real Tcl has ::tcl_platform(), and platform::identify, and many other
3539 variables. JimTCL, as implemented in OpenOCD creates $HostOS which
3540 holds one of the following values:
3541
3542 @itemize @bullet
3543 @item @b{winxx} Built using Microsoft Visual Studio
3544 @item @b{linux} Linux is the underlying operating sytem
3545 @item @b{darwin} Darwin (mac-os) is the underlying operating sytem.
3546 @item @b{cygwin} Running under Cygwin
3547 @item @b{mingw32} Running under MingW32
3548 @item @b{other} Unknown, none of the above.
3549 @end itemize
3550
3551 Note: 'winxx' was choosen because today (March-2009) no distinction is made between Win32 and Win64.
3552
3553 @node Upgrading
3554 @chapter Deprecated/Removed Commands
3555 @cindex Deprecated/Removed Commands
3556 Certain OpenOCD commands have been deprecated/removed during the various revisions.
3557
3558 @itemize @bullet
3559 @item @b{arm7_9 fast_writes}
3560 @cindex arm7_9 fast_writes
3561 @*use @option{arm7_9 fast_memory_access} command with same args. @xref{arm7_9 fast_memory_access}.
3562 @item @b{arm7_9 force_hw_bkpts}
3563 @cindex arm7_9 force_hw_bkpts
3564 @*Use @option{gdb_breakpoint_override} instead. Note that GDB will use hardware breakpoints
3565 for flash if the GDB memory map has been set up(default when flash is declared in
3566 target configuration). @xref{gdb_breakpoint_override}.
3567 @item @b{arm7_9 sw_bkpts}
3568 @cindex arm7_9 sw_bkpts
3569 @*On by default. See also @option{gdb_breakpoint_override}. @xref{gdb_breakpoint_override}.
3570 @item @b{daemon_startup}
3571 @cindex daemon_startup
3572 @*this config option has been removed, simply adding @option{init} and @option{reset halt} to
3573 the end of your config script will give the same behaviour as using @option{daemon_startup reset}
3574 and @option{target cortex_m3 little reset_halt 0}.
3575 @item @b{dump_binary}
3576 @cindex dump_binary
3577 @*use @option{dump_image} command with same args. @xref{dump_image}.
3578 @item @b{flash erase}
3579 @cindex flash erase
3580 @*use @option{flash erase_sector} command with same args. @xref{flash erase_sector}.
3581 @item @b{flash write}
3582 @cindex flash write
3583 @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
3584 @item @b{flash write_binary}
3585 @cindex flash write_binary
3586 @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
3587 @item @b{flash auto_erase}
3588 @cindex flash auto_erase
3589 @*use @option{flash write_image} command passing @option{erase} as the first parameter. @xref{flash write_image}.
3590 @item @b{load_binary}
3591 @cindex load_binary
3592 @*use @option{load_image} command with same args. @xref{load_image}.
3593 @item @b{run_and_halt_time}
3594 @cindex run_and_halt_time
3595 @*This command has been removed for simpler reset behaviour, it can be simulated with the
3596 following commands:
3597 @smallexample
3598 reset run
3599 sleep 100
3600 halt
3601 @end smallexample
3602 @item @b{target} <@var{type}> <@var{endian}> <@var{jtag-position}>
3603 @cindex target
3604 @*use the create subcommand of @option{target}.
3605 @item @b{target_script} <@var{target#}> <@var{eventname}> <@var{scriptname}>
3606 @cindex target_script
3607 @*use <@var{target_name}> configure -event <@var{eventname}> "script <@var{scriptname}>"
3608 @item @b{working_area}
3609 @cindex working_area
3610 @*use the @option{configure} subcommand of @option{target} to set the work-area-virt, work-area-phy, work-area-size, and work-area-backup properties of the target.
