85115869d582cd8ffb56ffc72a512d0cc8d4c80b
[openocd.git] / src / flash / nor / cfi.c
1 /***************************************************************************
2 * Copyright (C) 2005, 2007 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * Copyright (C) 2009 Michael Schwingen *
5 * michael@schwingen.org *
6 * Copyright (C) 2010 Øyvind Harboe <oyvind.harboe@zylin.com> *
7 * Copyright (C) 2010 by Antonio Borneo <borneo.antonio@gmail.com> *
8 * *
9 * This program is free software; you can redistribute it and/or modify *
10 * it under the terms of the GNU General Public License as published by *
11 * the Free Software Foundation; either version 2 of the License, or *
12 * (at your option) any later version. *
13 * *
14 * This program is distributed in the hope that it will be useful, *
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
17 * GNU General Public License for more details. *
18 * *
19 * You should have received a copy of the GNU General Public License *
20 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
21 ***************************************************************************/
22
23 #ifdef HAVE_CONFIG_H
24 #include "config.h"
25 #endif
26
27 #include "imp.h"
28 #include "cfi.h"
29 #include "non_cfi.h"
30 #include <target/arm.h>
31 #include <target/arm7_9_common.h>
32 #include <target/armv7m.h>
33 #include <target/mips32.h>
34 #include <helper/binarybuffer.h>
35 #include <target/algorithm.h>
36
37 /* defines internal maximum size for code fragment in cfi_intel_write_block() */
38 #define CFI_MAX_INTEL_CODESIZE 256
39
40 /* some id-types with specific handling */
41 #define AT49BV6416 0x00d6
42 #define AT49BV6416T 0x00d2
43
44 static const struct cfi_unlock_addresses cfi_unlock_addresses[] = {
45 [CFI_UNLOCK_555_2AA] = { .unlock1 = 0x555, .unlock2 = 0x2aa },
46 [CFI_UNLOCK_5555_2AAA] = { .unlock1 = 0x5555, .unlock2 = 0x2aaa },
47 };
48
49 static const int cfi_status_poll_mask_dq6_dq7 = CFI_STATUS_POLL_MASK_DQ6_DQ7;
50
51 /* CFI fixups forward declarations */
52 static void cfi_fixup_0002_erase_regions(struct flash_bank *bank, const void *param);
53 static void cfi_fixup_0002_unlock_addresses(struct flash_bank *bank, const void *param);
54 static void cfi_fixup_reversed_erase_regions(struct flash_bank *bank, const void *param);
55 static void cfi_fixup_0002_write_buffer(struct flash_bank *bank, const void *param);
56 static void cfi_fixup_0002_polling_bits(struct flash_bank *bank, const void *param);
57
58 /* fixup after reading cmdset 0002 primary query table */
59 static const struct cfi_fixup cfi_0002_fixups[] = {
60 {CFI_MFR_SST, 0x00D4, cfi_fixup_0002_unlock_addresses,
61 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
62 {CFI_MFR_SST, 0x00D5, cfi_fixup_0002_unlock_addresses,
63 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
64 {CFI_MFR_SST, 0x00D6, cfi_fixup_0002_unlock_addresses,
65 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
66 {CFI_MFR_SST, 0x00D7, cfi_fixup_0002_unlock_addresses,
67 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
68 {CFI_MFR_SST, 0x2780, cfi_fixup_0002_unlock_addresses,
69 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
70 {CFI_MFR_SST, 0x274b, cfi_fixup_0002_unlock_addresses,
71 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
72 {CFI_MFR_SST, 0x235f, cfi_fixup_0002_polling_bits, /* 39VF3201C */
73 &cfi_status_poll_mask_dq6_dq7},
74 {CFI_MFR_SST, 0x236d, cfi_fixup_0002_unlock_addresses,
75 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
76 {CFI_MFR_ATMEL, 0x00C8, cfi_fixup_reversed_erase_regions, NULL},
77 {CFI_MFR_ST, 0x22C4, cfi_fixup_reversed_erase_regions, NULL}, /* M29W160ET */
78 {CFI_MFR_FUJITSU, 0x22ea, cfi_fixup_0002_unlock_addresses,
79 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
80 {CFI_MFR_FUJITSU, 0x226b, cfi_fixup_0002_unlock_addresses,
81 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
82 {CFI_MFR_AMIC, 0xb31a, cfi_fixup_0002_unlock_addresses,
83 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
84 {CFI_MFR_MX, 0x225b, cfi_fixup_0002_unlock_addresses,
85 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
86 {CFI_MFR_EON, 0x225b, cfi_fixup_0002_unlock_addresses,
87 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
88 {CFI_MFR_AMD, 0x225b, cfi_fixup_0002_unlock_addresses,
89 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
90 {CFI_MFR_ANY, CFI_ID_ANY, cfi_fixup_0002_erase_regions, NULL},
91 {CFI_MFR_ST, 0x227E, cfi_fixup_0002_write_buffer, NULL},/* M29W128G */
92 {0, 0, NULL, NULL}
93 };
94
95 /* fixup after reading cmdset 0001 primary query table */
96 static const struct cfi_fixup cfi_0001_fixups[] = {
97 {0, 0, NULL, NULL}
98 };
99
100 static void cfi_fixup(struct flash_bank *bank, const struct cfi_fixup *fixups)
101 {
102 struct cfi_flash_bank *cfi_info = bank->driver_priv;
103
104 for (const struct cfi_fixup *f = fixups; f->fixup; f++) {
105 if (((f->mfr == CFI_MFR_ANY) || (f->mfr == cfi_info->manufacturer)) &&
106 ((f->id == CFI_ID_ANY) || (f->id == cfi_info->device_id)))
107 f->fixup(bank, f->param);
108 }
109 }
110
111 uint32_t cfi_flash_address(struct flash_bank *bank, int sector, uint32_t offset)
112 {
113 struct cfi_flash_bank *cfi_info = bank->driver_priv;
114
115 if (cfi_info->x16_as_x8)
116 offset *= 2;
117
118 /* while the sector list isn't built, only accesses to sector 0 work */
119 if (sector == 0)
120 return bank->base + offset * bank->bus_width;
121 else {
122 if (!bank->sectors) {
123 LOG_ERROR("BUG: sector list not yet built");
124 exit(-1);
125 }
126 return bank->base + bank->sectors[sector].offset + offset * bank->bus_width;
127 }
128 }
129
130 static int cfi_target_write_memory(struct flash_bank *bank, target_addr_t addr,
131 uint32_t count, const uint8_t *buffer)
132 {
133 struct cfi_flash_bank *cfi_info = bank->driver_priv;
134 if (cfi_info->write_mem) {
135 return cfi_info->write_mem(bank, addr, count, buffer);
136 } else {
137 return target_write_memory(bank->target, addr, bank->bus_width,
138 count, buffer);
139 }
140 }
141
142 int cfi_target_read_memory(struct flash_bank *bank, target_addr_t addr,
143 uint32_t count, uint8_t *buffer)
144 {
145 struct cfi_flash_bank *cfi_info = bank->driver_priv;
146 if (cfi_info->read_mem) {
147 return cfi_info->read_mem(bank, addr, count, buffer);
148 } else {
149 return target_read_memory(bank->target, addr, bank->bus_width,
150 count, buffer);
151 }
152 }
153
154 static void cfi_command(struct flash_bank *bank, uint8_t cmd, uint8_t *cmd_buf)
155 {
156 struct cfi_flash_bank *cfi_info = bank->driver_priv;
157
158 /* clear whole buffer, to ensure bits that exceed the bus_width
159 * are set to zero
160 */
161 for (size_t i = 0; i < CFI_MAX_BUS_WIDTH; i++)
162 cmd_buf[i] = 0;
163
164 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN) {
165 for (unsigned int i = bank->bus_width; i > 0; i--)
166 *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
167 } else {
168 for (unsigned int i = 1; i <= bank->bus_width; i++)
169 *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
170 }
171 }
172
173 int cfi_send_command(struct flash_bank *bank, uint8_t cmd, uint32_t address)
174 {
175 uint8_t command[CFI_MAX_BUS_WIDTH];
176
177 cfi_command(bank, cmd, command);
178 return cfi_target_write_memory(bank, address, 1, command);
179 }
180
181 /* read unsigned 8-bit value from the bank
182 * flash banks are expected to be made of similar chips
183 * the query result should be the same for all
184 */
185 static int cfi_query_u8(struct flash_bank *bank, int sector, uint32_t offset, uint8_t *val)
186 {
187 struct cfi_flash_bank *cfi_info = bank->driver_priv;
188 uint8_t data[CFI_MAX_BUS_WIDTH];
189
190 int retval;
191 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, sector, offset),
192 1, data);
193 if (retval != ERROR_OK)
194 return retval;
195
196 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN)
197 *val = data[0];
198 else
199 *val = data[bank->bus_width - 1];
200
201 return ERROR_OK;
202 }
203
204 /* read unsigned 8-bit value from the bank
205 * in case of a bank made of multiple chips,
206 * the individual values are ORed
207 */
208 static int cfi_get_u8(struct flash_bank *bank, int sector, uint32_t offset, uint8_t *val)
209 {
210 struct cfi_flash_bank *cfi_info = bank->driver_priv;
211 uint8_t data[CFI_MAX_BUS_WIDTH];
212
213 int retval;
214 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, sector, offset),
215 1, data);
216 if (retval != ERROR_OK)
217 return retval;
218
219 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN) {
220 for (unsigned int i = 0; i < bank->bus_width / bank->chip_width; i++)
221 data[0] |= data[i];
222
223 *val = data[0];
224 } else {
225 uint8_t value = 0;
226 for (unsigned int i = 0; i < bank->bus_width / bank->chip_width; i++)
227 value |= data[bank->bus_width - 1 - i];
228
229 *val = value;
230 }
231 return ERROR_OK;
232 }
233
234 static int cfi_query_u16(struct flash_bank *bank, int sector, uint32_t offset, uint16_t *val)
235 {
236 struct cfi_flash_bank *cfi_info = bank->driver_priv;
237 uint8_t data[CFI_MAX_BUS_WIDTH * 2];
238 int retval;
239
240 if (cfi_info->x16_as_x8) {
241 for (uint8_t i = 0; i < 2; i++) {
242 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, sector, offset + i),
243 1, &data[i * bank->bus_width]);
244 if (retval != ERROR_OK)
245 return retval;
246 }
247 } else {
248 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, sector, offset),
249 2, data);
250 if (retval != ERROR_OK)
251 return retval;
252 }
253
254 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN)
255 *val = data[0] | data[bank->bus_width] << 8;
256 else
257 *val = data[bank->bus_width - 1] | data[(2 * bank->bus_width) - 1] << 8;
258
259 return ERROR_OK;
260 }
261
262 static int cfi_query_u32(struct flash_bank *bank, int sector, uint32_t offset, uint32_t *val)
263 {
264 struct cfi_flash_bank *cfi_info = bank->driver_priv;
265 uint8_t data[CFI_MAX_BUS_WIDTH * 4];
266 int retval;
267
268 if (cfi_info->x16_as_x8) {
269 for (uint8_t i = 0; i < 4; i++) {
270 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, sector, offset + i),
271 1, &data[i * bank->bus_width]);
272 if (retval != ERROR_OK)
273 return retval;
274 }
275 } else {
276 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, sector, offset),
277 4, data);
278 if (retval != ERROR_OK)
279 return retval;
280 }
281
282 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN)
283 *val = data[0] | data[bank->bus_width] << 8 |
284 data[bank->bus_width * 2] << 16 | data[bank->bus_width * 3] << 24;
285 else
286 *val = data[bank->bus_width - 1] | data[(2 * bank->bus_width) - 1] << 8 |
287 data[(3 * bank->bus_width) - 1] << 16 |
288 data[(4 * bank->bus_width) - 1] << 24;
289
290 return ERROR_OK;
291 }
292
293 int cfi_reset(struct flash_bank *bank)
294 {
295 struct cfi_flash_bank *cfi_info = bank->driver_priv;
296 int retval = ERROR_OK;
297
298 retval = cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
299 if (retval != ERROR_OK)
300 return retval;
301
302 retval = cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
303 if (retval != ERROR_OK)
304 return retval;
305
306 if (cfi_info->manufacturer == 0x20 &&
307 (cfi_info->device_id == 0x227E || cfi_info->device_id == 0x7E)) {
308 /* Numonix M29W128G is cmd 0xFF intolerant - causes internal undefined state
309 * so we send an extra 0xF0 reset to fix the bug */
310 retval = cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x00));
311 if (retval != ERROR_OK)
312 return retval;
313 }
314
315 return retval;
316 }
317
318 static void cfi_intel_clear_status_register(struct flash_bank *bank)
319 {
320 cfi_send_command(bank, 0x50, cfi_flash_address(bank, 0, 0x0));
321 }
322
323 static int cfi_intel_wait_status_busy(struct flash_bank *bank, int timeout, uint8_t *val)
324 {
325 uint8_t status;
326
327 int retval = ERROR_OK;
328
329 for (;; ) {
330 if (timeout-- < 0) {
331 LOG_ERROR("timeout while waiting for WSM to become ready");
332 return ERROR_FAIL;
333 }
334
335 retval = cfi_get_u8(bank, 0, 0x0, &status);
336 if (retval != ERROR_OK)
337 return retval;
338
339 if (status & 0x80)
340 break;
341
342 alive_sleep(1);
343 }
344
345 /* mask out bit 0 (reserved) */
346 status = status & 0xfe;
347
348 LOG_DEBUG("status: 0x%x", status);
349
350 if (status != 0x80) {
351 LOG_ERROR("status register: 0x%x", status);
352 if (status & 0x2)
353 LOG_ERROR("Block Lock-Bit Detected, Operation Abort");
354 if (status & 0x4)
355 LOG_ERROR("Program suspended");
356 if (status & 0x8)
357 LOG_ERROR("Low Programming Voltage Detected, Operation Aborted");
358 if (status & 0x10)
359 LOG_ERROR("Program Error / Error in Setting Lock-Bit");
360 if (status & 0x20)
361 LOG_ERROR("Error in Block Erasure or Clear Lock-Bits");
362 if (status & 0x40)
363 LOG_ERROR("Block Erase Suspended");
364
365 cfi_intel_clear_status_register(bank);
366
367 retval = ERROR_FAIL;
368 }
369
370 *val = status;
371 return retval;
372 }
373
374 int cfi_spansion_wait_status_busy(struct flash_bank *bank, int timeout)
375 {
376 uint8_t status, oldstatus;
377 struct cfi_flash_bank *cfi_info = bank->driver_priv;
378 int retval;
379
380 retval = cfi_get_u8(bank, 0, 0x0, &oldstatus);
381 if (retval != ERROR_OK)
382 return retval;
383
384 do {
385 retval = cfi_get_u8(bank, 0, 0x0, &status);
386
387 if (retval != ERROR_OK)
388 return retval;
389
390 if ((status ^ oldstatus) & 0x40) {
391 if (status & cfi_info->status_poll_mask & 0x20) {
392 retval = cfi_get_u8(bank, 0, 0x0, &oldstatus);
393 if (retval != ERROR_OK)
394 return retval;
395 retval = cfi_get_u8(bank, 0, 0x0, &status);
396 if (retval != ERROR_OK)
397 return retval;
398 if ((status ^ oldstatus) & 0x40) {
399 LOG_ERROR("dq5 timeout, status: 0x%x", status);
400 return ERROR_FLASH_OPERATION_FAILED;
401 } else {
402 LOG_DEBUG("status: 0x%x", status);
403 return ERROR_OK;
404 }
405 }
406 } else {/* no toggle: finished, OK */
407 LOG_DEBUG("status: 0x%x", status);
408 return ERROR_OK;
409 }
