aa4540af553c91bd8dc65927ba7a8ef0a223a7a1
[openocd.git] / src / flash / nor / cfi.c
1 /***************************************************************************
2 * Copyright (C) 2005, 2007 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * Copyright (C) 2009 Michael Schwingen *
5 * michael@schwingen.org *
6 * Copyright (C) 2010 Øyvind Harboe <oyvind.harboe@zylin.com> *
7 * *
8 * This program is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This program is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this program; if not, write to the *
20 * Free Software Foundation, Inc., *
21 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
22 ***************************************************************************/
23 #ifdef HAVE_CONFIG_H
24 #include "config.h"
25 #endif
26
27 #include "imp.h"
28 #include "cfi.h"
29 #include "non_cfi.h"
30 #include <target/arm.h>
31 #include <helper/binarybuffer.h>
32 #include <target/algorithm.h>
33
34
35 #define CFI_MAX_BUS_WIDTH 4
36 #define CFI_MAX_CHIP_WIDTH 4
37
38 /* defines internal maximum size for code fragment in cfi_intel_write_block() */
39 #define CFI_MAX_INTEL_CODESIZE 256
40
41 static struct cfi_unlock_addresses cfi_unlock_addresses[] =
42 {
43 [CFI_UNLOCK_555_2AA] = { .unlock1 = 0x555, .unlock2 = 0x2aa },
44 [CFI_UNLOCK_5555_2AAA] = { .unlock1 = 0x5555, .unlock2 = 0x2aaa },
45 };
46
47 /* CFI fixups foward declarations */
48 static void cfi_fixup_0002_erase_regions(struct flash_bank *flash, void *param);
49 static void cfi_fixup_0002_unlock_addresses(struct flash_bank *flash, void *param);
50 static void cfi_fixup_atmel_reversed_erase_regions(struct flash_bank *flash, void *param);
51
52 /* fixup after reading cmdset 0002 primary query table */
53 static const struct cfi_fixup cfi_0002_fixups[] = {
54 {CFI_MFR_SST, 0x00D4, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
55 {CFI_MFR_SST, 0x00D5, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
56 {CFI_MFR_SST, 0x00D6, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
57 {CFI_MFR_SST, 0x00D7, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
58 {CFI_MFR_SST, 0x2780, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
59 {CFI_MFR_ATMEL, 0x00C8, cfi_fixup_atmel_reversed_erase_regions, NULL},
60 {CFI_MFR_FUJITSU, 0x226b, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
61 {CFI_MFR_AMIC, 0xb31a, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
62 {CFI_MFR_MX, 0x225b, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
63 {CFI_MFR_AMD, 0x225b, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
64 {CFI_MFR_ANY, CFI_ID_ANY, cfi_fixup_0002_erase_regions, NULL},
65 {0, 0, NULL, NULL}
66 };
67
68 /* fixup after reading cmdset 0001 primary query table */
69 static const struct cfi_fixup cfi_0001_fixups[] = {
70 {0, 0, NULL, NULL}
71 };
72
73 static void cfi_fixup(struct flash_bank *bank, const struct cfi_fixup *fixups)
74 {
75 struct cfi_flash_bank *cfi_info = bank->driver_priv;
76 const struct cfi_fixup *f;
77
78 for (f = fixups; f->fixup; f++)
79 {
80 if (((f->mfr == CFI_MFR_ANY) || (f->mfr == cfi_info->manufacturer)) &&
81 ((f->id == CFI_ID_ANY) || (f->id == cfi_info->device_id)))
82 {
83 f->fixup(bank, f->param);
84 }
85 }
86 }
87
88 /* inline uint32_t flash_address(struct flash_bank *bank, int sector, uint32_t offset) */
89 static __inline__ uint32_t flash_address(struct flash_bank *bank, int sector, uint32_t offset)
90 {
91 struct cfi_flash_bank *cfi_info = bank->driver_priv;
92
93 if (cfi_info->x16_as_x8) offset *= 2;
94
95 /* while the sector list isn't built, only accesses to sector 0 work */
96 if (sector == 0)
97 return bank->base + offset * bank->bus_width;
98 else
99 {
100 if (!bank->sectors)
101 {
102 LOG_ERROR("BUG: sector list not yet built");
103 exit(-1);
104 }
105 return bank->base + bank->sectors[sector].offset + offset * bank->bus_width;
106 }
107 }
108
109 static void cfi_command(struct flash_bank *bank, uint8_t cmd, uint8_t *cmd_buf)
110 {
111 int i;
112
113 /* clear whole buffer, to ensure bits that exceed the bus_width
114 * are set to zero
115 */
116 for (i = 0; i < CFI_MAX_BUS_WIDTH; i++)
117 cmd_buf[i] = 0;
118
119 if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
120 {
121 for (i = bank->bus_width; i > 0; i--)
122 {
123 *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
124 }
125 }
126 else
127 {
128 for (i = 1; i <= bank->bus_width; i++)
129 {
130 *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
131 }
132 }
133 }
134
135 static int cfi_send_command(struct flash_bank *bank, uint8_t cmd, uint32_t address)
136 {
137 uint8_t command[CFI_MAX_BUS_WIDTH];
138
139 cfi_command(bank, cmd, command);
140 return target_write_memory(bank->target, address, bank->bus_width, 1, command);
141 }
142
143 /* read unsigned 8-bit value from the bank
144 * flash banks are expected to be made of similar chips
145 * the query result should be the same for all
146 */
147 static uint8_t cfi_query_u8(struct flash_bank *bank, int sector, uint32_t offset)
148 {
149 struct target *target = bank->target;
150 uint8_t data[CFI_MAX_BUS_WIDTH];
151
152 target_read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 1, data);
153
154 if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
155 return data[0];
156 else
157 return data[bank->bus_width - 1];
158 }
159
160 /* read unsigned 8-bit value from the bank
161 * in case of a bank made of multiple chips,
162 * the individual values are ORed
163 */
164 static uint8_t cfi_get_u8(struct flash_bank *bank, int sector, uint32_t offset)
165 {
166 struct target *target = bank->target;
167 uint8_t data[CFI_MAX_BUS_WIDTH];
168 int i;
169
170 target_read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 1, data);
171
172 if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
173 {
174 for (i = 0; i < bank->bus_width / bank->chip_width; i++)
175 data[0] |= data[i];
176
177 return data[0];
178 }
179 else
180 {
181 uint8_t value = 0;
182 for (i = 0; i < bank->bus_width / bank->chip_width; i++)
183 value |= data[bank->bus_width - 1 - i];
184
185 return value;
186 }
187 }
188
189 static uint16_t cfi_query_u16(struct flash_bank *bank, int sector, uint32_t offset)
190 {
191 struct target *target = bank->target;
192 struct cfi_flash_bank *cfi_info = bank->driver_priv;
193 uint8_t data[CFI_MAX_BUS_WIDTH * 2];
194
195 if (cfi_info->x16_as_x8)
196 {
197 uint8_t i;
198 for (i = 0;i < 2;i++)
199 target_read_memory(target, flash_address(bank, sector, offset + i), bank->bus_width, 1,
200 &data[i*bank->bus_width]);
201 }
202 else
203 target_read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 2, data);
204
205 if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
206 return data[0] | data[bank->bus_width] << 8;
207 else
208 return data[bank->bus_width - 1] | data[(2 * bank->bus_width) - 1] << 8;
209 }
210
211 static uint32_t cfi_query_u32(struct flash_bank *bank, int sector, uint32_t offset)
212 {
213 struct target *target = bank->target;
214 struct cfi_flash_bank *cfi_info = bank->driver_priv;
215 uint8_t data[CFI_MAX_BUS_WIDTH * 4];
216
217 if (cfi_info->x16_as_x8)
218 {
219 uint8_t i;
220 for (i = 0;i < 4;i++)
221 target_read_memory(target, flash_address(bank, sector, offset + i), bank->bus_width, 1,
222 &data[i*bank->bus_width]);
223 }
224 else
225 target_read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 4, data);
226
227 if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
228 return data[0] | data[bank->bus_width] << 8 | data[bank->bus_width * 2] << 16 | data[bank->bus_width * 3] << 24;
229 else
230 return data[bank->bus_width - 1] | data[(2* bank->bus_width) - 1] << 8 |
231 data[(3 * bank->bus_width) - 1] << 16 | data[(4 * bank->bus_width) - 1] << 24;
232 }
233
234 static int cfi_reset(struct flash_bank *bank)
235 {
236 struct cfi_flash_bank *cfi_info = bank->driver_priv;
237 int retval = ERROR_OK;
238
239 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
240 {
241 return retval;
242 }
243
244 if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
245 {
246 return retval;
247 }
248
249 if (cfi_info->manufacturer == 0x20 &&
250 (cfi_info->device_id == 0x227E || cfi_info->device_id == 0x7E))
251 {
252 /* Numonix M29W128G is cmd 0xFF intolerant - causes internal undefined state
253 * so we send an extra 0xF0 reset to fix the bug */