3611 @end itemize
3612
3613 @node FAQ
3614 @chapter FAQ
3615 @cindex faq
3616 @enumerate
3617 @item @b{RTCK, also known as: Adaptive Clocking - What is it?}
3618 @cindex RTCK
3619 @cindex adaptive clocking
3620 @*
3621
3622 In digital circuit design it is often refered to as ``clock
3623 synchronisation'' the JTAG interface uses one clock (TCK or TCLK)
3624 operating at some speed, your target is operating at another. The two
3625 clocks are not synchronised, they are ``asynchronous''
3626
3627 In order for the two to work together they must be synchronised. Otherwise
3628 the two systems will get out of sync with each other and nothing will
3629 work. There are 2 basic options:
3630 @enumerate
3631 @item
3632 Use a special circuit.
3633 @item
3634 One clock must be some multiple slower than the other.
3635 @end enumerate
3636
3637 @b{Does this really matter?} For some chips and some situations, this
3638 is a non-issue (i.e.: A 500MHz ARM926) but for others - for example some
3639 Atmel SAM7 and SAM9 chips start operation from reset at 32kHz -
3640 program/enable the oscillators and eventually the main clock. It is in
3641 those critical times you must slow the JTAG clock to sometimes 1 to
3642 4kHz.
3643
3644 Imagine debugging a 500MHz ARM926 hand held battery powered device
3645 that ``deep sleeps'' at 32kHz between every keystroke. It can be
3646 painful.
3647
3648 @b{Solution #1 - A special circuit}
3649
3650 In order to make use of this, your JTAG dongle must support the RTCK
3651 feature. Not all dongles support this - keep reading!
3652
3653 The RTCK signal often found in some ARM chips is used to help with
3654 this problem. ARM has a good description of the problem described at
3655 this link: @url{http://www.arm.com/support/faqdev/4170.html} [checked
3656 28/nov/2008]. Link title: ``How does the JTAG synchronisation logic
3657 work? / how does adaptive clocking work?''.
3658
3659 The nice thing about adaptive clocking is that ``battery powered hand
3660 held device example'' - the adaptiveness works perfectly all the
3661 time. One can set a break point or halt the system in the deep power
3662 down code, slow step out until the system speeds up.
3663
3664 @b{Solution #2 - Always works - but may be slower}
3665
3666 Often this is a perfectly acceptable solution.
3667
3668 In most simple terms: Often the JTAG clock must be 1/10 to 1/12 of
3669 the target clock speed. But what that ``magic division'' is varies
3670 depending on the chips on your board. @b{ARM rule of thumb} Most ARM
3671 based systems require an 8:1 division. @b{Xilinx rule of thumb} is
3672 1/12 the clock speed.
3673
3674 Note: Many FTDI2232C based JTAG dongles are limited to 6MHz.
3675
3676 You can still debug the 'low power' situations - you just need to
3677 manually adjust the clock speed at every step. While painful and
3678 tedious, it is not always practical.
3679
3680 It is however easy to ``code your way around it'' - i.e.: Cheat a little,
3681 have a special debug mode in your application that does a ``high power
3682 sleep''. If you are careful - 98% of your problems can be debugged
3683 this way.
3684
3685 To set the JTAG frequency use the command:
3686
3687 @example
3688 # Example: 1.234MHz
3689 jtag_khz 1234
3690 @end example
3691
3692
3693 @item @b{Win32 Pathnames} Why don't backslashes work in Windows paths?
3694
3695 OpenOCD uses Tcl and a backslash is an escape char. Use @{ and @}
3696 around Windows filenames.
3697
3698 @example
3699 > echo \a
3700
3701 > echo @{\a@}
3702 \a
3703 > echo "\a"
3704
3705 >
3706 @end example
3707
3708
3709 @item @b{Missing: cygwin1.dll} OpenOCD complains about a missing cygwin1.dll.
3710
3711 Make sure you have Cygwin installed, or at least a version of OpenOCD that
3712 claims to come with all the necessary DLLs. When using Cygwin, try launching
3713 OpenOCD from the Cygwin shell.
3714
3715 @item @b{Breakpoint Issue} I'm trying to set a breakpoint using GDB (or a frontend like Insight or
3716 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
3717 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
3718
3719 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
3720 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720T or ARM920T,
3721 software breakpoints consume one of the two available hardware breakpoints.
3722
3723 @item @b{LPC2000 Flash} When erasing or writing LPC2000 on-chip flash, the operation fails at random.
3724
3725 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
3726 clock at the time you're programming the flash. If you've specified the crystal's
3727 frequency, make sure the PLL is disabled. If you've specified the full core speed
3728 (e.g. 60MHz), make sure the PLL is enabled.
3729
3730 @item @b{Amontec Chameleon} When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
3731 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
3732 out while waiting for end of scan, rtck was disabled".
3733
3734 Make sure your PC's parallel port operates in EPP mode. You might have to try several
3735 settings in your PC BIOS (ECP, EPP, and different versions of those).