410
411 oldstatus = status;
412 alive_sleep(1);
413 } while (timeout-- > 0);
414
415 LOG_ERROR("timeout, status: 0x%x", status);
416
417 return ERROR_FLASH_BUSY;
418 }
419
420 static int cfi_read_intel_pri_ext(struct flash_bank *bank)
421 {
422 int retval;
423 struct cfi_flash_bank *cfi_info = bank->driver_priv;
424 struct cfi_intel_pri_ext *pri_ext;
425
426 free(cfi_info->pri_ext);
427
428 pri_ext = malloc(sizeof(struct cfi_intel_pri_ext));
429 if (!pri_ext) {
430 LOG_ERROR("Out of memory");
431 return ERROR_FAIL;
432 }
433 cfi_info->pri_ext = pri_ext;
434
435 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &pri_ext->pri[0]);
436 if (retval != ERROR_OK)
437 return retval;
438 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &pri_ext->pri[1]);
439 if (retval != ERROR_OK)
440 return retval;
441 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &pri_ext->pri[2]);
442 if (retval != ERROR_OK)
443 return retval;
444
445 if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I')) {
446 retval = cfi_reset(bank);
447 if (retval != ERROR_OK)
448 return retval;
449 LOG_ERROR("Could not read bank flash bank information");
450 return ERROR_FLASH_BANK_INVALID;
451 }
452
453 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &pri_ext->major_version);
454 if (retval != ERROR_OK)
455 return retval;
456 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &pri_ext->minor_version);
457 if (retval != ERROR_OK)
458 return retval;
459
460 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1],
461 pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
462
463 retval = cfi_query_u32(bank, 0, cfi_info->pri_addr + 5, &pri_ext->feature_support);
464 if (retval != ERROR_OK)
465 return retval;
466 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9, &pri_ext->suspend_cmd_support);
467 if (retval != ERROR_OK)
468 return retval;
469 retval = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xa, &pri_ext->blk_status_reg_mask);
470 if (retval != ERROR_OK)
471 return retval;
472
473 LOG_DEBUG("feature_support: 0x%" PRIx32 ", suspend_cmd_support: "
474 "0x%x, blk_status_reg_mask: 0x%x",
475 pri_ext->feature_support,
476 pri_ext->suspend_cmd_support,
477 pri_ext->blk_status_reg_mask);
478
479 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xc, &pri_ext->vcc_optimal);
480 if (retval != ERROR_OK)
481 return retval;
482 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xd, &pri_ext->vpp_optimal);
483 if (retval != ERROR_OK)
484 return retval;
485
486 LOG_DEBUG("Vcc opt: %x.%x, Vpp opt: %u.%x",
487 (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
488 (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
489
490 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xe, &pri_ext->num_protection_fields);
491 if (retval != ERROR_OK)
492 return retval;
493 if (pri_ext->num_protection_fields != 1) {
494 LOG_WARNING("expected one protection register field, but found %i",
495 pri_ext->num_protection_fields);
496 }
497
498 retval = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xf, &pri_ext->prot_reg_addr);
499 if (retval != ERROR_OK)
500 return retval;
501 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x11, &pri_ext->fact_prot_reg_size);
502 if (retval != ERROR_OK)
503 return retval;
504 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x12, &pri_ext->user_prot_reg_size);
505 if (retval != ERROR_OK)
506 return retval;
507
508 LOG_DEBUG("protection_fields: %i, prot_reg_addr: 0x%x, "
509 "factory pre-programmed: %i, user programmable: %i",
510 pri_ext->num_protection_fields, pri_ext->prot_reg_addr,
511 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
512
513 return ERROR_OK;
514 }
515
516 static int cfi_read_spansion_pri_ext(struct flash_bank *bank)
517 {
518 int retval;
519 struct cfi_flash_bank *cfi_info = bank->driver_priv;
520 struct cfi_spansion_pri_ext *pri_ext;
521
522 free(cfi_info->pri_ext);
523
524 pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
525 if (!pri_ext) {
526 LOG_ERROR("Out of memory");
527 return ERROR_FAIL;
528 }
529 cfi_info->pri_ext = pri_ext;
530
531 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &pri_ext->pri[0]);
532 if (retval != ERROR_OK)
533 return retval;
534 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &pri_ext->pri[1]);
535 if (retval != ERROR_OK)
536 return retval;
537 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &pri_ext->pri[2]);
538 if (retval != ERROR_OK)
539 return retval;
540
541 /* default values for implementation specific workarounds */
542 pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
543 pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
544 pri_ext->_reversed_geometry = 0;
545
546 if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I')) {
547 retval = cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
548 if (retval != ERROR_OK)
549 return retval;
550 LOG_ERROR("Could not read spansion bank information");
551 return ERROR_FLASH_BANK_INVALID;
552 }
553
554 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &pri_ext->major_version);
555 if (retval != ERROR_OK)
556 return retval;
557 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &pri_ext->minor_version);
558 if (retval != ERROR_OK)
559 return retval;
560
561 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1],
562 pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
563
564 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5, &pri_ext->silicon_revision);
565 if (retval != ERROR_OK)
566 return retval;
567 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6, &pri_ext->erase_suspend);
568 if (retval != ERROR_OK)
569 return retval;
570 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7, &pri_ext->blk_prot);
571 if (retval != ERROR_OK)
572 return retval;
573 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8, &pri_ext->tmp_blk_unprotected);
574 if (retval != ERROR_OK)
575 return retval;
576 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9, &pri_ext->blk_prot_unprot);
577 if (retval != ERROR_OK)
578 return retval;
579 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 10, &pri_ext->simultaneous_ops);
580 if (retval != ERROR_OK)
581 return retval;
582 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 11, &pri_ext->burst_mode);
583 if (retval != ERROR_OK)
584 return retval;
585 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 12, &pri_ext->page_mode);
586 if (retval != ERROR_OK)
587 return retval;
588 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 13, &pri_ext->vpp_min);
589 if (retval != ERROR_OK)
590 return retval;
591 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 14, &pri_ext->vpp_max);
592 if (retval != ERROR_OK)
593 return retval;
594 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 15, &pri_ext->top_bottom);
595 if (retval != ERROR_OK)
596 return retval;
597
598 LOG_DEBUG("Silicon Revision: 0x%x, Erase Suspend: 0x%x, Block protect: 0x%x",
599 pri_ext->silicon_revision, pri_ext->erase_suspend, pri_ext->blk_prot);
600
601 LOG_DEBUG("Temporary Unprotect: 0x%x, Block Protect Scheme: 0x%x, "
602 "Simultaneous Ops: 0x%x", pri_ext->tmp_blk_unprotected,
603 pri_ext->blk_prot_unprot, pri_ext->simultaneous_ops);
604
605 LOG_DEBUG("Burst Mode: 0x%x, Page Mode: 0x%x, ", pri_ext->burst_mode, pri_ext->page_mode);
606
607
608 LOG_DEBUG("Vpp min: %u.%x, Vpp max: %u.%x",
609 (pri_ext->vpp_min & 0xf0) >> 4, pri_ext->vpp_min & 0x0f,
610 (pri_ext->vpp_max & 0xf0) >> 4, pri_ext->vpp_max & 0x0f);
611
612 LOG_DEBUG("WP# protection 0x%x", pri_ext->top_bottom);
613
614 return ERROR_OK;
615 }
616
617 static int cfi_read_atmel_pri_ext(struct flash_bank *bank)
618 {
619 int retval;
620 struct cfi_atmel_pri_ext atmel_pri_ext;
621 struct cfi_flash_bank *cfi_info = bank->driver_priv;
622 struct cfi_spansion_pri_ext *pri_ext;
623
624 free(cfi_info->pri_ext);
625
626 pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
627 if (!pri_ext) {
628 LOG_ERROR("Out of memory");
629 return ERROR_FAIL;
630 }
631
632 /* ATMEL devices use the same CFI primary command set (0x2) as AMD/Spansion,
633 * but a different primary extended query table.
634 * We read the atmel table, and prepare a valid AMD/Spansion query table.
635 */
636
637 memset(pri_ext, 0, sizeof(struct cfi_spansion_pri_ext));
638
639 cfi_info->pri_ext = pri_ext;
640
641 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &atmel_pri_ext.pri[0]);
642 if (retval != ERROR_OK)
643 return retval;
644 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &atmel_pri_ext.pri[1]);
645 if (retval != ERROR_OK)
646 return retval;
647 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &atmel_pri_ext.pri[2]);
648 if (retval != ERROR_OK)
649 return retval;
650
651 if ((atmel_pri_ext.pri[0] != 'P') || (atmel_pri_ext.pri[1] != 'R')
652 || (atmel_pri_ext.pri[2] != 'I')) {
653 retval = cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
654 if (retval != ERROR_OK)
655 return retval;
656 LOG_ERROR("Could not read atmel bank information");
657 return ERROR_FLASH_BANK_INVALID;
658 }
659
660 pri_ext->pri[0] = atmel_pri_ext.pri[0];
661 pri_ext->pri[1] = atmel_pri_ext.pri[1];
662 pri_ext->pri[2] = atmel_pri_ext.pri[2];
663
664 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &atmel_pri_ext.major_version);
665 if (retval != ERROR_OK)
666 return retval;
667 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &atmel_pri_ext.minor_version);
668 if (retval != ERROR_OK)
669 return retval;
670
671 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", atmel_pri_ext.pri[0],
672 atmel_pri_ext.pri[1], atmel_pri_ext.pri[2],
673 atmel_pri_ext.major_version, atmel_pri_ext.minor_version);
674
675 pri_ext->major_version = atmel_pri_ext.major_version;
676 pri_ext->minor_version = atmel_pri_ext.minor_version;
677
678 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5, &atmel_pri_ext.features);
679 if (retval != ERROR_OK)
680 return retval;
681 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6, &atmel_pri_ext.bottom_boot);
682 if (retval != ERROR_OK)
683 return retval;
684 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7, &atmel_pri_ext.burst_mode);
685 if (retval != ERROR_OK)
686 return retval;
687 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8, &atmel_pri_ext.page_mode);
688 if (retval != ERROR_OK)
689 return retval;
690
691 LOG_DEBUG(
692 "features: 0x%2.2x, bottom_boot: 0x%2.2x, burst_mode: 0x%2.2x, page_mode: 0x%2.2x",
693 atmel_pri_ext.features,
694 atmel_pri_ext.bottom_boot,
695 atmel_pri_ext.burst_mode,
696 atmel_pri_ext.page_mode);
697
698 if (atmel_pri_ext.features & 0x02)
699 pri_ext->erase_suspend = 2;
700
701 /* some chips got it backwards... */
702 if (cfi_info->device_id == AT49BV6416 ||
703 cfi_info->device_id == AT49BV6416T) {
704 if (atmel_pri_ext.bottom_boot)
705 pri_ext->top_bottom = 3;
706 else
707 pri_ext->top_bottom = 2;
708 } else {
709 if (atmel_pri_ext.bottom_boot)
710 pri_ext->top_bottom = 2;
711 else
712 pri_ext->top_bottom = 3;
713 }
714
715 pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
716 pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
717
718 return ERROR_OK;
719 }
720
721 static int cfi_read_0002_pri_ext(struct flash_bank *bank)
722 {
723 struct cfi_flash_bank *cfi_info = bank->driver_priv;
724
725 if (cfi_info->manufacturer == CFI_MFR_ATMEL)
726 return cfi_read_atmel_pri_ext(bank);
727 else
728 return cfi_read_spansion_pri_ext(bank);
729 }
730
731 static int cfi_spansion_info(struct flash_bank *bank, struct command_invocation *cmd)
732 {
733 struct cfi_flash_bank *cfi_info = bank->driver_priv;
734 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
735
736 command_print_sameline(cmd, "\nSpansion primary algorithm extend information:\n");
737
738 command_print_sameline(cmd, "pri: '%c%c%c', version: %c.%c\n",
739 pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2],
740 pri_ext->major_version, pri_ext->minor_version);
741
742 command_print_sameline(cmd, "Silicon Rev.: 0x%x, Address Sensitive unlock: 0x%x\n",
743 (pri_ext->silicon_revision) >> 2,
744 (pri_ext->silicon_revision) & 0x03);
745
746 command_print_sameline(cmd, "Erase Suspend: 0x%x, Sector Protect: 0x%x\n",
747 pri_ext->erase_suspend,
748 pri_ext->blk_prot);
749
750 command_print_sameline(cmd, "VppMin: %u.%x, VppMax: %u.%x\n",
751 (pri_ext->vpp_min & 0xf0) >> 4, pri_ext->vpp_min & 0x0f,
752 (pri_ext->vpp_max & 0xf0) >> 4, pri_ext->vpp_max & 0x0f);
753
754 return ERROR_OK;
755 }
756
757 static int cfi_intel_info(struct flash_bank *bank, struct command_invocation *cmd)
758 {
759 struct cfi_flash_bank *cfi_info = bank->driver_priv;
760 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
761
762 command_print_sameline(cmd, "\nintel primary algorithm extend information:\n");
763
764 command_print_sameline(cmd, "pri: '%c%c%c', version: %c.%c\n",
765 pri_ext->pri[0],
766 pri_ext->pri[1],
767 pri_ext->pri[2],
768 pri_ext->major_version,
769 pri_ext->minor_version);
770
771 command_print_sameline(cmd, "feature_support: 0x%" PRIx32 ", "
772 "suspend_cmd_support: 0x%x, blk_status_reg_mask: 0x%x\n",
773 pri_ext->feature_support,
774 pri_ext->suspend_cmd_support,
775 pri_ext->blk_status_reg_mask);
776
777 command_print_sameline(cmd, "Vcc opt: %x.%x, Vpp opt: %u.%x\n",
778 (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
779 (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
780
781 command_print_sameline(cmd, "protection_fields: %i, prot_reg_addr: 0x%x, "
782 "factory pre-programmed: %i, user programmable: %i\n",
783 pri_ext->num_protection_fields, pri_ext->prot_reg_addr,
784 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
785
786 return ERROR_OK;
787 }
788
789 int cfi_flash_bank_cmd(struct flash_bank *bank, unsigned int argc, const char **argv)
790 {
791 struct cfi_flash_bank *cfi_info;
792 bool bus_swap = false;
793
794 if (argc < 6)
795 return ERROR_COMMAND_SYNTAX_ERROR;
796
797 /* both widths must:
798 * - not exceed max value;
799 * - not be null;
800 * - be equal to a power of 2.
