John McCarthy <jgmcc@magma.ca> - mips_4k options
[openocd.git] / doc / openocd.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (OpenOCD)
5 @dircategory Development
6 @direntry
7 * OpenOCD: (openocd). Open On-Chip Debugger.
8 @end direntry
9 @c %**end of header
10
11 @include version.texi
12
13 @copying
14 Copyright @copyright{} 2007-2008 Spen @email{spen@@spen-soft.co.uk}@*
15 Copyright @copyright{} 2008 Oyvind Harboe @email{oyvind.harboe@@zylin.com}
16 @quotation
17 Permission is granted to copy, distribute and/or modify this document
18 under the terms of the GNU Free Documentation License, Version 1.2 or
19 any later version published by the Free Software Foundation; with no
20 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
21 Texts. A copy of the license is included in the section entitled ``GNU
22 Free Documentation License''.
23 @end quotation
24 @end copying
25
26 @titlepage
27 @title Open On-Chip Debugger (OpenOCD)
28 @subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
29 @subtitle @value{UPDATED}
30 @page
31 @vskip 0pt plus 1filll
32 @insertcopying
33 @end titlepage
34
35 @contents
36
37 @node Top, About, , (dir)
38 @top OpenOCD
39
40 This manual documents edition @value{EDITION} of the Open On-Chip Debugger
41 (OpenOCD) version @value{VERSION}, @value{UPDATED}.
42
43 @insertcopying
44
45 @menu
46 * About:: About OpenOCD.
47 * Developers:: OpenOCD developers
48 * Building:: Building OpenOCD
49 * Running:: Running OpenOCD
50 * Configuration:: OpenOCD Configuration.
51 * Target library:: Target library
52 * Commands:: OpenOCD Commands
53 * Sample Scripts:: Sample Target Scripts
54 * TFTP:: TFTP
55 * GDB and OpenOCD:: Using GDB and OpenOCD
56 * TCL and OpenOCD:: Using TCL and OpenOCD
57 * TCL scripting API:: Tcl scripting API
58 * Upgrading:: Deprecated/Removed Commands
59 * FAQ:: Frequently Asked Questions
60 * License:: GNU Free Documentation License
61 * Index:: Main index.
62 @end menu
63
64 @node About
65 @unnumbered About
66 @cindex about
67
68 The Open On-Chip Debugger (OpenOCD) aims to provide debugging, in-system programming
69 and boundary-scan testing for embedded target devices. The targets are interfaced
70 using JTAG (IEEE 1149.1) compliant hardware, but this may be extended to other
71 connection types in the future.
72
73 OpenOCD currently supports Wiggler (clones), FTDI FT2232 based JTAG interfaces, the
74 Amontec JTAG Accelerator, and the Gateworks GW1602. It allows ARM7 (ARM7TDMI and ARM720t),
75 ARM9 (ARM920t, ARM922t, ARM926ej--s, ARM966e--s), XScale (PXA25x, IXP42x) and
76 Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be debugged.
77
78 Flash writing is supported for external CFI compatible flashes (Intel and AMD/Spansion
79 command set) and several internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3
80 and STM32x). Preliminary support for using the LPC3180's NAND flash controller is included.
81
82 @node Developers
83 @chapter Developers
84 @cindex developers
85
86 OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
87 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
88 Others interested in improving the state of free and open debug and testing technology
89 are welcome to participate.
90
91 Other developers have contributed support for additional targets and flashes as well
92 as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
93
94 The main OpenOCD web site is available at @uref{http://openocd.berlios.de/web/}
95
96 @node Building
97 @chapter Building
98 @cindex building OpenOCD
99
100 If you are interested in getting actual work done rather than building
101 OpenOCD, then check if your interface supplier provides binaries for
102 you. Chances are that that binary is from some SVN version that is more
103 stable than SVN trunk where bleeding edge development takes place.
104
105
106 You can download the current SVN version with SVN client of your choice from the
107 following repositories:
108
109 (@uref{svn://svn.berlios.de/openocd/trunk})
110
111 or
112
113 (@uref{http://svn.berlios.de/svnroot/repos/openocd/trunk})
114
115 Using the SVN command line client, you can use the following command to fetch the
116 latest version (make sure there is no (non-svn) directory called "openocd" in the
117 current directory):
118
119 @smallexample
120 svn checkout svn://svn.berlios.de/openocd/trunk openocd
121 @end smallexample
122
123 Building OpenOCD requires a recent version of the GNU autotools.
124 On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
125 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
126 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
127 paths, resulting in obscure dependency errors (This is an observation I've gathered
128 from the logs of one user - correct me if I'm wrong).
129
130 You further need the appropriate driver files, if you want to build support for
131 a FTDI FT2232 based interface:
132 @itemize @bullet
133 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
134 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
135 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
136 homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
137 @end itemize
138
139 libftdi is supported under windows. Versions earlier than 0.13 will require patching.
140 see contrib/libftdi for more details.
141
142 In general, the D2XX driver provides superior performance (several times as fast),
143 but has the draw-back of being binary-only - though that isn't that bad, as it isn't
144 a kernel module, only a user space library.
145
146 To build OpenOCD (on both Linux and Cygwin), use the following commands:
147 @smallexample
148 ./bootstrap
149 @end smallexample
150 Bootstrap generates the configure script, and prepares building on your system.
151 @smallexample
152 ./configure
153 @end smallexample
154 Configure generates the Makefiles used to build OpenOCD.
155 @smallexample
156 make
157 @end smallexample
158 Make builds OpenOCD, and places the final executable in ./src/.
159
160 The configure script takes several options, specifying which JTAG interfaces
161 should be included:
162
163 @itemize @bullet
164 @item
165 @option{--enable-parport}
166 @item
167 @option{--enable-parport_ppdev}
168 @item
169 @option{--enable-parport_giveio}
170 @item
171 @option{--enable-amtjtagaccel}
172 @item
173 @option{--enable-ft2232_ftd2xx}
174 @footnote{Using the latest D2XX drivers from FTDI and following their installation
175 instructions, I had to use @option{--enable-ft2232_libftd2xx} for OpenOCD to
176 build properly.}
177 @item
178 @option{--enable-ft2232_libftdi}
179 @item
180 @option{--with-ftd2xx=/path/to/d2xx/}
181 @item
182 @option{--enable-gw16012}
183 @item
184 @option{--enable-usbprog}
185 @item
186 @option{--enable-presto_libftdi}
187 @item
188 @option{--enable-presto_ftd2xx}
189 @item
190 @option{--enable-jlink}
191 @end itemize
192
193 If you want to access the parallel port using the PPDEV interface you have to specify
194 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
195 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
196 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
197
198 Cygwin users have to specify the location of the FTDI D2XX package. This should be an
199 absolute path containing no spaces.
200
201 Linux users should copy the various parts of the D2XX package to the appropriate
202 locations, i.e. /usr/include, /usr/lib.
203
204 Miscellaneous configure options
205
206 @itemize @bullet
207 @item
208 @option{--enable-gccwarnings} - enable extra gcc warnings during build
209 @end itemize
210
211 @node Running
212 @chapter Running
213 @cindex running OpenOCD
214 @cindex --configfile
215 @cindex --debug_level
216 @cindex --logfile
217 @cindex --search
218 OpenOCD runs as a daemon, waiting for connections from clients (Telnet, GDB, Other).
219 Run with @option{--help} or @option{-h} to view the available command line switches.
220
221 It reads its configuration by default from the file openocd.cfg located in the current
222 working directory. This may be overwritten with the @option{-f <configfile>} command line
223 switch. The @option{-f} command line switch can be specified multiple times, in which case the config files
224 are executed in order.
225
226 Also it is possible to interleave commands w/config scripts using the @option{-c} command line switch.
227
228 To enable debug output (when reporting problems or working on OpenOCD itself), use
229 the @option{-d} command line switch. This sets the @option{debug_level} to "3", outputting
230 the most information, including debug messages. The default setting is "2", outputting
231 only informational messages, warnings and errors. You can also change this setting
232 from within a telnet or gdb session using @option{debug_level <n>} @xref{debug_level}.
233
234 You can redirect all output from the daemon to a file using the @option{-l <logfile>} switch.
235
236 Search paths for config/script files can be added to OpenOCD by using
237 the @option{-s <search>} switch. The current directory and the OpenOCD target library
238 is in the search path by default.
239
240 Note! OpenOCD will launch the GDB & telnet server even if it can not establish a connection
241 with the target. In general, it is possible for the JTAG controller to be unresponsive until
242 the target is set up correctly via e.g. GDB monitor commands in a GDB init script.
243
244 @node Configuration
245 @chapter Configuration
246 @cindex configuration
247 OpenOCD runs as a daemon, and reads it current configuration
248 by default from the file openocd.cfg in the current directory. A different configuration
249 file can be specified with the @option{-f <conf.file>} command line switch specified when starting OpenOCD.
250
251 The configuration file is used to specify on which ports the daemon listens for new
252 connections, the JTAG interface used to connect to the target, the layout of the JTAG
253 chain, the targets that should be debugged, and connected flashes.
254
255 @section Daemon configuration
256
257 @itemize @bullet
258 @item @b{init}
259 @*This command terminates the configuration stage and enters the normal
260 command mode. This can be useful to add commands to the startup scripts and commands
261 such as resetting the target, programming flash, etc. To reset the CPU upon startup,
262 add "init" and "reset" at the end of the config script or at the end of the
263 OpenOCD command line using the @option{-c} command line switch.
264 @cindex init
265 @item @b{telnet_port} <@var{number}>
266 @cindex telnet_port
267 @*Port on which to listen for incoming telnet connections
268 @item @b{telnet_async} <@var{enable/disable}>
269 @cindex telnet_async
270 @*Enable/disable asynchronous messages. Default off. Slows down debugging
271 if enabled and telnet session is open while stepping.
272 @item @b{tcl_port} <@var{number}>
273 @cindex tcl_port
274 @*Port on which to listen for incoming TCL syntax. This port is intended as
275 a simplified RPC connection that can be used by clients to issue commands
276 and get the output from the TCL engine.
277 @item @b{gdb_port} <@var{number}>
278 @cindex gdb_port
279 @*First port on which to listen for incoming GDB connections. The GDB port for the
280 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
281 @item @b{gdb_breakpoint_override} <@var{hard|soft|disabled}>
282 @cindex gdb_breakpoint_override
283 @anchor{gdb_breakpoint_override}
284 @*Force breakpoint type for gdb 'break' commands.