3736
3737 @item @b{Data Aborts} When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse),
3738 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
3739 memory read caused data abort".
3740
3741 The errors are non-fatal, and are the result of GDB trying to trace stack frames
3742 beyond the last valid frame. It might be possible to prevent this by setting up
3743 a proper "initial" stack frame, if you happen to know what exactly has to
3744 be done, feel free to add this here.
3745
3746 @b{Simple:} In your startup code - push 8 registers of zeros onto the
3747 stack before calling main(). What GDB is doing is ``climbing'' the run
3748 time stack by reading various values on the stack using the standard
3749 call frame for the target. GDB keeps going - until one of 2 things
3750 happen @b{#1} an invalid frame is found, or @b{#2} some huge number of
3751 stackframes have been processed. By pushing zeros on the stack, GDB
3752 gracefully stops.
3753
3754 @b{Debugging Interrupt Service Routines} - In your ISR before you call
3755 your C code, do the same - artifically push some zeros onto the stack,
3756 remember to pop them off when the ISR is done.
3757
3758 @b{Also note:} If you have a multi-threaded operating system, they
3759 often do not @b{in the intrest of saving memory} waste these few
3760 bytes. Painful...
3761
3762
3763 @item @b{JTAG Reset Config} I get the following message in the OpenOCD console (or log file):
3764 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
3765
3766 This warning doesn't indicate any serious problem, as long as you don't want to
3767 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
3768 trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board,
3769 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
3770 independently. With this setup, it's not possible to halt the core right out of
3771 reset, everything else should work fine.
3772
3773 @item @b{USB Power} When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
3774 toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
3775 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
3776 quit with an error message. Is there a stability issue with OpenOCD?
3777
3778 No, this is not a stability issue concerning OpenOCD. Most users have solved
3779 this issue by simply using a self-powered USB hub, which they connect their
3780 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
3781 supply stable enough for the Amontec JTAGkey to be operated.
3782
3783 @b{Laptops running on battery have this problem too...}
3784
3785 @item @b{USB Power} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
3786 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
3787 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
3788 What does that mean and what might be the reason for this?
3789
3790 First of all, the reason might be the USB power supply. Try using a self-powered
3791 hub instead of a direct connection to your computer. Secondly, the error code 4
3792 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
3793 chip ran into some sort of error - this points us to a USB problem.
3794
3795 @item @b{GDB Disconnects} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
3796 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
3797 What does that mean and what might be the reason for this?
3798
3799 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
3800 has closed the connection to OpenOCD. This might be a GDB issue.
3801
3802 @item @b{LPC2000 Flash} In the configuration file in the section where flash device configurations
3803 are described, there is a parameter for specifying the clock frequency
3804 for LPC2000 internal flash devices (e.g. @option{flash bank lpc2000
3805 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}), which must be
3806 specified in kilohertz. However, I do have a quartz crystal of a
3807 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz,
3808 i.e. 14,745.600 kHz). Is it possible to specify real numbers for the
3809 clock frequency?
3810
3811 No. The clock frequency specified here must be given as an integral number.
3812 However, this clock frequency is used by the In-Application-Programming (IAP)
3813 routines of the LPC2000 family only, which seems to be very tolerant concerning
3814 the given clock frequency, so a slight difference between the specified clock
3815 frequency and the actual clock frequency will not cause any trouble.
3816
3817 @item @b{Command Order} Do I have to keep a specific order for the commands in the configuration file?
3818
3819 Well, yes and no. Commands can be given in arbitrary order, yet the
3820 devices listed for the JTAG scan chain must be given in the right
3821 order (jtag newdevice), with the device closest to the TDO-Pin being
3822 listed first. In general, whenever objects of the same type exist
3823 which require an index number, then these objects must be given in the
3824 right order (jtag newtap, targets and flash banks - a target
3825 references a jtag newtap and a flash bank references a target).
3826
3827 You can use the ``scan_chain'' command to verify and display the tap order.
3828
3829 Also, some commands can't execute until after @command{init} has been
3830 processed. Such commands include @command{nand probe} and everything
3831 else that needs to write to controller registers, perhaps for setting
3832 up DRAM and loading it with code.