801 * bus must be wide enough to hold one chip */
802 if ((bank->chip_width > CFI_MAX_CHIP_WIDTH)
803 || (bank->bus_width > CFI_MAX_BUS_WIDTH)
804 || (bank->chip_width == 0)
805 || (bank->bus_width == 0)
806 || (bank->chip_width & (bank->chip_width - 1))
807 || (bank->bus_width & (bank->bus_width - 1))
808 || (bank->chip_width > bank->bus_width)) {
809 LOG_ERROR("chip and bus width have to specified in bytes");
810 return ERROR_FLASH_BANK_INVALID;
811 }
812
813 cfi_info = calloc(1, sizeof(struct cfi_flash_bank));
814 if (!cfi_info) {
815 LOG_ERROR("No memory for flash bank info");
816 return ERROR_FAIL;
817 }
818 bank->driver_priv = cfi_info;
819
820 for (unsigned i = 6; i < argc; i++) {
821 if (strcmp(argv[i], "x16_as_x8") == 0)
822 cfi_info->x16_as_x8 = true;
823 else if (strcmp(argv[i], "data_swap") == 0)
824 cfi_info->data_swap = true;
825 else if (strcmp(argv[i], "bus_swap") == 0)
826 bus_swap = true;
827 else if (strcmp(argv[i], "jedec_probe") == 0)
828 cfi_info->jedec_probe = true;
829 }
830
831 if (bus_swap)
832 cfi_info->endianness =
833 bank->target->endianness == TARGET_LITTLE_ENDIAN ?
834 TARGET_BIG_ENDIAN : TARGET_LITTLE_ENDIAN;
835 else
836 cfi_info->endianness = bank->target->endianness;
837
838 /* bank wasn't probed yet */
839 cfi_info->qry[0] = 0xff;
840
841 return ERROR_OK;
842 }
843
844 /* flash_bank cfi <base> <size> <chip_width> <bus_width> <target#> [options]
845 */
846 FLASH_BANK_COMMAND_HANDLER(cfi_flash_bank_command)
847 {
848 return cfi_flash_bank_cmd(bank, CMD_ARGC, CMD_ARGV);
849 }
850
851 static int cfi_intel_erase(struct flash_bank *bank, unsigned int first,
852 unsigned int last)
853 {
854 int retval;
855 struct cfi_flash_bank *cfi_info = bank->driver_priv;
856
857 cfi_intel_clear_status_register(bank);
858
859 for (unsigned int i = first; i <= last; i++) {
860 retval = cfi_send_command(bank, 0x20, cfi_flash_address(bank, i, 0x0));
861 if (retval != ERROR_OK)
862 return retval;
863
864 retval = cfi_send_command(bank, 0xd0, cfi_flash_address(bank, i, 0x0));
865 if (retval != ERROR_OK)
866 return retval;
867
868 uint8_t status;
869 retval = cfi_intel_wait_status_busy(bank, cfi_info->block_erase_timeout, &status);
870 if (retval != ERROR_OK)
871 return retval;
872
873 if (status != 0x80) {
874 retval = cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
875 if (retval != ERROR_OK)
876 return retval;
877
878 LOG_ERROR("couldn't erase block %u of flash bank at base "
879 TARGET_ADDR_FMT, i, bank->base);
880 return ERROR_FLASH_OPERATION_FAILED;
881 }
882 }
883
884 return cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
885 }
886
887 int cfi_spansion_unlock_seq(struct flash_bank *bank)
888 {
889 int retval;
890 struct cfi_flash_bank *cfi_info = bank->driver_priv;
891 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
892
893 retval = cfi_send_command(bank, 0xaa, cfi_flash_address(bank, 0, pri_ext->_unlock1));
894 if (retval != ERROR_OK)
895 return retval;
896
897 retval = cfi_send_command(bank, 0x55, cfi_flash_address(bank, 0, pri_ext->_unlock2));
898 if (retval != ERROR_OK)
899 return retval;
900
901 return ERROR_OK;
902 }
903
904 static int cfi_spansion_erase(struct flash_bank *bank, unsigned int first,
905 unsigned int last)
906 {
907 int retval;
908 struct cfi_flash_bank *cfi_info = bank->driver_priv;
909 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
910
911 for (unsigned int i = first; i <= last; i++) {
912 retval = cfi_spansion_unlock_seq(bank);
913 if (retval != ERROR_OK)
914 return retval;
915
916 retval = cfi_send_command(bank, 0x80, cfi_flash_address(bank, 0, pri_ext->_unlock1));
917 if (retval != ERROR_OK)
918 return retval;
919
920 retval = cfi_spansion_unlock_seq(bank);
921 if (retval != ERROR_OK)
922 return retval;
923
924 retval = cfi_send_command(bank, 0x30, cfi_flash_address(bank, i, 0x0));
925 if (retval != ERROR_OK)
926 return retval;
927
928 if (cfi_spansion_wait_status_busy(bank, cfi_info->block_erase_timeout) != ERROR_OK) {
929 retval = cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
930 if (retval != ERROR_OK)
931 return retval;
932
933 LOG_ERROR("couldn't erase block %i of flash bank at base "
934 TARGET_ADDR_FMT, i, bank->base);
935 return ERROR_FLASH_OPERATION_FAILED;
936 }
937 }
938
939 return cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
940 }
941
942 int cfi_erase(struct flash_bank *bank, unsigned int first,
943 unsigned int last)
944 {
945 struct cfi_flash_bank *cfi_info = bank->driver_priv;
946
947 if (bank->target->state != TARGET_HALTED) {
948 LOG_ERROR("Target not halted");
949 return ERROR_TARGET_NOT_HALTED;
950 }
951
952 if ((last < first) || (last >= bank->num_sectors))
953 return ERROR_FLASH_SECTOR_INVALID;
954
955 if (cfi_info->qry[0] != 'Q')
956 return ERROR_FLASH_BANK_NOT_PROBED;
957
958 switch (cfi_info->pri_id) {
959 case 1:
960 case 3:
961 return cfi_intel_erase(bank, first, last);
962 case 2:
963 return cfi_spansion_erase(bank, first, last);
964 default:
965 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
966 break;
967 }
968
969 return ERROR_OK;
970 }
971
972 static int cfi_intel_protect(struct flash_bank *bank, int set,
973 unsigned int first, unsigned int last)
974 {
975 int retval;
976 struct cfi_flash_bank *cfi_info = bank->driver_priv;
977 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
978 int retry = 0;
979
980 /* if the device supports neither legacy lock/unlock (bit 3) nor
981 * instant individual block locking (bit 5).
982 */
983 if (!(pri_ext->feature_support & 0x28)) {
984 LOG_ERROR("lock/unlock not supported on flash");
985 return ERROR_FLASH_OPERATION_FAILED;
986 }
987
988 cfi_intel_clear_status_register(bank);
989
990 for (unsigned int i = first; i <= last; i++) {
991 retval = cfi_send_command(bank, 0x60, cfi_flash_address(bank, i, 0x0));
992 if (retval != ERROR_OK)
993 return retval;
994 if (set) {
995 retval = cfi_send_command(bank, 0x01, cfi_flash_address(bank, i, 0x0));
996 if (retval != ERROR_OK)
997 return retval;
998 bank->sectors[i].is_protected = 1;
999 } else {
1000 retval = cfi_send_command(bank, 0xd0, cfi_flash_address(bank, i, 0x0));
1001 if (retval != ERROR_OK)
1002 return retval;
1003 bank->sectors[i].is_protected = 0;
1004 }
1005
1006 /* instant individual block locking doesn't require reading of the status register
1007 **/
1008 if (!(pri_ext->feature_support & 0x20)) {
1009 /* Clear lock bits operation may take up to 1.4s */
1010 uint8_t status;
1011 retval = cfi_intel_wait_status_busy(bank, 1400, &status);
1012 if (retval != ERROR_OK)
1013 return retval;
1014 } else {
1015 uint8_t block_status;
1016 /* read block lock bit, to verify status */
1017 retval = cfi_send_command(bank, 0x90, cfi_flash_address(bank, 0, 0x55));
1018 if (retval != ERROR_OK)
1019 return retval;
1020 retval = cfi_get_u8(bank, i, 0x2, &block_status);
1021 if (retval != ERROR_OK)
1022 return retval;
1023
1024 if ((block_status & 0x1) != set) {
1025 LOG_ERROR(
1026 "couldn't change block lock status (set = %i, block_status = 0x%2.2x)",
1027 set, block_status);
1028 retval = cfi_send_command(bank, 0x70, cfi_flash_address(bank, 0, 0x55));
1029 if (retval != ERROR_OK)
1030 return retval;
1031 uint8_t status;
1032 retval = cfi_intel_wait_status_busy(bank, 10, &status);
1033 if (retval != ERROR_OK)
1034 return retval;
1035
1036 if (retry > 10)
1037 return ERROR_FLASH_OPERATION_FAILED;
1038 else {
1039 i--;
1040 retry++;
1041 }
1042 }
1043 }
1044 }
1045
1046 /* if the device doesn't support individual block lock bits set/clear,
1047 * all blocks have been unlocked in parallel, so we set those that should be protected
1048 */
1049 if ((!set) && (!(pri_ext->feature_support & 0x20))) {
1050 /* FIX!!! this code path is broken!!!
1051 *
1052 * The correct approach is:
1053 *
1054 * 1. read out current protection status
1055 *
1056 * 2. override read out protection status w/unprotected.
1057 *
1058 * 3. re-protect what should be protected.
1059 *
1060 */
1061 for (unsigned int i = 0; i < bank->num_sectors; i++) {
1062 if (bank->sectors[i].is_protected == 1) {
1063 cfi_intel_clear_status_register(bank);
1064
1065 retval = cfi_send_command(bank, 0x60, cfi_flash_address(bank, i, 0x0));
1066 if (retval != ERROR_OK)
1067 return retval;
1068
1069 retval = cfi_send_command(bank, 0x01, cfi_flash_address(bank, i, 0x0));
1070 if (retval != ERROR_OK)
1071 return retval;
1072
1073 uint8_t status;
1074 retval = cfi_intel_wait_status_busy(bank, 100, &status);
1075 if (retval != ERROR_OK)
1076 return retval;
1077 }
1078 }
1079 }
1080
1081 return cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
1082 }
1083
1084 int cfi_protect(struct flash_bank *bank, int set, unsigned int first,
1085 unsigned int last)
1086 {
1087 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1088
1089 if (bank->target->state != TARGET_HALTED) {
1090 LOG_ERROR("Target not halted");
1091 return ERROR_TARGET_NOT_HALTED;
1092 }
1093
1094 if (cfi_info->qry[0] != 'Q')
1095 return ERROR_FLASH_BANK_NOT_PROBED;
1096
1097 switch (cfi_info->pri_id) {
1098 case 1:
1099 case 3:
1100 return cfi_intel_protect(bank, set, first, last);
1101 default:
1102 LOG_WARNING("protect: cfi primary command set %i unsupported", cfi_info->pri_id);
1103 return ERROR_OK;
1104 }
1105 }
1106
1107 static uint32_t cfi_command_val(struct flash_bank *bank, uint8_t cmd)
1108 {
1109 struct target *target = bank->target;
1110
1111 uint8_t buf[CFI_MAX_BUS_WIDTH];
1112 cfi_command(bank, cmd, buf);
1113 switch (bank->bus_width) {
1114 case 1:
1115 return buf[0];
1116 case 2:
1117 return target_buffer_get_u16(target, buf);
1118 case 4:
1119 return target_buffer_get_u32(target, buf);
1120 default:
1121 LOG_ERROR("Unsupported bank buswidth %u, can't do block memory writes",
1122 bank->bus_width);
1123 return 0;
1124 }
1125 }
1126
1127 static int cfi_intel_write_block(struct flash_bank *bank, const uint8_t *buffer,
1128 uint32_t address, uint32_t count)
1129 {
1130 struct target *target = bank->target;
1131 struct reg_param reg_params[7];
1132 struct arm_algorithm arm_algo;
1133 struct working_area *write_algorithm;
1134 struct working_area *source = NULL;
1135 uint32_t buffer_size = 32768;
1136 uint32_t write_command_val, busy_pattern_val, error_pattern_val;
1137
1138 /* algorithm register usage:
1139 * r0: source address (in RAM)
1140 * r1: target address (in Flash)
1141 * r2: count
1142 * r3: flash write command
1143 * r4: status byte (returned to host)
1144 * r5: busy test pattern
1145 * r6: error test pattern
1146 */
1147
1148 /* see contrib/loaders/flash/armv4_5_cfi_intel_32.s for src */
1149 static const uint32_t word_32_code[] = {
1150 0xe4904004, /* loop: ldr r4, [r0], #4 */
1151 0xe5813000, /* str r3, [r1] */
1152 0xe5814000, /* str r4, [r1] */
1153 0xe5914000, /* busy: ldr r4, [r1] */
1154 0xe0047005, /* and r7, r4, r5 */
1155 0xe1570005, /* cmp r7, r5 */
1156 0x1afffffb, /* bne busy */
1157 0xe1140006, /* tst r4, r6 */
1158 0x1a000003, /* bne done */
1159 0xe2522001, /* subs r2, r2, #1 */
1160 0x0a000001, /* beq done */
1161 0xe2811004, /* add r1, r1 #4 */
1162 0xeafffff2, /* b loop */
1163 0xeafffffe /* done: b -2 */
1164 };
1165
1166 /* see contrib/loaders/flash/armv4_5_cfi_intel_16.s for src */
1167 static const uint32_t word_16_code[] = {
1168 0xe0d040b2, /* loop: ldrh r4, [r0], #2 */
1169 0xe1c130b0, /* strh r3, [r1] */
1170 0xe1c140b0, /* strh r4, [r1] */
1171 0xe1d140b0, /* busy ldrh r4, [r1] */
1172 0xe0047005, /* and r7, r4, r5 */
1173 0xe1570005, /* cmp r7, r5 */
1174 0x1afffffb, /* bne busy */
1175 0xe1140006, /* tst r4, r6 */
1176 0x1a000003, /* bne done */
1177 0xe2522001, /* subs r2, r2, #1 */
1178 0x0a000001, /* beq done */
1179 0xe2811002, /* add r1, r1 #2 */
1180 0xeafffff2, /* b loop */
1181 0xeafffffe /* done: b -2 */
1182 };
1183
1184 /* see contrib/loaders/flash/armv4_5_cfi_intel_8.s for src */
1185 static const uint32_t word_8_code[] = {
1186 0xe4d04001, /* loop: ldrb r4, [r0], #1 */
1187 0xe5c13000, /* strb r3, [r1] */
1188 0xe5c14000, /* strb r4, [r1] */
1189 0xe5d14000, /* busy ldrb r4, [r1] */
1190 0xe0047005, /* and r7, r4, r5 */
1191 0xe1570005, /* cmp r7, r5 */
1192 0x1afffffb, /* bne busy */
1193 0xe1140006, /* tst r4, r6 */
1194 0x1a000003, /* bne done */
1195 0xe2522001, /* subs r2, r2, #1 */
1196 0x0a000001, /* beq done */
1197 0xe2811001, /* add r1, r1 #1 */
1198 0xeafffff2, /* b loop */
1199 0xeafffffe /* done: b -2 */
1200 };
1201 uint8_t target_code[4*CFI_MAX_INTEL_CODESIZE];
1202 const uint32_t *target_code_src;
1203 uint32_t target_code_size;
1204 int retval = ERROR_OK;
1205
1206 /* check we have a supported arch */
1207 if (is_arm(target_to_arm(target))) {
1208 /* All other ARM CPUs have 32 bit instructions */
1209 arm_algo.common_magic = ARM_COMMON_MAGIC;
1210 arm_algo.core_mode = ARM_MODE_SVC;
1211 arm_algo.core_state = ARM_STATE_ARM;
1212 } else {
1213 LOG_ERROR("Unknown architecture");
1214 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1215 }
1216
1217 cfi_intel_clear_status_register(bank);
1218
1219 /* If we are setting up the write_algorithm, we need target_code_src
1220 * if not we only need target_code_size. */
1221
1222 /* However, we don't want to create multiple code paths, so we
1223 * do the unnecessary evaluation of target_code_src, which the
1224 * compiler will probably nicely optimize away if not needed */
1225
1226 /* prepare algorithm code for target endian */
1227 switch (bank->bus_width) {
1228 case 1:
1229 target_code_src = word_8_code;
1230 target_code_size = sizeof(word_8_code);
1231 break;
1232 case 2:
1233 target_code_src = word_16_code;
1234 target_code_size = sizeof(word_16_code);
1235 break;
1236 case 4:
1237 target_code_src = word_32_code;
1238 target_code_size = sizeof(word_32_code);
1239 break;
1240 default:
1241 LOG_ERROR("Unsupported bank buswidth %u, can't do block memory writes",
1242 bank->bus_width);
1243 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1244 }
1245
1246 /* flash write code */
1247 if (target_code_size > sizeof(target_code)) {
1248 LOG_WARNING("Internal error - target code buffer to small. "
1249 "Increase CFI_MAX_INTEL_CODESIZE and recompile.");
1250 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1251 }
1252
1253 target_buffer_set_u32_array(target, target_code, target_code_size / 4, target_code_src);
1254
1255 /* Get memory for block write handler */
1256 retval = target_alloc_working_area(target,
1257 target_code_size,
1258 &write_algorithm);
1259 if (retval != ERROR_OK) {
1260 LOG_WARNING("No working area available, can't do block memory writes");
1261 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1262 }
1263
1264 /* write algorithm code to working area */
1265 retval = target_write_buffer(target, write_algorithm->address,
1266 target_code_size, target_code);
1267 if (retval != ERROR_OK) {
1268 LOG_ERROR("Unable to write block write code to target");
1269 goto cleanup;
1270 }
1271
1272 /* Get a workspace buffer for the data to flash starting with 32k size.