285 The raison d'etre for this option is to support GDB GUI's without
286 a hard/soft breakpoint concept where the default OpenOCD and
287 GDB behaviour is not sufficient. Note that GDB will use hardware
288 breakpoints if the memory map has been set up for flash regions.
289
290 This option replaces older arm7_9 target commands that addressed
291 the same issue.
292 @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
293 @cindex gdb_detach
294 @*Configures what OpenOCD will do when gdb detaches from the daeman.
295 Default behaviour is <@var{resume}>
296 @item @b{gdb_memory_map} <@var{enable|disable}>
297 @cindex gdb_memory_map
298 @*Set to <@var{enable}> to cause OpenOCD to send the memory configuration to gdb when
299 requested. gdb will then know when to set hardware breakpoints, and program flash
300 using the gdb load command. @option{gdb_flash_program enable} will also need enabling
301 for flash programming to work.
302 Default behaviour is <@var{enable}>
303 @xref{gdb_flash_program}.
304 @item @b{gdb_flash_program} <@var{enable|disable}>
305 @cindex gdb_flash_program
306 @anchor{gdb_flash_program}
307 @*Set to <@var{enable}> to cause OpenOCD to program the flash memory when a
308 vFlash packet is received.
309 Default behaviour is <@var{enable}>
310 @end itemize
311
312 @section JTAG interface configuration
313
314 @itemize @bullet
315 @item @b{interface} <@var{name}>
316 @cindex interface
317 @*Use the interface driver <@var{name}> to connect to the target. Currently supported
318 interfaces are
319 @itemize @minus
320 @item @b{parport}
321 PC parallel port bit-banging (Wigglers, PLD download cable, ...)
322 @end itemize
323 @itemize @minus
324 @item @b{amt_jtagaccel}
325 Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
326 mode parallel port
327 @end itemize
328 @itemize @minus
329 @item @b{ft2232}
330 FTDI FT2232 based devices using either the open-source libftdi or the binary only
331 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
332 platform. The libftdi uses libusb, and should be portable to all systems that provide
333 libusb.
334 @end itemize
335 @itemize @minus
336 @item @b{ep93xx}
337 Cirrus Logic EP93xx based single-board computer bit-banging (in development)
338 @end itemize
339 @itemize @minus
340 @item @b{presto}
341 ASIX PRESTO USB JTAG programmer.
342 @end itemize
343 @itemize @minus
344 @item @b{usbprog}
345 usbprog is a freely programmable USB adapter.
346 @end itemize
347 @itemize @minus
348 @item @b{gw16012}
349 Gateworks GW16012 JTAG programmer.
350 @end itemize
351 @itemize @minus
352 @item @b{jlink}
353 Segger jlink usb adapter
354 @end itemize
355 @end itemize
356
357 @itemize @bullet
358 @item @b{jtag_speed} <@var{reset speed}>
359 @cindex jtag_speed
360 @*Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
361 speed. The actual effect of this option depends on the JTAG interface used.
362
363 The speed used during reset can be adjusted using setting jtag_speed during
364 pre_reset and post_reset events.
365 @itemize @minus
366
367 @item wiggler: maximum speed / @var{number}
368 @item ft2232: 6MHz / (@var{number}+1)
369 @item amt jtagaccel: 8 / 2**@var{number}
370 @item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
371 @end itemize
372
373 Note: Make sure the jtag clock is no more than @math{1/6th × CPU-Clock}. This is
374 especially true for synthesized cores (-S).
375
376 @item @b{jtag_khz} <@var{reset speed kHz}>
377 @cindex jtag_khz
378 @*Same as jtag_speed, except that the speed is specified in maximum kHz. If
379 the device can not support the rate asked for, or can not translate from
380 kHz to jtag_speed, then an error is returned. 0 means RTCK. If RTCK
381 is not supported, then an error is reported.
382
383 @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
384 @cindex reset_config
385 @*The configuration of the reset signals available on the JTAG interface AND the target.
386 If the JTAG interface provides SRST, but the target doesn't connect that signal properly,
387 then OpenOCD can't use it. <@var{signals}> can be @option{none}, @option{trst_only},
388 @option{srst_only} or @option{trst_and_srst}.
389
390 [@var{combination}] is an optional value specifying broken reset signal implementations.
391 @option{srst_pulls_trst} states that the testlogic is reset together with the reset of
392 the system (e.g. Philips LPC2000, "broken" board layout), @option{trst_pulls_srst} says
393 that the system is reset together with the test logic (only hypothetical, I haven't
394 seen hardware with such a bug, and can be worked around).
395 @option{combined} imples both @option{srst_pulls_trst} and @option{trst_pulls_srst}.
396 The default behaviour if no option given is @option{separate}.
397
398 The [@var{trst_type}] and [@var{srst_type}] parameters allow the driver type of the
399 reset lines to be specified. Possible values are @option{trst_push_pull} (default)
400 and @option{trst_open_drain} for the test reset signal, and @option{srst_open_drain}
401 (default) and @option{srst_push_pull} for the system reset. These values only affect
402 JTAG interfaces with support for different drivers, like the Amontec JTAGkey and JTAGAccelerator.
403
404 @item @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
405 @cindex jtag_device
406 @*Describes the devices that form the JTAG daisy chain, with the first device being
407 the one closest to TDO. The parameters are the length of the instruction register
408 (4 for all ARM7/9s), the value captured during Capture-IR (0x1 for ARM7/9), and a mask
409 of bits that should be validated when doing IR scans (all four bits (0xf) for ARM7/9).
410 The IDCODE instruction will in future be used to query devices for their JTAG
411 identification code. This line is the same for all ARM7 and ARM9 devices.
412 Other devices, like CPLDs, require different parameters. An example configuration
413 line for a Xilinx XC9500 CPLD would look like this:
414 @smallexample
415 jtag_device 8 0x01 0x0e3 0xfe
416 @end smallexample
417 The instruction register (IR) is 8 bits long, during Capture-IR 0x01 is loaded into
418 the IR, but only bits 0-1 and 5-7 should be checked, the others (2-4) might vary.
419 The IDCODE instruction is 0xfe.
420
421 @item @b{jtag_nsrst_delay} <@var{ms}>
422 @cindex jtag_nsrst_delay
423 @*How long (in milliseconds) OpenOCD should wait after deasserting nSRST before
424 starting new JTAG operations.
425 @item @b{jtag_ntrst_delay} <@var{ms}>
426 @cindex jtag_ntrst_delay
427 @*Same @b{jtag_nsrst_delay}, but for nTRST
428
429 The jtag_n[st]rst_delay options are useful if reset circuitry (like a reset supervisor,
430 or on-chip features) keep a reset line asserted for some time after the external reset
431 got deasserted.
432 @end itemize
433
434 @section parport options
435
436 @itemize @bullet
437 @item @b{parport_port} <@var{number}>
438 @cindex parport_port
439 @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of
440 the @file{/dev/parport} device
441
442 When using PPDEV to access the parallel port, use the number of the parallel port:
443 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
444 you may encounter a problem.
445 @item @b{parport_cable} <@var{name}>
446 @cindex parport_cable
447 @*The layout of the parallel port cable used to connect to the target.
448 Currently supported cables are
449 @itemize @minus
450 @item @b{wiggler}
451 @cindex wiggler
452 The original Wiggler layout, also supported by several clones, such
453 as the Olimex ARM-JTAG
454 @item @b{wiggler2}
455 @cindex wiggler2
456 Same as original wiggler except an led is fitted on D5.
457 @item @b{wiggler_ntrst_inverted}
458 @cindex wiggler_ntrst_inverted
459 Same as original wiggler except TRST is inverted.
460 @item @b{old_amt_wiggler}
461 @cindex old_amt_wiggler
462 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
463 version available from the website uses the original Wiggler layout ('@var{wiggler}')
464 @item @b{chameleon}
465 @cindex chameleon
466 The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to
467 program the Chameleon itself, not a connected target.
468 @item @b{dlc5}
469 @cindex dlc5
470 The Xilinx Parallel cable III.
471 @item @b{triton}
472 @cindex triton
473 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
474 This is also the layout used by the HollyGates design
475 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
476 @item @b{flashlink}
477 @cindex flashlink
478 The ST Parallel cable.
479 @item @b{arm-jtag}
480 @cindex arm-jtag
481 Same as original wiggler except SRST and TRST connections reversed and
482 TRST is also inverted.
483 @item @b{altium}
484 @cindex altium
485 Altium Universal JTAG cable.
486 @end itemize
487 @item @b{parport_write_on_exit} <@var{on}|@var{off}>
488 @cindex parport_write_on_exit
489 @*This will configure the parallel driver to write a known value to the parallel
490 interface on exiting OpenOCD
491 @end itemize
492
493 @section amt_jtagaccel options
494 @itemize @bullet
495 @item @b{parport_port} <@var{number}>
496 @cindex parport_port
497 @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
498 @file{/dev/parport} device
499 @end itemize
500 @section ft2232 options
501
502 @itemize @bullet
503 @item @b{ft2232_device_desc} <@var{description}>
504 @cindex ft2232_device_desc
505 @*The USB device description of the FTDI FT2232 device. If not specified, the FTDI
506 default value is used. This setting is only valid if compiled with FTD2XX support.
507 @item @b{ft2232_serial} <@var{serial-number}>
508 @cindex ft2232_serial
509 @*The serial number of the FTDI FT2232 device. If not specified, the FTDI default
510 values are used.
511 @item @b{ft2232_layout} <@var{name}>
512 @cindex ft2232_layout
513 @*The layout of the FT2232 GPIO signals used to control output-enables and reset
514 signals. Valid layouts are
515 @itemize @minus
516 @item @b{usbjtag}
517 "USBJTAG-1" layout described in the original OpenOCD diploma thesis
518 @item @b{jtagkey}
519 Amontec JTAGkey and JTAGkey-tiny
520 @item @b{signalyzer}
521 Signalyzer
522 @item @b{olimex-jtag}
523 Olimex ARM-USB-OCD
524 @item @b{m5960}
525 American Microsystems M5960
526 @item @b{evb_lm3s811}
527 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
528 SRST signals on external connector
529 @item @b{comstick}
530 Hitex STR9 comstick
531 @item @b{stm32stick}
532 Hitex STM32 Performance Stick
533 @item @b{flyswatter}
534 Tin Can Tools Flyswatter
535 @item @b{turtelizer2}
536 egnite Software turtelizer2
537 @item @b{oocdlink}
538 OOCDLink
539 @end itemize
540
541 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
542 @*The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
543 default values are used. Multiple <@var{vid}>, <@var{pid}> pairs may be given, eg.