3833
3834 @item @b{JTAG Tap Order} JTAG tap order - command order
3835
3836 Many newer devices have multiple JTAG taps. For example: ST
3837 Microsystems STM32 chips have two taps, a ``boundary scan tap'' and
3838 ``Cortex-M3'' tap. Example: The STM32 reference manual, Document ID:
3839 RM0008, Section 26.5, Figure 259, page 651/681, the ``TDI'' pin is
3840 connected to the boundary scan tap, which then connects to the
3841 Cortex-M3 tap, which then connects to the TDO pin.
3842
3843 Thus, the proper order for the STM32 chip is: (1) The Cortex-M3, then
3844 (2) The boundary scan tap. If your board includes an additional JTAG
3845 chip in the scan chain (for example a Xilinx CPLD or FPGA) you could
3846 place it before or after the STM32 chip in the chain. For example:
3847
3848 @itemize @bullet
3849 @item OpenOCD_TDI(output) -> STM32 TDI Pin (BS Input)
3850 @item STM32 BS TDO (output) -> STM32 Cortex-M3 TDI (input)
3851 @item STM32 Cortex-M3 TDO (output) -> SM32 TDO Pin
3852 @item STM32 TDO Pin (output) -> Xilinx TDI Pin (input)
3853 @item Xilinx TDO Pin -> OpenOCD TDO (input)
3854 @end itemize
3855
3856 The ``jtag device'' commands would thus be in the order shown below. Note:
3857
3858 @itemize @bullet
3859 @item jtag newtap Xilinx tap -irlen ...
3860 @item jtag newtap stm32 cpu -irlen ...
3861 @item jtag newtap stm32 bs -irlen ...
3862 @item # Create the debug target and say where it is
3863 @item target create stm32.cpu -chain-position stm32.cpu ...
3864 @end itemize
3865
3866
3867 @item @b{SYSCOMP} Sometimes my debugging session terminates with an error. When I look into the
3868 log file, I can see these error messages: Error: arm7_9_common.c:561
3869 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
3870
3871 TODO.
3872
3873 @end enumerate
3874
3875 @node Tcl Crash Course
3876 @chapter Tcl Crash Course
3877 @cindex Tcl
3878
3879 Not everyone knows Tcl - this is not intended to be a replacement for
3880 learning Tcl, the intent of this chapter is to give you some idea of
3881 how the Tcl scripts work.
3882
3883 This chapter is written with two audiences in mind. (1) OpenOCD users
3884 who need to understand a bit more of how JIM-Tcl works so they can do
3885 something useful, and (2) those that want to add a new command to
3886 OpenOCD.
3887
3888 @section Tcl Rule #1
3889 There is a famous joke, it goes like this:
3890 @enumerate
3891 @item Rule #1: The wife is always correct
3892 @item Rule #2: If you think otherwise, See Rule #1
3893 @end enumerate
3894
3895 The Tcl equal is this:
3896
3897 @enumerate
3898 @item Rule #1: Everything is a string
3899 @item Rule #2: If you think otherwise, See Rule #1
3900 @end enumerate
3901
3902 As in the famous joke, the consequences of Rule #1 are profound. Once
3903 you understand Rule #1, you will understand Tcl.
3904
3905 @section Tcl Rule #1b
3906 There is a second pair of rules.
3907 @enumerate
3908 @item Rule #1: Control flow does not exist. Only commands
3909 @* For example: the classic FOR loop or IF statement is not a control
3910 flow item, they are commands, there is no such thing as control flow
3911 in Tcl.
3912 @item Rule #2: If you think otherwise, See Rule #1
3913 @* Actually what happens is this: There are commands that by
3914 convention, act like control flow key words in other languages. One of
3915 those commands is the word ``for'', another command is ``if''.
3916 @end enumerate
3917
3918 @section Per Rule #1 - All Results are strings
3919 Every Tcl command results in a string. The word ``result'' is used
3920 deliberatly. No result is just an empty string. Remember: @i{Rule #1 -
3921 Everything is a string}
3922
3923 @section Tcl Quoting Operators
3924 In life of a Tcl script, there are two important periods of time, the
3925 difference is subtle.
3926 @enumerate
3927 @item Parse Time
3928 @item Evaluation Time
3929 @end enumerate
3930
3931 The two key items here are how ``quoted things'' work in Tcl. Tcl has
3932 three primary quoting constructs, the [square-brackets] the
3933 @{curly-braces@} and ``double-quotes''
3934
3935 By now you should know $VARIABLES always start with a $DOLLAR
3936 sign. BTW: To set a variable, you actually use the command ``set'', as
3937 in ``set VARNAME VALUE'' much like the ancient BASIC langauge ``let x
3938 = 1'' statement, but without the equal sign.