1273 * Half size until buffer would be smaller 256 Bytes then fail back */
1274 /* FIXME Why 256 bytes, why not 32 bytes (smallest flash write page */
1275 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
1276 buffer_size /= 2;
1277 if (buffer_size <= 256) {
1278 LOG_WARNING(
1279 "no large enough working area available, can't do block memory writes");
1280 retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1281 goto cleanup;
1282 }
1283 }
1284
1285 /* setup algo registers */
1286 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1287 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1288 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1289 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1290 init_reg_param(&reg_params[4], "r4", 32, PARAM_IN);
1291 init_reg_param(&reg_params[5], "r5", 32, PARAM_OUT);
1292 init_reg_param(&reg_params[6], "r6", 32, PARAM_OUT);
1293
1294 /* prepare command and status register patterns */
1295 write_command_val = cfi_command_val(bank, 0x40);
1296 busy_pattern_val = cfi_command_val(bank, 0x80);
1297 error_pattern_val = cfi_command_val(bank, 0x7e);
1298
1299 LOG_DEBUG("Using target buffer at " TARGET_ADDR_FMT " and of size 0x%04" PRIx32,
1300 source->address, buffer_size);
1301
1302 /* Programming main loop */
1303 while (count > 0) {
1304 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1305 uint32_t wsm_error;
1306
1307 retval = target_write_buffer(target, source->address, thisrun_count, buffer);
1308 if (retval != ERROR_OK)
1309 goto cleanup;
1310
1311 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1312 buf_set_u32(reg_params[1].value, 0, 32, address);
1313 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1314
1315 buf_set_u32(reg_params[3].value, 0, 32, write_command_val);
1316 buf_set_u32(reg_params[5].value, 0, 32, busy_pattern_val);
1317 buf_set_u32(reg_params[6].value, 0, 32, error_pattern_val);
1318
1319 LOG_DEBUG("Write 0x%04" PRIx32 " bytes to flash at 0x%08" PRIx32,
1320 thisrun_count, address);
1321
1322 /* Execute algorithm, assume breakpoint for last instruction */
1323 retval = target_run_algorithm(target, 0, NULL, 7, reg_params,
1324 write_algorithm->address,
1325 write_algorithm->address + target_code_size -
1326 sizeof(uint32_t),
1327 10000, /* 10s should be enough for max. 32k of data */
1328 &arm_algo);
1329
1330 /* On failure try a fall back to direct word writes */
1331 if (retval != ERROR_OK) {
1332 cfi_intel_clear_status_register(bank);
1333 LOG_ERROR(
1334 "Execution of flash algorithm failed. Can't fall back. Please report.");
1335 retval = ERROR_FLASH_OPERATION_FAILED;
1336 /* retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE; */
1337 /* FIXME To allow fall back or recovery, we must save the actual status
1338 * somewhere, so that a higher level code can start recovery. */
1339 goto cleanup;
1340 }
1341
1342 /* Check return value from algo code */
1343 wsm_error = buf_get_u32(reg_params[4].value, 0, 32) & error_pattern_val;
1344 if (wsm_error) {
1345 /* read status register (outputs debug information) */
1346 uint8_t status;
1347 cfi_intel_wait_status_busy(bank, 100, &status);
1348 cfi_intel_clear_status_register(bank);
1349 retval = ERROR_FLASH_OPERATION_FAILED;
1350 goto cleanup;
1351 }
1352
1353 buffer += thisrun_count;
1354 address += thisrun_count;
1355 count -= thisrun_count;
1356
1357 keep_alive();
1358 }
1359
1360 /* free up resources */
1361 cleanup:
1362 target_free_working_area(target, source);
1363 target_free_working_area(target, write_algorithm);
1364
1365 destroy_reg_param(&reg_params[0]);
1366 destroy_reg_param(&reg_params[1]);
1367 destroy_reg_param(&reg_params[2]);
1368 destroy_reg_param(&reg_params[3]);
1369 destroy_reg_param(&reg_params[4]);
1370 destroy_reg_param(&reg_params[5]);
1371 destroy_reg_param(&reg_params[6]);
1372
1373 return retval;
1374 }
1375
1376 static int cfi_spansion_write_block_mips(struct flash_bank *bank, const uint8_t *buffer,
1377 uint32_t address, uint32_t count)
1378 {
1379 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1380 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
1381 struct target *target = bank->target;
1382 struct reg_param reg_params[10];
1383 struct mips32_algorithm mips32_info;
1384 struct working_area *write_algorithm;
1385 struct working_area *source;
1386 uint32_t buffer_size = 32768;
1387 uint32_t status;
1388 int retval = ERROR_OK;
1389
1390 /* input parameters -
1391 * 4 A0 = source address
1392 * 5 A1 = destination address
1393 * 6 A2 = number of writes
1394 * 7 A3 = flash write command
1395 * 8 T0 = constant to mask DQ7 bits (also used for Dq5 with shift)
1396 * output parameters -
1397 * 9 T1 = 0x80 ok 0x00 bad
1398 * temp registers -
1399 * 10 T2 = value read from flash to test status
1400 * 11 T3 = holding register
1401 * unlock registers -
1402 * 12 T4 = unlock1_addr
1403 * 13 T5 = unlock1_cmd
1404 * 14 T6 = unlock2_addr
1405 * 15 T7 = unlock2_cmd */
1406
1407 static const uint32_t mips_word_16_code[] = {
1408 /* start: */
1409 MIPS32_LHU(0, 9, 0, 4), /* lhu $t1, ($a0) ; out = &saddr */
1410 MIPS32_ADDI(0, 4, 4, 2), /* addi $a0, $a0, 2 ; saddr += 2 */
1411 MIPS32_SH(0, 13, 0, 12), /* sh $t5, ($t4) ; *fl_unl_addr1 = fl_unl_cmd1 */
1412 MIPS32_SH(0, 15, 0, 14), /* sh $t7, ($t6) ; *fl_unl_addr2 = fl_unl_cmd2 */
1413 MIPS32_SH(0, 7, 0, 12), /* sh $a3, ($t4) ; *fl_unl_addr1 = fl_write_cmd */
1414 MIPS32_SH(0, 9, 0, 5), /* sh $t1, ($a1) ; *daddr = out */
1415 MIPS32_NOP, /* nop */
1416 /* busy: */
1417 MIPS32_LHU(0, 10, 0, 5), /* lhu $t2, ($a1) ; temp1 = *daddr */
1418 MIPS32_XOR(0, 11, 9, 10), /* xor $t3, $a0, $t2 ; temp2 = out ^ temp1; */
1419 MIPS32_AND(0, 11, 8, 11), /* and $t3, $t0, $t3 ; temp2 = temp2 & DQ7mask */
1420 MIPS32_BNE(0, 11, 8, 13), /* bne $t3, $t0, cont ; if (temp2 != DQ7mask) goto cont */
1421 MIPS32_NOP, /* nop */
1422
1423 MIPS32_SRL(0, 10, 8, 2), /* srl $t2,$t0,2 ; temp1 = DQ7mask >> 2 */
1424 MIPS32_AND(0, 11, 10, 11), /* and $t3, $t2, $t3 ; temp2 = temp2 & temp1 */
1425 MIPS32_BNE(0, 11, 10, NEG16(8)), /* bne $t3, $t2, busy ; if (temp2 != temp1) goto busy */
1426 MIPS32_NOP, /* nop */
1427
1428 MIPS32_LHU(0, 10, 0, 5), /* lhu $t2, ($a1) ; temp1 = *daddr */
1429 MIPS32_XOR(0, 11, 9, 10), /* xor $t3, $a0, $t2 ; temp2 = out ^ temp1; */
1430 MIPS32_AND(0, 11, 8, 11), /* and $t3, $t0, $t3 ; temp2 = temp2 & DQ7mask */
1431 MIPS32_BNE(0, 11, 8, 4), /* bne $t3, $t0, cont ; if (temp2 != DQ7mask) goto cont */
1432 MIPS32_NOP, /* nop */
1433
1434 MIPS32_XOR(0, 9, 9, 9), /* xor $t1, $t1, $t1 ; out = 0 */
1435 MIPS32_BEQ(0, 9, 0, 11), /* beq $t1, $zero, done ; if (out == 0) goto done */
1436 MIPS32_NOP, /* nop */
1437 /* cont: */
1438 MIPS32_ADDI(0, 6, 6, NEG16(1)), /* addi, $a2, $a2, -1 ; numwrites-- */
1439 MIPS32_BNE(0, 6, 0, 5), /* bne $a2, $zero, cont2 ; if (numwrite != 0) goto cont2 */
1440 MIPS32_NOP, /* nop */
1441
1442 MIPS32_LUI(0, 9, 0), /* lui $t1, 0 */
1443 MIPS32_ORI(0, 9, 9, 0x80), /* ori $t1, $t1, 0x80 ; out = 0x80 */
1444
1445 MIPS32_B(0, 4), /* b done ; goto done */
1446 MIPS32_NOP, /* nop */
1447 /* cont2: */
1448 MIPS32_ADDI(0, 5, 5, 2), /* addi $a0, $a0, 2 ; daddr += 2 */
1449 MIPS32_B(0, NEG16(33)), /* b start ; goto start */
1450 MIPS32_NOP, /* nop */
1451 /* done: */
1452 MIPS32_SDBBP(0), /* sdbbp ; break(); */
1453 };
1454
1455 mips32_info.common_magic = MIPS32_COMMON_MAGIC;
1456 mips32_info.isa_mode = MIPS32_ISA_MIPS32;
1457
1458 int target_code_size = 0;
1459 const uint32_t *target_code_src = NULL;
1460
1461 switch (bank->bus_width) {
1462 case 2:
1463 /* Check for DQ5 support */
1464 if (cfi_info->status_poll_mask & (1 << 5)) {
1465 target_code_src = mips_word_16_code;
1466 target_code_size = sizeof(mips_word_16_code);
1467 } else {
1468 LOG_ERROR("Need DQ5 support");
1469 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1470 /* target_code_src = mips_word_16_code_dq7only; */
1471 /* target_code_size = sizeof(mips_word_16_code_dq7only); */
1472 }
1473 break;
1474 default:
1475 LOG_ERROR("Unsupported bank buswidth %u, can't do block memory writes",
1476 bank->bus_width);
1477 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1478 }
1479
1480 /* flash write code */
1481 uint8_t *target_code;
1482
1483 /* convert bus-width dependent algorithm code to correct endianness */
1484 target_code = malloc(target_code_size);
1485 if (!target_code) {
1486 LOG_ERROR("Out of memory");
1487 return ERROR_FAIL;
1488 }
1489
1490 target_buffer_set_u32_array(target, target_code, target_code_size / 4, target_code_src);
1491
1492 /* allocate working area */
1493 retval = target_alloc_working_area(target, target_code_size,
1494 &write_algorithm);
1495 if (retval != ERROR_OK) {
1496 free(target_code);
1497 return retval;
1498 }
1499
1500 /* write algorithm code to working area */
1501 retval = target_write_buffer(target, write_algorithm->address,
1502 target_code_size, target_code);
1503 if (retval != ERROR_OK) {
1504 free(target_code);
1505 return retval;
1506 }
1507
1508 free(target_code);
1509
1510 /* the following code still assumes target code is fixed 24*4 bytes */
1511
1512 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
1513 buffer_size /= 2;
1514 if (buffer_size <= 256) {
1515 /* we already allocated the writing code, but failed to get a
1516 * buffer, free the algorithm */
1517 target_free_working_area(target, write_algorithm);
1518
1519 LOG_WARNING(
1520 "not enough working area available, can't do block memory writes");
1521 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1522 }
1523 }
1524
1525 init_reg_param(&reg_params[0], "r4", 32, PARAM_OUT);
1526 init_reg_param(&reg_params[1], "r5", 32, PARAM_OUT);
1527 init_reg_param(&reg_params[2], "r6", 32, PARAM_OUT);
1528 init_reg_param(&reg_params[3], "r7", 32, PARAM_OUT);
1529 init_reg_param(&reg_params[4], "r8", 32, PARAM_OUT);
1530 init_reg_param(&reg_params[5], "r9", 32, PARAM_IN);
1531 init_reg_param(&reg_params[6], "r12", 32, PARAM_OUT);
1532 init_reg_param(&reg_params[7], "r13", 32, PARAM_OUT);
1533 init_reg_param(&reg_params[8], "r14", 32, PARAM_OUT);
1534 init_reg_param(&reg_params[9], "r15", 32, PARAM_OUT);
1535
1536 while (count > 0) {
1537 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1538
1539 retval = target_write_buffer(target, source->address, thisrun_count, buffer);
1540 if (retval != ERROR_OK)
1541 break;
1542
1543 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1544 buf_set_u32(reg_params[1].value, 0, 32, address);
1545 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1546 buf_set_u32(reg_params[3].value, 0, 32, cfi_command_val(bank, 0xA0));
1547 buf_set_u32(reg_params[4].value, 0, 32, cfi_command_val(bank, 0x80));
1548 buf_set_u32(reg_params[6].value, 0, 32, cfi_flash_address(bank, 0, pri_ext->_unlock1));
1549 buf_set_u32(reg_params[7].value, 0, 32, 0xaaaaaaaa);
1550 buf_set_u32(reg_params[8].value, 0, 32, cfi_flash_address(bank, 0, pri_ext->_unlock2));
1551 buf_set_u32(reg_params[9].value, 0, 32, 0x55555555);
1552
1553 retval = target_run_algorithm(target, 0, NULL, 10, reg_params,
1554 write_algorithm->address,
1555 write_algorithm->address + ((target_code_size) - 4),
1556 10000, &mips32_info);
1557 if (retval != ERROR_OK)
1558 break;
1559
1560 status = buf_get_u32(reg_params[5].value, 0, 32);
1561 if (status != 0x80) {
1562 LOG_ERROR("flash write block failed status: 0x%" PRIx32, status);
1563 retval = ERROR_FLASH_OPERATION_FAILED;
1564 break;
1565 }
1566
1567 buffer += thisrun_count;
1568 address += thisrun_count;
1569 count -= thisrun_count;
1570 }
1571
1572 target_free_all_working_areas(target);
1573
1574 destroy_reg_param(&reg_params[0]);
1575 destroy_reg_param(&reg_params[1]);
1576 destroy_reg_param(&reg_params[2]);
1577 destroy_reg_param(&reg_params[3]);
1578 destroy_reg_param(&reg_params[4]);
1579 destroy_reg_param(&reg_params[5]);