254 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x00))) != ERROR_OK)
255 {
256 return retval;
257 }
258 }
259
260 return retval;
261 }
262
263 static void cfi_intel_clear_status_register(struct flash_bank *bank)
264 {
265 struct target *target = bank->target;
266
267 if (target->state != TARGET_HALTED)
268 {
269 LOG_ERROR("BUG: attempted to clear status register while target wasn't halted");
270 exit(-1);
271 }
272
273 cfi_send_command(bank, 0x50, flash_address(bank, 0, 0x0));
274 }
275
276 static uint8_t cfi_intel_wait_status_busy(struct flash_bank *bank, int timeout)
277 {
278 uint8_t status;
279
280 while ((!((status = cfi_get_u8(bank, 0, 0x0)) & 0x80)) && (timeout-- > 0))
281 {
282 LOG_DEBUG("status: 0x%x", status);
283 alive_sleep(1);
284 }
285
286 /* mask out bit 0 (reserved) */
287 status = status & 0xfe;
288
289 LOG_DEBUG("status: 0x%x", status);
290
291 if ((status & 0x80) != 0x80)
292 {
293 LOG_ERROR("timeout while waiting for WSM to become ready");
294 }
295 else if (status != 0x80)
296 {
297 LOG_ERROR("status register: 0x%x", status);
298 if (status & 0x2)
299 LOG_ERROR("Block Lock-Bit Detected, Operation Abort");
300 if (status & 0x4)
301 LOG_ERROR("Program suspended");
302 if (status & 0x8)
303 LOG_ERROR("Low Programming Voltage Detected, Operation Aborted");
304 if (status & 0x10)
305 LOG_ERROR("Program Error / Error in Setting Lock-Bit");
306 if (status & 0x20)
307 LOG_ERROR("Error in Block Erasure or Clear Lock-Bits");
308 if (status & 0x40)
309 LOG_ERROR("Block Erase Suspended");
310
311 cfi_intel_clear_status_register(bank);
312 }
313
314 return status;
315 }
316
317 static int cfi_spansion_wait_status_busy(struct flash_bank *bank, int timeout)
318 {
319 uint8_t status, oldstatus;
320 struct cfi_flash_bank *cfi_info = bank->driver_priv;
321
322 oldstatus = cfi_get_u8(bank, 0, 0x0);
323
324 do {
325 status = cfi_get_u8(bank, 0, 0x0);
326 if ((status ^ oldstatus) & 0x40) {
327 if (status & cfi_info->status_poll_mask & 0x20) {
328 oldstatus = cfi_get_u8(bank, 0, 0x0);
329 status = cfi_get_u8(bank, 0, 0x0);
330 if ((status ^ oldstatus) & 0x40) {
331 LOG_ERROR("dq5 timeout, status: 0x%x", status);
332 return(ERROR_FLASH_OPERATION_FAILED);
333 } else {
334 LOG_DEBUG("status: 0x%x", status);
335 return(ERROR_OK);
336 }
337 }
338 } else { /* no toggle: finished, OK */
339 LOG_DEBUG("status: 0x%x", status);
340 return(ERROR_OK);
341 }
342
343 oldstatus = status;
344 alive_sleep(1);
345 } while (timeout-- > 0);
346
347 LOG_ERROR("timeout, status: 0x%x", status);
348
349 return(ERROR_FLASH_BUSY);
350 }
351
352 static int cfi_read_intel_pri_ext(struct flash_bank *bank)
353 {
354 int retval;
355 struct cfi_flash_bank *cfi_info = bank->driver_priv;
356 struct cfi_intel_pri_ext *pri_ext = malloc(sizeof(struct cfi_intel_pri_ext));
357
358 cfi_info->pri_ext = pri_ext;
359
360 pri_ext->pri[0] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0);
361 pri_ext->pri[1] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1);
362 pri_ext->pri[2] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2);
363
364 if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I'))
365 {
366 if ((retval = cfi_reset(bank)) != ERROR_OK)
367 {
368 return retval;
369 }
370 LOG_ERROR("Could not read bank flash bank information");
371 return ERROR_FLASH_BANK_INVALID;
372 }
373
374 pri_ext->major_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3);
375 pri_ext->minor_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4);
376
377 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
378
379 pri_ext->feature_support = cfi_query_u32(bank, 0, cfi_info->pri_addr + 5);
380 pri_ext->suspend_cmd_support = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9);
381 pri_ext->blk_status_reg_mask = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xa);
382
383 LOG_DEBUG("feature_support: 0x%" PRIx32 ", suspend_cmd_support: 0x%x, blk_status_reg_mask: 0x%x",
384 pri_ext->feature_support,
385 pri_ext->suspend_cmd_support,
386 pri_ext->blk_status_reg_mask);
387
388 pri_ext->vcc_optimal = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xc);
389 pri_ext->vpp_optimal = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xd);
390
391 LOG_DEBUG("Vcc opt: %x.%x, Vpp opt: %u.%x",
392 (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
393 (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
394
395 pri_ext->num_protection_fields = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xe);
396 if (pri_ext->num_protection_fields != 1)
397 {
398 LOG_WARNING("expected one protection register field, but found %i", pri_ext->num_protection_fields);
399 }
400
401 pri_ext->prot_reg_addr = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xf);
402 pri_ext->fact_prot_reg_size = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x11);
403 pri_ext->user_prot_reg_size = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x12);
404
405 LOG_DEBUG("protection_fields: %i, prot_reg_addr: 0x%x, factory pre-programmed: %i, user programmable: %i", pri_ext->num_protection_fields, pri_ext->prot_reg_addr, 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
406
407 return ERROR_OK;
408 }
409
410 static int cfi_read_spansion_pri_ext(struct flash_bank *bank)
411 {
412 int retval;
413 struct cfi_flash_bank *cfi_info = bank->driver_priv;
414 struct cfi_spansion_pri_ext *pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
415
416 cfi_info->pri_ext = pri_ext;
417
418 pri_ext->pri[0] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0);
419 pri_ext->pri[1] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1);
420 pri_ext->pri[2] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2);
421
422 if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I'))
423 {
424 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
425 {
426 return retval;
427 }
428 LOG_ERROR("Could not read spansion bank information");
429 return ERROR_FLASH_BANK_INVALID;
430 }
431
432 pri_ext->major_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3);
433 pri_ext->minor_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4);
434
435 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
436
437 pri_ext->SiliconRevision = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5);
438 pri_ext->EraseSuspend = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6);
439 pri_ext->BlkProt = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7);
440 pri_ext->TmpBlkUnprotect = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8);
441 pri_ext->BlkProtUnprot = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9);
442 pri_ext->SimultaneousOps = cfi_query_u8(bank, 0, cfi_info->pri_addr + 10);
443 pri_ext->BurstMode = cfi_query_u8(bank, 0, cfi_info->pri_addr + 11);
444 pri_ext->PageMode = cfi_query_u8(bank, 0, cfi_info->pri_addr + 12);
445 pri_ext->VppMin = cfi_query_u8(bank, 0, cfi_info->pri_addr + 13);
446 pri_ext->VppMax = cfi_query_u8(bank, 0, cfi_info->pri_addr + 14);
447 pri_ext->TopBottom = cfi_query_u8(bank, 0, cfi_info->pri_addr + 15);
448
449 LOG_DEBUG("Silicon Revision: 0x%x, Erase Suspend: 0x%x, Block protect: 0x%x", pri_ext->SiliconRevision,
450 pri_ext->EraseSuspend, pri_ext->BlkProt);
451
452 LOG_DEBUG("Temporary Unprotect: 0x%x, Block Protect Scheme: 0x%x, Simultaneous Ops: 0x%x", pri_ext->TmpBlkUnprotect,
453 pri_ext->BlkProtUnprot, pri_ext->SimultaneousOps);
454
455 LOG_DEBUG("Burst Mode: 0x%x, Page Mode: 0x%x, ", pri_ext->BurstMode, pri_ext->PageMode);
456
457
458 LOG_DEBUG("Vpp min: %u.%x, Vpp max: %u.%x",
459 (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
460 (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
461
462 LOG_DEBUG("WP# protection 0x%x", pri_ext->TopBottom);
463
464 /* default values for implementation specific workarounds */
465 pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
466 pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
467 pri_ext->_reversed_geometry = 0;
468
469 return ERROR_OK;
470 }
471
472 static int cfi_read_atmel_pri_ext(struct flash_bank *bank)
473 {
474 int retval;
475 struct cfi_atmel_pri_ext atmel_pri_ext;
476 struct cfi_flash_bank *cfi_info = bank->driver_priv;
477 struct cfi_spansion_pri_ext *pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
478
479 /* ATMEL devices use the same CFI primary command set (0x2) as AMD/Spansion,
480 * but a different primary extended query table.
