tip on checking with supplier for binaries
[openocd.git] / doc / openocd.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (OpenOCD)
5 @dircategory Development
6 @direntry
7 * OpenOCD: (openocd). Open On-Chip Debugger.
8 @end direntry
9 @c %**end of header
10
11 @include version.texi
12
13 @copying
14 Copyright @copyright{} 2007-2008 Spen @email{spen@@spen-soft.co.uk}
15 Copyright @copyright{} 2008 Oyvind Harboe @email{oyvind.harboe@@zylin.com}
16 @quotation
17 Permission is granted to copy, distribute and/or modify this document
18 under the terms of the GNU Free Documentation License, Version 1.2 or
19 any later version published by the Free Software Foundation; with no
20 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
21 Texts. A copy of the license is included in the section entitled ``GNU
22 Free Documentation License''.
23 @end quotation
24 @end copying
25
26 @titlepage
27 @title Open On-Chip Debugger (OpenOCD)
28 @subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
29 @subtitle @value{UPDATED}
30 @page
31 @vskip 0pt plus 1filll
32 @insertcopying
33 @end titlepage
34
35 @contents
36
37 @node Top, About, , (dir)
38 @top OpenOCD
39
40 This manual documents edition @value{EDITION} of the Open On-Chip Debugger
41 (OpenOCD) version @value{VERSION}, @value{UPDATED}.
42
43 @insertcopying
44
45 @menu
46 * About:: About OpenOCD.
47 * Developers:: OpenOCD developers
48 * Building:: Building OpenOCD
49 * Running:: Running OpenOCD
50 * Configuration:: OpenOCD Configuration.
51 * Target library:: Target library
52 * Commands:: OpenOCD Commands
53 * Sample Scripts:: Sample Target Scripts
54 * GDB and OpenOCD:: Using GDB and OpenOCD
55 * TCL and OpenOCD:: Using TCL and OpenOCD
56 * TCL scripting API:: Tcl scripting API
57 * Upgrading:: Deprecated/Removed Commands
58 * FAQ:: Frequently Asked Questions
59 * License:: GNU Free Documentation License
60 * Index:: Main index.
61 @end menu
62
63 @node About
64 @unnumbered About
65 @cindex about
66
67 The Open On-Chip Debugger (OpenOCD) aims to provide debugging, in-system programming
68 and boundary-scan testing for embedded target devices. The targets are interfaced
69 using JTAG (IEEE 1149.1) compliant hardware, but this may be extended to other
70 connection types in the future.
71
72 OpenOCD currently supports Wiggler (clones), FTDI FT2232 based JTAG interfaces, the
73 Amontec JTAG Accelerator, and the Gateworks GW1602. It allows ARM7 (ARM7TDMI and ARM720t),
74 ARM9 (ARM920t, ARM922t, ARM926ej--s, ARM966e--s), XScale (PXA25x, IXP42x) and
75 Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be debugged.
76
77 Flash writing is supported for external CFI compatible flashes (Intel and AMD/Spansion
78 command set) and several internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3
79 and STM32x). Preliminary support for using the LPC3180's NAND flash controller is included.
80
81 @node Developers
82 @chapter Developers
83 @cindex developers
84
85 OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
86 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
87 Others interested in improving the state of free and open debug and testing technology
88 are welcome to participate.
89
90 Other developers have contributed support for additional targets and flashes as well
91 as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
92
93 The main OpenOCD web site is available at @uref{http://openocd.berlios.de/web/}
94
95 @node Building
96 @chapter Building
97 @cindex building OpenOCD
98
99 If you are interested in getting actual work done rather than building
100 OpenOCD, then check if your interface supplier provides binaries for
101 you. Chances are that that binary is from some SVN version that is more
102 stable than SVN trunk where bleeding edge development takes place.
103
104
105 You can download the current SVN version with SVN client of your choice from the
106 following repositories:
107
108 (@uref{svn://svn.berlios.de/openocd/trunk})
109
110 or
111
112 (@uref{http://svn.berlios.de/svnroot/repos/openocd/trunk})
113
114 Using the SVN command line client, you can use the following command to fetch the
115 latest version (make sure there is no (non-svn) directory called "openocd" in the
116 current directory):
117
118 @smallexample
119 svn checkout svn://svn.berlios.de/openocd/trunk openocd
120 @end smallexample
121
122 Building OpenOCD requires a recent version of the GNU autotools.
123 On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
124 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
125 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
126 paths, resulting in obscure dependency errors (This is an observation I've gathered
127 from the logs of one user - correct me if I'm wrong).
128
129 You further need the appropriate driver files, if you want to build support for
130 a FTDI FT2232 based interface:
131 @itemize @bullet
132 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
133 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
134 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
135 homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
136 @end itemize
137
138 libftdi is supported under windows. Versions earlier than 0.13 will require patching.
139 see contrib/libftdi for more details.
140
141 In general, the D2XX driver provides superior performance (several times as fast),
142 but has the draw-back of being binary-only - though that isn't that bad, as it isn't
143 a kernel module, only a user space library.
144
145 To build OpenOCD (on both Linux and Cygwin), use the following commands:
146 @smallexample
147 ./bootstrap
148 @end smallexample
149 Bootstrap generates the configure script, and prepares building on your system.
150 @smallexample
151 ./configure
152 @end smallexample
153 Configure generates the Makefiles used to build OpenOCD.
154 @smallexample
155 make
156 @end smallexample
157 Make builds OpenOCD, and places the final executable in ./src/.
158
159 The configure script takes several options, specifying which JTAG interfaces
160 should be included:
161
162 @itemize @bullet
163 @item
164 @option{--enable-parport}
165 @item
166 @option{--enable-parport_ppdev}
167 @item
168 @option{--enable-parport_giveio}
169 @item
170 @option{--enable-amtjtagaccel}
171 @item
172 @option{--enable-ft2232_ftd2xx}
173 @footnote{Using the latest D2XX drivers from FTDI and following their installation
174 instructions, I had to use @option{--enable-ft2232_libftd2xx} for OpenOCD to
175 build properly.}
176 @item
177 @option{--enable-ft2232_libftdi}
178 @item
179 @option{--with-ftd2xx=/path/to/d2xx/}
180 @item
181 @option{--enable-gw16012}
182 @item
183 @option{--enable-usbprog}
184 @item
185 @option{--enable-presto_libftdi}
186 @item
187 @option{--enable-presto_ftd2xx}
188 @item
189 @option{--enable-jlink}
190 @end itemize
191
192 If you want to access the parallel port using the PPDEV interface you have to specify
193 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
194 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
195 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
196
197 Cygwin users have to specify the location of the FTDI D2XX package. This should be an
198 absolute path containing no spaces.
199
200 Linux users should copy the various parts of the D2XX package to the appropriate
201 locations, i.e. /usr/include, /usr/lib.
202
203 Miscellaneous configure options
204
205 @itemize @bullet
206 @item
207 @option{--enable-gccwarnings} - enable extra gcc warnings during build
208 @end itemize
209
210 @node Running
211 @chapter Running
212 @cindex running OpenOCD
213 @cindex --configfile
214 @cindex --debug_level
215 @cindex --logfile
216 @cindex --search
217 OpenOCD runs as a daemon, waiting for connections from clients (Telnet, GDB, Other).
218 Run with @option{--help} or @option{-h} to view the available command line switches.
219
220 It reads its configuration by default from the file openocd.cfg located in the current
221 working directory. This may be overwritten with the @option{-f <configfile>} command line
222 switch. The @option{-f} command line switch can be specified multiple times, in which case the config files
223 are executed in order.