1580 destroy_reg_param(&reg_params[6]);
1581 destroy_reg_param(&reg_params[7]);
1582 destroy_reg_param(&reg_params[8]);
1583 destroy_reg_param(&reg_params[9]);
1584
1585 return retval;
1586 }
1587
1588 static int cfi_spansion_write_block(struct flash_bank *bank, const uint8_t *buffer,
1589 uint32_t address, uint32_t count)
1590 {
1591 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1592 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
1593 struct target *target = bank->target;
1594 struct reg_param reg_params[10];
1595 void *arm_algo;
1596 struct arm_algorithm armv4_5_algo;
1597 struct armv7m_algorithm armv7m_algo;
1598 struct working_area *write_algorithm;
1599 struct working_area *source;
1600 uint32_t buffer_size = 32768;
1601 uint32_t status;
1602 int retval = ERROR_OK;
1603
1604 /* input parameters -
1605 * R0 = source address
1606 * R1 = destination address
1607 * R2 = number of writes
1608 * R3 = flash write command
1609 * R4 = constant to mask DQ7 bits (also used for Dq5 with shift)
1610 * output parameters -
1611 * R5 = 0x80 ok 0x00 bad
1612 * temp registers -
1613 * R6 = value read from flash to test status
1614 * R7 = holding register
1615 * unlock registers -
1616 * R8 = unlock1_addr
1617 * R9 = unlock1_cmd
1618 * R10 = unlock2_addr
1619 * R11 = unlock2_cmd */
1620
1621 /* see contrib/loaders/flash/armv4_5_cfi_span_32.s for src */
1622 static const uint32_t armv4_5_word_32_code[] = {
1623 /* 00008100 <sp_32_code>: */
1624 0xe4905004, /* ldr r5, [r0], #4 */
1625 0xe5889000, /* str r9, [r8] */
1626 0xe58ab000, /* str r11, [r10] */
1627 0xe5883000, /* str r3, [r8] */
1628 0xe5815000, /* str r5, [r1] */
1629 0xe1a00000, /* nop */
1630 /* 00008110 <sp_32_busy>: */
1631 0xe5916000, /* ldr r6, [r1] */
1632 0xe0257006, /* eor r7, r5, r6 */
1633 0xe0147007, /* ands r7, r4, r7 */
1634 0x0a000007, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
1635 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1636 0x0afffff9, /* beq 8110 <sp_32_busy> ; b if DQ5 low */
1637 0xe5916000, /* ldr r6, [r1] */
1638 0xe0257006, /* eor r7, r5, r6 */
1639 0xe0147007, /* ands r7, r4, r7 */
1640 0x0a000001, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
1641 0xe3a05000, /* mov r5, #0 ; 0x0 - return 0x00, error */
1642 0x1a000004, /* bne 8154 <sp_32_done> */
1643 /* 00008140 <sp_32_cont>: */
1644 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1645 0x03a05080, /* moveq r5, #128 ; 0x80 */
1646 0x0a000001, /* beq 8154 <sp_32_done> */
1647 0xe2811004, /* add r1, r1, #4 ; 0x4 */
1648 0xeaffffe8, /* b 8100 <sp_32_code> */
1649 /* 00008154 <sp_32_done>: */
1650 0xeafffffe /* b 8154 <sp_32_done> */
1651 };
1652
1653 /* see contrib/loaders/flash/armv4_5_cfi_span_16.s for src */
1654 static const uint32_t armv4_5_word_16_code[] = {
1655 /* 00008158 <sp_16_code>: */
1656 0xe0d050b2, /* ldrh r5, [r0], #2 */
1657 0xe1c890b0, /* strh r9, [r8] */
1658 0xe1cab0b0, /* strh r11, [r10] */
1659 0xe1c830b0, /* strh r3, [r8] */
1660 0xe1c150b0, /* strh r5, [r1] */
1661 0xe1a00000, /* nop (mov r0,r0) */
1662 /* 00008168 <sp_16_busy>: */
1663 0xe1d160b0, /* ldrh r6, [r1] */
1664 0xe0257006, /* eor r7, r5, r6 */
1665 0xe0147007, /* ands r7, r4, r7 */
1666 0x0a000007, /* beq 8198 <sp_16_cont> */
1667 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1668 0x0afffff9, /* beq 8168 <sp_16_busy> */
1669 0xe1d160b0, /* ldrh r6, [r1] */
1670 0xe0257006, /* eor r7, r5, r6 */
1671 0xe0147007, /* ands r7, r4, r7 */
1672 0x0a000001, /* beq 8198 <sp_16_cont> */
1673 0xe3a05000, /* mov r5, #0 ; 0x0 */
1674 0x1a000004, /* bne 81ac <sp_16_done> */
1675 /* 00008198 <sp_16_cont>: */
1676 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1677 0x03a05080, /* moveq r5, #128 ; 0x80 */
1678 0x0a000001, /* beq 81ac <sp_16_done> */
1679 0xe2811002, /* add r1, r1, #2 ; 0x2 */
1680 0xeaffffe8, /* b 8158 <sp_16_code> */
1681 /* 000081ac <sp_16_done>: */
1682 0xeafffffe /* b 81ac <sp_16_done> */
1683 };
1684
1685 /* see contrib/loaders/flash/armv7m_cfi_span_16.s for src */
1686 static const uint32_t armv7m_word_16_code[] = {
1687 0x5B02F830,
1688 0x9000F8A8,
1689 0xB000F8AA,
1690 0x3000F8A8,
1691 0xBF00800D,
1692 0xEA85880E,
1693 0x40270706,
1694 0xEA16D00A,
1695 0xD0F70694,
1696 0xEA85880E,
1697 0x40270706,
1698 0xF04FD002,
1699 0xD1070500,
1700 0xD0023A01,
1701 0x0102F101,
1702 0xF04FE7E0,
1703 0xE7FF0580,
1704 0x0000BE00
1705 };
1706
1707 /* see contrib/loaders/flash/armv7m_cfi_span_16_dq7.s for src */
1708 static const uint32_t armv7m_word_16_code_dq7only[] = {
1709 /* 00000000 <code>: */
1710 0x5B02F830, /* ldrh.w r5, [r0], #2 */
1711 0x9000F8A8, /* strh.w r9, [r8] */
1712 0xB000F8AA, /* strh.w fp, [sl] */
1713 0x3000F8A8, /* strh.w r3, [r8] */
1714 0xBF00800D, /* strh r5, [r1, #0] */
1715 /* nop */
1716
1717 /* 00000014 <busy>: */
1718 0xEA85880E, /* ldrh r6, [r1, #0] */
1719 /* eor.w r7, r5, r6 */
1720 0x40270706, /* ands r7, r4 */
1721 0x3A01D1FA, /* bne.n 14 <busy> */
1722 /* subs r2, #1 */
1723 0xF101D002, /* beq.n 28 <success> */
1724 0xE7EB0102, /* add.w r1, r1, #2 */
1725 /* b.n 0 <code> */
1726
1727 /* 00000028 <success>: */
1728 0x0580F04F, /* mov.w r5, #128 */
1729 0xBF00E7FF, /* b.n 30 <done> */
1730 /* nop (for alignment purposes) */
1731
1732 /* 00000030 <done>: */
1733 0x0000BE00 /* bkpt 0x0000 */
1734 };
1735
1736 /* see contrib/loaders/flash/armv4_5_cfi_span_16_dq7.s for src */
1737 static const uint32_t armv4_5_word_16_code_dq7only[] = {
1738 /* <sp_16_code>: */
1739 0xe0d050b2, /* ldrh r5, [r0], #2 */
1740 0xe1c890b0, /* strh r9, [r8] */
1741 0xe1cab0b0, /* strh r11, [r10] */
1742 0xe1c830b0, /* strh r3, [r8] */
1743 0xe1c150b0, /* strh r5, [r1] */
1744 0xe1a00000, /* nop (mov r0,r0) */
1745 /* <sp_16_busy>: */
1746 0xe1d160b0, /* ldrh r6, [r1] */
1747 0xe0257006, /* eor r7, r5, r6 */
1748 0xe2177080, /* ands r7, #0x80 */
1749 0x1afffffb, /* bne 8168 <sp_16_busy> */
1750 /* */
1751 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1752 0x03a05080, /* moveq r5, #128 ; 0x80 */
1753 0x0a000001, /* beq 81ac <sp_16_done> */
1754 0xe2811002, /* add r1, r1, #2 ; 0x2 */
1755 0xeafffff0, /* b 8158 <sp_16_code> */
1756 /* 000081ac <sp_16_done>: */
1757 0xeafffffe /* b 81ac <sp_16_done> */
1758 };
1759
1760 /* see contrib/loaders/flash/armv4_5_cfi_span_8.s for src */
1761 static const uint32_t armv4_5_word_8_code[] = {
1762 /* 000081b0 <sp_16_code_end>: */
1763 0xe4d05001, /* ldrb r5, [r0], #1 */
1764 0xe5c89000, /* strb r9, [r8] */
1765 0xe5cab000, /* strb r11, [r10] */
1766 0xe5c83000, /* strb r3, [r8] */
1767 0xe5c15000, /* strb r5, [r1] */
1768 0xe1a00000, /* nop (mov r0,r0) */
1769 /* 000081c0 <sp_8_busy>: */
1770 0xe5d16000, /* ldrb r6, [r1] */
1771 0xe0257006, /* eor r7, r5, r6 */
1772 0xe0147007, /* ands r7, r4, r7 */
1773 0x0a000007, /* beq 81f0 <sp_8_cont> */
1774 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1775 0x0afffff9, /* beq 81c0 <sp_8_busy> */
1776 0xe5d16000, /* ldrb r6, [r1] */
1777 0xe0257006, /* eor r7, r5, r6 */
1778 0xe0147007, /* ands r7, r4, r7 */
1779 0x0a000001, /* beq 81f0 <sp_8_cont> */
1780 0xe3a05000, /* mov r5, #0 ; 0x0 */
1781 0x1a000004, /* bne 8204 <sp_8_done> */
1782 /* 000081f0 <sp_8_cont>: */
1783 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1784 0x03a05080, /* moveq r5, #128 ; 0x80 */
1785 0x0a000001, /* beq 8204 <sp_8_done> */
1786 0xe2811001, /* add r1, r1, #1 ; 0x1 */
1787 0xeaffffe8, /* b 81b0 <sp_16_code_end> */
1788 /* 00008204 <sp_8_done>: */
1789 0xeafffffe /* b 8204 <sp_8_done> */
1790 };
1791
1792 if (strncmp(target_type_name(target), "mips_m4k", 8) == 0)
1793 return cfi_spansion_write_block_mips(bank, buffer, address, count);
1794
1795 if (is_armv7m(target_to_armv7m(target))) { /* armv7m target */
1796 armv7m_algo.common_magic = ARMV7M_COMMON_MAGIC;
1797 armv7m_algo.core_mode = ARM_MODE_THREAD;
1798 arm_algo = &armv7m_algo;
1799 } else if (is_arm(target_to_arm(target))) {
1800 /* All other ARM CPUs have 32 bit instructions */
1801 armv4_5_algo.common_magic = ARM_COMMON_MAGIC;
1802 armv4_5_algo.core_mode = ARM_MODE_SVC;
1803 armv4_5_algo.core_state = ARM_STATE_ARM;
1804 arm_algo = &armv4_5_algo;
1805 } else {
1806 LOG_ERROR("Unknown architecture");
1807 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1808 }
1809
1810 int target_code_size = 0;
1811 const uint32_t *target_code_src = NULL;
1812
1813 switch (bank->bus_width) {
1814 case 1:
1815 if (is_armv7m(target_to_armv7m(target))) {
1816 LOG_ERROR("Unknown ARM architecture");
1817 return ERROR_FAIL;
1818 }
1819 target_code_src = armv4_5_word_8_code;
1820 target_code_size = sizeof(armv4_5_word_8_code);
1821 break;
1822 case 2:
1823 /* Check for DQ5 support */
1824 if (cfi_info->status_poll_mask & (1 << 5)) {
1825 if (is_armv7m(target_to_armv7m(target))) {
1826 /* armv7m target */
1827 target_code_src = armv7m_word_16_code;
1828 target_code_size = sizeof(armv7m_word_16_code);
1829 } else { /* armv4_5 target */
1830 target_code_src = armv4_5_word_16_code;
1831 target_code_size = sizeof(armv4_5_word_16_code);
1832 }
1833 } else {
1834 /* No DQ5 support. Use DQ7 DATA# polling only. */
1835 if (is_armv7m(target_to_armv7m(target))) {
1836 /* armv7m target */
1837 target_code_src = armv7m_word_16_code_dq7only;
1838 target_code_size = sizeof(armv7m_word_16_code_dq7only);
1839 } else { /* armv4_5 target */
1840 target_code_src = armv4_5_word_16_code_dq7only;
1841 target_code_size = sizeof(armv4_5_word_16_code_dq7only);
1842 }
1843 }
1844 break;
1845 case 4:
1846 if (is_armv7m(target_to_armv7m(target))) {
1847 LOG_ERROR("Unknown ARM architecture");
1848 return ERROR_FAIL;
1849 }
1850 target_code_src = armv4_5_word_32_code;
1851 target_code_size = sizeof(armv4_5_word_32_code);
1852 break;
1853 default:
1854 LOG_ERROR("Unsupported bank buswidth %u, can't do block memory writes",
1855 bank->bus_width);
1856 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1857 }
1858
1859 /* flash write code */
1860 uint8_t *target_code;
1861
1862 /* convert bus-width dependent algorithm code to correct endianness */
1863 target_code = malloc(target_code_size);
1864 if (!target_code) {
1865 LOG_ERROR("Out of memory");
1866 return ERROR_FAIL;
1867 }
1868
1869 target_buffer_set_u32_array(target, target_code, target_code_size / 4, target_code_src);
1870
1871 /* allocate working area */
1872 retval = target_alloc_working_area(target, target_code_size,
1873 &write_algorithm);
1874 if (retval != ERROR_OK) {
1875 free(target_code);
1876 return retval;
1877 }
1878
1879 /* write algorithm code to working area */
1880 retval = target_write_buffer(target, write_algorithm->address,
1881 target_code_size, target_code);
1882 if (retval != ERROR_OK) {
1883 free(target_code);
1884 return retval;
1885 }
1886
1887 free(target_code);
1888
1889 /* the following code still assumes target code is fixed 24*4 bytes */
1890
1891 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
1892 buffer_size /= 2;
1893 if (buffer_size <= 256) {
1894 /* we already allocated the writing code, but failed to get a
1895 * buffer, free the algorithm */
1896 target_free_working_area(target, write_algorithm);
1897
1898 LOG_WARNING(
1899 "not enough working area available, can't do block memory writes");
1900 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1901 }
1902 }
1903
1904 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1905 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1906 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1907 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1908 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
1909 init_reg_param(&reg_params[5], "r5", 32, PARAM_IN);
1910 init_reg_param(&reg_params[6], "r8", 32, PARAM_OUT);
1911 init_reg_param(&reg_params[7], "r9", 32, PARAM_OUT);
1912 init_reg_param(&reg_params[8], "r10", 32, PARAM_OUT);