481 * We read the atmel table, and prepare a valid AMD/Spansion query table.
482 */
483
484 memset(pri_ext, 0, sizeof(struct cfi_spansion_pri_ext));
485
486 cfi_info->pri_ext = pri_ext;
487
488 atmel_pri_ext.pri[0] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0);
489 atmel_pri_ext.pri[1] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1);
490 atmel_pri_ext.pri[2] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2);
491
492 if ((atmel_pri_ext.pri[0] != 'P') || (atmel_pri_ext.pri[1] != 'R') || (atmel_pri_ext.pri[2] != 'I'))
493 {
494 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
495 {
496 return retval;
497 }
498 LOG_ERROR("Could not read atmel bank information");
499 return ERROR_FLASH_BANK_INVALID;
500 }
501
502 pri_ext->pri[0] = atmel_pri_ext.pri[0];
503 pri_ext->pri[1] = atmel_pri_ext.pri[1];
504 pri_ext->pri[2] = atmel_pri_ext.pri[2];
505
506 atmel_pri_ext.major_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3);
507 atmel_pri_ext.minor_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4);
508
509 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", atmel_pri_ext.pri[0], atmel_pri_ext.pri[1], atmel_pri_ext.pri[2], atmel_pri_ext.major_version, atmel_pri_ext.minor_version);
510
511 pri_ext->major_version = atmel_pri_ext.major_version;
512 pri_ext->minor_version = atmel_pri_ext.minor_version;
513
514 atmel_pri_ext.features = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5);
515 atmel_pri_ext.bottom_boot = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6);
516 atmel_pri_ext.burst_mode = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7);
517 atmel_pri_ext.page_mode = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8);
518
519 LOG_DEBUG("features: 0x%2.2x, bottom_boot: 0x%2.2x, burst_mode: 0x%2.2x, page_mode: 0x%2.2x",
520 atmel_pri_ext.features, atmel_pri_ext.bottom_boot, atmel_pri_ext.burst_mode, atmel_pri_ext.page_mode);
521
522 if (atmel_pri_ext.features & 0x02)
523 pri_ext->EraseSuspend = 2;
524
525 if (atmel_pri_ext.bottom_boot)
526 pri_ext->TopBottom = 2;
527 else
528 pri_ext->TopBottom = 3;
529
530 pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
531 pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
532
533 return ERROR_OK;
534 }
535
536 static int cfi_read_0002_pri_ext(struct flash_bank *bank)
537 {
538 struct cfi_flash_bank *cfi_info = bank->driver_priv;
539
540 if (cfi_info->manufacturer == CFI_MFR_ATMEL)
541 {
542 return cfi_read_atmel_pri_ext(bank);
543 }
544 else
545 {
546 return cfi_read_spansion_pri_ext(bank);
547 }
548 }
549
550 static int cfi_spansion_info(struct flash_bank *bank, char *buf, int buf_size)
551 {
552 int printed;
553 struct cfi_flash_bank *cfi_info = bank->driver_priv;
554 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
555
556 printed = snprintf(buf, buf_size, "\nSpansion primary algorithm extend information:\n");
557 buf += printed;
558 buf_size -= printed;
559
560 printed = snprintf(buf, buf_size, "pri: '%c%c%c', version: %c.%c\n", pri_ext->pri[0],
561 pri_ext->pri[1], pri_ext->pri[2],
562 pri_ext->major_version, pri_ext->minor_version);
563 buf += printed;
564 buf_size -= printed;
565
566 printed = snprintf(buf, buf_size, "Silicon Rev.: 0x%x, Address Sensitive unlock: 0x%x\n",
567 (pri_ext->SiliconRevision) >> 2,
568 (pri_ext->SiliconRevision) & 0x03);
569 buf += printed;
570 buf_size -= printed;
571
572 printed = snprintf(buf, buf_size, "Erase Suspend: 0x%x, Sector Protect: 0x%x\n",
573 pri_ext->EraseSuspend,
574 pri_ext->BlkProt);
575 buf += printed;
576 buf_size -= printed;
577
578 printed = snprintf(buf, buf_size, "VppMin: %u.%x, VppMax: %u.%x\n",
579 (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
580 (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
581
582 return ERROR_OK;
583 }
584
585 static int cfi_intel_info(struct flash_bank *bank, char *buf, int buf_size)
586 {
587 int printed;
588 struct cfi_flash_bank *cfi_info = bank->driver_priv;
589 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
590
591 printed = snprintf(buf, buf_size, "\nintel primary algorithm extend information:\n");
592 buf += printed;
593 buf_size -= printed;
594
595 printed = snprintf(buf, buf_size, "pri: '%c%c%c', version: %c.%c\n", pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
596 buf += printed;
597 buf_size -= printed;
598
599 printed = snprintf(buf, buf_size, "feature_support: 0x%" PRIx32 ", suspend_cmd_support: 0x%x, blk_status_reg_mask: 0x%x\n", pri_ext->feature_support, pri_ext->suspend_cmd_support, pri_ext->blk_status_reg_mask);
600 buf += printed;
601 buf_size -= printed;
602
603 printed = snprintf(buf, buf_size, "Vcc opt: %x.%x, Vpp opt: %u.%x\n",
604 (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
605 (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
606 buf += printed;
607 buf_size -= printed;
608
609 printed = snprintf(buf, buf_size, "protection_fields: %i, prot_reg_addr: 0x%x, factory pre-programmed: %i, user programmable: %i\n", pri_ext->num_protection_fields, pri_ext->prot_reg_addr, 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
610
611 return ERROR_OK;
612 }
613
614 /* flash_bank cfi <base> <size> <chip_width> <bus_width> <target#> [options]
615 */
616 FLASH_BANK_COMMAND_HANDLER(cfi_flash_bank_command)
617 {
618 struct cfi_flash_bank *cfi_info;
619
620 if (CMD_ARGC < 6)
621 {
622 LOG_WARNING("incomplete flash_bank cfi configuration");
623 return ERROR_FLASH_BANK_INVALID;
624 }
625
626 if ((bank->chip_width > CFI_MAX_CHIP_WIDTH)
627 || (bank->bus_width > CFI_MAX_BUS_WIDTH))
628 {
629 LOG_ERROR("chip and bus width have to specified in bytes");
630 return ERROR_FLASH_BANK_INVALID;
631 }
632
633 cfi_info = malloc(sizeof(struct cfi_flash_bank));
634 cfi_info->probed = 0;
635 bank->driver_priv = cfi_info;
636
637 cfi_info->write_algorithm = NULL;
638
639 cfi_info->x16_as_x8 = 0;
640 cfi_info->jedec_probe = 0;
641 cfi_info->not_cfi = 0;
642
643 for (unsigned i = 6; i < CMD_ARGC; i++)
644 {
645 if (strcmp(CMD_ARGV[i], "x16_as_x8") == 0)
646 {
647 cfi_info->x16_as_x8 = 1;
648 }
649 else if (strcmp(CMD_ARGV[i], "jedec_probe") == 0)
650 {
651 cfi_info->jedec_probe = 1;
652 }
653 }
654
655 cfi_info->write_algorithm = NULL;
656
657 /* bank wasn't probed yet */
658 cfi_info->qry[0] = -1;
659
660 return ERROR_OK;
661 }
662
663 static int cfi_intel_erase(struct flash_bank *bank, int first, int last)
664 {
665 int retval;
666 struct cfi_flash_bank *cfi_info = bank->driver_priv;
667 int i;
668
669 cfi_intel_clear_status_register(bank);
670
671 for (i = first; i <= last; i++)
672 {
673 if ((retval = cfi_send_command(bank, 0x20, flash_address(bank, i, 0x0))) != ERROR_OK)
674 {
675 return retval;
676 }
677
678 if ((retval = cfi_send_command(bank, 0xd0, flash_address(bank, i, 0x0))) != ERROR_OK)
679 {
680 return retval;
681 }
682
683 if (cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->block_erase_timeout_typ)) == 0x80)
684 bank->sectors[i].is_erased = 1;
685 else
686 {
687 if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
688 {
689 return retval;
690 }
691
692 LOG_ERROR("couldn't erase block %i of flash bank at base 0x%" PRIx32 , i, bank->base);
693 return ERROR_FLASH_OPERATION_FAILED;
694 }
695 }
696
697 return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
698 }
699
700 static int cfi_spansion_erase(struct flash_bank *bank, int first, int last)
701 {
702 int retval;
703 struct cfi_flash_bank *cfi_info = bank->driver_priv;
704 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
705 int i;
706
707 for (i = first; i <= last; i++)
708 {
709 if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
710 {
711 return retval;
712 }
713
714 if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
715 {
716 return retval;
717 }
718
719 if ((retval = cfi_send_command(bank, 0x80, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
720 {
721 return retval;
722 }
723
724 if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
725 {
726 return retval;
727 }
728
729 if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
730 {
731 return retval;
732 }
733
734 if ((retval = cfi_send_command(bank, 0x30, flash_address(bank, i, 0x0))) != ERROR_OK)
735 {
736 return retval;
737 }
738
739 if (cfi_spansion_wait_status_busy(bank, 1000 * (1 << cfi_info->block_erase_timeout_typ)) == ERROR_OK)
740 bank->sectors[i].is_erased = 1;
741 else
742 {
743 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
744 {
745 return retval;
746 }
747
748 LOG_ERROR("couldn't erase block %i of flash bank at base 0x%" PRIx32, i, bank->base);
749 return ERROR_FLASH_OPERATION_FAILED;
750 }
751 }
752
753 return cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
754 }
755
756 static int cfi_erase(struct flash_bank *bank, int first, int last)
757 {
758 struct cfi_flash_bank *cfi_info = bank->driver_priv;
759
760 if (bank->target->state != TARGET_HALTED)
761 {
762 LOG_ERROR("Target not halted");
763 return ERROR_TARGET_NOT_HALTED;
764 }
765
766 if ((first < 0) || (last < first) || (last >= bank->num_sectors))
767 {
768 return ERROR_FLASH_SECTOR_INVALID;
769 }
770
771 if (cfi_info->qry[0] != 'Q')
772 return ERROR_FLASH_BANK_NOT_PROBED;
773
774 switch (cfi_info->pri_id)
775 {
776 case 1:
777 case 3:
778 return cfi_intel_erase(bank, first, last);
779 break;
780 case 2:
781 return cfi_spansion_erase(bank, first, last);
782 break;
783 default:
784 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
785 break;
786 }
787
788 return ERROR_OK;
789 }
790
791 static int cfi_intel_protect(struct flash_bank *bank, int set, int first, int last)
792 {
793 int retval;
794 struct cfi_flash_bank *cfi_info = bank->driver_priv;
795 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
796 struct target *target = bank->target; /* FIXME: to be removed */
797 uint8_t command[CFI_MAX_BUS_WIDTH]; /* FIXME: to be removed */
798 int retry = 0;
799 int i;
800
801 /* if the device supports neither legacy lock/unlock (bit 3) nor
802 * instant individual block locking (bit 5).