3939
3940 @itemize @bullet
3941 @item @b{[square-brackets]}
3942 @* @b{[square-brackets]} are command substitutions. It operates much
3943 like Unix Shell `back-ticks`. The result of a [square-bracket]
3944 operation is exactly 1 string. @i{Remember Rule #1 - Everything is a
3945 string}. These two statements are roughly identical:
3946 @example
3947 # bash example
3948 X=`date`
3949 echo "The Date is: $X"
3950 # Tcl example
3951 set X [date]
3952 puts "The Date is: $X"
3953 @end example
3954 @item @b{``double-quoted-things''}
3955 @* @b{``double-quoted-things''} are just simply quoted
3956 text. $VARIABLES and [square-brackets] are expanded in place - the
3957 result however is exactly 1 string. @i{Remember Rule #1 - Everything
3958 is a string}
3959 @example
3960 set x "Dinner"
3961 puts "It is now \"[date]\", $x is in 1 hour"
3962 @end example
3963 @item @b{@{Curly-Braces@}}
3964 @*@b{@{Curly-Braces@}} are magic: $VARIABLES and [square-brackets] are
3965 parsed, but are NOT expanded or executed. @{Curly-Braces@} are like
3966 'single-quote' operators in BASH shell scripts, with the added
3967 feature: @{curly-braces@} can be nested, single quotes can not. @{@{@{this is
3968 nested 3 times@}@}@} NOTE: [date] is perhaps a bad example, as of
3969 28/nov/2008, Jim/OpenOCD does not have a date command.
3970 @end itemize
3971
3972 @section Consequences of Rule 1/2/3/4
3973
3974 The consequences of Rule 1 are profound.
3975
3976 @subsection Tokenisation & Execution.
3977
3978 Of course, whitespace, blank lines and #comment lines are handled in
3979 the normal way.
3980
3981 As a script is parsed, each (multi) line in the script file is
3982 tokenised and according to the quoting rules. After tokenisation, that
3983 line is immedatly executed.
3984
3985 Multi line statements end with one or more ``still-open''
3986 @{curly-braces@} which - eventually - closes a few lines later.
3987
3988 @subsection Command Execution
3989
3990 Remember earlier: There are no ``control flow''
3991 statements in Tcl. Instead there are COMMANDS that simply act like
3992 control flow operators.
3993
3994 Commands are executed like this:
3995
3996 @enumerate
3997 @item Parse the next line into (argc) and (argv[]).
3998 @item Look up (argv[0]) in a table and call its function.
3999 @item Repeat until End Of File.
4000 @end enumerate
4001
4002 It sort of works like this:
4003 @example
4004 for(;;)@{
4005 ReadAndParse( &argc, &argv );
4006
4007 cmdPtr = LookupCommand( argv[0] );
4008
4009 (*cmdPtr->Execute)( argc, argv );
4010 @}
4011 @end example
4012
4013 When the command ``proc'' is parsed (which creates a procedure
4014 function) it gets 3 parameters on the command line. @b{1} the name of
4015 the proc (function), @b{2} the list of parameters, and @b{3} the body
4016 of the function. Not the choice of words: LIST and BODY. The PROC
4017 command stores these items in a table somewhere so it can be found by
4018 ``LookupCommand()''
4019
4020 @subsection The FOR command
4021
4022 The most interesting command to look at is the FOR command. In Tcl,
4023 the FOR command is normally implemented in C. Remember, FOR is a
4024 command just like any other command.
4025
4026 When the ascii text containing the FOR command is parsed, the parser
4027 produces 5 parameter strings, @i{(If in doubt: Refer to Rule #1)} they
4028 are:
4029
4030 @enumerate 0
4031 @item The ascii text 'for'
4032 @item The start text
4033 @item The test expression
4034 @item The next text
4035 @item The body text
4036 @end enumerate
4037
4038 Sort of reminds you of ``main( int argc, char **argv )'' does it not?
4039 Remember @i{Rule #1 - Everything is a string.} The key point is this:
4040 Often many of those parameters are in @{curly-braces@} - thus the
4041 variables inside are not expanded or replaced until later.