1913 init_reg_param(&reg_params[9], "r11", 32, PARAM_OUT);
1914
1915 while (count > 0) {
1916 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1917
1918 retval = target_write_buffer(target, source->address, thisrun_count, buffer);
1919 if (retval != ERROR_OK)
1920 break;
1921
1922 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1923 buf_set_u32(reg_params[1].value, 0, 32, address);
1924 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1925 buf_set_u32(reg_params[3].value, 0, 32, cfi_command_val(bank, 0xA0));
1926 buf_set_u32(reg_params[4].value, 0, 32, cfi_command_val(bank, 0x80));
1927 buf_set_u32(reg_params[6].value, 0, 32, cfi_flash_address(bank, 0, pri_ext->_unlock1));
1928 buf_set_u32(reg_params[7].value, 0, 32, 0xaaaaaaaa);
1929 buf_set_u32(reg_params[8].value, 0, 32, cfi_flash_address(bank, 0, pri_ext->_unlock2));
1930 buf_set_u32(reg_params[9].value, 0, 32, 0x55555555);
1931
1932 retval = target_run_algorithm(target, 0, NULL, 10, reg_params,
1933 write_algorithm->address,
1934 write_algorithm->address + ((target_code_size) - 4),
1935 10000, arm_algo);
1936 if (retval != ERROR_OK)
1937 break;
1938
1939 status = buf_get_u32(reg_params[5].value, 0, 32);
1940 if (status != 0x80) {
1941 LOG_ERROR("flash write block failed status: 0x%" PRIx32, status);
1942 retval = ERROR_FLASH_OPERATION_FAILED;
1943 break;
1944 }
1945
1946 buffer += thisrun_count;
1947 address += thisrun_count;
1948 count -= thisrun_count;
1949 }
1950
1951 target_free_all_working_areas(target);
1952
1953 destroy_reg_param(&reg_params[0]);
1954 destroy_reg_param(&reg_params[1]);
1955 destroy_reg_param(&reg_params[2]);
1956 destroy_reg_param(&reg_params[3]);
1957 destroy_reg_param(&reg_params[4]);
1958 destroy_reg_param(&reg_params[5]);
1959 destroy_reg_param(&reg_params[6]);
1960 destroy_reg_param(&reg_params[7]);
1961 destroy_reg_param(&reg_params[8]);
1962 destroy_reg_param(&reg_params[9]);
1963
1964 return retval;
1965 }
1966
1967 static int cfi_intel_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
1968 {
1969 int retval;
1970 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1971
1972 cfi_intel_clear_status_register(bank);
1973 retval = cfi_send_command(bank, 0x40, address);
1974 if (retval != ERROR_OK)
1975 return retval;
1976
1977 retval = cfi_target_write_memory(bank, address, 1, word);
1978 if (retval != ERROR_OK)
1979 return retval;
1980
1981 uint8_t status;
1982 retval = cfi_intel_wait_status_busy(bank, cfi_info->word_write_timeout, &status);
1983 if (retval != ERROR_OK)
1984 return retval;
1985 if (status != 0x80) {
1986 retval = cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
1987 if (retval != ERROR_OK)
1988 return retval;
1989
1990 LOG_ERROR("couldn't write word at base " TARGET_ADDR_FMT
1991 ", address 0x%" PRIx32,
1992 bank->base, address);
1993 return ERROR_FLASH_OPERATION_FAILED;
1994 }
1995
1996 return ERROR_OK;
1997 }
1998
1999 static int cfi_intel_write_words(struct flash_bank *bank, const uint8_t *word,
2000 uint32_t wordcount, uint32_t address)
2001 {
2002 int retval;
2003 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2004
2005 /* Calculate buffer size and boundary mask
2006 * buffersize is (buffer size per chip) * (number of chips)
2007 * bufferwsize is buffersize in words */
2008 uint32_t buffersize =
2009 (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
2010 uint32_t buffermask = buffersize-1;
2011 uint32_t bufferwsize = buffersize / bank->bus_width;
2012
2013 /* Check for valid range */
2014 if (address & buffermask) {
2015 LOG_ERROR("Write address at base " TARGET_ADDR_FMT ", address 0x%"
2016 PRIx32 " not aligned to 2^%d boundary",
2017 bank->base, address, cfi_info->max_buf_write_size);
2018 return ERROR_FLASH_OPERATION_FAILED;
2019 }
2020
2021 /* Check for valid size */
2022 if (wordcount > bufferwsize) {
2023 LOG_ERROR("Number of data words %" PRIu32 " exceeds available buffersize %" PRIu32,
2024 wordcount, buffersize);
2025 return ERROR_FLASH_OPERATION_FAILED;
2026 }
2027
2028 /* Write to flash buffer */
2029 cfi_intel_clear_status_register(bank);
2030
2031 /* Initiate buffer operation _*/
2032 retval = cfi_send_command(bank, 0xe8, address);
2033 if (retval != ERROR_OK)
2034 return retval;
2035 uint8_t status;
2036 retval = cfi_intel_wait_status_busy(bank, cfi_info->buf_write_timeout, &status);
2037 if (retval != ERROR_OK)
2038 return retval;
2039 if (status != 0x80) {
2040 retval = cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
2041 if (retval != ERROR_OK)
2042 return retval;
2043
2044 LOG_ERROR(
2045 "couldn't start buffer write operation at base " TARGET_ADDR_FMT
2046 ", address 0x%" PRIx32,
2047 bank->base,
2048 address);
2049 return ERROR_FLASH_OPERATION_FAILED;
2050 }
2051
2052 /* Write buffer wordcount-1 and data words */
2053 retval = cfi_send_command(bank, bufferwsize-1, address);
2054 if (retval != ERROR_OK)
2055 return retval;
2056
2057 retval = cfi_target_write_memory(bank, address, bufferwsize, word);
2058 if (retval != ERROR_OK)
2059 return retval;
2060
2061 /* Commit write operation */
2062 retval = cfi_send_command(bank, 0xd0, address);
2063 if (retval != ERROR_OK)
2064 return retval;
2065
2066 retval = cfi_intel_wait_status_busy(bank, cfi_info->buf_write_timeout, &status);
2067 if (retval != ERROR_OK)
2068 return retval;
2069
2070 if (status != 0x80) {
2071 retval = cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
2072 if (retval != ERROR_OK)
2073 return retval;
2074
2075 LOG_ERROR("Buffer write at base " TARGET_ADDR_FMT
2076 ", address 0x%" PRIx32 " failed.", bank->base, address);
2077 return ERROR_FLASH_OPERATION_FAILED;
2078 }
2079
2080 return ERROR_OK;
2081 }
2082
2083 static int cfi_spansion_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
2084 {
2085 int retval;
2086 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2087 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2088
2089 retval = cfi_spansion_unlock_seq(bank);
2090 if (retval != ERROR_OK)
2091 return retval;
2092
2093 retval = cfi_send_command(bank, 0xa0, cfi_flash_address(bank, 0, pri_ext->_unlock1));
2094 if (retval != ERROR_OK)
2095 return retval;
2096
2097 retval = cfi_target_write_memory(bank, address, 1, word);
2098 if (retval != ERROR_OK)
2099 return retval;
2100
2101 if (cfi_spansion_wait_status_busy(bank, cfi_info->word_write_timeout) != ERROR_OK) {
2102 retval = cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
2103 if (retval != ERROR_OK)
2104 return retval;
2105
2106 LOG_ERROR("couldn't write word at base " TARGET_ADDR_FMT
2107 ", address 0x%" PRIx32, bank->base, address);
2108 return ERROR_FLASH_OPERATION_FAILED;
2109 }
2110
2111 return ERROR_OK;
2112 }
2113
2114 static int cfi_spansion_write_words(struct flash_bank *bank, const uint8_t *word,
2115 uint32_t wordcount, uint32_t address)
2116 {
2117 int retval;
2118 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2119
2120 /* Calculate buffer size and boundary mask
2121 * buffersize is (buffer size per chip) * (number of chips)
2122 * bufferwsize is buffersize in words */
2123 uint32_t buffersize =
2124 (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
2125 uint32_t buffermask = buffersize-1;
2126 uint32_t bufferwsize = buffersize / bank->bus_width;
2127
2128 /* Check for valid range */
2129 if (address & buffermask) {
2130 LOG_ERROR("Write address at base " TARGET_ADDR_FMT
2131 ", address 0x%" PRIx32 " not aligned to 2^%d boundary",
2132 bank->base, address, cfi_info->max_buf_write_size);
2133 return ERROR_FLASH_OPERATION_FAILED;
2134 }
2135
2136 /* Check for valid size */
2137 if (wordcount > bufferwsize) {
2138 LOG_ERROR("Number of data words %" PRIu32 " exceeds available buffersize %"
2139 PRIu32, wordcount, buffersize);
2140 return ERROR_FLASH_OPERATION_FAILED;
2141 }
2142
2143 /* Unlock */
2144 retval = cfi_spansion_unlock_seq(bank);
2145 if (retval != ERROR_OK)
2146 return retval;
2147
2148 /* Buffer load command */
2149 retval = cfi_send_command(bank, 0x25, address);
2150 if (retval != ERROR_OK)
2151 return retval;
2152
2153 /* Write buffer wordcount-1 and data words */
2154 retval = cfi_send_command(bank, bufferwsize-1, address);
2155 if (retval != ERROR_OK)
2156 return retval;
2157
2158 retval = cfi_target_write_memory(bank, address, bufferwsize, word);
2159 if (retval != ERROR_OK)
2160 return retval;
2161
2162 /* Commit write operation */
2163 retval = cfi_send_command(bank, 0x29, address);
2164 if (retval != ERROR_OK)
2165 return retval;
2166
2167 if (cfi_spansion_wait_status_busy(bank, cfi_info->buf_write_timeout) != ERROR_OK) {
2168 retval = cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
2169 if (retval != ERROR_OK)
2170 return retval;
2171
2172 LOG_ERROR("couldn't write block at base " TARGET_ADDR_FMT
2173 ", address 0x%" PRIx32 ", size 0x%" PRIx32, bank->base, address,
2174 bufferwsize);
2175 return ERROR_FLASH_OPERATION_FAILED;
2176 }
2177
2178 return ERROR_OK;
2179 }
2180
2181 int cfi_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
2182 {
2183 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2184
2185 switch (cfi_info->pri_id) {
2186 case 1:
2187 case 3:
2188 return cfi_intel_write_word(bank, word, address);
2189 case 2:
2190 return cfi_spansion_write_word(bank, word, address);
2191 default:
2192 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2193 break;
2194 }
2195
2196 return ERROR_FLASH_OPERATION_FAILED;
2197 }
2198
2199 static int cfi_write_words(struct flash_bank *bank, const uint8_t *word,
2200 uint32_t wordcount, uint32_t address)
2201 {
2202 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2203
2204 if (cfi_info->buf_write_timeout_typ == 0) {
2205 /* buffer writes are not supported */
2206 LOG_DEBUG("Buffer Writes Not Supported");
2207 return ERROR_FLASH_OPER_UNSUPPORTED;
2208 }
2209
2210 switch (cfi_info->pri_id) {
2211 case 1:
2212 case 3:
2213 return cfi_intel_write_words(bank, word, wordcount, address);
2214 case 2:
2215 return cfi_spansion_write_words(bank, word, wordcount, address);
2216 default:
2217 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2218 break;
2219 }
2220
2221 return ERROR_FLASH_OPERATION_FAILED;
2222 }
2223
2224 static int cfi_read(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
2225 {
2226 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2227 uint32_t address = bank->base + offset;
2228 uint32_t read_p;
2229 int align; /* number of unaligned bytes */
2230 uint8_t current_word[CFI_MAX_BUS_WIDTH];
2231 int retval;
2232
2233 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
2234 (int)count, (unsigned)offset);
2235
2236 if (bank->target->state != TARGET_HALTED) {
2237 LOG_ERROR("Target not halted");
2238 return ERROR_TARGET_NOT_HALTED;
2239 }
2240
2241 if (offset + count > bank->size)
2242 return ERROR_FLASH_DST_OUT_OF_BANK;
2243
2244 if (cfi_info->qry[0] != 'Q')
2245 return ERROR_FLASH_BANK_NOT_PROBED;
2246
2247 /* start at the first byte of the first word (bus_width size) */
2248 read_p = address & ~(bank->bus_width - 1);
2249 align = address - read_p;
2250 if (align != 0) {
2251 LOG_INFO("Fixup %d unaligned read head bytes", align);
2252
2253 /* read a complete word from flash */
2254 retval = cfi_target_read_memory(bank, read_p, 1, current_word);
2255 if (retval != ERROR_OK)
2256 return retval;
2257
2258 /* take only bytes we need */
2259 for (unsigned int i = align; (i < bank->bus_width) && (count > 0); i++, count--)
2260 *buffer++ = current_word[i];
2261
2262 read_p += bank->bus_width;
2263 }
2264
2265 align = count / bank->bus_width;
2266 if (align) {
2267 retval = cfi_target_read_memory(bank, read_p, align, buffer);
2268 if (retval != ERROR_OK)
2269 return retval;
2270
2271 read_p += align * bank->bus_width;
2272 buffer += align * bank->bus_width;
2273 count -= align * bank->bus_width;
2274 }
2275