224
225 Also it is possible to interleave commands w/config scripts using the @option{-c} command line switch.
226
227 To enable debug output (when reporting problems or working on OpenOCD itself), use
228 the @option{-d} command line switch. This sets the debug_level to "3", outputting
229 the most information, including debug messages. The default setting is "2", outputting
230 only informational messages, warnings and errors. You can also change this setting
231 from within a telnet or gdb session (@option{debug_level <n>}).
232
233 You can redirect all output from the daemon to a file using the @option{-l <logfile>} switch.
234
235 Search paths for config/script files can be added to OpenOCD by using
236 the @option{-s <search>} switch. The current directory and the OpenOCD target library
237 is in the search path by default.
238
239 Note! OpenOCD will launch the GDB & telnet server even if it can not establish a connection
240 with the target. In general, it is possible for the JTAG controller to be unresponsive until
241 the target is set up correctly via e.g. GDB monitor commands in a GDB init script.
242
243 @node Configuration
244 @chapter Configuration
245 @cindex configuration
246 OpenOCD runs as a daemon, and reads it current configuration
247 by default from the file openocd.cfg in the current directory. A different configuration
248 file can be specified with the @option{-f <conf.file>} command line switch specified when starting OpenOCD.
249
250 The configuration file is used to specify on which ports the daemon listens for new
251 connections, the JTAG interface used to connect to the target, the layout of the JTAG
252 chain, the targets that should be debugged, and connected flashes.
253
254 @section Daemon configuration
255
256 @itemize @bullet
257 @item @b{init} This command terminates the configuration stage and enters the normal
258 command mode. This can be useful to add commands to the startup scripts and commands
259 such as resetting the target, programming flash, etc. To reset the CPU upon startup,
260 add "init" and "reset" at the end of the config script or at the end of the
261 OpenOCD command line using the @option{-c} command line switch.
262 @cindex init
263 @item @b{telnet_port} <@var{number}>
264 @cindex telnet_port
265 Port on which to listen for incoming telnet connections
266 @item @b{gdb_port} <@var{number}>
267 @cindex gdb_port
268 First port on which to listen for incoming GDB connections. The GDB port for the
269 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
270 @item @b{gdb_breakpoint_override} <@var{hard/soft/disabled}>
271 @cindex gdb_breakpoint_override
272 hard/soft/disabled - force breakpoint type for gdb 'break' commands.
273 The raison d'etre for this option is to support GDB GUI's without
274 a hard/soft breakpoint concept where the default OpenOCD and
275 GDB behaviour is not sufficient. Note that GDB will use hardware
276 breakpoints if the memory map has been set up for flash regions.
277
278 This option replaces older arm7_9 target commands that addressed
279 the same issue.
280 @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
281 @cindex gdb_detach
282 Configures what OpenOCD will do when gdb detaches from the daeman.
283 Default behaviour is <@var{resume}>
284 @item @b{gdb_memory_map} <@var{enable|disable}>
285 @cindex gdb_memory_map
286 Set to <@var{enable}> to cause OpenOCD to send the memory configuration to gdb when
287 requested. gdb will then know when to set hardware breakpoints, and program flash
288 using the gdb load command. @option{gdb_flash_program enable} will also need enabling
289 for flash programming to work.
290 Default behaviour is <@var{enable}>
291 @item @b{gdb_flash_program} <@var{enable|disable}>
292 @cindex gdb_flash_program
293 Set to <@var{enable}> to cause OpenOCD to program the flash memory when a
294 vFlash packet is received.
295 Default behaviour is <@var{enable}>
296 at item @b{tcl_port} <@var{number}>
297 at cindex tcl_port
298 Port on which to listen for incoming TCL syntax. This port is intended as
299 a simplified RPC connection that can be used by clients to issue commands
300 and get the output from the TCL engine.
301 @end itemize
302
303 @section JTAG interface configuration
304
305 @itemize @bullet
306 @item @b{interface} <@var{name}>
307 @cindex interface
308 Use the interface driver <@var{name}> to connect to the target. Currently supported
309 interfaces are
310 @itemize @minus
311 @item @b{parport}
312 PC parallel port bit-banging (Wigglers, PLD download cable, ...)
313 @end itemize
314 @itemize @minus
315 @item @b{amt_jtagaccel}
316 Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
317 mode parallel port
318 @end itemize
319 @itemize @minus
320 @item @b{ft2232}
321 FTDI FT2232 based devices using either the open-source libftdi or the binary only
322 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
323 platform. The libftdi uses libusb, and should be portable to all systems that provide
324 libusb.
325 @end itemize
326 @itemize @minus
327 @item @b{ep93xx}
328 Cirrus Logic EP93xx based single-board computer bit-banging (in development)
329 @end itemize
330 @itemize @minus
331 @item @b{presto}
332 ASIX PRESTO USB JTAG programmer.
333 @end itemize
334 @itemize @minus
335 @item @b{usbprog}
336 usbprog is a freely programmable USB adapter.
337 @end itemize
338 @itemize @minus
339 @item @b{gw16012}
340 Gateworks GW16012 JTAG programmer.
341 @end itemize
342 @itemize @minus
343 @item @b{jlink}
344 Segger jlink usb adapter
345 @end itemize
346 @end itemize
347
348 @itemize @bullet
349 @item @b{jtag_speed} <@var{reset speed}>
350 @cindex jtag_speed
351 Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
352 speed. The actual effect of this option depends on the JTAG interface used.
353
354 The speed used during reset can be adjusted using setting jtag_speed during
355 pre_reset and post_reset events.
356 @itemize @minus
357
358 @item wiggler: maximum speed / @var{number}
359 @item ft2232: 6MHz / (@var{number}+1)
360 @item amt jtagaccel: 8 / 2**@var{number}
361 @item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
362 @end itemize
363
364 Note: Make sure the jtag clock is no more than @math{1/6th × CPU-Clock}. This is
365 especially true for synthesized cores (-S).
366
367 @item @b{jtag_khz} <@var{reset speed kHz}>
368 @cindex jtag_khz
369 Same as jtag_speed, except that the speed is specified in maximum kHz. If
370 the device can not support the rate asked for, or can not translate from
371 kHz to jtag_speed, then an error is returned. 0 means RTCK. If RTCK
372 is not supported, then an error is reported.
373
374 @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
375 @cindex reset_config
376 The configuration of the reset signals available on the JTAG interface AND the target.
377 If the JTAG interface provides SRST, but the target doesn't connect that signal properly,
378 then OpenOCD can't use it. <@var{signals}> can be @option{none}, @option{trst_only},
379 @option{srst_only} or @option{trst_and_srst}.
380
381 [@var{combination}] is an optional value specifying broken reset signal implementations.
382 @option{srst_pulls_trst} states that the testlogic is reset together with the reset of
383 the system (e.g. Philips LPC2000, "broken" board layout), @option{trst_pulls_srst} says
384 that the system is reset together with the test logic (only hypothetical, I haven't
385 seen hardware with such a bug, and can be worked around).
386 @option{combined} imples both @option{srst_pulls_trst} and @option{trst_pulls_srst}.