803 */
804 if (!(pri_ext->feature_support & 0x28))
805 return ERROR_FLASH_OPERATION_FAILED;
806
807 cfi_intel_clear_status_register(bank);
808
809 for (i = first; i <= last; i++)
810 {
811 cfi_command(bank, 0x60, command); /* FIXME: to be removed */
812 LOG_DEBUG("address: 0x%4.4" PRIx32 ", command: 0x%4.4" PRIx32, flash_address(bank, i, 0x0), target_buffer_get_u32(target, command));
813 if ((retval = cfi_send_command(bank, 0x60, flash_address(bank, i, 0x0))) != ERROR_OK)
814 {
815 return retval;
816 }
817 if (set)
818 {
819 cfi_command(bank, 0x01, command); /* FIXME: to be removed */
820 LOG_DEBUG("address: 0x%4.4" PRIx32 ", command: 0x%4.4" PRIx32 , flash_address(bank, i, 0x0), target_buffer_get_u32(target, command));
821 if ((retval = cfi_send_command(bank, 0x01, flash_address(bank, i, 0x0))) != ERROR_OK)
822 {
823 return retval;
824 }
825 bank->sectors[i].is_protected = 1;
826 }
827 else
828 {
829 cfi_command(bank, 0xd0, command); /* FIXME: to be removed */
830 LOG_DEBUG("address: 0x%4.4" PRIx32 ", command: 0x%4.4" PRIx32, flash_address(bank, i, 0x0), target_buffer_get_u32(target, command));
831 if ((retval = cfi_send_command(bank, 0xd0, flash_address(bank, i, 0x0))) != ERROR_OK)
832 {
833 return retval;
834 }
835 bank->sectors[i].is_protected = 0;
836 }
837
838 /* instant individual block locking doesn't require reading of the status register */
839 if (!(pri_ext->feature_support & 0x20))
840 {
841 /* Clear lock bits operation may take up to 1.4s */
842 cfi_intel_wait_status_busy(bank, 1400);
843 }
844 else
845 {
846 uint8_t block_status;
847 /* read block lock bit, to verify status */
848 if ((retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, 0x55))) != ERROR_OK)
849 {
850 return retval;
851 }
852 block_status = cfi_get_u8(bank, i, 0x2);
853
854 if ((block_status & 0x1) != set)
855 {
856 LOG_ERROR("couldn't change block lock status (set = %i, block_status = 0x%2.2x)", set, block_status);
857 if ((retval = cfi_send_command(bank, 0x70, flash_address(bank, 0, 0x55))) != ERROR_OK)
858 {
859 return retval;
860 }
861 cfi_intel_wait_status_busy(bank, 10);
862
863 if (retry > 10)
864 return ERROR_FLASH_OPERATION_FAILED;
865 else
866 {
867 i--;
868 retry++;
869 }
870 }
871 }
872 }
873
874 /* if the device doesn't support individual block lock bits set/clear,
875 * all blocks have been unlocked in parallel, so we set those that should be protected
876 */
877 if ((!set) && (!(pri_ext->feature_support & 0x20)))
878 {
879 /* FIX!!! this code path is broken!!!
880 *
881 * The correct approach is:
882 *
883 * 1. read out current protection status
884 *
885 * 2. override read out protection status w/unprotected.
886 *
887 * 3. re-protect what should be protected.
888 *
889 */
890 for (i = 0; i < bank->num_sectors; i++)
891 {
892 if (bank->sectors[i].is_protected == 1)
893 {
894 cfi_intel_clear_status_register(bank);
895
896 if ((retval = cfi_send_command(bank, 0x60, flash_address(bank, i, 0x0))) != ERROR_OK)
897 {
898 return retval;
899 }
900
901 if ((retval = cfi_send_command(bank, 0x01, flash_address(bank, i, 0x0))) != ERROR_OK)
902 {
903 return retval;
904 }
905
906 cfi_intel_wait_status_busy(bank, 100);
907 }
908 }
909 }
910
911 return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
912 }
913
914 static int cfi_protect(struct flash_bank *bank, int set, int first, int last)
915 {
916 struct cfi_flash_bank *cfi_info = bank->driver_priv;
917
918 if (bank->target->state != TARGET_HALTED)
919 {
920 LOG_ERROR("Target not halted");
921 return ERROR_TARGET_NOT_HALTED;
922 }
923
924 if ((first < 0) || (last < first) || (last >= bank->num_sectors))
925 {
926 LOG_ERROR("Invalid sector range");
927 return ERROR_FLASH_SECTOR_INVALID;
928 }
929
930 if (cfi_info->qry[0] != 'Q')
931 return ERROR_FLASH_BANK_NOT_PROBED;
932
933 switch (cfi_info->pri_id)
934 {
935 case 1:
936 case 3:
937 return cfi_intel_protect(bank, set, first, last);
938 break;
939 default:
940 LOG_ERROR("protect: cfi primary command set %i unsupported", cfi_info->pri_id);
941 return ERROR_FAIL;
942 }
943 }
944
945 /* FIXME Replace this by a simple memcpy() - still unsure about sideeffects */
946 static void cfi_add_byte(struct flash_bank *bank, uint8_t *word, uint8_t byte)
947 {
948 /* struct target *target = bank->target; */
949
950 int i;
951
952 /* NOTE:
953 * The data to flash must not be changed in endian! We write a bytestrem in
954 * target byte order already. Only the control and status byte lane of the flash
955 * WSM is interpreted by the CPU in different ways, when read a uint16_t or uint32_t
956 * word (data seems to be in the upper or lower byte lane for uint16_t accesses).