2276 if (count) {
2277 LOG_INFO("Fixup %" PRIu32 " unaligned read tail bytes", count);
2278
2279 /* read a complete word from flash */
2280 retval = cfi_target_read_memory(bank, read_p, 1, current_word);
2281 if (retval != ERROR_OK)
2282 return retval;
2283
2284 /* take only bytes we need */
2285 for (unsigned int i = 0; (i < bank->bus_width) && (count > 0); i++, count--)
2286 *buffer++ = current_word[i];
2287 }
2288
2289 return ERROR_OK;
2290 }
2291
2292 static int cfi_write(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count)
2293 {
2294 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2295 uint32_t address = bank->base + offset; /* address of first byte to be programmed */
2296 uint32_t write_p;
2297 int align; /* number of unaligned bytes */
2298 int blk_count; /* number of bus_width bytes for block copy */
2299 uint8_t current_word[CFI_MAX_BUS_WIDTH * 4]; /* word (bus_width size) currently being
2300 *programmed */
2301 uint8_t *swapped_buffer = NULL;
2302 const uint8_t *real_buffer = NULL;
2303 int retval;
2304
2305 if (bank->target->state != TARGET_HALTED) {
2306 LOG_ERROR("Target not halted");
2307 return ERROR_TARGET_NOT_HALTED;
2308 }
2309
2310 if (offset + count > bank->size)
2311 return ERROR_FLASH_DST_OUT_OF_BANK;
2312
2313 if (cfi_info->qry[0] != 'Q')
2314 return ERROR_FLASH_BANK_NOT_PROBED;
2315
2316 /* start at the first byte of the first word (bus_width size) */
2317 write_p = address & ~(bank->bus_width - 1);
2318 align = address - write_p;
2319 if (align != 0) {
2320 LOG_INFO("Fixup %d unaligned head bytes", align);
2321
2322 /* read a complete word from flash */
2323 retval = cfi_target_read_memory(bank, write_p, 1, current_word);
2324 if (retval != ERROR_OK)
2325 return retval;
2326
2327 /* replace only bytes that must be written */
2328 for (unsigned int i = align; (i < bank->bus_width) && (count > 0); i++, count--)
2329 if (cfi_info->data_swap)
2330 /* data bytes are swapped (reverse endianness) */
2331 current_word[bank->bus_width - i] = *buffer++;
2332 else
2333 current_word[i] = *buffer++;
2334
2335 retval = cfi_write_word(bank, current_word, write_p);
2336 if (retval != ERROR_OK)
2337 return retval;
2338 write_p += bank->bus_width;
2339 }
2340
2341 if (cfi_info->data_swap && count) {
2342 swapped_buffer = malloc(count & ~(bank->bus_width - 1));
2343 switch (bank->bus_width) {
2344 case 2:
2345 buf_bswap16(swapped_buffer, buffer,
2346 count & ~(bank->bus_width - 1));
2347 break;
2348 case 4:
2349 buf_bswap32(swapped_buffer, buffer,
2350 count & ~(bank->bus_width - 1));
2351 break;
2352 }
2353 real_buffer = buffer;
2354 buffer = swapped_buffer;
2355 }
2356
2357 /* handle blocks of bus_size aligned bytes */
2358 blk_count = count & ~(bank->bus_width - 1); /* round down, leave tail bytes */
2359 switch (cfi_info->pri_id) {
2360 /* try block writes (fails without working area) */
2361 case 1:
2362 case 3:
2363 retval = cfi_intel_write_block(bank, buffer, write_p, blk_count);
2364 break;
2365 case 2:
2366 retval = cfi_spansion_write_block(bank, buffer, write_p, blk_count);
2367 break;
2368 default:
2369 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2370 retval = ERROR_FLASH_OPERATION_FAILED;
2371 break;
2372 }
2373 if (retval == ERROR_OK) {
2374 /* Increment pointers and decrease count on successful block write */
2375 buffer += blk_count;
2376 write_p += blk_count;
2377 count -= blk_count;
2378 } else {
2379 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
2380 /* Calculate buffer size and boundary mask
2381 * buffersize is (buffer size per chip) * (number of chips)
2382 * bufferwsize is buffersize in words */
2383 uint32_t buffersize =
2384 (1UL <<
2385 cfi_info->max_buf_write_size) *
2386 (bank->bus_width / bank->chip_width);
2387 uint32_t buffermask = buffersize-1;
2388 uint32_t bufferwsize = buffersize / bank->bus_width;
2389
2390 /* fall back to memory writes */
2391 while (count >= (uint32_t)bank->bus_width) {
2392 bool fallback;
2393 if ((write_p & 0xff) == 0) {
2394 LOG_INFO("Programming at 0x%08" PRIx32 ", count 0x%08"
2395 PRIx32 " bytes remaining", write_p, count);
2396 }
2397 fallback = true;
2398 if ((bufferwsize > 0) && (count >= buffersize) &&
2399 !(write_p & buffermask)) {
2400 retval = cfi_write_words(bank, buffer, bufferwsize, write_p);
2401 if (retval == ERROR_OK) {
2402 buffer += buffersize;
2403 write_p += buffersize;
2404 count -= buffersize;
2405 fallback = false;
2406 } else if (retval != ERROR_FLASH_OPER_UNSUPPORTED)
2407 return retval;
2408 }
2409 /* try the slow way? */
2410 if (fallback) {
2411 for (unsigned int i = 0; i < bank->bus_width; i++)
2412 current_word[i] = *buffer++;
2413
2414 retval = cfi_write_word(bank, current_word, write_p);
2415 if (retval != ERROR_OK)
2416 return retval;
2417
2418 write_p += bank->bus_width;
2419 count -= bank->bus_width;
2420 }
2421 }
2422 } else
2423 return retval;
2424 }
2425
2426 if (swapped_buffer) {
2427 buffer = real_buffer + (buffer - swapped_buffer);
2428 free(swapped_buffer);
2429 }
2430
2431 /* return to read array mode, so we can read from flash again for padding */
2432 retval = cfi_reset(bank);
2433 if (retval != ERROR_OK)
2434 return retval;
2435
2436 /* handle unaligned tail bytes */
2437 if (count > 0) {
2438 LOG_INFO("Fixup %" PRIu32 " unaligned tail bytes", count);
2439
2440 /* read a complete word from flash */
2441 retval = cfi_target_read_memory(bank, write_p, 1, current_word);
2442 if (retval != ERROR_OK)
2443 return retval;
2444
2445 /* replace only bytes that must be written */
2446 for (unsigned int i = 0; (i < bank->bus_width) && (count > 0); i++, count--)
2447 if (cfi_info->data_swap)
2448 /* data bytes are swapped (reverse endianness) */
2449 current_word[bank->bus_width - i] = *buffer++;
2450 else
2451 current_word[i] = *buffer++;
2452
2453 retval = cfi_write_word(bank, current_word, write_p);
2454 if (retval != ERROR_OK)
2455 return retval;
2456 }
2457
2458 /* return to read array mode */
2459 return cfi_reset(bank);
2460 }
2461
2462 static void cfi_fixup_reversed_erase_regions(struct flash_bank *bank, const void *param)
2463 {
2464 (void) param;
2465 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2466 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2467
2468 pri_ext->_reversed_geometry = 1;
2469 }
2470
2471 static void cfi_fixup_0002_erase_regions(struct flash_bank *bank, const void *param)
2472 {
2473 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2474 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2475 (void) param;
2476
2477 if ((pri_ext->_reversed_geometry) || (pri_ext->top_bottom == 3)) {
2478 LOG_DEBUG("swapping reversed erase region information on cmdset 0002 device");
2479
2480 for (unsigned int i = 0; i < cfi_info->num_erase_regions / 2; i++) {
2481 int j = (cfi_info->num_erase_regions - 1) - i;
2482 uint32_t swap;
2483
2484 swap = cfi_info->erase_region_info[i];
2485 cfi_info->erase_region_info[i] = cfi_info->erase_region_info[j];
2486 cfi_info->erase_region_info[j] = swap;
2487 }
2488 }
2489 }
2490
2491 static void cfi_fixup_0002_unlock_addresses(struct flash_bank *bank, const void *param)
2492 {
2493 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2494 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2495 const struct cfi_unlock_addresses *unlock_addresses = param;
2496
2497 pri_ext->_unlock1 = unlock_addresses->unlock1;
2498 pri_ext->_unlock2 = unlock_addresses->unlock2;
2499 }
2500
2501 static void cfi_fixup_0002_polling_bits(struct flash_bank *bank, const void *param)
2502 {
2503 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2504 const int *status_poll_mask = param;
2505
2506 cfi_info->status_poll_mask = *status_poll_mask;
2507 }
2508
2509
2510 static int cfi_query_string(struct flash_bank *bank, int address)
2511 {
2512 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2513 int retval;
2514
2515 retval = cfi_send_command(bank, 0x98, cfi_flash_address(bank, 0, address));
2516 if (retval != ERROR_OK)
2517 return retval;
2518
2519 retval = cfi_query_u8(bank, 0, 0x10, &cfi_info->qry[0]);
2520 if (retval != ERROR_OK)
2521 return retval;
2522 retval = cfi_query_u8(bank, 0, 0x11, &cfi_info->qry[1]);
2523 if (retval != ERROR_OK)
2524 return retval;
2525 retval = cfi_query_u8(bank, 0, 0x12, &cfi_info->qry[2]);
2526 if (retval != ERROR_OK)
2527 return retval;
2528
2529 LOG_DEBUG("CFI qry returned: 0x%2.2x 0x%2.2x 0x%2.2x",
2530 cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2]);
2531
2532 if ((cfi_info->qry[0] != 'Q') || (cfi_info->qry[1] != 'R') || (cfi_info->qry[2] != 'Y')) {
2533 retval = cfi_reset(bank);
2534 if (retval != ERROR_OK)
2535 return retval;
2536 LOG_ERROR("Could not probe bank: no QRY");
2537 return ERROR_FLASH_BANK_INVALID;
2538 }
2539
2540 return ERROR_OK;
2541 }
2542
2543 int cfi_probe(struct flash_bank *bank)
2544 {
2545 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2546 struct target *target = bank->target;
2547 unsigned int num_sectors = 0;
2548 int sector = 0;
2549 uint32_t unlock1 = 0x555;
2550 uint32_t unlock2 = 0x2aa;
2551 int retval;
2552 uint8_t value_buf0[CFI_MAX_BUS_WIDTH], value_buf1[CFI_MAX_BUS_WIDTH];
2553
2554 if (bank->target->state != TARGET_HALTED) {
2555 LOG_ERROR("Target not halted");
2556 return ERROR_TARGET_NOT_HALTED;
2557 }
2558
2559 cfi_info->probed = false;
2560 cfi_info->num_erase_regions = 0;
2561
2562 free(bank->sectors);
2563 bank->sectors = NULL;
2564
2565 free(cfi_info->erase_region_info);
2566 cfi_info->erase_region_info = NULL;
2567
2568 /* JEDEC standard JESD21C uses 0x5555 and 0x2aaa as unlock addresses,
2569 * while CFI compatible AMD/Spansion flashes use 0x555 and 0x2aa
2570 */
2571 if (cfi_info->jedec_probe) {
2572 unlock1 = 0x5555;
2573 unlock2 = 0x2aaa;
2574 }
2575
2576 /* switch to read identifier codes mode ("AUTOSELECT") */
2577 retval = cfi_send_command(bank, 0xaa, cfi_flash_address(bank, 0, unlock1));
2578 if (retval != ERROR_OK)
2579 return retval;
2580 retval = cfi_send_command(bank, 0x55, cfi_flash_address(bank, 0, unlock2));
2581 if (retval != ERROR_OK)
2582 return retval;
2583 retval = cfi_send_command(bank, 0x90, cfi_flash_address(bank, 0, unlock1));
2584 if (retval != ERROR_OK)
2585 return retval;
2586
2587 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, 0, 0x00),
2588 1, value_buf0);
2589 if (retval != ERROR_OK)
2590 return retval;
2591 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, 0, 0x01),
2592 1, value_buf1);
2593 if (retval != ERROR_OK)
2594 return retval;
2595 switch (bank->chip_width) {
2596 case 1:
2597 cfi_info->manufacturer = *value_buf0;
2598 cfi_info->device_id = *value_buf1;
2599 break;
2600 case 2:
2601 cfi_info->manufacturer = target_buffer_get_u16(target, value_buf0);
2602 cfi_info->device_id = target_buffer_get_u16(target, value_buf1);
2603 break;
2604 case 4:
2605 cfi_info->manufacturer = target_buffer_get_u32(target, value_buf0);
2606 cfi_info->device_id = target_buffer_get_u32(target, value_buf1);
2607 break;
2608 default:
2609 LOG_ERROR("Unsupported bank chipwidth %u, can't probe memory",
2610 bank->chip_width);
2611 return ERROR_FLASH_OPERATION_FAILED;
2612 }
2613
2614 LOG_INFO("Flash Manufacturer/Device: 0x%04x 0x%04x",
2615 cfi_info->manufacturer, cfi_info->device_id);
2616 /* switch back to read array mode */
2617 retval = cfi_reset(bank);
2618 if (retval != ERROR_OK)
2619 return retval;
2620
2621 /* check device/manufacturer ID for known non-CFI flashes. */
2622 cfi_fixup_non_cfi(bank);
2623
2624 /* query only if this is a CFI compatible flash,
2625 * otherwise the relevant info has already been filled in
2626 */
2627 if (!cfi_info->not_cfi) {
2628 /* enter CFI query mode
2629 * according to JEDEC Standard No. 68.01,
2630 * a single bus sequence with address = 0x55, data = 0x98 should put
2631 * the device into CFI query mode.