4042
4043 Remember that every Tcl command looks like the classic ``main( argc,
4044 argv )'' function in C. In JimTCL - they actually look like this:
4045
4046 @example
4047 int
4048 MyCommand( Jim_Interp *interp,
4049 int *argc,
4050 Jim_Obj * const *argvs );
4051 @end example
4052
4053 Real Tcl is nearly identical. Although the newer versions have
4054 introduced a byte-code parser and intepreter, but at the core, it
4055 still operates in the same basic way.
4056
4057 @subsection FOR command implementation
4058
4059 To understand Tcl it is perhaps most helpful to see the FOR
4060 command. Remember, it is a COMMAND not a control flow structure.
4061
4062 In Tcl there are two underlying C helper functions.
4063
4064 Remember Rule #1 - You are a string.
4065
4066 The @b{first} helper parses and executes commands found in an ascii
4067 string. Commands can be seperated by semicolons, or newlines. While
4068 parsing, variables are expanded via the quoting rules.
4069
4070 The @b{second} helper evaluates an ascii string as a numerical
4071 expression and returns a value.
4072
4073 Here is an example of how the @b{FOR} command could be
4074 implemented. The pseudo code below does not show error handling.
4075 @example
4076 void Execute_AsciiString( void *interp, const char *string );
4077
4078 int Evaluate_AsciiExpression( void *interp, const char *string );
4079
4080 int
4081 MyForCommand( void *interp,
4082 int argc,
4083 char **argv )
4084 @{
4085 if( argc != 5 )@{
4086 SetResult( interp, "WRONG number of parameters");
4087 return ERROR;
4088 @}
4089
4090 // argv[0] = the ascii string just like C
4091
4092 // Execute the start statement.
4093 Execute_AsciiString( interp, argv[1] );
4094
4095 // Top of loop test
4096 for(;;)@{
4097 i = Evaluate_AsciiExpression(interp, argv[2]);
4098 if( i == 0 )
4099 break;
4100
4101 // Execute the body
4102 Execute_AsciiString( interp, argv[3] );
4103
4104 // Execute the LOOP part
4105 Execute_AsciiString( interp, argv[4] );
4106 @}
4107
4108 // Return no error
4109 SetResult( interp, "" );
4110 return SUCCESS;
4111 @}
4112 @end example
4113
4114 Every other command IF, WHILE, FORMAT, PUTS, EXPR, everything works
4115 in the same basic way.
4116
4117 @section OpenOCD Tcl Usage
4118
4119 @subsection source and find commands
4120 @b{Where:} In many configuration files
4121 @* Example: @b{ source [find FILENAME] }
4122 @*Remember the parsing rules
4123 @enumerate
4124 @item The FIND command is in square brackets.
4125 @* The FIND command is executed with the parameter FILENAME. It should
4126 find the full path to the named file. The RESULT is a string, which is
4127 substituted on the orginal command line.
4128 @item The command source is executed with the resulting filename.
4129 @* SOURCE reads a file and executes as a script.
4130 @end enumerate
4131 @subsection format command
4132 @b{Where:} Generally occurs in numerous places.
4133 @* Tcl has no command like @b{printf()}, instead it has @b{format}, which is really more like
4134 @b{sprintf()}.
4135 @b{Example}
4136 @example
4137 set x 6
4138 set y 7
4139 puts [format "The answer: %d" [expr $x * $y]]
4140 @end example
4141 @enumerate
4142 @item The SET command creates 2 variables, X and Y.
4143 @item The double [nested] EXPR command performs math
4144 @* The EXPR command produces numerical result as a string.
4145 @* Refer to Rule #1
4146 @item The format command is executed, producing a single string
4147 @* Refer to Rule #1.
4148 @item The PUTS command outputs the text.
4149 @end enumerate
4150 @subsection Body or Inlined Text
4151 @b{Where:} Various TARGET scripts.
4152 @example
4153 #1 Good
4154 proc someproc @{@} @{
4155 ... multiple lines of stuff ...
4156 @}
4157 $_TARGETNAME configure -event FOO someproc
4158 #2 Good - no variables
4159 $_TARGETNAME confgure -event foo "this ; that;"
4160 #3 Good Curly Braces
4161 $_TARGETNAME configure -event FOO @{
4162 puts "Time: [date]"
4163 @}
4164 #4 DANGER DANGER DANGER
4165 $_TARGETNAME configure -event foo "puts \"Time: [date]\""
4166 @end example
4167 @enumerate
4168 @item The $_TARGETNAME is an OpenOCD variable convention.