957 */
958
959 #if 0
960 if (target->endianness == TARGET_LITTLE_ENDIAN)
961 {
962 #endif
963 /* shift bytes */
964 for (i = 0; i < bank->bus_width - 1; i++)
965 word[i] = word[i + 1];
966 word[bank->bus_width - 1] = byte;
967 #if 0
968 }
969 else
970 {
971 /* shift bytes */
972 for (i = bank->bus_width - 1; i > 0; i--)
973 word[i] = word[i - 1];
974 word[0] = byte;
975 }
976 #endif
977 }
978
979 /* Convert code image to target endian */
980 /* FIXME create general block conversion fcts in target.c?) */
981 static void cfi_fix_code_endian(struct target *target, uint8_t *dest, const uint32_t *src, uint32_t count)
982 {
983 uint32_t i;
984 for (i = 0; i< count; i++)
985 {
986 target_buffer_set_u32(target, dest, *src);
987 dest += 4;
988 src++;
989 }
990 }
991
992 static uint32_t cfi_command_val(struct flash_bank *bank, uint8_t cmd)
993 {
994 struct target *target = bank->target;
995
996 uint8_t buf[CFI_MAX_BUS_WIDTH];
997 cfi_command(bank, cmd, buf);
998 switch (bank->bus_width)
999 {
1000 case 1 :
1001 return buf[0];
1002 break;
1003 case 2 :
1004 return target_buffer_get_u16(target, buf);
1005 break;
1006 case 4 :
1007 return target_buffer_get_u32(target, buf);
1008 break;
1009 default :
1010 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width);
1011 return 0;
1012 }
1013 }
1014
1015 static int cfi_intel_write_block(struct flash_bank *bank, uint8_t *buffer, uint32_t address, uint32_t count)
1016 {
1017 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1018 struct target *target = bank->target;
1019 struct reg_param reg_params[7];
1020 struct arm_algorithm armv4_5_info;
1021 struct working_area *source;
1022 uint32_t buffer_size = 32768;
1023 uint32_t write_command_val, busy_pattern_val, error_pattern_val;
1024
1025 /* algorithm register usage:
1026 * r0: source address (in RAM)
1027 * r1: target address (in Flash)
1028 * r2: count
1029 * r3: flash write command
1030 * r4: status byte (returned to host)
1031 * r5: busy test pattern
1032 * r6: error test pattern
1033 */
1034
1035 static const uint32_t word_32_code[] = {
1036 0xe4904004, /* loop: ldr r4, [r0], #4 */
1037 0xe5813000, /* str r3, [r1] */
1038 0xe5814000, /* str r4, [r1] */
1039 0xe5914000, /* busy: ldr r4, [r1] */
1040 0xe0047005, /* and r7, r4, r5 */
1041 0xe1570005, /* cmp r7, r5 */
1042 0x1afffffb, /* bne busy */
1043 0xe1140006, /* tst r4, r6 */
1044 0x1a000003, /* bne done */
1045 0xe2522001, /* subs r2, r2, #1 */
1046 0x0a000001, /* beq done */
1047 0xe2811004, /* add r1, r1 #4 */
1048 0xeafffff2, /* b loop */
1049 0xeafffffe /* done: b -2 */
1050 };
1051
1052 static const uint32_t word_16_code[] = {
1053 0xe0d040b2, /* loop: ldrh r4, [r0], #2 */
1054 0xe1c130b0, /* strh r3, [r1] */
1055 0xe1c140b0, /* strh r4, [r1] */
1056 0xe1d140b0, /* busy ldrh r4, [r1] */
1057 0xe0047005, /* and r7, r4, r5 */
1058 0xe1570005, /* cmp r7, r5 */
1059 0x1afffffb, /* bne busy */
1060 0xe1140006, /* tst r4, r6 */
1061 0x1a000003, /* bne done */
1062 0xe2522001, /* subs r2, r2, #1 */
1063 0x0a000001, /* beq done */
1064 0xe2811002, /* add r1, r1 #2 */
1065 0xeafffff2, /* b loop */
1066 0xeafffffe /* done: b -2 */
1067 };
1068
1069 static const uint32_t word_8_code[] = {
1070 0xe4d04001, /* loop: ldrb r4, [r0], #1 */
1071 0xe5c13000, /* strb r3, [r1] */
1072 0xe5c14000, /* strb r4, [r1] */
1073 0xe5d14000, /* busy ldrb r4, [r1] */
1074 0xe0047005, /* and r7, r4, r5 */
1075 0xe1570005, /* cmp r7, r5 */
1076 0x1afffffb, /* bne busy */
1077 0xe1140006, /* tst r4, r6 */
1078 0x1a000003, /* bne done */
1079 0xe2522001, /* subs r2, r2, #1 */
1080 0x0a000001, /* beq done */
1081 0xe2811001, /* add r1, r1 #1 */
1082 0xeafffff2, /* b loop */
1083 0xeafffffe /* done: b -2 */
1084 };
1085 uint8_t target_code[4*CFI_MAX_INTEL_CODESIZE];
1086 const uint32_t *target_code_src;
1087 uint32_t target_code_size;
1088 int retval = ERROR_OK;
1089
1090
1091 cfi_intel_clear_status_register(bank);
1092
1093 armv4_5_info.common_magic = ARM_COMMON_MAGIC;
1094 armv4_5_info.core_mode = ARM_MODE_SVC;
1095 armv4_5_info.core_state = ARM_STATE_ARM;
1096
1097 /* If we are setting up the write_algorith, we need target_code_src */
1098 /* if not we only need target_code_size. */
1099
1100 /* However, we don't want to create multiple code paths, so we */
1101 /* do the unecessary evaluation of target_code_src, which the */
1102 /* compiler will probably nicely optimize away if not needed */
1103
1104 /* prepare algorithm code for target endian */
1105 switch (bank->bus_width)
1106 {
1107 case 1 :
1108 target_code_src = word_8_code;
1109 target_code_size = sizeof(word_8_code);
1110 break;
1111 case 2 :
1112 target_code_src = word_16_code;
1113 target_code_size = sizeof(word_16_code);
1114 break;
1115 case 4 :
1116 target_code_src = word_32_code;
1117 target_code_size = sizeof(word_32_code);
1118 break;
1119 default:
1120 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width);
1121 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1122 }
1123
1124 /* flash write code */
1125 if (!cfi_info->write_algorithm)
1126 {
1127 if (target_code_size > sizeof(target_code))
1128 {
1129 LOG_WARNING("Internal error - target code buffer to small. Increase CFI_MAX_INTEL_CODESIZE and recompile.");
1130 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1131 }
1132 cfi_fix_code_endian(target, target_code, target_code_src, target_code_size / 4);
1133
1134 /* Get memory for block write handler */
1135 retval = target_alloc_working_area(target, target_code_size, &cfi_info->write_algorithm);
1136 if (retval != ERROR_OK)
1137 {
1138 LOG_WARNING("No working area available, can't do block memory writes");
1139 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1140 };
1141
1142 /* write algorithm code to working area */
1143 retval = target_write_buffer(target, cfi_info->write_algorithm->address, target_code_size, target_code);
1144 if (retval != ERROR_OK)
1145 {
1146 LOG_ERROR("Unable to write block write code to target");
1147 goto cleanup;
1148 }
1149 }
1150
1151 /* Get a workspace buffer for the data to flash starting with 32k size.