387 The default behaviour if no option given is @option{separate}.
388
389 The [@var{trst_type}] and [@var{srst_type}] parameters allow the driver type of the
390 reset lines to be specified. Possible values are @option{trst_push_pull} (default)
391 and @option{trst_open_drain} for the test reset signal, and @option{srst_open_drain}
392 (default) and @option{srst_push_pull} for the system reset. These values only affect
393 JTAG interfaces with support for different drivers, like the Amontec JTAGkey and JTAGAccelerator.
394
395 @item @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
396 @cindex jtag_device
397 Describes the devices that form the JTAG daisy chain, with the first device being
398 the one closest to TDO. The parameters are the length of the instruction register
399 (4 for all ARM7/9s), the value captured during Capture-IR (0x1 for ARM7/9), and a mask
400 of bits that should be validated when doing IR scans (all four bits (0xf) for ARM7/9).
401 The IDCODE instruction will in future be used to query devices for their JTAG
402 identification code. This line is the same for all ARM7 and ARM9 devices.
403 Other devices, like CPLDs, require different parameters. An example configuration
404 line for a Xilinx XC9500 CPLD would look like this:
405 @smallexample
406 jtag_device 8 0x01 0x0e3 0xfe
407 @end smallexample
408 The instruction register (IR) is 8 bits long, during Capture-IR 0x01 is loaded into
409 the IR, but only bits 0-1 and 5-7 should be checked, the others (2-4) might vary.
410 The IDCODE instruction is 0xfe.
411
412 @item @b{jtag_nsrst_delay} <@var{ms}>
413 @cindex jtag_nsrst_delay
414 How long (in milliseconds) OpenOCD should wait after deasserting nSRST before
415 starting new JTAG operations.
416 @item @b{jtag_ntrst_delay} <@var{ms}>
417 @cindex jtag_ntrst_delay
418 How long (in milliseconds) OpenOCD should wait after deasserting nTRST before
419 starting new JTAG operations.
420
421 The jtag_n[st]rst_delay options are useful if reset circuitry (like a reset supervisor,
422 or on-chip features) keep a reset line asserted for some time after the external reset
423 got deasserted.
424 @end itemize
425
426 @section parport options
427
428 @itemize @bullet
429 @item @b{parport_port} <@var{number}>
430 @cindex parport_port
431 Either the address of the I/O port (default: 0x378 for LPT1) or the number of
432 the @file{/dev/parport} device
433
434 When using PPDEV to access the parallel port, use the number of the parallel port:
435 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
436 you may encounter a problem.
437 @item @b{parport_cable} <@var{name}>
438 @cindex parport_cable
439 The layout of the parallel port cable used to connect to the target.
440 Currently supported cables are
441 @itemize @minus
442 @item @b{wiggler}
443 @cindex wiggler
444 The original Wiggler layout, also supported by several clones, such
445 as the Olimex ARM-JTAG
446 @item @b{wiggler2}
447 @cindex wiggler2
448 Same as original wiggler except an led is fitted on D5.
449 @item @b{wiggler_ntrst_inverted}
450 @cindex wiggler_ntrst_inverted
451 Same as original wiggler except TRST is inverted.
452 @item @b{old_amt_wiggler}
453 @cindex old_amt_wiggler
454 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
455 version available from the website uses the original Wiggler layout ('@var{wiggler}')
456 @item @b{chameleon}
457 @cindex chameleon
458 The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to
459 program the Chameleon itself, not a connected target.
460 @item @b{dlc5}
461 @cindex dlc5
462 The Xilinx Parallel cable III.
463 @item @b{triton}
464 @cindex triton
465 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
466 This is also the layout used by the HollyGates design
467 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
468 @item @b{flashlink}
469 @cindex flashlink
470 The ST Parallel cable.
471 @item @b{arm-jtag}
472 @cindex arm-jtag
473 Same as original wiggler except SRST and TRST connections reversed and
474 TRST is also inverted.
475 @item @b{altium}
476 @cindex altium
477 Altium Universal JTAG cable.
478 @end itemize
479 @item @b{parport_write_on_exit} <@var{on|off}>
480 @cindex parport_write_on_exit
481 This will configure the parallel driver to write a known value to the parallel
482 interface on exiting OpenOCD
483 @end itemize
484
485 @section amt_jtagaccel options
486 @itemize @bullet
487 @item @b{parport_port} <@var{number}>
488 @cindex parport_port
489 Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
490 @file{/dev/parport} device
491 @end itemize
492 @section ft2232 options
493
494 @itemize @bullet
495 @item @b{ft2232_device_desc} <@var{description}>
496 @cindex ft2232_device_desc
497 The USB device description of the FTDI FT2232 device. If not specified, the FTDI
498 default value is used. This setting is only valid if compiled with FTD2XX support.
499 @item @b{ft2232_layout} <@var{name}>
500 @cindex ft2232_layout
501 The layout of the FT2232 GPIO signals used to control output-enables and reset
502 signals. Valid layouts are
503 @itemize @minus
504 @item @b{usbjtag}
505 "USBJTAG-1" layout described in the original OpenOCD diploma thesis
506 @item @b{jtagkey}
507 Amontec JTAGkey and JTAGkey-tiny
508 @item @b{signalyzer}
509 Signalyzer
510 @item @b{olimex-jtag}
511 Olimex ARM-USB-OCD
512 @item @b{m5960}
513 American Microsystems M5960
514 @item @b{evb_lm3s811}
515 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
516 SRST signals on external connector
517 @item @b{comstick}
518 Hitex STR9 comstick
519 @item @b{stm32stick}
520 Hitex STM32 Performance Stick
521 @item @b{flyswatter}
522 Tin Can Tools Flyswatter
523 @item @b{turtelizer2}
524 egnite Software turtelizer2
525 @item @b{oocdlink}
526 OOCDLink
527 @end itemize
528
529 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
530 The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
531 default values are used. Multiple <@var{vid}>, <@var{pid}> pairs may be given, eg.
532 @smallexample
533 ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
534 @end smallexample
535 @item @b{ft2232_latency} <@var{ms}>
536 On some systems using ft2232 based JTAG interfaces the FT_Read function call in
537 ft2232_read() fails to return the expected number of bytes. This can be caused by
538 USB communication delays and has proved hard to reproduce and debug. Setting the
539 FT2232 latency timer to a larger value increases delays for short USB packages but it
540 also reduces the risk of timeouts before receiving the expected number of bytes.
541 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
542 @end itemize
543
544 @section ep93xx options
545 @cindex ep93xx options
546 Currently, there are no options available for the ep93xx interface.
547
548 @page
549 @section Target configuration
550
551 @itemize @bullet
552 @item @b{target} <@var{type}> <@var{endianess}> <@var{JTAG pos}>
553 <@var{variant}>
554 @cindex target
555 Defines a target that should be debugged. Currently supported types are:
556 @itemize @minus
557 @item @b{arm7tdmi}
558 @item @b{arm720t}
559 @item @b{arm9tdmi}
560 @item @b{arm920t}
561 @item @b{arm922t}
562 @item @b{arm926ejs}
563 @item @b{arm966e}
564 @item @b{cortex_m3}
565 @item @b{feroceon}
566 @item @b{xscale}
567 @end itemize
568
569 If you want to use a target board that is not on this list, see Adding a new
570 target board
571
572 Endianess may be @option{little} or @option{big}.
573
574 @item @b{target_script} <@var{target#}> <@var{event}> <@var{script_file}>
575 @cindex target_script
576 Event is one of the following:
577 @option{pre_reset}, @option{reset}, @option{post_reset}, @option{post_halt},
578 @option{pre_resume} or @option{gdb_program_config}.
579 @option{post_reset} and @option{reset} will produce the same results.