4169 @*@b{$_TARGETNAME} represents the last target created, the value changes
4170 each time a new target is created. Remember the parsing rules. When
4171 the ascii text is parsed, the @b{$_TARGETNAME} becomes a simple string,
4172 the name of the target which happens to be a TARGET (object)
4173 command.
4174 @item The 2nd parameter to the @option{-event} parameter is a TCBODY
4175 @*There are 4 examples:
4176 @enumerate
4177 @item The TCLBODY is a simple string that happens to be a proc name
4178 @item The TCLBODY is several simple commands seperated by semicolons
4179 @item The TCLBODY is a multi-line @{curly-brace@} quoted string
4180 @item The TCLBODY is a string with variables that get expanded.
4181 @end enumerate
4182
4183 In the end, when the target event FOO occurs the TCLBODY is
4184 evaluated. Method @b{#1} and @b{#2} are functionally identical. For
4185 Method @b{#3} and @b{#4} it is more interesting. What is the TCLBODY?
4186
4187 Remember the parsing rules. In case #3, @{curly-braces@} mean the
4188 $VARS and [square-brackets] are expanded later, when the EVENT occurs,
4189 and the text is evaluated. In case #4, they are replaced before the
4190 ``Target Object Command'' is executed. This occurs at the same time
4191 $_TARGETNAME is replaced. In case #4 the date will never
4192 change. @{BTW: [date] is perhaps a bad example, as of 28/nov/2008,
4193 Jim/OpenOCD does not have a date command@}
4194 @end enumerate
4195 @subsection Global Variables
4196 @b{Where:} You might discover this when writing your own procs @* In
4197 simple terms: Inside a PROC, if you need to access a global variable
4198 you must say so. See also ``upvar''. Example:
4199 @example
4200 proc myproc @{ @} @{
4201 set y 0 #Local variable Y
4202 global x #Global variable X
4203 puts [format "X=%d, Y=%d" $x $y]
4204 @}
4205 @end example
4206 @section Other Tcl Hacks
4207 @b{Dynamic variable creation}
4208 @example
4209 # Dynamically create a bunch of variables.
4210 for @{ set x 0 @} @{ $x < 32 @} @{ set x [expr $x + 1]@} @{
4211 # Create var name
4212 set vn [format "BIT%d" $x]
4213 # Make it a global
4214 global $vn
4215 # Set it.
4216 set $vn [expr (1 << $x)]
4217 @}
4218 @end example
4219 @b{Dynamic proc/command creation}
4220 @example
4221 # One "X" function - 5 uart functions.
4222 foreach who @{A B C D E@}
4223 proc [format "show_uart%c" $who] @{ @} "show_UARTx $who"
4224 @}
4225 @end example
4226
4227 @node Target Library
4228 @chapter Target Library
4229 @cindex Target Library
4230
4231 OpenOCD comes with a target configuration script library. These scripts can be
4232 used as-is or serve as a starting point.
4233
4234 The target library is published together with the OpenOCD executable and
4235 the path to the target library is in the OpenOCD script search path.
4236 Similarly there are example scripts for configuring the JTAG interface.
4237
4238 The command line below uses the example parport configuration script
4239 that ship with OpenOCD, then configures the str710.cfg target and
4240 finally issues the init and reset commands. The communication speed
4241 is set to 10kHz for reset and 8MHz for post reset.
4242
4243 @example
4244 openocd -f interface/parport.cfg -f target/str710.cfg -c "init" -c "reset"
4245 @end example
4246
4247 To list the target scripts available:
4248
4249 @example
4250 $ ls /usr/local/lib/openocd/target
4251
4252 arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg
4253 at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg
4254 at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg
4255 at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg
4256 @end example
4257
4258 @include fdl.texi
4259
4260 @node OpenOCD Concept Index
4261 @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
4262 @comment case issue with ``Index.html'' and ``index.html''
4263 @comment Occurs when creating ``--html --no-split'' output
4264 @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
4265 @unnumbered OpenOCD Concept Index
4266
4267 @printindex cp
4268
4269 @node OpenOCD Command Index
4270 @unnumbered OpenOCD Command Index
4271 @printindex fn
4272
4273 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)