544 @smallexample
545 ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
546 @end smallexample
547 @item @b{ft2232_latency} <@var{ms}>
548 @*On some systems using ft2232 based JTAG interfaces the FT_Read function call in
549 ft2232_read() fails to return the expected number of bytes. This can be caused by
550 USB communication delays and has proved hard to reproduce and debug. Setting the
551 FT2232 latency timer to a larger value increases delays for short USB packages but it
552 also reduces the risk of timeouts before receiving the expected number of bytes.
553 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
554 @end itemize
555
556 @section ep93xx options
557 @cindex ep93xx options
558 Currently, there are no options available for the ep93xx interface.
559
560 @page
561 @section Target configuration
562
563 @itemize @bullet
564 @item @b{target} <@var{type}> <@var{endianess}> <@var{JTAG pos}>
565 <@var{variant}>
566 @cindex target
567 @*Defines a target that should be debugged. Currently supported types are:
568 @itemize @minus
569 @item @b{arm7tdmi}
570 @item @b{arm720t}
571 @item @b{arm9tdmi}
572 @item @b{arm920t}
573 @item @b{arm922t}
574 @item @b{arm926ejs}
575 @item @b{arm966e}
576 @item @b{cortex_m3}
577 @item @b{feroceon}
578 @item @b{xscale}
579 @item @b{arm11}
580 @item @b{mips_m4k}
581 @end itemize
582
583 If you want to use a target board that is not on this list, see Adding a new
584 target board.
585 The @option{target types} command can be used to get the list of targets supported from within openocd.
586
587 Endianess may be @option{little} or @option{big}.
588
589 @item @b{target_script} <@var{target#}> <@var{event}> <@var{script_file}>
590 @cindex target_script
591 @*Event is one of the following:
592 @option{pre_reset}, @option{reset}, @option{post_reset}, @option{post_halt},
593 @option{pre_resume} or @option{gdb_program_config}.
594 @option{post_reset} and @option{reset} will produce the same results.
595
596 @item @b{working_area} <@var{target#}> <@var{address}> <@var{size}> <@var{backup}|@var{nobackup}> [@option{virtual address}]
597 @cindex working_area
598 @*Specifies a working area for the debugger to use. This may be used to speed-up
599 downloads to target memory and flash operations, or to perform otherwise unavailable
600 operations (some coprocessor operations on ARM7/9 systems, for example). The last
601 parameter decides whether the memory should be preserved (<@var{backup}>) or can simply be overwritten (<@var{nobackup}>). If possible, use
602 a working_area that doesn't need to be backed up, as performing a backup slows down operation.
603 @end itemize
604
605 @subsection arm7tdmi options
606 @cindex arm7tdmi options
607 target arm7tdmi <@var{endianess}> <@var{jtag#}>
608 @*The arm7tdmi target definition requires at least one additional argument, specifying
609 the position of the target in the JTAG daisy-chain. The first JTAG device is number 0.
610 The optional [@var{variant}] parameter has been removed in recent versions.
611 The correct feature set is determined at runtime.
612
613 @subsection arm720t options
614 @cindex arm720t options
615 ARM720t options are similar to ARM7TDMI options.
616
617 @subsection arm9tdmi options
618 @cindex arm9tdmi options
619 ARM9TDMI options are similar to ARM7TDMI options. Supported variants are
620 @option{arm920t}, @option{arm922t} and @option{arm940t}.
621 This enables the hardware single-stepping support found on these cores.
622
623 @subsection arm920t options
624 @cindex arm920t options
625 ARM920t options are similar to ARM9TDMI options.
626
627 @subsection arm966e options
628 @cindex arm966e options
629 ARM966e options are similar to ARM9TDMI options.
630
631 @subsection cortex_m3 options
632 @cindex cortex_m3 options
633 use variant <@var{variant}> @option{lm3s} when debugging luminary lm3s targets. This will cause
634 openocd to use a software reset rather than asserting SRST to avoid a issue with clearing
635 the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will
636 be detected and the normal reset behaviour used.
637
638 @subsection xscale options
639 @cindex xscale options
640 Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},
641 @option{pxa250}, @option{pxa255}, @option{pxa26x}.
642
643 @subsection arm11 options
644 @cindex arm11 options
645
646 @subsection mips_m4k options
647 @cindex mips_m4k options
648 Use variant @option{ejtag_srst} when debugging targets that
649 do not provide a functional SRST line on the EJTAG connector.
650 This causes openocd to instead use an EJTAG software reset command to reset the processor.
651 You still need to enable @option{srst} on the reset configuration command to enable openocd hardware reset functionality.
652
653 @section Flash configuration
654 @cindex Flash configuration
655
656 @itemize @bullet
657 @item @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
658 <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
659 @cindex flash bank
660 @*Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
661 and <@var{bus_width}> bytes using the selected flash <driver>.
662 @end itemize
663
664 @subsection lpc2000 options
665 @cindex lpc2000 options
666
667 @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
668 <@var{clock}> [@var{calc_checksum}]
669 @*LPC flashes don't require the chip and bus width to be specified. Additional
670 parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
671 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
672 of the target this flash belongs to (first is 0), the frequency at which the core
673 is currently running (in kHz - must be an integral number), and the optional keyword
674 @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
675 vector table.
676
677 @subsection cfi options
678 @cindex cfi options
679
680 @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
681 <@var{target#}> [@var{jedec_probe}|@var{x16_as_x8}]
682 @*CFI flashes require the number of the target they're connected to as an additional
683 argument. The CFI driver makes use of a working area (specified for the target)
684 to significantly speed up operation.
685
686 @var{chip_width} and @var{bus_width} are specified in bytes.
687
688 The @var{jedec_probe} option is used to detect certain non-CFI flash roms, like AM29LV010 and similar types.
689
690 @var{x16_as_x8} ???
691
692 @subsection at91sam7 options
693 @cindex at91sam7 options
694
695 @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
696 @*AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
697 reading the chip-id and type.
698
699 @subsection str7 options
700 @cindex str7 options
701
702 @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
703 @*variant can be either STR71x, STR73x or STR75x.
704
705 @subsection str9 options
706 @cindex str9 options
707
708 @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
709 @*The str9 needs the flash controller to be configured prior to Flash programming, eg.
710 @smallexample
711 str9x flash_config 0 4 2 0 0x80000
712 @end smallexample
713 This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
714
715 @subsection str9 options (str9xpec driver)
716
717 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
718 @*Before using the flash commands the turbo mode will need enabling using str9xpec
719 @option{enable_turbo} <@var{num>.}
720
721 Only use this driver for locking/unlocking the device or configuring the option bytes.
722 Use the standard str9 driver for programming.
723
724 @subsection stellaris (LM3Sxxx) options
725 @cindex stellaris (LM3Sxxx) options
726
727 @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
728 @*stellaris flash plugin only require the @var{target#}.
729
730 @subsection stm32x options
731 @cindex stm32x options
732
733 @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
734 @*stm32x flash plugin only require the @var{target#}.
735
736 @subsection aduc702x options
737 @cindex aduc702x options
738
739 @b{flash bank aduc702x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
740 @*aduc702x flash plugin require the flash @var{base}, @var{size} and @var{target#}.
741
742 @section mFlash configuration
743 @cindex mFlash configuration
744
745 @itemize @bullet
746 @item @b{mflash bank} <@var{soc}> <@var{base}> <@var{chip_width}> <@var{bus_width}>
747 <@var{RST pin}> <@var{WP pin}> <@var{DPD pin}> <@var{target #}>
748 @cindex mflash bank
749 @*Configures a mflash for <@var{soc}> host bank at <@var{base}>. <@var{chip_width}> and
750 <@var{bus_width}> are bytes order. Pin number format is dependent on host GPIO calling convention.
751 If WP or DPD pin was not used, write -1. Currently, mflash bank support s3c2440 and pxa270.
752 @end itemize
753 (ex. of s3c2440) mflash <@var{RST pin}> is GPIO B1, <@var{WP pin}> and <@var{DPD pin}> are not used.
754 @smallexample
755 mflash bank s3c2440 0x10000000 2 2 1b -1 -1 0
756 @end smallexample
757 (ex. of pxa270) mflash <@var{RST pin}> is GPIO 43, <@var{DPD pin}> is not used and <@var{DPD pin}> is GPIO 51.
758 @smallexample
759 mflash bank pxa270 0x08000000 2 2 43 -1 51 0
760 @end smallexample
761
762 @node Target library
763 @chapter Target library
764 @cindex Target library
765
766 OpenOCD comes with a target configuration script library. These scripts can be
767 used as-is or serve as a starting point.
768
769 The target library is published together with the openocd executable and
770 the path to the target library is in the OpenOCD script search path.
771 Similarly there are example scripts for configuring the JTAG interface.
772
773 The command line below uses the example parport configuration scripts
774 that ship with OpenOCD, then configures the str710.cfg target and
775 finally issues the init and reset command. The communication speed
776 is set to 10kHz for reset and 8MHz for post reset.
777
778
779 @smallexample
780 openocd -f interface/parport.cfg -f target/str710.cfg -c "init" -c "reset"
781 @end smallexample
782
783
784 To list the target scripts available:
785
786 @smallexample
787 $ ls /usr/local/lib/openocd/target
788
789 arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg
790 at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg
791 at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg
792 at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg
793 @end smallexample
794
795
796 @node Commands
797 @chapter Commands
798 @cindex commands
799
800 OpenOCD allows user interaction through a GDB server (default: port 3333),
801 a telnet interface (default: port 4444), and a TCL interface (default: port 5555). The command line interpreter
802 is available from both the telnet interface and a GDB session. To issue commands to the
803 interpreter from within a GDB session, use the @option{monitor} command, e.g. use
804 @option{monitor poll} to issue the @option{poll} command. All output is relayed through the
805 GDB session.
806
807 The TCL interface is used as a simplified RPC mechanism that feeds all the
808 input into the TCL interpreter and returns the output from the evaluation of
809 the commands.
810
811 @section Daemon
812
813 @itemize @bullet
814 @item @b{sleep} <@var{msec}>
815 @cindex sleep
816 @*Wait for n milliseconds before resuming. Useful in connection with script files
817 (@var{script} command and @var{target_script} configuration).