1152 Half size until buffer would be smaller 256 Bytem then fail back */
1153 /* FIXME Why 256 bytes, why not 32 bytes (smallest flash write page */
1154 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK)
1155 {
1156 buffer_size /= 2;
1157 if (buffer_size <= 256)
1158 {
1159 LOG_WARNING("no large enough working area available, can't do block memory writes");
1160 retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1161 goto cleanup;
1162 }
1163 };
1164
1165 /* setup algo registers */
1166 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1167 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1168 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1169 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1170 init_reg_param(&reg_params[4], "r4", 32, PARAM_IN);
1171 init_reg_param(&reg_params[5], "r5", 32, PARAM_OUT);
1172 init_reg_param(&reg_params[6], "r6", 32, PARAM_OUT);
1173
1174 /* prepare command and status register patterns */
1175 write_command_val = cfi_command_val(bank, 0x40);
1176 busy_pattern_val = cfi_command_val(bank, 0x80);
1177 error_pattern_val = cfi_command_val(bank, 0x7e);
1178
1179 LOG_DEBUG("Using target buffer at 0x%08" PRIx32 " and of size 0x%04" PRIx32, source->address, buffer_size);
1180
1181 /* Programming main loop */
1182 while (count > 0)
1183 {
1184 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1185 uint32_t wsm_error;
1186
1187 if ((retval = target_write_buffer(target, source->address, thisrun_count, buffer)) != ERROR_OK)
1188 {
1189 goto cleanup;
1190 }
1191
1192 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1193 buf_set_u32(reg_params[1].value, 0, 32, address);
1194 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1195
1196 buf_set_u32(reg_params[3].value, 0, 32, write_command_val);
1197 buf_set_u32(reg_params[5].value, 0, 32, busy_pattern_val);
1198 buf_set_u32(reg_params[6].value, 0, 32, error_pattern_val);
1199
1200 LOG_DEBUG("Write 0x%04" PRIx32 " bytes to flash at 0x%08" PRIx32 , thisrun_count, address);
1201
1202 /* Execute algorithm, assume breakpoint for last instruction */
1203 retval = target_run_algorithm(target, 0, NULL, 7, reg_params,
1204 cfi_info->write_algorithm->address,
1205 cfi_info->write_algorithm->address + target_code_size - sizeof(uint32_t),
1206 10000, /* 10s should be enough for max. 32k of data */
1207 &armv4_5_info);
1208
1209 /* On failure try a fall back to direct word writes */
1210 if (retval != ERROR_OK)
1211 {
1212 cfi_intel_clear_status_register(bank);
1213 LOG_ERROR("Execution of flash algorythm failed. Can't fall back. Please report.");
1214 retval = ERROR_FLASH_OPERATION_FAILED;
1215 /* retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE; */
1216 /* FIXME To allow fall back or recovery, we must save the actual status
1217 somewhere, so that a higher level code can start recovery. */
1218 goto cleanup;
1219 }
1220
1221 /* Check return value from algo code */
1222 wsm_error = buf_get_u32(reg_params[4].value, 0, 32) & error_pattern_val;
1223 if (wsm_error)
1224 {
1225 /* read status register (outputs debug inforation) */
1226 cfi_intel_wait_status_busy(bank, 100);
1227 cfi_intel_clear_status_register(bank);
1228 retval = ERROR_FLASH_OPERATION_FAILED;
1229 goto cleanup;
1230 }
1231
1232 buffer += thisrun_count;
1233 address += thisrun_count;
1234 count -= thisrun_count;
1235 }
1236
1237 /* free up resources */
1238 cleanup:
1239 if (source)
1240 target_free_working_area(target, source);
1241
1242 if (cfi_info->write_algorithm)
1243 {
1244 target_free_working_area(target, cfi_info->write_algorithm);
1245 cfi_info->write_algorithm = NULL;
1246 }
1247
1248 destroy_reg_param(&reg_params[0]);
1249 destroy_reg_param(&reg_params[1]);
1250 destroy_reg_param(&reg_params[2]);
1251 destroy_reg_param(&reg_params[3]);
1252 destroy_reg_param(&reg_params[4]);
1253 destroy_reg_param(&reg_params[5]);
1254 destroy_reg_param(&reg_params[6]);
1255
1256 return retval;
1257 }
1258
1259 static int cfi_spansion_write_block(struct flash_bank *bank, uint8_t *buffer, uint32_t address, uint32_t count)
1260 {
1261 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1262 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
1263 struct target *target = bank->target;
1264 struct reg_param reg_params[10];
1265 struct arm_algorithm armv4_5_info;
1266 struct working_area *source;
1267 uint32_t buffer_size = 32768;
1268 uint32_t status;
1269 int retval, retvaltemp;
1270 int exit_code = ERROR_OK;
1271
1272 /* input parameters - */
1273 /* R0 = source address */
1274 /* R1 = destination address */
1275 /* R2 = number of writes */
1276 /* R3 = flash write command */
1277 /* R4 = constant to mask DQ7 bits (also used for Dq5 with shift) */
1278 /* output parameters - */
1279 /* R5 = 0x80 ok 0x00 bad */
1280 /* temp registers - */
1281 /* R6 = value read from flash to test status */
1282 /* R7 = holding register */
1283 /* unlock registers - */
1284 /* R8 = unlock1_addr */
1285 /* R9 = unlock1_cmd */
1286 /* R10 = unlock2_addr */
1287 /* R11 = unlock2_cmd */
1288
1289 static const uint32_t word_32_code[] = {
1290 /* 00008100 <sp_32_code>: */
1291 0xe4905004, /* ldr r5, [r0], #4 */
1292 0xe5889000, /* str r9, [r8] */
1293 0xe58ab000, /* str r11, [r10] */
1294 0xe5883000, /* str r3, [r8] */
1295 0xe5815000, /* str r5, [r1] */
1296 0xe1a00000, /* nop */
1297 /* */
1298 /* 00008110 <sp_32_busy>: */
1299 0xe5916000, /* ldr r6, [r1] */
1300 0xe0257006, /* eor r7, r5, r6 */
1301 0xe0147007, /* ands r7, r4, r7 */
1302 0x0a000007, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
1303 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1304 0x0afffff9, /* beq 8110 <sp_32_busy> ; b if DQ5 low */
1305 0xe5916000, /* ldr r6, [r1] */
1306 0xe0257006, /* eor r7, r5, r6 */
1307 0xe0147007, /* ands r7, r4, r7 */
1308 0x0a000001, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
1309 0xe3a05000, /* mov r5, #0 ; 0x0 - return 0x00, error */
1310 0x1a000004, /* bne 8154 <sp_32_done> */
1311 /* */
1312 /* 00008140 <sp_32_cont>: */
1313 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1314 0x03a05080, /* moveq r5, #128 ; 0x80 */
1315 0x0a000001, /* beq 8154 <sp_32_done> */
1316 0xe2811004, /* add r1, r1, #4 ; 0x4 */
1317 0xeaffffe8, /* b 8100 <sp_32_code> */
1318 /* */
1319 /* 00008154 <sp_32_done>: */
1320 0xeafffffe /* b 8154 <sp_32_done> */
1321 };
1322
1323 static const uint32_t word_16_code[] = {
1324 /* 00008158 <sp_16_code>: */
1325 0xe0d050b2, /* ldrh r5, [r0], #2 */
1326 0xe1c890b0, /* strh r9, [r8] */
1327 0xe1cab0b0, /* strh r11, [r10] */
1328 0xe1c830b0, /* strh r3, [r8] */
1329 0xe1c150b0, /* strh r5, [r1] */
1330 0xe1a00000, /* nop (mov r0,r0) */
1331 /* */
1332 /* 00008168 <sp_16_busy>: */
1333 0xe1d160b0, /* ldrh r6, [r1] */
1334 0xe0257006, /* eor r7, r5, r6 */
1335 0xe0147007, /* ands r7, r4, r7 */
1336 0x0a000007, /* beq 8198 <sp_16_cont> */
1337 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1338 0x0afffff9, /* beq 8168 <sp_16_busy> */
1339 0xe1d160b0, /* ldrh r6, [r1] */
1340 0xe0257006, /* eor r7, r5, r6 */
1341 0xe0147007, /* ands r7, r4, r7 */
1342 0x0a000001, /* beq 8198 <sp_16_cont> */
1343 0xe3a05000, /* mov r5, #0 ; 0x0 */
1344 0x1a000004, /* bne 81ac <sp_16_done> */
1345 /* */
1346 /* 00008198 <sp_16_cont>: */
1347 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1348 0x03a05080, /* moveq r5, #128 ; 0x80 */
1349 0x0a000001, /* beq 81ac <sp_16_done> */
1350 0xe2811002, /* add r1, r1, #2 ; 0x2 */
1351 0xeaffffe8, /* b 8158 <sp_16_code> */
1352 /* */
1353 /* 000081ac <sp_16_done>: */
1354 0xeafffffe /* b 81ac <sp_16_done> */
1355 };
1356
1357 static const uint32_t word_16_code_dq7only[] = {
1358 /* <sp_16_code>: */
1359 0xe0d050b2, /* ldrh r5, [r0], #2 */
1360 0xe1c890b0, /* strh r9, [r8] */
1361 0xe1cab0b0, /* strh r11, [r10] */
1362 0xe1c830b0, /* strh r3, [r8] */
1363 0xe1c150b0, /* strh r5, [r1] */
1364 0xe1a00000, /* nop (mov r0,r0) */
1365 /* */
1366 /* <sp_16_busy>: */
1367 0xe1d160b0, /* ldrh r6, [r1] */
1368 0xe0257006, /* eor r7, r5, r6 */
1369 0xe2177080, /* ands r7, #0x80 */
1370 0x1afffffb, /* bne 8168 <sp_16_busy> */
1371 /* */
1372 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1373 0x03a05080, /* moveq r5, #128 ; 0x80 */
1374 0x0a000001, /* beq 81ac <sp_16_done> */
1375 0xe2811002, /* add r1, r1, #2 ; 0x2 */
1376 0xeafffff0, /* b 8158 <sp_16_code> */
1377 /* */