580
581 @item @b{working_area} <@var{target#}> <@var{address}> <@var{size}>
582 <@var{backup}|@var{nobackup}>
583 @cindex working_area
584 Specifies a working area for the debugger to use. This may be used to speed-up
585 downloads to target memory and flash operations, or to perform otherwise unavailable
586 operations (some coprocessor operations on ARM7/9 systems, for example). The last
587 parameter decides whether the memory should be preserved (<@var{backup}>) or can simply be overwritten (<@var{nobackup}>). If possible, use
588 a working_area that doesn't need to be backed up, as performing a backup slows down operation.
589 @end itemize
590
591 @subsection arm7tdmi options
592 @cindex arm7tdmi options
593 target arm7tdmi <@var{endianess}> <@var{jtag#}>
594 The arm7tdmi target definition requires at least one additional argument, specifying
595 the position of the target in the JTAG daisy-chain. The first JTAG device is number 0.
596 The optional [@var{variant}] parameter has been removed in recent versions.
597 The correct feature set is determined at runtime.
598
599 @subsection arm720t options
600 @cindex arm720t options
601 ARM720t options are similar to ARM7TDMI options.
602
603 @subsection arm9tdmi options
604 @cindex arm9tdmi options
605 ARM9TDMI options are similar to ARM7TDMI options. Supported variants are
606 @option{arm920t}, @option{arm922t} and @option{arm940t}.
607 This enables the hardware single-stepping support found on these cores.
608
609 @subsection arm920t options
610 @cindex arm920t options
611 ARM920t options are similar to ARM9TDMI options.
612
613 @subsection arm966e options
614 @cindex arm966e options
615 ARM966e options are similar to ARM9TDMI options.
616
617 @subsection cortex_m3 options
618 @cindex cortex_m3 options
619 use variant <@var{variant}> @option{lm3s} when debugging luminary lm3s targets. This will cause
620 openocd to use a software reset rather than asserting SRST to avoid a issue with clearing
621 the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will
622 be detected and the normal reset behaviour used.
623
624 @subsection xscale options
625 @cindex xscale options
626 Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},
627 @option{pxa250}, @option{pxa255}, @option{pxa26x}.
628
629 @section Flash configuration
630 @cindex Flash configuration
631
632 @itemize @bullet
633 @item @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
634 <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
635 @cindex flash bank
636 Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
637 and <@var{bus_width}> bytes using the selected flash <driver>.
638 @end itemize
639
640 @subsection lpc2000 options
641 @cindex lpc2000 options
642
643 @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
644 <@var{clock}> [@var{calc_checksum}]
645 LPC flashes don't require the chip and bus width to be specified. Additional
646 parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
647 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
648 of the target this flash belongs to (first is 0), the frequency at which the core
649 is currently running (in kHz - must be an integral number), and the optional keyword
650 @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
651 vector table.
652
653 @subsection cfi options
654 @cindex cfi options
655
656 @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
657 <@var{target#}> [@var{jedec_probe}|@var{x16_as_x8}]
658 CFI flashes require the number of the target they're connected to as an additional
659 argument. The CFI driver makes use of a working area (specified for the target)
660 to significantly speed up operation.
661
662 @var{chip_width} and @var{bus_width} are specified in bytes.
663
664 The @var{jedec_probe} option is used to detect certain non-CFI flash roms, like AM29LV010 and similar types.
665
666 @var{x16_as_x8} ???
667
668 @subsection at91sam7 options
669 @cindex at91sam7 options
670
671 @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
672 AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
673 reading the chip-id and type.
674
675 @subsection str7 options
676 @cindex str7 options
677
678 @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
679 variant can be either STR71x, STR73x or STR75x.
680
681 @subsection str9 options
682 @cindex str9 options
683
684 @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
685 The str9 needs the flash controller to be configured prior to Flash programming, eg.
686 @smallexample
687 str9x flash_config 0 4 2 0 0x80000
688 @end smallexample
689 This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
690
691 @subsection str9 options (str9xpec driver)
692
693 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
694 Before using the flash commands the turbo mode will need enabling using str9xpec
695 @option{enable_turbo} <@var{num>.}
696
697 Only use this driver for locking/unlocking the device or configuring the option bytes.
698 Use the standard str9 driver for programming.
699
700 @subsection stellaris (LM3Sxxx) options
701 @cindex stellaris (LM3Sxxx) options
702
703 @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
704 stellaris flash plugin only require the @var{target#}.
705
706 @subsection stm32x options
707 @cindex stm32x options
708
709 @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
710 stm32x flash plugin only require the @var{target#}.
711
712 @subsection aduc702x options
713 @cindex aduc702x options
714
715 @b{flash bank aduc702x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
716 aduc702x flash plugin require the flash @var{base}, @var{size} and @var{target#}.
717
718 @node Target library
719 @chapter Target library
720 @cindex Target library
721
722 OpenOCD comes with a target configuration script library. These scripts can be
723 used as-is or serve as a starting point.
724
725 The target library is published together with the openocd executable and
726 the path to the target library is in the OpenOCD script search path.
727 Similarly there are example scripts for configuring the JTAG interface.
728
729 The command line below uses the example parport configuration scripts
730 that ship with OpenOCD, then configures the str710.cfg target and
731 finally issues the init and reset command. The communication speed
732 is set to 10kHz for reset and 8MHz for post reset.
733
734
735 @smallexample
736 openocd -f interface/parport.cfg -f target/str710.cfg -c "init" -c "reset"
737 @end smallexample
738
739
740 To list the target scripts available:
741
742 @smallexample
743 $ ls /usr/local/lib/openocd/target
744
745 arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg
746 at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg
747 at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg
748 at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg
749 @end smallexample
750
751
752 @node Commands
753 @chapter Commands
754 @cindex commands
755
756 OpenOCD allows user interaction through a GDB server (default: port 3333),
757 a telnet interface (default: port 4444), and a TCL interface (default: port 5555). The command line interpreter
758 is available from both the telnet interface and a GDB session. To issue commands to the
759 interpreter from within a GDB session, use the @option{monitor} command, e.g. use
760 @option{monitor poll} to issue the @option{poll} command. All output is relayed through the
761 GDB session.
762
763 The TCL interface is used as a simplified RPC mechanism that feeds all the
764 input into the TCL interpreter and returns the output from the evaluation of
765 the commands.
766
767 @section Daemon
768
769 @itemize @bullet
770 @item @b{sleep} <@var{msec}>
771 @cindex sleep
772 Wait for n milliseconds before resuming. Useful in connection with script files
773 (@var{script} command and @var{target_script} configuration).
774
775 @item @b{shutdown}
776 @cindex shutdown
777 Close the OpenOCD daemon, disconnecting all clients (GDB, Telnet, Other).
778
779 @item @b{debug_level} [@var{n}]
780 @cindex debug_level
781 Display or adjust debug level to n<0-3>
782
783 @item @b{fast} [@var{enable/disable}]
784 @cindex fast
785 Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
786 downloads and fast memory access will work if the JTAG interface isn't too fast and
787 the core doesn't run at a too low frequency. Note that this option only changes the default
788 and that the indvidual options, like DCC memory downloads, can be enabled and disabled
789 individually.
790
791 The target specific "dangerous" optimisation tweaking options may come and go
792 as more robust and user friendly ways are found to ensure maximum throughput
793 and robustness with a minimum of configuration.