818
819 @item @b{shutdown}
820 @cindex shutdown
821 @*Close the OpenOCD daemon, disconnecting all clients (GDB, Telnet, Other).
822
823 @item @b{debug_level} [@var{n}]
824 @cindex debug_level
825 @anchor{debug_level}
826 @*Display or adjust debug level to n<0-3>
827
828 @item @b{fast} [@var{enable|disable}]
829 @cindex fast
830 @*Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
831 downloads and fast memory access will work if the JTAG interface isn't too fast and
832 the core doesn't run at a too low frequency. Note that this option only changes the default
833 and that the indvidual options, like DCC memory downloads, can be enabled and disabled
834 individually.
835
836 The target specific "dangerous" optimisation tweaking options may come and go
837 as more robust and user friendly ways are found to ensure maximum throughput
838 and robustness with a minimum of configuration.
839
840 Typically the "fast enable" is specified first on the command line:
841
842 @smallexample
843 openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
844 @end smallexample
845
846 @item @b{log_output} <@var{file}>
847 @cindex log_output
848 @*Redirect logging to <file> (default: stderr)
849
850 @item @b{script} <@var{file}>
851 @cindex script
852 @*Execute commands from <file>
853
854 @end itemize
855
856 @subsection Target state handling
857 @itemize @bullet
858 @item @b{power} <@var{on}|@var{off}>
859 @cindex reg
860 @*Turn power switch to target on/off.
861 No arguments: print status.
862
863
864 @item @b{reg} [@option{#}|@option{name}] [value]
865 @cindex reg
866 @*Access a single register by its number[@option{#}] or by its [@option{name}].
867 No arguments: list all available registers for the current target.
868 Number or name argument: display a register
869 Number or name and value arguments: set register value
870
871 @item @b{poll} [@option{on}|@option{off}]
872 @cindex poll
873 @*Poll the target for its current state. If the target is in debug mode, architecture
874 specific information about the current state is printed. An optional parameter
875 allows continuous polling to be enabled and disabled.
876
877 @item @b{halt} [@option{ms}]
878 @cindex halt
879 @*Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds.
880 Default [@option{ms}] is 5 seconds if no arg given.
881 Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
882 will stop OpenOCD from waiting.
883
884 @item @b{wait_halt} [@option{ms}]
885 @cindex wait_halt
886 @*Wait for the target to enter debug mode. Optional [@option{ms}] is
887 a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
888 arg given.
889
890 @item @b{resume} [@var{address}]
891 @cindex resume
892 @*Resume the target at its current code position, or at an optional address.
893 OpenOCD will wait 5 seconds for the target to resume.
894
895 @item @b{step} [@var{address}]
896 @cindex step
897 @*Single-step the target at its current code position, or at an optional address.
898
899 @item @b{reset} [@option{run}|@option{halt}|@option{init}]
900 @cindex reset
901 @*Perform a hard-reset. The optional parameter specifies what should happen after the reset.
902
903 With no arguments a "reset run" is executed
904 @itemize @minus
905 @item @b{run}
906 @cindex reset run
907 @*Let the target run.
908 @item @b{halt}
909 @cindex reset halt
910 @*Immediately halt the target (works only with certain configurations).
911 @item @b{init}
912 @cindex reset init
913 @*Immediately halt the target, and execute the reset script (works only with certain
914 configurations)
915 @end itemize
916
917 @item @b{soft_reset_halt}
918 @cindex reset
919 @*Requesting target halt and executing a soft reset.
920 @end itemize
921
922 @subsection Memory access commands
923 @itemize @bullet
924 @item @b{meminfo}
925
926 display available ram memory.
927 @end itemize
928 These commands allow accesses of a specific size to the memory system:
929 @itemize @bullet
930 @item @b{mdw} <@var{addr}> [@var{count}]
931 @cindex mdw
932 @*display memory words
933 @item @b{mdh} <@var{addr}> [@var{count}]
934 @cindex mdh
935 @*display memory half-words
936 @item @b{mdb} <@var{addr}> [@var{count}]
937 @cindex mdb
938 @*display memory bytes
939 @item @b{mww} <@var{addr}> <@var{value}>
940 @cindex mww
941 @*write memory word
942 @item @b{mwh} <@var{addr}> <@var{value}>
943 @cindex mwh
944 @*write memory half-word
945 @item @b{mwb} <@var{addr}> <@var{value}>
946 @cindex mwb
947 @*write memory byte
948
949 @item @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
950 @cindex load_image
951 @anchor{load_image}
952 @*Load image <@var{file}> to target memory at <@var{address}>
953 @item @b{fast_load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
954 @cindex fast_load_image
955 @anchor{fast_load_image}
956 @*Normally you should be using @b{load_image} or GDB load. However, for
957 testing purposes or when IO overhead is significant(OpenOCD running on embedded
958 host), then storing the image in memory and uploading the image to the target
959 can be a way to upload e.g. multiple debug sessions when the binary does not change.
960 Arguments as @b{load_image}, but image is stored in OpenOCD host
961 memory, i.e. does not affect target. This approach is also useful when profiling
962 target programming performance as IO and target programming can easily be profiled
963 seperately.
964 @item @b{fast_load}
965 @cindex fast_image
966 @anchor{fast_image}
967 @*Loads image stored in memory by @b{fast_load_image} to current target. Must be preceeded by fast_load_image.
968 @item @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
969 @cindex dump_image
970 @anchor{dump_image}
971 @*Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
972 (binary) <@var{file}>.
973 @item @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
974 @cindex verify_image
975 @*Verify <@var{file}> against target memory starting at <@var{address}>.
976 This will first attempt comparison using a crc checksum, if this fails it will try a binary compare.
977 @end itemize
978
979 @subsection Breakpoint commands
980 @cindex Breakpoint commands
981 @itemize @bullet
982 @item @b{bp} <@var{addr}> <@var{len}> [@var{hw}]
983 @cindex bp
984 @*set breakpoint <address> <length> [hw]
985 @item @b{rbp} <@var{addr}>
986 @cindex rbp
987 @*remove breakpoint <adress>
988 @item @b{wp} <@var{addr}> <@var{len}> <@var{r}|@var{w}|@var{a}> [@var{value}] [@var{mask}]
989 @cindex wp
990 @*set watchpoint <address> <length> <r/w/a> [value] [mask]
991 @item @b{rwp} <@var{addr}>
992 @cindex rwp
993 @*remove watchpoint <adress>
994 @end itemize
995
996 @subsection Flash commands
997 @cindex Flash commands
998 @itemize @bullet
999 @item @b{flash banks}
1000 @cindex flash banks
1001 @*List configured flash banks
1002 @item @b{flash info} <@var{num}>
1003 @cindex flash info
1004 @*Print info about flash bank <@option{num}>
1005 @item @b{flash probe} <@var{num}>
1006 @cindex flash probe
1007 @*Identify the flash, or validate the parameters of the configured flash. Operation
1008 depends on the flash type.
1009 @item @b{flash erase_check} <@var{num}>
1010 @cindex flash erase_check
1011 @*Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
1012 updates the erase state information displayed by @option{flash info}. That means you have
1013 to issue an @option{erase_check} command after erasing or programming the device to get
1014 updated information.
1015 @item @b{flash protect_check} <@var{num}>
1016 @cindex flash protect_check
1017 @*Check protection state of sectors in flash bank <num>.
1018 @option{flash erase_sector} using the same syntax.
1019 @item @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
1020 @cindex flash erase_sector
1021 @anchor{flash erase_sector}
1022 @*Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
1023 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may
1024 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
1025 the CFI driver).
1026 @item @b{flash erase_address} <@var{address}> <@var{length}>
1027 @cindex flash erase_address
1028 @*Erase sectors starting at <@var{address}> for <@var{length}> bytes
1029 @item @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
1030 @cindex flash write_bank
1031 @anchor{flash write_bank}
1032 @*Write the binary <@var{file}> to flash bank <@var{num}>, starting at
1033 <@option{offset}> bytes from the beginning of the bank.
1034 @item @b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
1035 @cindex flash write_image
1036 @anchor{flash write_image}
1037 @*Write the image <@var{file}> to the current target's flash bank(s). A relocation
1038 [@var{offset}] can be specified and the file [@var{type}] can be specified
1039 explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
1040 (ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
1041 if the @option{erase} parameter is given.
1042 @item @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
1043 @cindex flash protect
1044 @*Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
1045 <@var{last}> of @option{flash bank} <@var{num}>.
1046 @end itemize
1047
1048 @subsection mFlash commands
1049 @cindex mFlash commands
1050 @itemize @bullet
1051 @item @b{mflash probe}
1052 @cindex mflash probe
1053 Probe mflash.
1054 @item @b{mflash write} <@var{num}> <@var{file}> <@var{offset}>
1055 @cindex mflash write
1056 Write the binary <@var{file}> to mflash bank <@var{num}>, starting at
1057 <@var{offset}> bytes from the beginning of the bank.
1058 @item @b{mflash dump} <@var{num}> <@var{file}> <@var{offset}> <@var{size}>
1059 @cindex mflash dump
1060 Dump <size> bytes, starting at <@var{offset}> bytes from the beginning of the <@var{num}> bank
1061 to a <@var{file}>.
1062 @end itemize
1063
1064 @page
1065 @section Target Commands
1066 @cindex Target Commands
1067
1068 @subsection Overview
1069 @cindex Overview
1070 Pre "TCL" - many commands in OpenOCD where implemented as C functions. Post "TCL"
1071 (Jim-Tcl to be more exact, June 2008) TCL became a bigger part of OpenOCD.
1072
1073 One of the biggest changes is the introduction of 'target specific'
1074 commands. When every time you create a target, a special command name is
1075 created specifically for that target.
1076 For example - in TCL/TK - if you create a button (or any other screen object) you
1077 can specify various "button configuration parameters". One of those parameters is
1078 the "object cmd/name" [ In TK - this is referred to as the object path ]. Later
1079 you can use that 'path' as a command to modify the button, for example to make it
1080 "grey", or change the color. In effect, the "path" function is an 'object
1081 oriented command'. The TCL change in OpenOCD follows the same principle, you create
1082 a target, and a specific "targetname" command is created.