1378 /* 000081ac <sp_16_done>: */
1379 0xeafffffe /* b 81ac <sp_16_done> */
1380 };
1381
1382 static const uint32_t word_8_code[] = {
1383 /* 000081b0 <sp_16_code_end>: */
1384 0xe4d05001, /* ldrb r5, [r0], #1 */
1385 0xe5c89000, /* strb r9, [r8] */
1386 0xe5cab000, /* strb r11, [r10] */
1387 0xe5c83000, /* strb r3, [r8] */
1388 0xe5c15000, /* strb r5, [r1] */
1389 0xe1a00000, /* nop (mov r0,r0) */
1390 /* */
1391 /* 000081c0 <sp_8_busy>: */
1392 0xe5d16000, /* ldrb r6, [r1] */
1393 0xe0257006, /* eor r7, r5, r6 */
1394 0xe0147007, /* ands r7, r4, r7 */
1395 0x0a000007, /* beq 81f0 <sp_8_cont> */
1396 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1397 0x0afffff9, /* beq 81c0 <sp_8_busy> */
1398 0xe5d16000, /* ldrb r6, [r1] */
1399 0xe0257006, /* eor r7, r5, r6 */
1400 0xe0147007, /* ands r7, r4, r7 */
1401 0x0a000001, /* beq 81f0 <sp_8_cont> */
1402 0xe3a05000, /* mov r5, #0 ; 0x0 */
1403 0x1a000004, /* bne 8204 <sp_8_done> */
1404 /* */
1405 /* 000081f0 <sp_8_cont>: */
1406 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1407 0x03a05080, /* moveq r5, #128 ; 0x80 */
1408 0x0a000001, /* beq 8204 <sp_8_done> */
1409 0xe2811001, /* add r1, r1, #1 ; 0x1 */
1410 0xeaffffe8, /* b 81b0 <sp_16_code_end> */
1411 /* */
1412 /* 00008204 <sp_8_done>: */
1413 0xeafffffe /* b 8204 <sp_8_done> */
1414 };
1415
1416 armv4_5_info.common_magic = ARM_COMMON_MAGIC;
1417 armv4_5_info.core_mode = ARM_MODE_SVC;
1418 armv4_5_info.core_state = ARM_STATE_ARM;
1419
1420 int target_code_size;
1421 const uint32_t *target_code_src;
1422
1423 switch (bank->bus_width)
1424 {
1425 case 1 :
1426 target_code_src = word_8_code;
1427 target_code_size = sizeof(word_8_code);
1428 break;
1429 case 2 :
1430 /* Check for DQ5 support */
1431 if( cfi_info->status_poll_mask & (1 << 5) )
1432 {
1433 target_code_src = word_16_code;
1434 target_code_size = sizeof(word_16_code);
1435 }
1436 else
1437 {
1438 /* No DQ5 support. Use DQ7 DATA# polling only. */
1439 target_code_src = word_16_code_dq7only;
1440 target_code_size = sizeof(word_16_code_dq7only);
1441 }
1442 break;
1443 case 4 :
1444 target_code_src = word_32_code;
1445 target_code_size = sizeof(word_32_code);
1446 break;
1447 default:
1448 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width);
1449 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1450 }
1451
1452 /* flash write code */
1453 if (!cfi_info->write_algorithm)
1454 {
1455 uint8_t *target_code;
1456
1457 /* convert bus-width dependent algorithm code to correct endiannes */
1458 target_code = malloc(target_code_size);
1459 cfi_fix_code_endian(target, target_code, target_code_src, target_code_size / 4);
1460
1461 /* allocate working area */
1462 retval = target_alloc_working_area(target, target_code_size,
1463 &cfi_info->write_algorithm);
1464 if (retval != ERROR_OK)
1465 {
1466 free(target_code);
1467 return retval;
1468 }
1469
1470 /* write algorithm code to working area */
1471 if ((retval = target_write_buffer(target, cfi_info->write_algorithm->address,
1472 target_code_size, target_code)) != ERROR_OK)
1473 {
1474 free(target_code);
1475 return retval;
1476 }
1477
1478 free(target_code);
1479 }
1480 /* the following code still assumes target code is fixed 24*4 bytes */
1481
1482 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK)
1483 {
1484 buffer_size /= 2;
1485 if (buffer_size <= 256)
1486 {
1487 /* if we already allocated the writing code, but failed to get a buffer, free the algorithm */
1488 if (cfi_info->write_algorithm)
1489 target_free_working_area(target, cfi_info->write_algorithm);
1490
1491 LOG_WARNING("not enough working area available, can't do block memory writes");
1492 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1493 }
1494 };
1495
1496 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1497 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1498 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1499 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1500 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
1501 init_reg_param(&reg_params[5], "r5", 32, PARAM_IN);
1502 init_reg_param(&reg_params[6], "r8", 32, PARAM_OUT);
1503 init_reg_param(&reg_params[7], "r9", 32, PARAM_OUT);
1504 init_reg_param(&reg_params[8], "r10", 32, PARAM_OUT);
1505 init_reg_param(&reg_params[9], "r11", 32, PARAM_OUT);
1506
1507 while (count > 0)
1508 {
1509 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1510
1511 retvaltemp = target_write_buffer(target, source->address, thisrun_count, buffer);
1512
1513 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1514 buf_set_u32(reg_params[1].value, 0, 32, address);
1515 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1516 buf_set_u32(reg_params[3].value, 0, 32, cfi_command_val(bank, 0xA0));
1517 buf_set_u32(reg_params[4].value, 0, 32, cfi_command_val(bank, 0x80));
1518 buf_set_u32(reg_params[6].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock1));
1519 buf_set_u32(reg_params[7].value, 0, 32, 0xaaaaaaaa);
1520 buf_set_u32(reg_params[8].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock2));
1521 buf_set_u32(reg_params[9].value, 0, 32, 0x55555555);
1522
1523 retval = target_run_algorithm(target, 0, NULL, 10, reg_params,
1524 cfi_info->write_algorithm->address,
1525 cfi_info->write_algorithm->address + ((target_code_size) - 4),
1526 10000, &armv4_5_info);
1527
1528 status = buf_get_u32(reg_params[5].value, 0, 32);
1529
1530 if ((retval != ERROR_OK) || (retvaltemp != ERROR_OK) || status != 0x80)
1531 {
1532 LOG_DEBUG("status: 0x%" PRIx32 , status);
1533 exit_code = ERROR_FLASH_OPERATION_FAILED;
1534 break;
1535 }
1536
1537 buffer += thisrun_count;
1538 address += thisrun_count;
1539 count -= thisrun_count;
1540 }
1541
1542 target_free_all_working_areas(target);
1543
1544 destroy_reg_param(&reg_params[0]);
1545 destroy_reg_param(&reg_params[1]);
1546 destroy_reg_param(&reg_params[2]);
1547 destroy_reg_param(&reg_params[3]);
1548 destroy_reg_param(&reg_params[4]);
1549 destroy_reg_param(&reg_params[5]);
1550 destroy_reg_param(&reg_params[6]);
1551 destroy_reg_param(&reg_params[7]);
1552 destroy_reg_param(&reg_params[8]);
1553 destroy_reg_param(&reg_params[9]);
1554
1555 return exit_code;
1556 }
1557
1558 static int cfi_intel_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
1559 {
1560 int retval;
1561 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1562 struct target *target = bank->target;
1563
1564 cfi_intel_clear_status_register(bank);
1565 if ((retval = cfi_send_command(bank, 0x40, address)) != ERROR_OK)
1566 {
1567 return retval;
1568 }
1569
1570 if ((retval = target_write_memory(target, address, bank->bus_width, 1, word)) != ERROR_OK)
1571 {
1572 return retval;
1573 }
1574
1575 if (cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->word_write_timeout_max)) != 0x80)
1576 {
1577 if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
1578 {
1579 return retval;
1580 }
1581
1582 LOG_ERROR("couldn't write word at base 0x%" PRIx32 ", address %" PRIx32 , bank->base, address);
1583 return ERROR_FLASH_OPERATION_FAILED;
1584 }
1585
1586 return ERROR_OK;
1587 }
1588
1589 static int cfi_intel_write_words(struct flash_bank *bank, uint8_t *word, uint32_t wordcount, uint32_t address)
1590 {
1591 int retval;
1592 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1593 struct target *target = bank->target;
1594
1595 /* Calculate buffer size and boundary mask */
1596 uint32_t buffersize = (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
1597 uint32_t buffermask = buffersize-1;
1598 uint32_t bufferwsize;
1599
1600 /* Check for valid range */
1601 if (address & buffermask)
1602 {
1603 LOG_ERROR("Write address at base 0x%" PRIx32 ", address %" PRIx32 " not aligned to 2^%d boundary",
1604 bank->base, address, cfi_info->max_buf_write_size);
1605 return ERROR_FLASH_OPERATION_FAILED;
1606 }
1607 switch (bank->chip_width)
1608 {
1609 case 4 : bufferwsize = buffersize / 4; break;
1610 case 2 : bufferwsize = buffersize / 2; break;
1611 case 1 : bufferwsize = buffersize; break;
1612 default:
1613 LOG_ERROR("Unsupported chip width %d", bank->chip_width);
1614 return ERROR_FLASH_OPERATION_FAILED;
1615 }
1616
1617 bufferwsize/=(bank->bus_width / bank->chip_width);
1618
1619
1620 /* Check for valid size */
1621 if (wordcount > bufferwsize)
1622 {
1623 LOG_ERROR("Number of data words %" PRId32 " exceeds available buffersize %" PRId32 , wordcount, buffersize);