794
795 Typically the "fast enable" is specified first on the command line:
796
797 @smallexample
798 openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
799 @end smallexample
800
801 @item @b{log_output} <@var{file}>
802 @cindex log_output
803 Redirect logging to <file> (default: stderr)
804
805 @item @b{script} <@var{file}>
806 @cindex script
807 Execute commands from <file>
808
809 @end itemize
810
811 @subsection Target state handling
812 @itemize @bullet
813 @item @b{poll} [@option{on}|@option{off}]
814 @cindex poll
815 Poll the target for its current state. If the target is in debug mode, architecture
816 specific information about the current state is printed. An optional parameter
817 allows continuous polling to be enabled and disabled.
818
819 @item @b{halt} [@option{ms}]
820 @cindex halt
821 Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds.
822 Default [@option{ms}] is 5 seconds if no arg given.
823 Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
824 will stop OpenOCD from waiting.
825
826 @item @b{wait_halt} [@option{ms}]
827 @cindex wait_halt
828 Wait for the target to enter debug mode. Optional [@option{ms}] is
829 a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
830 arg given.
831
832 @item @b{resume} [@var{address}]
833 @cindex resume
834 Resume the target at its current code position, or at an optional address.
835 OpenOCD will wait 5 seconds for the target to resume.
836
837 @item @b{step} [@var{address}]
838 @cindex step
839 Single-step the target at its current code position, or at an optional address.
840
841 @item @b{reset} [@option{run}|@option{halt}|@option{init}]
842 @cindex reset
843 Perform a hard-reset. The optional parameter specifies what should happen after the reset.
844
845 With no arguments a "reset run" is executed
846 @itemize @minus
847 @item @b{run}
848 @cindex reset run
849 Let the target run.
850 @item @b{halt}
851 @cindex reset halt
852 Immediately halt the target (works only with certain configurations).
853 @item @b{init}
854 @cindex reset init
855 Immediately halt the target, and execute the reset script (works only with certain
856 configurations)
857 @end itemize
858 @end itemize
859
860 @subsection Memory access commands
861 These commands allow accesses of a specific size to the memory system:
862 @itemize @bullet
863 @item @b{mdw} <@var{addr}> [@var{count}]
864 @cindex mdw
865 display memory words
866 @item @b{mdh} <@var{addr}> [@var{count}]
867 @cindex mdh
868 display memory half-words
869 @item @b{mdb} <@var{addr}> [@var{count}]
870 @cindex mdb
871 display memory bytes
872 @item @b{mww} <@var{addr}> <@var{value}>
873 @cindex mww
874 write memory word
875 @item @b{mwh} <@var{addr}> <@var{value}>
876 @cindex mwh
877 write memory half-word
878 @item @b{mwb} <@var{addr}> <@var{value}>
879 @cindex mwb
880 write memory byte
881
882 @item @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
883 @cindex load_image
884 Load image <@var{file}> to target memory at <@var{address}>
885 @item @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
886 @cindex dump_image
887 Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
888 (binary) <@var{file}>.
889 @item @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
890 @cindex verify_image
891 Verify <@var{file}> against target memory starting at <@var{address}>.
892 This will first attempt comparison using a crc checksum, if this fails it will try a binary compare.
893 @end itemize
894
895 @subsection Flash commands
896 @cindex Flash commands
897 @itemize @bullet
898 @item @b{flash banks}
899 @cindex flash banks
900 List configured flash banks
901 @item @b{flash info} <@var{num}>
902 @cindex flash info
903 Print info about flash bank <@option{num}>
904 @item @b{flash probe} <@var{num}>
905 @cindex flash probe
906 Identify the flash, or validate the parameters of the configured flash. Operation
907 depends on the flash type.
908 @item @b{flash erase_check} <@var{num}>
909 @cindex flash erase_check
910 Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
911 updates the erase state information displayed by @option{flash info}. That means you have
912 to issue an @option{erase_check} command after erasing or programming the device to get
913 updated information.
914 @item @b{flash protect_check} <@var{num}>
915 @cindex flash protect_check
916 Check protection state of sectors in flash bank <num>.
917 @option{flash erase_sector} using the same syntax.
918 @item @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
919 @cindex flash erase_sector
920 Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
921 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may
922 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
923 the CFI driver).
924 @item @b{flash erase_address} <@var{address}> <@var{length}>
925 @cindex flash erase_address
926 Erase sectors starting at <@var{address}> for <@var{length}> bytes
927 @item @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
928 @cindex flash write_bank
929 Write the binary <@var{file}> to flash bank <@var{num}>, starting at
930 <@option{offset}> bytes from the beginning of the bank.
931 @item @b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
932 @cindex flash write_image
933 Write the image <@var{file}> to the current target's flash bank(s). A relocation
934 [@var{offset}] can be specified and the file [@var{type}] can be specified
935 explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
936 (ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
937 if the @option{erase} parameter is given.
938 @item @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
939 @cindex flash protect
940 Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
941 <@var{last}> of @option{flash bank} <@var{num}>.
942 @end itemize
943
944 @page
945 @section Target Specific Commands
946 @cindex Target Specific Commands
947
948 @subsection AT91SAM7 specific commands
949 @cindex AT91SAM7 specific commands
950 The flash configuration is deduced from the chip identification register. The flash
951 controller handles erases automatically on a page (128/265 byte) basis so erase is
952 not necessary for flash programming. AT91SAM7 processors with less than 512K flash
953 only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
954 that can be erased separatly. Only an EraseAll command is supported by the controller
955 for each flash plane and this is called with
956 @itemize @bullet
957 @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
958 bulk erase flash planes first_plane to last_plane.
959 @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
960 @cindex at91sam7 gpnvm
961 set or clear a gpnvm bit for the processor
962 @end itemize
963
964 @subsection STR9 specific commands
965 @cindex STR9 specific commands
966 These are flash specific commands when using the str9xpec driver.
967 @itemize @bullet
968 @item @b{str9xpec enable_turbo} <@var{num}>
969 @cindex str9xpec enable_turbo
970 enable turbo mode, simply this will remove the str9 from the chain and talk
971 directly to the embedded flash controller.
972 @item @b{str9xpec disable_turbo} <@var{num}>
973 @cindex str9xpec disable_turbo
974 restore the str9 into jtag chain.
975 @item @b{str9xpec lock} <@var{num}>
976 @cindex str9xpec lock
977 lock str9 device. The str9 will only respond to an unlock command that will
978 erase the device.
979 @item @b{str9xpec unlock} <@var{num}>
980 @cindex str9xpec unlock
981 unlock str9 device.
982 @item @b{str9xpec options_read} <@var{num}>
983 @cindex str9xpec options_read
984 read str9 option bytes.
985 @item @b{str9xpec options_write} <@var{num}>
986 @cindex str9xpec options_write
987 write str9 option bytes.
988 @end itemize
989
990 @subsection STR9 configuration
991 @cindex STR9 configuration
992 @itemize @bullet
993 @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
994 <@var{BBADR}> <@var{NBBADR}>
995 @cindex str9x flash_config
996 Configure str9 flash controller.
997 @smallexample
998 eg. str9x flash_config 0 4 2 0 0x80000
999 This will setup
1000 BBSR - Boot Bank Size register
1001 NBBSR - Non Boot Bank Size register
1002 BBADR - Boot Bank Start Address register
1003 NBBADR - Boot Bank Start Address register
1004 @end smallexample
1005 @end itemize
1006
1007 @subsection STR9 option byte configuration
1008 @cindex STR9 option byte configuration
1009 @itemize @bullet
1010 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
1011 @cindex str9xpec options_cmap
1012 configure str9 boot bank.