1083
1084 There are two methods of creating a target:
1085
1086 @enumerate
1087 @item
1088 Using the old syntax (deprecated). Target names are autogenerated as:
1089 "target0", "target1", etc.;
1090 @cindex old syntax
1091 @item
1092 Using the new syntax, you can specify the name of the target.
1093 @cindex new syntax
1094 @end enumerate
1095
1096 As most users will have a single JTAG target, and by default the command name will
1097 probably default to "target0", thus for reasons of simplicity the instructions below
1098 use the name "target0".
1099
1100 @subsection Commands
1101 @cindex Commands
1102 OpenOCD has the following 'target' or 'target-like' commands:
1103
1104 @enumerate
1105 @item
1106 @b{targets (plural)} - lists all known targets and a little bit of information about each
1107 target, most importantly the target *COMMAND*NAME* (it also lists the target number);
1108 @cindex targets
1109 @item
1110 @b{target (singular)} - used to create, configure list, etc the targets;
1111 @cindex target
1112 @item
1113 @b{target0} - the command object for the first target. Unless you specified another name.
1114 @cindex target0
1115 @end enumerate
1116
1117 @subsubsection Targets Command
1118 @cindex Targets Command
1119 The "targets" command has 2 functions:
1120
1121 @itemize
1122 @item
1123 With a parameter, you can change the current command line target.
1124
1125 NOTE: "with a parameter" is really only useful with 'multiple JTAG targets' not something
1126 you normally encounter (ie: If you had 2 arm chips - sharing the same JTAG chain).
1127 @verbatim
1128 # using a target name.
1129 (gdb) mon targets target0
1130 # or a target by number.
1131 (gdb) mon targets 3
1132 @end verbatim
1133 @cindex with a parameter
1134 @item
1135 Plain, without any parameter lists targets, for example:
1136
1137 @verbatim
1138 (gdb) mon targets
1139 CmdName Type Endian ChainPos State
1140 -- ---------- ---------- ---------- -------- ----------
1141 0: target0 arm7tdmi little 0 halted
1142 @end verbatim
1143
1144 This shows:
1145 @enumerate a
1146 @item
1147 in this example, a single target;
1148 @item
1149 target number 0 (1st column);
1150 @item
1151 the 'object name' is target0 (the default name);
1152 @item
1153 it is an arm7tdmi;
1154 @item
1155 little endian;
1156 @item
1157 the position in the JTAG chain;
1158 @item
1159 and is currently halted.
1160 @end enumerate
1161 @cindex without any parameter
1162 @end itemize
1163
1164 @subsubsection Target Command
1165 @cindex Target Command
1166
1167 The "target" command has the following options:
1168 @itemize
1169 @item
1170 target create
1171
1172 @verbatim
1173 target create CMDNAME TYPE ... config options ...
1174 argv[0] = 'target'
1175 argv[1] = 'create'
1176 argv[2] = the 'object command'
1177 (normally, target0, see (3) above)
1178 argv[3] = the target type, ie: arm7tdmi
1179 argv[4..N] = configuration parameters
1180 @end verbatim
1181 @item
1182 target types
1183
1184 Lists all supported target types; ie: arm7tdmi, xscale, fericon, cortex-m3.
1185 The result TCL list of all known target types (and is human readable).
1186 @item
1187 target names
1188
1189 Returns a TCL list of all known target commands (and is human readable).
1190
1191 Example:
1192 @verbatim
1193 foreach t [target names] {
1194 puts [format "Target: %s\n" $t]
1195 }
1196 @end verbatim
1197 @item
1198 target current
1199
1200 Returns the TCL command name of the current target.
1201
1202 Example:
1203 @verbatim
1204 set ct [target current]
1205 set t [$ct cget -type]
1206
1207 puts "Current target name is: $ct, and is a: $t"
1208 @end verbatim
1209 @item
1210 target number <VALUE>
1211
1212 Returns the TCL command name of the specified target.
1213
1214 Example
1215 @verbatim
1216 set thename [target number $x]
1217 puts [format "Target %d is: %s\n" $x $thename]
1218 @end verbatim
1219 For instance, assuming the defaults
1220 @verbatim
1221 target number 0
1222 @end verbatim
1223 Would return 'target0' (or whatever you called it)
1224 @item
1225 target count
1226
1227 Returns the larget+1 target number.
1228
1229 Example:
1230 @verbatim
1231 set c [target count]
1232 for { set x 0 } { $x < $c } { incr x } {
1233 # Assuming you have this function..
1234 print_target_details $x
1235 }
1236 @end verbatim
1237 @end itemize
1238
1239 @subsubsection Target0 Command
1240 @cindex Target0 Command
1241 The "target0" command (the "Target Object" command):
1242
1243 Once a target is 'created' a command object by that targets name is created, for example
1244 @verbatim
1245 target create BiGRed arm7tdmi -endian little -chain-position 3
1246 @end verbatim
1247
1248 Would create a [case sensitive] "command" BiGRed
1249
1250 If you use the old [deprecated] syntax, the name is automatically
1251 generated and is in the form:
1252 @verbatim
1253 target0, target1, target2, target3, ... etc.
1254 @end verbatim
1255
1256 @subsubsection Target CREATE, CONFIGURE and CGET Options Command
1257 @cindex Target CREATE, CONFIGURE and CGET Options Command
1258 The commands:
1259 @verbatim
1260 target create CMDNAME TYPE [configure-options]
1261 CMDNAME configure [configure-options]
1262 CMDNAME cget [configure-options]
1263 @end verbatim
1264 @itemize
1265 @item
1266 In the 'create' case, one is creating the target and can specify any
1267 number of configuration parameters.
1268 @item
1269 In the 'CMDNAME configure' case, one can change the setting [Not all things can, or should be changed].
1270 @item
1271 In the 'CMDNAME cget' case, the goal is to query the target for a
1272 specific configuration option.
1273 @end itemize
1274
1275 In the above, the "default" name target0 is 'target0'.
1276
1277 Example:
1278
1279 From the (gdb) prompt, one can type this:
1280
1281 @verbatim
1282 (gdb) mon target0 configure -endian big
1283 @end verbatim
1284
1285 And change target0 to 'big-endian'. This is a contrived example,
1286 specifically for this document - don't expect changing endian
1287 'mid-operation' to work you should set the endian at creation.
1288
1289 Known options [30/august/2008] are:
1290 @itemize
1291 @item
1292 [Mandatory 'create' Options]
1293 @itemize
1294 @item
1295 type arm7tdmi|arm720|etc ...
1296 @item
1297 chain-position NUMBER
1298 @item
1299 endian ENDIAN
1300 @end itemize
1301 @item
1302 Optional
1303 @itemize
1304 @item
1305 event EVENTNAME "tcl-action"
1306 @item
1307 reset RESETACTION
1308 @item
1309 work-area-virt ADDR
1310 @item
1311 work-area-phys ADDR
1312 @item
1313 work-area-size ADDR
1314 @item
1315 work-area-backup BOOLEAN
1316 @end itemize
1317 @end itemize
1318 Hint: To get a list of available options, try this:
1319 @verbatim
1320 (gdb) mon target0 cget -BLAHBLAHBLAH
1321 @end verbatim
1322
1323 the above causes an error - and a helpful list of valid options.
1324
1325 One can query any of the above options at run time, for example:
1326 @verbatim
1327 (gdb) mon target0 cget -OPTION [param]
1328 @end verbatim
1329
1330 Example TCL script
1331
1332 @verbatim
1333 # For all targets...
1334 set c [target count]
1335 for { set x 0 } { $x < $c } { incr x ] {
1336 set n [target number $x]
1337 set t [$n cget -type]
1338 set e [$n cget -endian]
1339 puts [format "%d: %s, %s, endian: %s\n" $x $n $t $n]
1340 }
1341 @end verbatim
1342
1343 Might produce:
1344
1345 @verbatim
1346 0: pic32chip, mips_m4k, endain: little
1347 1: arm7, arm7tdmi, endian: big
1348 2: blackfin, bf534, endian: little
1349 @end verbatim
1350
1351 Notice the above example is not target0, target1, target2 Why? Because in this contrived multi-target example -
1352 more human understandable target names might be helpful.
1353
1354 For example these two are the same:
1355
1356 @verbatim
1357 (gdb) mon blackfin configure -event FOO {puts "Hi mom"}
1358 @end verbatim
1359
1360 or:
1361
1362 @verbatim
1363 (gdb) mon [target number 2] configure -event FOO {puts "Hi mom"}
1364 @end verbatim
1365
1366 In the second case, we use [] to get the command name of target #2, in this contrived example - it is "blackfin".
1367
1368 Two important configuration options are:
1369
1370 "-event" and "-reset"
1371
1372 The "-reset" option specifies what should happen when the chip is reset, for example should it 'halt', 're-init',
1373 or what.
1374
1375 The "-event" option less you specify a TCL command to occur when a specific event occurs.
1376
1377 @subsubsection Other Target Commands
1378 @cindex Other Target Commands
1379 @itemize
1380 @item @b{profile} <@var{seconds}> <@var{gmon.out}>
1381
1382 Profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC.
1383 @end itemize
1384
1385 @subsection Target Events
1386 @cindex Target Events
1387
1388 @subsubsection Overview
1389 @cindex Overview
1390 At various points in time - certain 'target' events happen. You can create a custom event action to occur at that time.
1391 For example - after reset, the PLLs and CLOCKs may need to be reconfigured, or perhaps the SDRAM needs to be re-initialized.
1392 Often the easiest way to do that is to create a simple script file containing the series of (mww [poke memory]) commands
1393 you would type by hand, to reconfigure the target clocks. You could specify the "event action" like this:
1394
1395 @verbatim
1396 (gdb) mon target0 configure -event reset-init "script cfg.clocks"
1397 @end verbatim
1398
1399 In the above example, when the event "reset-init" occurs, the "action-string" will be evaluated as if you typed it at the
1400 console:
1401 @itemize
1402 @item @b{Option1} - The simple approach (above) is to create a script file with lots of "mww" (memory write word) commands
1403 to configure your targets clocks and/or external memory;
1404 @item @b{Option2} - You can instead create a fancy TCL procedure and invoke that procedure instead of sourcing a file [In fact,
1405 "script" is a TCL procedure that loads a file].