2632 *
2633 * SST flashes clearly violate this, and we will consider them incompatible for now
2634 */
2635
2636 retval = cfi_query_string(bank, 0x55);
2637 if (retval != ERROR_OK) {
2638 /*
2639 * Spansion S29WS-N CFI query fix is to try 0x555 if 0x55 fails. Should
2640 * be harmless enough:
2641 *
2642 * http://www.infradead.org/pipermail/linux-mtd/2005-September/013618.html
2643 */
2644 LOG_USER("Try workaround w/0x555 instead of 0x55 to get QRY.");
2645 retval = cfi_query_string(bank, 0x555);
2646 }
2647 if (retval != ERROR_OK)
2648 return retval;
2649
2650 retval = cfi_query_u16(bank, 0, 0x13, &cfi_info->pri_id);
2651 if (retval != ERROR_OK)
2652 return retval;
2653 retval = cfi_query_u16(bank, 0, 0x15, &cfi_info->pri_addr);
2654 if (retval != ERROR_OK)
2655 return retval;
2656 retval = cfi_query_u16(bank, 0, 0x17, &cfi_info->alt_id);
2657 if (retval != ERROR_OK)
2658 return retval;
2659 retval = cfi_query_u16(bank, 0, 0x19, &cfi_info->alt_addr);
2660 if (retval != ERROR_OK)
2661 return retval;
2662
2663 LOG_DEBUG("qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: 0x%4.4x, alt_id: "
2664 "0x%4.4x, alt_addr: 0x%4.4x", cfi_info->qry[0], cfi_info->qry[1],
2665 cfi_info->qry[2], cfi_info->pri_id, cfi_info->pri_addr,
2666 cfi_info->alt_id, cfi_info->alt_addr);
2667
2668 retval = cfi_query_u8(bank, 0, 0x1b, &cfi_info->vcc_min);
2669 if (retval != ERROR_OK)
2670 return retval;
2671 retval = cfi_query_u8(bank, 0, 0x1c, &cfi_info->vcc_max);
2672 if (retval != ERROR_OK)
2673 return retval;
2674 retval = cfi_query_u8(bank, 0, 0x1d, &cfi_info->vpp_min);
2675 if (retval != ERROR_OK)
2676 return retval;
2677 retval = cfi_query_u8(bank, 0, 0x1e, &cfi_info->vpp_max);
2678 if (retval != ERROR_OK)
2679 return retval;
2680
2681 retval = cfi_query_u8(bank, 0, 0x1f, &cfi_info->word_write_timeout_typ);
2682 if (retval != ERROR_OK)
2683 return retval;
2684 retval = cfi_query_u8(bank, 0, 0x20, &cfi_info->buf_write_timeout_typ);
2685 if (retval != ERROR_OK)
2686 return retval;
2687 retval = cfi_query_u8(bank, 0, 0x21, &cfi_info->block_erase_timeout_typ);
2688 if (retval != ERROR_OK)
2689 return retval;
2690 retval = cfi_query_u8(bank, 0, 0x22, &cfi_info->chip_erase_timeout_typ);
2691 if (retval != ERROR_OK)
2692 return retval;
2693 retval = cfi_query_u8(bank, 0, 0x23, &cfi_info->word_write_timeout_max);
2694 if (retval != ERROR_OK)
2695 return retval;
2696 retval = cfi_query_u8(bank, 0, 0x24, &cfi_info->buf_write_timeout_max);
2697 if (retval != ERROR_OK)
2698 return retval;
2699 retval = cfi_query_u8(bank, 0, 0x25, &cfi_info->block_erase_timeout_max);
2700 if (retval != ERROR_OK)
2701 return retval;
2702 retval = cfi_query_u8(bank, 0, 0x26, &cfi_info->chip_erase_timeout_max);
2703 if (retval != ERROR_OK)
2704 return retval;
2705
2706 uint8_t data;
2707 retval = cfi_query_u8(bank, 0, 0x27, &data);
2708 if (retval != ERROR_OK)
2709 return retval;
2710 cfi_info->dev_size = 1 << data;
2711
2712 retval = cfi_query_u16(bank, 0, 0x28, &cfi_info->interface_desc);
2713 if (retval != ERROR_OK)
2714 return retval;
2715 retval = cfi_query_u16(bank, 0, 0x2a, &cfi_info->max_buf_write_size);
2716 if (retval != ERROR_OK)
2717 return retval;
2718 retval = cfi_query_u8(bank, 0, 0x2c, &cfi_info->num_erase_regions);
2719 if (retval != ERROR_OK)
2720 return retval;
2721
2722 LOG_DEBUG("size: 0x%" PRIx32 ", interface desc: %i, max buffer write size: 0x%x",
2723 cfi_info->dev_size, cfi_info->interface_desc,
2724 (1 << cfi_info->max_buf_write_size));
2725
2726 if (cfi_info->num_erase_regions) {
2727 cfi_info->erase_region_info = malloc(sizeof(*cfi_info->erase_region_info)
2728 * cfi_info->num_erase_regions);
2729 for (unsigned int i = 0; i < cfi_info->num_erase_regions; i++) {
2730 retval = cfi_query_u32(bank,
2731 0,
2732 0x2d + (4 * i),
2733 &cfi_info->erase_region_info[i]);
2734 if (retval != ERROR_OK)
2735 return retval;
2736 LOG_DEBUG(
2737 "erase region[%i]: %" PRIu32 " blocks of size 0x%" PRIx32 "",
2738 i,
2739 (cfi_info->erase_region_info[i] & 0xffff) + 1,
2740 (cfi_info->erase_region_info[i] >> 16) * 256);
2741 }
2742 } else
2743 cfi_info->erase_region_info = NULL;
2744
2745 /* We need to read the primary algorithm extended query table before calculating
2746 * the sector layout to be able to apply fixups
2747 */
2748 switch (cfi_info->pri_id) {
2749 /* Intel command set (standard and extended) */
2750 case 0x0001:
2751 case 0x0003:
2752 cfi_read_intel_pri_ext(bank);
2753 break;
2754 /* AMD/Spansion, Atmel, ... command set */
2755 case 0x0002:
2756 cfi_info->status_poll_mask = CFI_STATUS_POLL_MASK_DQ5_DQ6_DQ7; /*
2757 *default
2758 *for
2759 *all
2760 *CFI
2761 *flashes
2762 **/
2763 cfi_read_0002_pri_ext(bank);
2764 break;
2765 default:
2766 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2767 break;
2768 }
2769
2770 /* return to read array mode
2771 * we use both reset commands, as some Intel flashes fail to recognize the 0xF0 command
2772 */
2773 retval = cfi_reset(bank);
2774 if (retval != ERROR_OK)
2775 return retval;
2776 } /* end CFI case */
2777
2778 LOG_DEBUG("Vcc min: %x.%x, Vcc max: %x.%x, Vpp min: %u.%x, Vpp max: %u.%x",
2779 (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
2780 (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
2781 (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
2782 (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
2783
2784 LOG_DEBUG("typ. word write timeout: %u us, typ. buf write timeout: %u us, "
2785 "typ. block erase timeout: %u ms, typ. chip erase timeout: %u ms",
2786 1 << cfi_info->word_write_timeout_typ, 1 << cfi_info->buf_write_timeout_typ,
2787 1 << cfi_info->block_erase_timeout_typ, 1 << cfi_info->chip_erase_timeout_typ);
2788
2789 LOG_DEBUG("max. word write timeout: %u us, max. buf write timeout: %u us, "
2790 "max. block erase timeout: %u ms, max. chip erase timeout: %u ms",
2791 (1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
2792 (1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
2793 (1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ),
2794 (1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ));
2795
2796 /* convert timeouts to real values in ms */
2797 cfi_info->word_write_timeout = DIV_ROUND_UP((1L << cfi_info->word_write_timeout_typ) *
2798 (1L << cfi_info->word_write_timeout_max), 1000);
2799 cfi_info->buf_write_timeout = DIV_ROUND_UP((1L << cfi_info->buf_write_timeout_typ) *
2800 (1L << cfi_info->buf_write_timeout_max), 1000);
2801 cfi_info->block_erase_timeout = (1L << cfi_info->block_erase_timeout_typ) *
2802 (1L << cfi_info->block_erase_timeout_max);
2803 cfi_info->chip_erase_timeout = (1L << cfi_info->chip_erase_timeout_typ) *
2804 (1L << cfi_info->chip_erase_timeout_max);
2805
2806 LOG_DEBUG("calculated word write timeout: %u ms, buf write timeout: %u ms, "
2807 "block erase timeout: %u ms, chip erase timeout: %u ms",
2808 cfi_info->word_write_timeout, cfi_info->buf_write_timeout,
2809 cfi_info->block_erase_timeout, cfi_info->chip_erase_timeout);
2810
2811 /* apply fixups depending on the primary command set */
2812 switch (cfi_info->pri_id) {
2813 /* Intel command set (standard and extended) */
2814 case 0x0001:
2815 case 0x0003:
2816 cfi_fixup(bank, cfi_0001_fixups);
2817 break;
2818 /* AMD/Spansion, Atmel, ... command set */
2819 case 0x0002:
2820 cfi_fixup(bank, cfi_0002_fixups);
2821 break;
2822 default:
2823 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2824 break;
2825 }
2826
2827 if ((cfi_info->dev_size * bank->bus_width / bank->chip_width) != bank->size) {
2828 LOG_WARNING("configuration specifies 0x%" PRIx32 " size, but a 0x%" PRIx32
2829 " size flash was found", bank->size, cfi_info->dev_size);
2830 }
2831
2832 if (cfi_info->num_erase_regions == 0) {
2833 /* a device might have only one erase block, spanning the whole device */
2834 bank->num_sectors = 1;
2835 bank->sectors = malloc(sizeof(struct flash_sector));
2836
2837 bank->sectors[sector].offset = 0x0;
2838 bank->sectors[sector].size = bank->size;
2839 bank->sectors[sector].is_erased = -1;
2840 bank->sectors[sector].is_protected = -1;
2841 } else {
2842 uint32_t offset = 0;
2843
2844 for (unsigned int i = 0; i < cfi_info->num_erase_regions; i++)
2845 num_sectors += (cfi_info->erase_region_info[i] & 0xffff) + 1;
2846
2847 bank->num_sectors = num_sectors;
2848 bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
2849
2850 for (unsigned int i = 0; i < cfi_info->num_erase_regions; i++) {
2851 for (uint32_t j = 0; j < (cfi_info->erase_region_info[i] & 0xffff) + 1; j++) {
2852 bank->sectors[sector].offset = offset;
2853 bank->sectors[sector].size =
2854 ((cfi_info->erase_region_info[i] >> 16) * 256)
2855 * bank->bus_width / bank->chip_width;
2856 offset += bank->sectors[sector].size;
2857 bank->sectors[sector].is_erased = -1;
2858 bank->sectors[sector].is_protected = -1;
2859 sector++;
2860 }
2861 }
2862 if (offset != (cfi_info->dev_size * bank->bus_width / bank->chip_width)) {
2863 LOG_WARNING(
2864 "CFI size is 0x%" PRIx32 ", but total sector size is 0x%" PRIx32 "",
2865 (cfi_info->dev_size * bank->bus_width / bank->chip_width),
2866 offset);
2867 }
2868 }
2869
2870 cfi_info->probed = true;
2871
2872 return ERROR_OK;
2873 }
2874
2875 int cfi_auto_probe(struct flash_bank *bank)
2876 {
2877 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2878 if (cfi_info->probed)
2879 return ERROR_OK;
2880 return cfi_probe(bank);
2881 }
2882
2883 static int cfi_intel_protect_check(struct flash_bank *bank)
2884 {
2885 int retval;
2886 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2887 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
2888
2889 /* check if block lock bits are supported on this device */
2890 if (!(pri_ext->blk_status_reg_mask & 0x1))
2891 return ERROR_FLASH_OPERATION_FAILED;
2892
2893 retval = cfi_send_command(bank, 0x90, cfi_flash_address(bank, 0, 0x55));
2894 if (retval != ERROR_OK)
2895 return retval;
2896
2897 for (unsigned int i = 0; i < bank->num_sectors; i++) {
2898 uint8_t block_status;
2899 retval = cfi_get_u8(bank, i, 0x2, &block_status);
2900 if (retval != ERROR_OK)
2901 return retval;
2902
2903 if (block_status & 1)
2904 bank->sectors[i].is_protected = 1;
2905 else
2906 bank->sectors[i].is_protected = 0;
2907 }
2908
2909 return cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
2910 }
2911
2912 static int cfi_spansion_protect_check(struct flash_bank *bank)
2913 {
2914 int retval;
2915 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2916 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2917
2918 retval = cfi_spansion_unlock_seq(bank);
2919 if (retval != ERROR_OK)
2920 return retval;
2921
2922 retval = cfi_send_command(bank, 0x90, cfi_flash_address(bank, 0, pri_ext->_unlock1));
2923 if (retval != ERROR_OK)
2924 return retval;
2925
2926 for (unsigned int i = 0; i < bank->num_sectors; i++) {
2927 uint8_t block_status;
2928 retval = cfi_get_u8(bank, i, 0x2, &block_status);
2929 if (retval != ERROR_OK)
2930 return retval;
2931
2932 if (block_status & 1)
2933 bank->sectors[i].is_protected = 1;
2934 else
2935 bank->sectors[i].is_protected = 0;
2936 }
2937
2938 return cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
2939 }
2940
2941 int cfi_protect_check(struct flash_bank *bank)
2942 {
2943 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2944
2945 if (bank->target->state != TARGET_HALTED) {
2946 LOG_ERROR("Target not halted");
2947 return ERROR_TARGET_NOT_HALTED;
2948 }
2949
2950 if (cfi_info->qry[0] != 'Q')
2951 return ERROR_FLASH_BANK_NOT_PROBED;
2952
2953 switch (cfi_info->pri_id) {
2954 case 1:
2955 case 3:
2956 return cfi_intel_protect_check(bank);
2957 case 2:
2958 return cfi_spansion_protect_check(bank);
2959 default:
2960 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2961 break;
2962 }
2963
2964 return ERROR_OK;
2965 }
2966
2967 int cfi_get_info(struct flash_bank *bank, struct command_invocation *cmd)
2968 {
2969 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2970
2971 if (cfi_info->qry[0] == 0xff) {
2972 command_print_sameline(cmd, "\ncfi flash bank not probed yet\n");
2973 return ERROR_OK;
2974 }
2975
2976 if (!cfi_info->not_cfi)
2977 command_print_sameline(cmd, "\nCFI flash: ");
2978 else
2979 command_print_sameline(cmd, "\nnon-CFI flash: ");
2980
2981 command_print_sameline(cmd, "mfr: 0x%4.4x, id:0x%4.4x\n",
2982 cfi_info->manufacturer, cfi_info->device_id);
2983
2984 command_print_sameline(cmd, "qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: "
2985 "0x%4.4x, alt_id: 0x%4.4x, alt_addr: 0x%4.4x\n",
2986 cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2],
2987 cfi_info->pri_id, cfi_info->pri_addr, cfi_info->alt_id, cfi_info->alt_addr);
2988
2989 command_print_sameline(cmd, "Vcc min: %x.%x, Vcc max: %x.%x, "
2990 "Vpp min: %u.%x, Vpp max: %u.%x\n",
2991 (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
2992 (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
2993 (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
2994 (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
2995
2996 command_print_sameline(cmd, "typ. word write timeout: %u us, "
2997 "typ. buf write timeout: %u us, "
2998 "typ. block erase timeout: %u ms, "
2999 "typ. chip erase timeout: %u ms\n",
3000 1 << cfi_info->word_write_timeout_typ,
3001 1 << cfi_info->buf_write_timeout_typ,
3002 1 << cfi_info->block_erase_timeout_typ,
3003 1 << cfi_info->chip_erase_timeout_typ);
3004
3005 command_print_sameline(cmd, "max. word write timeout: %u us, "
3006 "max. buf write timeout: %u us, max. "
3007 "block erase timeout: %u ms, max. chip erase timeout: %u ms\n",
3008 (1 <<
3009 cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
3010 (1 <<
3011 cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
3012 (1 <<
3013 cfi_info->block_erase_timeout_max) *
3014 (1 << cfi_info->block_erase_timeout_typ),
3015 (1 <<
3016 cfi_info->chip_erase_timeout_max) *
3017 (1 << cfi_info->chip_erase_timeout_typ));
3018
3019 command_print_sameline(cmd, "size: 0x%" PRIx32 ", interface desc: %i, "
3020 "max buffer write size: 0x%x\n",
3021 cfi_info->dev_size,
3022 cfi_info->interface_desc,
3023 1 << cfi_info->max_buf_write_size);
3024
3025 switch (cfi_info->pri_id) {
3026 case 1:
3027 case 3:
3028 cfi_intel_info(bank, cmd);
3029 break;
3030 case 2:
3031 cfi_spansion_info(bank, cmd);
3032 break;
3033 default:
3034 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
3035 break;
3036 }
3037
3038 return ERROR_OK;
3039 }
3040
3041 static void cfi_fixup_0002_write_buffer(struct flash_bank *bank, const void *param)
3042 {
3043 struct cfi_flash_bank *cfi_info = bank->driver_priv;
3044
3045 /* disable write buffer for M29W128G */
3046 cfi_info->buf_write_timeout_typ = 0;
3047 }
3048
3049 const struct flash_driver cfi_flash = {
3050 .name = "cfi",
3051 .flash_bank_command = cfi_flash_bank_command,
3052 .erase = cfi_erase,
3053 .protect = cfi_protect,
3054 .write = cfi_write,
3055 .read = cfi_read,
3056 .probe = cfi_probe,
3057 .auto_probe = cfi_auto_probe,
3058 /* FIXME: access flash at bus_width size */
3059 .erase_check = default_flash_blank_check,
3060 .protect_check = cfi_protect_check,
3061 .info = cfi_get_info,
3062 .free_driver_priv = default_flash_free_driver_priv,
3063 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)