1013 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
1014 @cindex str9xpec options_lvdthd
1015 configure str9 lvd threshold.
1016 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
1017 @cindex str9xpec options_lvdsel
1018 configure str9 lvd source.
1019 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
1020 @cindex str9xpec options_lvdwarn
1021 configure str9 lvd reset warning source.
1022 @end itemize
1023
1024 @subsection STM32x specific commands
1025 @cindex STM32x specific commands
1026
1027 These are flash specific commands when using the stm32x driver.
1028 @itemize @bullet
1029 @item @b{stm32x lock} <@var{num}>
1030 @cindex stm32x lock
1031 lock stm32 device.
1032 @item @b{stm32x unlock} <@var{num}>
1033 @cindex stm32x unlock
1034 unlock stm32 device.
1035 @item @b{stm32x options_read} <@var{num}>
1036 @cindex stm32x options_read
1037 read stm32 option bytes.
1038 @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
1039 <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
1040 @cindex stm32x options_write
1041 write stm32 option bytes.
1042 @item @b{stm32x mass_erase} <@var{num}>
1043 @cindex stm32x mass_erase
1044 mass erase flash memory.
1045 @end itemize
1046
1047 @subsection Stellaris specific commands
1048 @cindex Stellaris specific commands
1049
1050 These are flash specific commands when using the Stellaris driver.
1051 @itemize @bullet
1052 @item @b{stellaris mass_erase} <@var{num}>
1053 @cindex stellaris mass_erase
1054 mass erase flash memory.
1055 @end itemize
1056
1057 @page
1058 @section Architecture Specific Commands
1059 @cindex Architecture Specific Commands
1060
1061 @subsection ARMV4/5 specific commands
1062 @cindex ARMV4/5 specific commands
1063
1064 These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
1065 or Intel XScale (XScale isn't supported yet).
1066 @itemize @bullet
1067 @item @b{armv4_5 reg}
1068 @cindex armv4_5 reg
1069 Display a list of all banked core registers, fetching the current value from every
1070 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
1071 register value.
1072 @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
1073 @cindex armv4_5 core_mode
1074 Displays the core_mode, optionally changing it to either ARM or Thumb mode.
1075 The target is resumed in the currently set @option{core_mode}.
1076 @end itemize
1077
1078 @subsection ARM7/9 specific commands
1079 @cindex ARM7/9 specific commands
1080
1081 These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
1082 ARM920t or ARM926EJ-S.
1083 @itemize @bullet
1084 @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
1085 @cindex arm7_9 dbgrq
1086 Enable use of the DBGRQ bit to force entry into debug mode. This should be
1087 safe for all but ARM7TDMI--S cores (like Philips LPC).
1088 @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
1089 @cindex arm7_9 fast_memory_access
1090 Allow OpenOCD to read and write memory without checking completion of
1091 the operation. This provides a huge speed increase, especially with USB JTAG
1092 cables (FT2232), but might be unsafe if used with targets running at a very low
1093 speed, like the 32kHz startup clock of an AT91RM9200.
1094 @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
1095 @cindex arm7_9 dcc_downloads
1096 Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
1097 amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
1098 unsafe, especially with targets running at a very low speed. This command was introduced
1099 with OpenOCD rev. 60.
1100 @end itemize
1101
1102 @subsection ARM720T specific commands
1103 @cindex ARM720T specific commands
1104
1105 @itemize @bullet
1106 @item @b{arm720t cp15} <@var{num}> [@var{value}]
1107 @cindex arm720t cp15
1108 display/modify cp15 register <@option{num}> [@option{value}].
1109 @item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
1110 @cindex arm720t md<bhw>_phys
1111 Display memory at physical address addr.
1112 @item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
1113 @cindex arm720t mw<bhw>_phys
1114 Write memory at physical address addr.
1115 @item @b{arm720t virt2phys} <@var{va}>
1116 @cindex arm720t virt2phys
1117 Translate a virtual address to a physical address.
1118 @end itemize
1119
1120 @subsection ARM9TDMI specific commands
1121 @cindex ARM9TDMI specific commands
1122
1123 @itemize @bullet
1124 @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
1125 @cindex arm9tdmi vector_catch
1126 Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
1127 @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
1128 @option{irq} @option{fiq}.
1129
1130 Can also be used on other arm9 based cores, arm966, arm920t and arm926ejs.
1131 @end itemize
1132
1133 @subsection ARM966E specific commands
1134 @cindex ARM966E specific commands
1135
1136 @itemize @bullet
1137 @item @b{arm966e cp15} <@var{num}> [@var{value}]
1138 @cindex arm966e cp15
1139 display/modify cp15 register <@option{num}> [@option{value}].
1140 @end itemize
1141
1142 @subsection ARM920T specific commands
1143 @cindex ARM920T specific commands
1144
1145 @itemize @bullet
1146 @item @b{arm920t cp15} <@var{num}> [@var{value}]
1147 @cindex arm920t cp15
1148 display/modify cp15 register <@option{num}> [@option{value}].
1149 @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
1150 @cindex arm920t cp15i
1151 display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
1152 @item @b{arm920t cache_info}
1153 @cindex arm920t cache_info
1154 Print information about the caches found. This allows you to see if your target
1155 is a ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
1156 @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
1157 @cindex arm920t md<bhw>_phys
1158 Display memory at physical address addr.
1159 @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
1160 @cindex arm920t mw<bhw>_phys
1161 Write memory at physical address addr.
1162 @item @b{arm920t read_cache} <@var{filename}>
1163 @cindex arm920t read_cache
1164 Dump the content of ICache and DCache to a file.
1165 @item @b{arm920t read_mmu} <@var{filename}>
1166 @cindex arm920t read_mmu
1167 Dump the content of the ITLB and DTLB to a file.
1168 @item @b{arm920t virt2phys} <@var{va}>
1169 @cindex arm920t virt2phys
1170 Translate a virtual address to a physical address.
1171 @end itemize
1172
1173 @subsection ARM926EJS specific commands
1174 @cindex ARM926EJS specific commands
1175
1176 @itemize @bullet
1177 @item @b{arm926ejs cp15} <@var{num}> [@var{value}]
1178 @cindex arm926ejs cp15
1179 display/modify cp15 register <@option{num}> [@option{value}].
1180 @item @b{arm926ejs cache_info}
1181 @cindex arm926ejs cache_info
1182 Print information about the caches found.
1183 @item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
1184 @cindex arm926ejs md<bhw>_phys
1185 Display memory at physical address addr.
1186 @item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
1187 @cindex arm926ejs mw<bhw>_phys
1188 Write memory at physical address addr.
1189 @item @b{arm926ejs virt2phys} <@var{va}>
1190 @cindex arm926ejs virt2phys
1191 Translate a virtual address to a physical address.
1192 @end itemize
1193
1194 @page
1195 @section Debug commands
1196 @cindex Debug commands
1197 The following commands give direct access to the core, and are most likely
1198 only useful while debugging OpenOCD.
1199 @itemize @bullet
1200 @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
1201 @cindex arm7_9 write_xpsr
1202 Immediately write either the current program status register (CPSR) or the saved
1203 program status register (SPSR), without changing the register cache (as displayed
1204 by the @option{reg} and @option{armv4_5 reg} commands).
1205 @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
1206 <@var{0=cpsr},@var{1=spsr}>
1207 @cindex arm7_9 write_xpsr_im8
1208 Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
1209 operation (similar to @option{write_xpsr}).