1406 @end itemize
1407
1408 @subsubsection Details
1409 @cindex Details
1410 There are many events one could use, to get a current list of events type the following invalid command, you'll get a helpful
1411 "runtime error" message, see below [list valid as of 30/august/2008]:
1412
1413 @verbatim
1414 (gdb) mon target0 cget -event FAFA
1415 Runtime error, file "../../../openocd23/src/helper/command.c", line 433:
1416 -event: Unknown: FAFA, try one of: old-pre_reset,
1417 old-gdb_program_config, old-post_reset, halted,
1418 resumed, resume-start, resume-end, reset-start,
1419 reset-assert-pre, reset-assert-post,
1420 reset-deassert-pre, reset-deassert-post,
1421 reset-halt-pre, reset-halt-post, reset-wait-pre,
1422 reset-wait-post, reset-init, reset-end,
1423 examine-start, examine-end, debug-halted,
1424 debug-resumed, gdb-attach, gdb-detach,
1425 gdb-flash-write-start, gdb-flash-write-end,
1426 gdb-flash-erase-start, gdb-flash-erase-end,
1427 resume-start, resume-ok, or resume-end
1428 @end verbatim
1429
1430 NOTE: The event-names "old-*" are deprecated and exist only to help old scripts continue to function, and the old "target_script"
1431 command to work. Please do not rely on them.
1432
1433 These are some other important names:
1434 @itemize
1435 @item gdb-flash-erase-start
1436 @item gdb-flash-erase-end
1437 @item gdb-flash-write-start
1438 @item gdb-flash-write-end
1439 @end itemize
1440
1441 These occur when GDB/OpenOCD attempts to erase & program the FLASH chip via GDB. For example - some PCBs may have a simple GPIO
1442 pin that acts like a "flash write protect" you might need to write a script that disables "write protect".
1443
1444 To get a list of current 'event actions', type the following command:
1445
1446 @verbatim
1447 (gdb) mon target0 eventlist
1448
1449 Event actions for target (0) target0
1450
1451 Event | Body
1452 ------------------------- | ----------------------------------------
1453 old-post_reset | script event/sam7x256_reset.script
1454 @end verbatim
1455
1456 Here is a simple example for all targets:
1457
1458 @verbatim
1459 (gdb) mon foreach x [target names] { $x eventlist }
1460 @end verbatim
1461
1462 The above uses some TCL tricks:
1463 @enumerate a
1464 @item foreach VARIABLE LIST BODY
1465 @item to generate the list, we use [target names]
1466 @item the BODY, contains $x - the loop variable and expands to the target specific name
1467 @end enumerate
1468
1469 Recalling the earlier discussion - the "object command" there are other things you can
1470 do besides "configure" the target.
1471
1472 Note: Many of these commands exist as "global" commands, and they also exist as target
1473 specific commands. For example, the "mww" (memory write word) operates on the current
1474 target if you have more then 1 target, you must switch. In contrast to the normal
1475 commands, these commands operate on the specific target. For example, the command "mww"
1476 writes data to the *current* command line target.
1477
1478 Often, you have only a single target - but if you have multiple targets (ie: a PIC32
1479 and an at91sam7 - your reset-init scripts might get a bit more complicated, ie: you must
1480 specify which of the two chips you want to write to. Writing 'pic32' clock configuration
1481 to an at91sam7 does not work).
1482
1483 The commands are [as of 30/august/2008]:
1484 @verbatim
1485 TNAME mww ADDRESS VALUE
1486 TNAME mwh ADDRESS VALUE
1487 TNAME mwb ADDRESS VALUE
1488 Write(poke): 32, 16, 8bit values to memory.
1489
1490 TNAME mdw ADDRESS VALUE
1491 TNAME mdh ADDRESS VALUE
1492 TNAME mdb ADDRESS VALUE
1493 Human 'hexdump' with ascii 32, 16, 8bit values
1494
1495 TNAME mem2array [see mem2array command]
1496 TNAME array2mem [see array2mem command]
1497
1498 TNAME curstate
1499 Returns the current state of the target.
1500
1501 TNAME examine
1502 See 'advanced target reset'
1503 TNAME poll
1504 See 'advanced target reset'
1505 TNAME reset assert
1506 See 'advanced target reset'
1507 TNAME reset deassert
1508 See 'advanced target reset'
1509 TNAME halt
1510 See 'advanced target reset'
1511 TNAME waitstate STATENAME
1512 See 'advanced target reset'
1513 @end verbatim
1514
1515 @page
1516 @section Target Specific Commands
1517 @cindex Target Specific Commands
1518
1519 @subsection AT91SAM7 specific commands
1520 @cindex AT91SAM7 specific commands
1521 The flash configuration is deduced from the chip identification register. The flash
1522 controller handles erases automatically on a page (128/265 byte) basis so erase is
1523 not necessary for flash programming. AT91SAM7 processors with less than 512K flash
1524 only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
1525 that can be erased separatly. Only an EraseAll command is supported by the controller
1526 for each flash plane and this is called with
1527 @itemize @bullet
1528 @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
1529 @*bulk erase flash planes first_plane to last_plane.
1530 @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
1531 @cindex at91sam7 gpnvm
1532 @*set or clear a gpnvm bit for the processor
1533 @end itemize
1534
1535 @subsection STR9 specific commands
1536 @cindex STR9 specific commands
1537 These are flash specific commands when using the str9xpec driver.
1538 @itemize @bullet
1539 @item @b{str9xpec enable_turbo} <@var{num}>
1540 @cindex str9xpec enable_turbo
1541 @*enable turbo mode, simply this will remove the str9 from the chain and talk
1542 directly to the embedded flash controller.
1543 @item @b{str9xpec disable_turbo} <@var{num}>
1544 @cindex str9xpec disable_turbo
1545 @*restore the str9 into jtag chain.
1546 @item @b{str9xpec lock} <@var{num}>
1547 @cindex str9xpec lock
1548 @*lock str9 device. The str9 will only respond to an unlock command that will
1549 erase the device.
1550 @item @b{str9xpec unlock} <@var{num}>
1551 @cindex str9xpec unlock
1552 @*unlock str9 device.
1553 @item @b{str9xpec options_read} <@var{num}>
1554 @cindex str9xpec options_read
1555 @*read str9 option bytes.
1556 @item @b{str9xpec options_write} <@var{num}>
1557 @cindex str9xpec options_write
1558 @*write str9 option bytes.
1559 @end itemize
1560
1561 @subsection STR9 configuration
1562 @cindex STR9 configuration
1563 @itemize @bullet
1564 @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
1565 <@var{BBADR}> <@var{NBBADR}>
1566 @cindex str9x flash_config
1567 @*Configure str9 flash controller.
1568 @smallexample
1569 eg. str9x flash_config 0 4 2 0 0x80000
1570 This will setup
1571 BBSR - Boot Bank Size register
1572 NBBSR - Non Boot Bank Size register
1573 BBADR - Boot Bank Start Address register
1574 NBBADR - Boot Bank Start Address register
1575 @end smallexample
1576 @end itemize
1577
1578 @subsection STR9 option byte configuration
1579 @cindex STR9 option byte configuration
1580 @itemize @bullet
1581 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
1582 @cindex str9xpec options_cmap
1583 @*configure str9 boot bank.
1584 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
1585 @cindex str9xpec options_lvdthd
1586 @*configure str9 lvd threshold.
1587 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
1588 @cindex str9xpec options_lvdsel
1589 @*configure str9 lvd source.
1590 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
1591 @cindex str9xpec options_lvdwarn
1592 @*configure str9 lvd reset warning source.
1593 @end itemize
1594
1595 @subsection STM32x specific commands
1596 @cindex STM32x specific commands
1597
1598 These are flash specific commands when using the stm32x driver.
1599 @itemize @bullet
1600 @item @b{stm32x lock} <@var{num}>
1601 @cindex stm32x lock
1602 @*lock stm32 device.
1603 @item @b{stm32x unlock} <@var{num}>
1604 @cindex stm32x unlock
1605 @*unlock stm32 device.
1606 @item @b{stm32x options_read} <@var{num}>
1607 @cindex stm32x options_read
1608 @*read stm32 option bytes.
1609 @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
1610 <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
1611 @cindex stm32x options_write
1612 @*write stm32 option bytes.
1613 @item @b{stm32x mass_erase} <@var{num}>
1614 @cindex stm32x mass_erase
1615 @*mass erase flash memory.
1616 @end itemize
1617
1618 @subsection Stellaris specific commands
1619 @cindex Stellaris specific commands
1620
1621 These are flash specific commands when using the Stellaris driver.
1622 @itemize @bullet
1623 @item @b{stellaris mass_erase} <@var{num}>
1624 @cindex stellaris mass_erase
1625 @*mass erase flash memory.
1626 @end itemize
1627
1628 @page
1629 @section Architecture Specific Commands
1630 @cindex Architecture Specific Commands
1631
1632 @subsection ARMV4/5 specific commands
1633 @cindex ARMV4/5 specific commands
1634
1635 These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
1636 or Intel XScale (XScale isn't supported yet).
1637 @itemize @bullet
1638 @item @b{armv4_5 reg}
1639 @cindex armv4_5 reg
1640 @*Display a list of all banked core registers, fetching the current value from every
1641 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
1642 register value.
1643 @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
1644 @cindex armv4_5 core_mode
1645 @*Displays the core_mode, optionally changing it to either ARM or Thumb mode.
1646 The target is resumed in the currently set @option{core_mode}.
1647 @end itemize
1648
1649 @subsection ARM7/9 specific commands
1650 @cindex ARM7/9 specific commands
1651
1652 These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
1653 ARM920t or ARM926EJ-S.
1654 @itemize @bullet
1655 @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
1656 @cindex arm7_9 dbgrq
1657 @*Enable use of the DBGRQ bit to force entry into debug mode. This should be
1658 safe for all but ARM7TDMI--S cores (like Philips LPC).
1659 @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
1660 @cindex arm7_9 fast_memory_access
1661 @anchor{arm7_9 fast_memory_access}
1662 @*Allow OpenOCD to read and write memory without checking completion of
1663 the operation. This provides a huge speed increase, especially with USB JTAG
1664 cables (FT2232), but might be unsafe if used with targets running at a very low
1665 speed, like the 32kHz startup clock of an AT91RM9200.
1666 @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
1667 @cindex arm7_9 dcc_downloads
1668 @*Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
1669 amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
1670 unsafe, especially with targets running at a very low speed. This command was introduced
1671 with OpenOCD rev. 60.
1672 @end itemize
1673
1674 @subsection ARM720T specific commands
1675 @cindex ARM720T specific commands
1676
1677 @itemize @bullet
1678 @item @b{arm720t cp15} <@var{num}> [@var{value}]
1679 @cindex arm720t cp15
1680 @*display/modify cp15 register <@option{num}> [@option{value}].
1681 @item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
1682 @cindex arm720t md<bhw>_phys
1683 @*Display memory at physical address addr.
1684 @item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
1685 @cindex arm720t mw<bhw>_phys
1686 @*Write memory at physical address addr.
1687 @item @b{arm720t virt2phys} <@var{va}>
1688 @cindex arm720t virt2phys
1689 @*Translate a virtual address to a physical address.
1690 @end itemize
1691
1692 @subsection ARM9TDMI specific commands
1693 @cindex ARM9TDMI specific commands
1694
1695 @itemize @bullet
1696 @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
1697 @cindex arm9tdmi vector_catch
1698 @*Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
1699 @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
1700 @option{irq} @option{fiq}.
1701
1702 Can also be used on other arm9 based cores, arm966, arm920t and arm926ejs.
1703 @end itemize
1704
1705 @subsection ARM966E specific commands
1706 @cindex ARM966E specific commands
1707
1708 @itemize @bullet
1709 @item @b{arm966e cp15} <@var{num}> [@var{value}]
1710 @cindex arm966e cp15
1711 @*display/modify cp15 register <@option{num}> [@option{value}].
1712 @end itemize
1713
1714 @subsection ARM920T specific commands
1715 @cindex ARM920T specific commands
1716
1717 @itemize @bullet
1718 @item @b{arm920t cp15} <@var{num}> [@var{value}]
1719 @cindex arm920t cp15
1720 @*display/modify cp15 register <@option{num}> [@option{value}].
1721 @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
1722 @cindex arm920t cp15i
1723 @*display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
1724 @item @b{arm920t cache_info}
1725 @cindex arm920t cache_info
1726 @*Print information about the caches found. This allows you to see if your target
1727 is a ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
1728 @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
1729 @cindex arm920t md<bhw>_phys
1730 @*Display memory at physical address addr.
1731 @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
1732 @cindex arm920t mw<bhw>_phys
1733 @*Write memory at physical address addr.
1734 @item @b{arm920t read_cache} <@var{filename}>
1735 @cindex arm920t read_cache
1736 @*Dump the content of ICache and DCache to a file.
1737 @item @b{arm920t read_mmu} <@var{filename}>
1738 @cindex arm920t read_mmu
1739 @*Dump the content of the ITLB and DTLB to a file.
1740 @item @b{arm920t virt2phys} <@var{va}>
1741 @cindex arm920t virt2phys
1742 @*Translate a virtual address to a physical address.
1743 @end itemize
1744
1745 @subsection ARM926EJS specific commands
1746 @cindex ARM926EJS specific commands
1747
1748 @itemize @bullet
1749 @item @b{arm926ejs cp15} <@var{num}> [@var{value}]
1750 @cindex arm926ejs cp15
1751 @*display/modify cp15 register <@option{num}> [@option{value}].
1752 @item @b{arm926ejs cache_info}
1753 @cindex arm926ejs cache_info
1754 @*Print information about the caches found.
1755 @item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
1756 @cindex arm926ejs md<bhw>_phys
1757 @*Display memory at physical address addr.
1758 @item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
1759 @cindex arm926ejs mw<bhw>_phys
1760 @*Write memory at physical address addr.
1761 @item @b{arm926ejs virt2phys} <@var{va}>
1762 @cindex arm926ejs virt2phys
1763 @*Translate a virtual address to a physical address.
1764 @end itemize
1765
1766 @page
1767 @section Debug commands
1768 @cindex Debug commands
1769 The following commands give direct access to the core, and are most likely
1770 only useful while debugging OpenOCD.
1771 @itemize @bullet
1772 @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
1773 @cindex arm7_9 write_xpsr
1774 @*Immediately write either the current program status register (CPSR) or the saved
1775 program status register (SPSR), without changing the register cache (as displayed
1776 by the @option{reg} and @option{armv4_5 reg} commands).
1777 @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
1778 <@var{0=cpsr},@var{1=spsr}>
1779 @cindex arm7_9 write_xpsr_im8
1780 @*Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
1781 operation (similar to @option{write_xpsr}).
1782 @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
1783 @cindex arm7_9 write_core_reg
1784 @*Write a core register, without changing the register cache (as displayed by the
1785 @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
1786 encoding of the [M4:M0] bits of the PSR.
1787 @end itemize
1788
1789 @page
1790 @section JTAG commands
1791 @cindex JTAG commands
1792 @itemize @bullet
1793 @item @b{scan_chain}
1794 @cindex scan_chain
1795 @*Print current scan chain configuration.
1796 @item @b{jtag_reset} <@var{trst}> <@var{srst}>
1797 @cindex jtag_reset
1798 @*Toggle reset lines.
1799 @item @b{endstate} <@var{tap_state}>
1800 @cindex endstate
1801 @*Finish JTAG operations in <@var{tap_state}>.
1802 @item @b{runtest} <@var{num_cycles}>
1803 @cindex runtest
1804 @*Move to Run-Test/Idle, and execute <@var{num_cycles}>
1805 @item @b{statemove} [@var{tap_state}]
1806 @cindex statemove
1807 @*Move to current endstate or [@var{tap_state}]
1808 @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1809 @cindex irscan
1810 @*Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1811 @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
1812 @cindex drscan
1813 @*Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
1814 @item @b{verify_ircapture} <@option{enable}|@option{disable}>
1815 @cindex verify_ircapture
1816 @*Verify value captured during Capture-IR. Default is enabled.
1817 @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1818 @cindex var
1819 @*Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1820 @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
1821 @cindex field
1822 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
1823 @end itemize
1824
1825 @page
1826 @section Target Requests
1827 @cindex Target Requests
1828 OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
1829 See libdcc in the contrib dir for more details.
1830 @itemize @bullet
1831 @item @b{target_request debugmsgs} <@var{enable}|@var{disable}>
1832 @cindex target_request debugmsgs
1833 @*Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running.
1834 @end itemize
1835
1836 @node TFTP
1837 @chapter TFTP
1838 @cindex TFTP
1839 If OpenOCD runs on an embedded host(as ZY1000 does), then tftp can
1840 be used to access files on PCs(either developer PC or some other PC).
1841
1842 The way this works is to prefix a filename by "/tftp/ip/" and append
1843 the tftp path on the tftp server(tftpd). E.g. "load_image /tftp/10.0.0.96/c:\temp\abc.elf"
1844 will load c:\temp\abc.elf from the developer pc (10.0.0.96) into memory as
1845 if the file was hosted on the embedded host.
1846
1847 In order to achieve decent performance, you must choose a tftp server
1848 that supports a packet size bigger than the default packet size(512 bytes). There
1849 are numerous tftp servers out there(free and commercial) and you will have to do
1850 a bit of googling to find something that fits your requirements.
1851
1852 @node Sample Scripts
1853 @chapter Sample Scripts
1854 @cindex scripts
1855
1856 This page shows how to use the target library.
1857
1858 The configuration script can be divided in the following section:
1859 @itemize @bullet
1860 @item daemon configuration
1861 @item interface
1862 @item jtag scan chain
1863 @item target configuration
1864 @item flash configuration
1865 @end itemize
1866
1867 Detailed information about each section can be found at OpenOCD configuration.
1868
1869 @section AT91R40008 example
1870 @cindex AT91R40008 example
1871 To start OpenOCD with a target script for the AT91R40008 CPU and reset
1872 the CPU upon startup of the OpenOCD daemon.
1873 @smallexample
1874 openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset
1875 @end smallexample
1876
1877
1878 @node GDB and OpenOCD
1879 @chapter GDB and OpenOCD
1880 @cindex GDB and OpenOCD
1881 OpenOCD complies with the remote gdbserver protocol, and as such can be used
1882 to debug remote targets.
1883
1884 @section Connecting to gdb
1885 @cindex Connecting to gdb
1886 Use GDB 6.7 or newer with OpenOCD if you run into trouble. For instance 6.3 has a
1887 known bug where it produces bogus memory access errors, which has since
1888 been fixed: look up 1836 in http://sourceware.org/cgi-bin/gnatsweb.pl?database=gdb
1889
1890
1891 A connection is typically started as follows:
1892 @smallexample
1893 target remote localhost:3333
1894 @end smallexample
1895 This would cause gdb to connect to the gdbserver on the local pc using port 3333.
1896
1897 To see a list of available OpenOCD commands type @option{monitor help} on the
1898 gdb commandline.
1899
1900 OpenOCD supports the gdb @option{qSupported} packet, this enables information
1901 to be sent by the gdb server (openocd) to gdb. Typical information includes
1902 packet size and device memory map.
1903
1904 Previous versions of OpenOCD required the following gdb options to increase
1905 the packet size and speed up gdb communication.
1906 @smallexample
1907 set remote memory-write-packet-size 1024
1908 set remote memory-write-packet-size fixed
1909 set remote memory-read-packet-size 1024
1910 set remote memory-read-packet-size fixed
1911 @end smallexample
1912 This is now handled in the @option{qSupported} PacketSize.
1913
1914 @section Programming using gdb
1915 @cindex Programming using gdb
1916
1917 By default the target memory map is sent to gdb, this can be disabled by
1918 the following OpenOCD config option:
1919 @smallexample
1920 gdb_memory_map disable
1921 @end smallexample
1922 For this to function correctly a valid flash config must also be configured
1923 in OpenOCD. For faster performance you should also configure a valid
1924 working area.
1925
1926 Informing gdb of the memory map of the target will enable gdb to protect any
1927 flash area of the target and use hardware breakpoints by default. This means
1928 that the OpenOCD option @option{gdb_breakpoint_override} is not required when
1929 using a memory map. @xref{gdb_breakpoint_override}.
1930
1931 To view the configured memory map in gdb, use the gdb command @option{info mem}
1932 All other unasigned addresses within gdb are treated as RAM.
1933
1934 GDB 6.8 and higher set any memory area not in the memory map as inaccessible,
1935 this can be changed to the old behaviour by using the following gdb command.
1936 @smallexample
1937 set mem inaccessible-by-default off
1938 @end smallexample
1939
1940 If @option{gdb_flash_program enable} is also used, gdb will be able to
1941 program any flash memory using the vFlash interface.
1942
1943 gdb will look at the target memory map when a load command is given, if any
1944 areas to be programmed lie within the target flash area the vFlash packets
1945 will be used.
1946
1947 If the target needs configuring before gdb programming, a script can be executed.
1948 @smallexample
1949 target_script 0 gdb_program_config config.script
1950 @end smallexample
1951
1952 To verify any flash programming the gdb command @option{compare-sections}
1953 can be used.