1210 @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
1211 @cindex arm7_9 write_core_reg
1212 Write a core register, without changing the register cache (as displayed by the
1213 @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
1214 encoding of the [M4:M0] bits of the PSR.
1215 @end itemize
1216
1217 @page
1218 @section JTAG commands
1219 @cindex JTAG commands
1220 @itemize @bullet
1221 @item @b{scan_chain}
1222 @cindex scan_chain
1223 Print current scan chain configuration.
1224 @item @b{jtag_reset} <@var{trst}> <@var{srst}>
1225 @cindex jtag_reset
1226 Toggle reset lines.
1227 @item @b{endstate} <@var{tap_state}>
1228 @cindex endstate
1229 Finish JTAG operations in <@var{tap_state}>.
1230 @item @b{runtest} <@var{num_cycles}>
1231 @cindex runtest
1232 Move to Run-Test/Idle, and execute <@var{num_cycles}>
1233 @item @b{statemove} [@var{tap_state}]
1234 @cindex statemove
1235 Move to current endstate or [@var{tap_state}]
1236 @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1237 @cindex irscan
1238 Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1239 @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
1240 @cindex drscan
1241 Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
1242 @item @b{verify_ircapture} <@option{enable}|@option{disable}>
1243 @cindex verify_ircapture
1244 Verify value captured during Capture-IR. Default is enabled.
1245 @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1246 @cindex var
1247 Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1248 @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
1249 @cindex field
1250 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
1251 @end itemize
1252
1253 @page
1254 @section Target Requests
1255 @cindex Target Requests
1256 OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
1257 See libdcc in the contrib dir for more details.
1258 @itemize @bullet
1259 @item @b{target_request debugmsgs} <@var{enable}|@var{disable}>
1260 @cindex target_request debugmsgs
1261 Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running.
1262 @end itemize
1263
1264 @node Sample Scripts
1265 @chapter Sample Scripts
1266 @cindex scripts
1267
1268 This page shows how to use the target library.
1269
1270 The configuration script can be divided in the following section:
1271 @itemize @bullet
1272 @item daemon configuration
1273 @item interface
1274 @item jtag scan chain
1275 @item target configuration
1276 @item flash configuration
1277 @end itemize
1278
1279 Detailed information about each section can be found at OpenOCD configuration.
1280
1281 @section AT91R40008 example
1282 @cindex AT91R40008 example
1283 To start OpenOCD with a target script for the AT91R40008 CPU and reset
1284 the CPU upon startup of the OpenOCD daemon.
1285 @smallexample
1286 openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset
1287 @end smallexample
1288
1289
1290 @node GDB and OpenOCD
1291 @chapter GDB and OpenOCD
1292 @cindex GDB and OpenOCD
1293 OpenOCD complies with the remote gdbserver protocol, and as such can be used
1294 to debug remote targets.
1295
1296 @section Connecting to gdb
1297 @cindex Connecting to gdb
1298 Use GDB 6.7 or newer with OpenOCD if you run into trouble. For instance 6.3 has a
1299 known bug where it produces bogus memory access errors, which has since
1300 been fixed: look up 1836 in http://sourceware.org/cgi-bin/gnatsweb.pl?database=gdb
1301
1302
1303 A connection is typically started as follows:
1304 @smallexample
1305 target remote localhost:3333
1306 @end smallexample
1307 This would cause gdb to connect to the gdbserver on the local pc using port 3333.
1308
1309 To see a list of available OpenOCD commands type @option{monitor help} on the
1310 gdb commandline.
1311
1312 OpenOCD supports the gdb @option{qSupported} packet, this enables information
1313 to be sent by the gdb server (openocd) to gdb. Typical information includes
1314 packet size and device memory map.
1315
1316 Previous versions of OpenOCD required the following gdb options to increase
1317 the packet size and speed up gdb communication.
1318 @smallexample
1319 set remote memory-write-packet-size 1024
1320 set remote memory-write-packet-size fixed
1321 set remote memory-read-packet-size 1024
1322 set remote memory-read-packet-size fixed
1323 @end smallexample
1324 This is now handled in the @option{qSupported} PacketSize.
1325
1326 @section Programming using gdb
1327 @cindex Programming using gdb
1328
1329 By default the target memory map is sent to gdb, this can be disabled by
1330 the following OpenOCD config option:
1331 @smallexample
1332 gdb_memory_map disable
1333 @end smallexample
1334 For this to function correctly a valid flash config must also be configured
1335 in OpenOCD. For faster performance you should also configure a valid
1336 working area.
1337
1338 Informing gdb of the memory map of the target will enable gdb to protect any
1339 flash area of the target and use hardware breakpoints by default. This means
1340 that the OpenOCD option @option{gdb_breakpoint_override} is not required when
1341 using a memory map.
1342
1343 To view the configured memory map in gdb, use the gdb command @option{info mem}
1344 All other unasigned addresses within gdb are treated as RAM.
1345
1346 GDB 6.8 and higher set any memory area not in the memory map as inaccessible,
1347 this can be changed to the old behaviour by using the following gdb command.
1348 @smallexample
1349 set mem inaccessible-by-default off
1350 @end smallexample
1351
1352 If @option{gdb_flash_program enable} is also used, gdb will be able to
1353 program any flash memory using the vFlash interface.
1354
1355 gdb will look at the target memory map when a load command is given, if any
1356 areas to be programmed lie within the target flash area the vFlash packets
1357 will be used.
1358
1359 If the target needs configuring before gdb programming, a script can be executed.
1360 @smallexample
1361 target_script 0 gdb_program_config config.script
1362 @end smallexample
1363
1364 To verify any flash programming the gdb command @option{compare-sections}
1365 can be used.
1366
1367 @node TCL and OpenOCD
1368 @chapter TCL and OpenOCD
1369 @cindex TCL and OpenOCD
1370 OpenOCD embeds a TCL interpreter (see JIM) for command parsing and scripting
1371 support.
1372
1373 The TCL interpreter can be invoked from the interactive command line, files, and a network port.
1374
1375 The command and file interfaces are fairly straightforward, while the network
1376 port is geared toward intergration with external clients. A small example
1377 of an external TCL script that can connect to openocd is shown below.
1378
1379 @verbatim
1380 # Simple tcl client to connect to openocd
1381 puts "Use empty line to exit"
1382 set fo [socket 127.0.0.1 6666]
1383 puts -nonewline stdout "> "
1384 flush stdout
1385 while {[gets stdin line] >= 0} {
1386 if {$line eq {}} break
1387 puts $fo $line
1388 flush $fo
1389 gets $fo line
1390 puts $line
1391 puts -nonewline stdout "> "
1392 flush stdout
1393 }
1394 close $fo
1395 @end verbatim
1396
1397 This script can easily be modified to front various GUIs or be a sub
1398 component of a larger framework for control and interaction.
1399
1400
1401 @node TCL scripting API
1402 @chapter TCL scripting API
1403 @cindex TCL scripting API
1404 API rules
1405
1406 The commands are stateless. E.g. the telnet command line has a concept
1407 of currently active target, the Tcl API proc's take this sort of state
1408 information as an argument to each proc.
1409
1410 There are three main types of return values: single value, name value
1411 pair list and lists.
1412
1413 Name value pair. The proc 'foo' below returns a name/value pair
1414 list.
1415
1416 @verbatim
1417
1418 > set foo(me) Duane
1419 > set foo(you) Oyvind
1420 > set foo(mouse) Micky
1421 > set foo(duck) Donald
1422
1423 If one does this:
1424
1425 > set foo
1426
1427 The result is:
1428
1429 me Duane you Oyvind mouse Micky duck Donald
1430
1431 Thus, to get the names of the associative array is easy:
1432
1433 foreach { name value } [set foo] {
1434 puts "Name: $name, Value: $value"
1435 }
1436 @end verbatim
1437
1438 Lists returned must be relatively small. Otherwise a range
1439 should be passed in to the proc in question.
1440
1441 Low level commands are prefixed with "openocd_", e.g. openocd_flash_banks
1442 is the low level API upon which "flash banks" is implemented.
1443
1444 OpenOCD commands can consist of two words, e.g. "flash banks". The
1445 startup.tcl "unknown" proc will translate this into a tcl proc
1446 called "flash_banks".
1447
1448
1449 @node Upgrading
1450 @chapter Deprecated/Removed Commands
1451 @cindex Deprecated/Removed Commands
1452 Certain OpenOCD commands have been deprecated/removed during the various revisions.
1453
1454 @itemize @bullet
1455 @item @b{load_binary}
1456 @cindex load_binary
1457 use @option{load_image} command with same args
1458 @item @b{target}
1459 @cindex target
1460 @option{target} no longer take the reset_init, reset_run, run_and_halt, run_and_init. The @option{reset} command
1461 always does a @option{reset run} when passed no arguments.
1462 @item @b{dump_binary}
1463 @cindex dump_binary
1464 use @option{dump_image} command with same args
1465 @item @b{flash erase}
1466 @cindex flash erase
1467 use @option{flash erase_sector} command with same args
1468 @item @b{flash write}
1469 @cindex flash write
1470 use @option{flash write_bank} command with same args
1471 @item @b{flash write_binary}
1472 @cindex flash write_binary
1473 use @option{flash write_bank} command with same args
1474 @item @b{arm7_9 fast_writes}
1475 @cindex arm7_9 fast_writes
1476 use @option{arm7_9 fast_memory_access} command with same args
1477 @item @b{flash auto_erase}
1478 @cindex flash auto_erase
1479 use @option{flash write_image} command passing @option{erase} as the first parameter.
1480 @item @b{daemon_startup}
1481 @cindex daemon_startup
1482 this config option has been removed, simply adding @option{init} and @option{reset halt} to
1483 the end of your config script will give the same behaviour as using @option{daemon_startup reset}
1484 and @option{target cortex_m3 little reset_halt 0}.
1485 @item @b{arm7_9 sw_bkpts}
1486 @cindex arm7_9 sw_bkpts
1487 On by default. See also @option{gdb_breakpoint_override}.
1488 @item @b{arm7_9 force_hw_bkpts}
1489 @cindex arm7_9 force_hw_bkpts
1490 Use @option{gdb_breakpoint_override} instead. Note that GDB will use hardware breakpoints
1491 for flash if the gdb memory map has been set up(default when flash is declared in
1492 target configuration).
1493 @item @b{run_and_halt_time}
1494 @cindex run_and_halt_time
1495 This command has been removed for simpler reset behaviour, it can be simulated with the
1496 following commands:
1497 @smallexample
1498 reset run
1499 sleep 100
1500 halt
1501 @end smallexample
1502 @end itemize
1503
1504 @node FAQ
1505 @chapter FAQ
1506 @cindex faq
1507 @enumerate
1508 @item OpenOCD complains about a missing cygwin1.dll.
1509
1510 Make sure you have Cygwin installed, or at least a version of OpenOCD that
1511 claims to come with all the necessary dlls. When using Cygwin, try launching
1512 OpenOCD from the Cygwin shell.
1513
1514 @item I'm trying to set a breakpoint using GDB (or a frontend like Insight or
1515 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
1516 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
1517
1518 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
1519 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720t or ARM920t,
1520 software breakpoints consume one of the two available hardware breakpoints.
1521
1522 @item When erasing or writing LPC2000 on-chip flash, the operation fails sometimes
1523 and works sometimes fine.
1524
1525 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
1526 clock at the time you're programming the flash. If you've specified the crystal's
1527 frequency, make sure the PLL is disabled, if you've specified the full core speed
1528 (e.g. 60MHz), make sure the PLL is enabled.
1529
1530 @item When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
1531 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
1532 out while waiting for end of scan, rtck was disabled".
1533
1534 Make sure your PC's parallel port operates in EPP mode. You might have to try several
1535 settings in your PC BIOS (ECP, EPP, and different versions of those).
1536
1537 @item When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse),
1538 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
1539 memory read caused data abort".
1540
1541 The errors are non-fatal, and are the result of GDB trying to trace stack frames
1542 beyond the last valid frame. It might be possible to prevent this by setting up
1543 a proper "initial" stack frame, if you happen to know what exactly has to
1544 be done, feel free to add this here.
1545
1546 @item I get the following message in the OpenOCD console (or log file):
1547 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
1548
1549 This warning doesn't indicate any serious problem, as long as you don't want to
1550 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
1551 trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board,
1552 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
1553 independently. With this setup, it's not possible to halt the core right out of
1554 reset, everything else should work fine.
1555
1556 @item When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
1557 Toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
1558 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
1559 quit with an error message. Is there a stability issue with OpenOCD?
1560
1561 No, this is not a stability issue concerning OpenOCD. Most users have solved
1562 this issue by simply using a self-powered USB hub, which they connect their
1563 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
1564 supply stable enough for the Amontec JTAGkey to be operated.
1565
1566 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
1567 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
1568 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
1569 What does that mean and what might be the reason for this?
1570
1571 First of all, the reason might be the USB power supply. Try using a self-powered
1572 hub instead of a direct connection to your computer. Secondly, the error code 4
1573 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
1574 chip ran into some sort of error - this points us to a USB problem.
1575
1576 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
1577 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
1578 What does that mean and what might be the reason for this?
1579
1580 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
1581 has closed the connection to OpenOCD. This might be a GDB issue.
1582
1583 @item In the configuration file in the section where flash device configurations
1584 are described, there is a parameter for specifying the clock frequency for
1585 LPC2000 internal flash devices (e.g.
1586 @option{flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}),
1587 which must be specified in kilohertz. However, I do have a quartz crystal of a
1588 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz, i.e. 14,745.600 kHz).
1589 Is it possible to specify real numbers for the clock frequency?
1590
1591 No. The clock frequency specified here must be given as an integral number.
1592 However, this clock frequency is used by the In-Application-Programming (IAP)
1593 routines of the LPC2000 family only, which seems to be very tolerant concerning
1594 the given clock frequency, so a slight difference between the specified clock
1595 frequency and the actual clock frequency will not cause any trouble.
1596
1597 @item Do I have to keep a specific order for the commands in the configuration file?
1598
1599 Well, yes and no. Commands can be given in arbitrary order, yet the devices
1600 listed for the JTAG scan chain must be given in the right order (jtag_device),
1601 with the device closest to the TDO-Pin being listed first. In general,
1602 whenever objects of the same type exist which require an index number, then
1603 these objects must be given in the right order (jtag_devices, targets and flash
1604 banks - a target references a jtag_device and a flash bank references a target).
1605
1606 @item Sometimes my debugging session terminates with an error. When I look into the
1607 log file, I can see these error messages: Error: arm7_9_common.c:561
1608 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
1609
1610 TODO.
1611
1612 @end enumerate
1613
1614 @include fdl.texi
1615
1616 @node Index
1617 @unnumbered Index
1618
1619 @printindex cp
1620
1621 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)