1954
1955 @node TCL and OpenOCD
1956 @chapter TCL and OpenOCD
1957 @cindex TCL and OpenOCD
1958 OpenOCD embeds a TCL interpreter (see JIM) for command parsing and scripting
1959 support.
1960
1961 The TCL interpreter can be invoked from the interactive command line, files, and a network port.
1962
1963 The command and file interfaces are fairly straightforward, while the network
1964 port is geared toward intergration with external clients. A small example
1965 of an external TCL script that can connect to openocd is shown below.
1966
1967 @verbatim
1968 # Simple tcl client to connect to openocd
1969 puts "Use empty line to exit"
1970 set fo [socket 127.0.0.1 6666]
1971 puts -nonewline stdout "> "
1972 flush stdout
1973 while {[gets stdin line] >= 0} {
1974 if {$line eq {}} break
1975 puts $fo $line
1976 flush $fo
1977 gets $fo line
1978 puts $line
1979 puts -nonewline stdout "> "
1980 flush stdout
1981 }
1982 close $fo
1983 @end verbatim
1984
1985 This script can easily be modified to front various GUIs or be a sub
1986 component of a larger framework for control and interaction.
1987
1988
1989 @node TCL scripting API
1990 @chapter TCL scripting API
1991 @cindex TCL scripting API
1992 API rules
1993
1994 The commands are stateless. E.g. the telnet command line has a concept
1995 of currently active target, the Tcl API proc's take this sort of state
1996 information as an argument to each proc.
1997
1998 There are three main types of return values: single value, name value
1999 pair list and lists.
2000
2001 Name value pair. The proc 'foo' below returns a name/value pair
2002 list.
2003
2004 @verbatim
2005
2006 > set foo(me) Duane
2007 > set foo(you) Oyvind
2008 > set foo(mouse) Micky
2009 > set foo(duck) Donald
2010
2011 If one does this:
2012
2013 > set foo
2014
2015 The result is:
2016
2017 me Duane you Oyvind mouse Micky duck Donald
2018
2019 Thus, to get the names of the associative array is easy:
2020
2021 foreach { name value } [set foo] {
2022 puts "Name: $name, Value: $value"
2023 }
2024 @end verbatim
2025
2026 Lists returned must be relatively small. Otherwise a range
2027 should be passed in to the proc in question.
2028
2029 Low level commands are prefixed with "openocd_", e.g. openocd_flash_banks
2030 is the low level API upon which "flash banks" is implemented.
2031
2032 @itemize @bullet
2033 @item @b{ocd_mem2array} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
2034
2035 Read memory and return as a TCL array for script processing
2036 @item @b{ocd_array2mem} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
2037
2038 Convert a TCL array to memory locations and write the values
2039 @item @b{ocd_flash_banks} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}> <@var{target}> [@option{driver options} ...]
2040
2041 Return information about the flash banks
2042 @end itemize
2043
2044 OpenOCD commands can consist of two words, e.g. "flash banks". The
2045 startup.tcl "unknown" proc will translate this into a tcl proc
2046 called "flash_banks".
2047
2048
2049 @node Upgrading
2050 @chapter Deprecated/Removed Commands
2051 @cindex Deprecated/Removed Commands
2052 Certain OpenOCD commands have been deprecated/removed during the various revisions.
2053
2054 @itemize @bullet
2055 @item @b{load_binary}
2056 @cindex load_binary
2057 @*use @option{load_image} command with same args. @xref{load_image}.
2058 @item @b{target}
2059 @cindex target
2060 @*@option{target} no longer take the reset_init, reset_run, run_and_halt, run_and_init. The @option{reset} command
2061 always does a @option{reset run} when passed no arguments.
2062 @item @b{dump_binary}
2063 @cindex dump_binary
2064 @*use @option{dump_image} command with same args. @xref{dump_image}.
2065 @item @b{flash erase}
2066 @cindex flash erase
2067 @*use @option{flash erase_sector} command with same args. @xref{flash erase_sector}.
2068 @item @b{flash write}
2069 @cindex flash write
2070 @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
2071 @item @b{flash write_binary}
2072 @cindex flash write_binary
2073 @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
2074 @item @b{arm7_9 fast_writes}
2075 @cindex arm7_9 fast_writes
2076 @*use @option{arm7_9 fast_memory_access} command with same args. @xref{arm7_9 fast_memory_access}.
2077 @item @b{flash auto_erase}
2078 @cindex flash auto_erase
2079 @*use @option{flash write_image} command passing @option{erase} as the first parameter. @xref{flash write_image}.
2080 @item @b{daemon_startup}
2081 @cindex daemon_startup
2082 @*this config option has been removed, simply adding @option{init} and @option{reset halt} to
2083 the end of your config script will give the same behaviour as using @option{daemon_startup reset}
2084 and @option{target cortex_m3 little reset_halt 0}.
2085 @item @b{arm7_9 sw_bkpts}
2086 @cindex arm7_9 sw_bkpts
2087 @*On by default. See also @option{gdb_breakpoint_override}. @xref{gdb_breakpoint_override}.
2088 @item @b{arm7_9 force_hw_bkpts}
2089 @cindex arm7_9 force_hw_bkpts
2090 @*Use @option{gdb_breakpoint_override} instead. Note that GDB will use hardware breakpoints
2091 for flash if the gdb memory map has been set up(default when flash is declared in
2092 target configuration). @xref{gdb_breakpoint_override}.
2093 @item @b{run_and_halt_time}
2094 @cindex run_and_halt_time
2095 @*This command has been removed for simpler reset behaviour, it can be simulated with the
2096 following commands:
2097 @smallexample
2098 reset run
2099 sleep 100
2100 halt
2101 @end smallexample
2102 @end itemize
2103
2104 @node FAQ
2105 @chapter FAQ
2106 @cindex faq
2107 @enumerate
2108 @item Why does not backslashes in paths under Windows doesn't work?
2109
2110 OpenOCD uses Tcl and a backslash is an escape char. Use @{ and @}
2111 around Windows filenames.
2112
2113 @smallexample
2114 > echo \a
2115
2116 > echo @{\a@}
2117 \a
2118 > echo "\a"
2119
2120 >
2121 @end smallexample
2122 To
2123
2124 @item OpenOCD complains about a missing cygwin1.dll.
2125
2126 Make sure you have Cygwin installed, or at least a version of OpenOCD that
2127 claims to come with all the necessary dlls. When using Cygwin, try launching
2128 OpenOCD from the Cygwin shell.
2129
2130 @item I'm trying to set a breakpoint using GDB (or a frontend like Insight or
2131 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
2132 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
2133
2134 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
2135 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720t or ARM920t,
2136 software breakpoints consume one of the two available hardware breakpoints.
2137
2138 @item When erasing or writing LPC2000 on-chip flash, the operation fails sometimes
2139 and works sometimes fine.
2140
2141 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
2142 clock at the time you're programming the flash. If you've specified the crystal's
2143 frequency, make sure the PLL is disabled, if you've specified the full core speed
2144 (e.g. 60MHz), make sure the PLL is enabled.
2145
2146 @item When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
2147 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
2148 out while waiting for end of scan, rtck was disabled".
2149
2150 Make sure your PC's parallel port operates in EPP mode. You might have to try several
2151 settings in your PC BIOS (ECP, EPP, and different versions of those).
2152
2153 @item When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse),
2154 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
2155 memory read caused data abort".
2156
2157 The errors are non-fatal, and are the result of GDB trying to trace stack frames
2158 beyond the last valid frame. It might be possible to prevent this by setting up
2159 a proper "initial" stack frame, if you happen to know what exactly has to
2160 be done, feel free to add this here.
2161
2162 @item I get the following message in the OpenOCD console (or log file):
2163 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
2164
2165 This warning doesn't indicate any serious problem, as long as you don't want to
2166 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
2167 trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board,
2168 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
2169 independently. With this setup, it's not possible to halt the core right out of
2170 reset, everything else should work fine.
2171
2172 @item When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
2173 Toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
2174 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
2175 quit with an error message. Is there a stability issue with OpenOCD?
2176
2177 No, this is not a stability issue concerning OpenOCD. Most users have solved
2178 this issue by simply using a self-powered USB hub, which they connect their
2179 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
2180 supply stable enough for the Amontec JTAGkey to be operated.
2181
2182 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
2183 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
2184 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
2185 What does that mean and what might be the reason for this?
2186
2187 First of all, the reason might be the USB power supply. Try using a self-powered
2188 hub instead of a direct connection to your computer. Secondly, the error code 4
2189 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
2190 chip ran into some sort of error - this points us to a USB problem.
2191
2192 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
2193 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
2194 What does that mean and what might be the reason for this?
2195
2196 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
2197 has closed the connection to OpenOCD. This might be a GDB issue.
2198
2199 @item In the configuration file in the section where flash device configurations
2200 are described, there is a parameter for specifying the clock frequency for
2201 LPC2000 internal flash devices (e.g.
2202 @option{flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}),
2203 which must be specified in kilohertz. However, I do have a quartz crystal of a
2204 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz, i.e. 14,745.600 kHz).
2205 Is it possible to specify real numbers for the clock frequency?
2206
2207 No. The clock frequency specified here must be given as an integral number.
2208 However, this clock frequency is used by the In-Application-Programming (IAP)
2209 routines of the LPC2000 family only, which seems to be very tolerant concerning
2210 the given clock frequency, so a slight difference between the specified clock
2211 frequency and the actual clock frequency will not cause any trouble.
2212
2213 @item Do I have to keep a specific order for the commands in the configuration file?
2214
2215 Well, yes and no. Commands can be given in arbitrary order, yet the devices
2216 listed for the JTAG scan chain must be given in the right order (jtag_device),
2217 with the device closest to the TDO-Pin being listed first. In general,
2218 whenever objects of the same type exist which require an index number, then
2219 these objects must be given in the right order (jtag_devices, targets and flash
2220 banks - a target references a jtag_device and a flash bank references a target).
2221
2222 @item Sometimes my debugging session terminates with an error. When I look into the
2223 log file, I can see these error messages: Error: arm7_9_common.c:561
2224 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
2225
2226 TODO.
2227
2228 @end enumerate
2229
2230 @include fdl.texi
2231
2232 @node Index
2233 @unnumbered Index
2234
2235 @printindex cp
2236
2237 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)