1624 return ERROR_FLASH_OPERATION_FAILED;
1625 }
1626
1627 /* Write to flash buffer */
1628 cfi_intel_clear_status_register(bank);
1629
1630 /* Initiate buffer operation _*/
1631 if ((retval = cfi_send_command(bank, 0xe8, address)) != ERROR_OK)
1632 {
1633 return retval;
1634 }
1635 if (cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->buf_write_timeout_max)) != 0x80)
1636 {
1637 if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
1638 {
1639 return retval;
1640 }
1641
1642 LOG_ERROR("couldn't start buffer write operation at base 0x%" PRIx32 ", address %" PRIx32 , bank->base, address);
1643 return ERROR_FLASH_OPERATION_FAILED;
1644 }
1645
1646 /* Write buffer wordcount-1 and data words */
1647 if ((retval = cfi_send_command(bank, bufferwsize-1, address)) != ERROR_OK)
1648 {
1649 return retval;
1650 }
1651
1652 if ((retval = target_write_memory(target, address, bank->bus_width, bufferwsize, word)) != ERROR_OK)
1653 {
1654 return retval;
1655 }
1656
1657 /* Commit write operation */
1658 if ((retval = cfi_send_command(bank, 0xd0, address)) != ERROR_OK)
1659 {
1660 return retval;
1661 }
1662 if (cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->buf_write_timeout_max)) != 0x80)
1663 {
1664 if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
1665 {
1666 return retval;
1667 }
1668
1669 LOG_ERROR("Buffer write at base 0x%" PRIx32 ", address %" PRIx32 " failed.", bank->base, address);
1670 return ERROR_FLASH_OPERATION_FAILED;
1671 }
1672
1673 return ERROR_OK;
1674 }
1675
1676 static int cfi_spansion_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
1677 {
1678 int retval;
1679 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1680 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
1681 struct target *target = bank->target;
1682
1683 if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
1684 {
1685 return retval;
1686 }
1687
1688 if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
1689 {
1690 return retval;
1691 }
1692
1693 if ((retval = cfi_send_command(bank, 0xa0, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
1694 {
1695 return retval;
1696 }
1697
1698 if ((retval = target_write_memory(target, address, bank->bus_width, 1, word)) != ERROR_OK)
1699 {
1700 return retval;
1701 }
1702
1703 if (cfi_spansion_wait_status_busy(bank, 1000 * (1 << cfi_info->word_write_timeout_max)) != ERROR_OK)
1704 {
1705 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
1706 {
1707 return retval;
1708 }
1709
1710 LOG_ERROR("couldn't write word at base 0x%" PRIx32 ", address %" PRIx32 , bank->base, address);
1711 return ERROR_FLASH_OPERATION_FAILED;
1712 }
1713
1714 return ERROR_OK;
1715 }
1716
1717 static int cfi_spansion_write_words(struct flash_bank *bank, uint8_t *word, uint32_t wordcount, uint32_t address)
1718 {
1719 int retval;
1720 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1721 struct target *target = bank->target;
1722 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
1723
1724 /* Calculate buffer size and boundary mask */
1725 uint32_t buffersize = (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
1726 uint32_t buffermask = buffersize-1;
1727 uint32_t bufferwsize;
1728
1729 /* Check for valid range */
1730 if (address & buffermask)
1731 {
1732 LOG_ERROR("Write address at base 0x%" PRIx32 ", address %" PRIx32 " not aligned to 2^%d boundary", bank->base, address, cfi_info->max_buf_write_size);
1733 return ERROR_FLASH_OPERATION_FAILED;
1734 }
1735 switch (bank->chip_width)
1736 {
1737 case 4 : bufferwsize = buffersize / 4; break;
1738 case 2 : bufferwsize = buffersize / 2; break;
1739 case 1 : bufferwsize = buffersize; break;
1740 default:
1741 LOG_ERROR("Unsupported chip width %d", bank->chip_width);
1742 return ERROR_FLASH_OPERATION_FAILED;
1743 }
1744
1745 bufferwsize/=(bank->bus_width / bank->chip_width);
1746
1747 /* Check for valid size */
1748 if (wordcount > bufferwsize)
1749 {
1750 LOG_ERROR("Number of data words %" PRId32 " exceeds available buffersize %" PRId32, wordcount, buffersize);
1751 return ERROR_FLASH_OPERATION_FAILED;
1752 }
1753
1754 // Unlock
1755 if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
1756 {
1757 return retval;
1758 }
1759
1760 if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
1761 {
1762 return retval;
1763 }
1764
1765 // Buffer load command
1766 if ((retval = cfi_send_command(bank, 0x25, address)) != ERROR_OK)
1767 {
1768 return retval;
1769 }
1770
1771 /* Write buffer wordcount-1 and data words */
1772 if ((retval = cfi_send_command(bank, bufferwsize-1, address)) != ERROR_OK)
1773 {
1774 return retval;
1775 }
1776
1777 if ((retval = target_write_memory(target, address, bank->bus_width, bufferwsize, word)) != ERROR_OK)
1778 {
1779 return retval;
1780 }
1781
1782 /* Commit write operation */
1783 if ((retval = cfi_send_command(bank, 0x29, address)) != ERROR_OK)
1784 {
1785 return retval;
1786 }
1787
1788 if (cfi_spansion_wait_status_busy(bank, 1000 * (1 << cfi_info->word_write_timeout_max)) != ERROR_OK)
1789 {
1790 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
1791 {
1792 return retval;
1793 }
1794
1795 LOG_ERROR("couldn't write block at base 0x%" PRIx32 ", address %" PRIx32 ", size %" PRIx32 , bank->base, address, bufferwsize);
1796 return ERROR_FLASH_OPERATION_FAILED;
1797 }
1798
1799 return ERROR_OK;
1800 }
1801
1802 static int cfi_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
1803 {
1804 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1805
1806 switch (cfi_info->pri_id)
1807 {
1808 case 1:
1809 case 3:
1810 return cfi_intel_write_word(bank, word, address);
1811 break;
1812 case 2:
1813 return cfi_spansion_write_word(bank, word, address);
1814 break;
1815 default:
1816 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
1817 break;
1818 }
1819
1820 return ERROR_FLASH_OPERATION_FAILED;
1821 }
1822
1823 static int cfi_write_words(struct flash_bank *bank, uint8_t *word, uint32_t wordcount, uint32_t address)
1824 {
1825 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1826
1827 switch (cfi_info->pri_id)
1828 {
1829 case 1:
1830 case 3:
1831 return cfi_intel_write_words(bank, word, wordcount, address);
1832 break;
1833 case 2:
1834 return cfi_spansion_write_words(bank, word, wordcount, address);
1835 break;
1836 default:
1837 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
1838 break;
1839 }
1840
1841 return ERROR_FLASH_OPERATION_FAILED;
1842 }
1843
1844 static int cfi_write(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
1845 {
1846 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1847 struct target *target = bank->target;
1848 uint32_t address = bank->base + offset; /* address of first byte to be programmed */
1849 uint32_t write_p, copy_p;
1850 int align; /* number of unaligned bytes */
1851 int blk_count; /* number of bus_width bytes for block copy */
1852 uint8_t current_word[CFI_MAX_BUS_WIDTH * 4]; /* word (bus_width size) currently being programmed */
1853 int i;
1854 int retval;
1855
1856 if (bank->target->state != TARGET_HALTED)
1857 {
1858 LOG_ERROR("Target not halted");
1859 return ERROR_TARGET_NOT_HALTED;
1860 }
1861
1862 if (offset + count > bank->size)
1863 return ERROR_FLASH_DST_OUT_OF_BANK;
1864
1865 if (cfi_info->qry[0] != 'Q')
1866 return ERROR_FLASH_BANK_NOT_PROBED;
1867
1868 /* start at the first byte of the first word (bus_width size) */
1869 write_p = address & ~(bank->bus_width - 1);
1870 if ((align = address - write_p) != 0)
1871 {
1872 LOG_INFO("Fixup %d unaligned head bytes", align);
1873
1874 for (i = 0; i < bank->bus_width; i++)
1875 current_word[i] = 0;
1876 copy_p = write_p;
1877
1878 /* copy bytes before the first write address */
1879 for (i = 0; i < align; ++i, ++copy_p)
1880 {
1881 uint8_t byte;
1882 if ((retval = target_read_memory(target, copy_p, 1, 1, &byte)) != ERROR_OK)
1883 {
1884 return retval;
1885 }
1886 cfi_add_byte(bank, current_word, byte);
1887 }
1888
1889 /* add bytes from the buffer */
1890 for (; (i < bank->bus_width) && (count > 0); i++)
1891 {
1892 cfi_add_byte(bank, current_word, *buffer++);
1893 count--;
1894 copy_p++;
1895 }
1896
1897 /* if the buffer is already finished, copy bytes after the last write address */
1898 for (; (count == 0) && (i < bank->bus_width); ++i, ++copy_p)
1899 {
1900 uint8_t byte;
1901 if ((retval = target_read_memory(target, copy_p, 1, 1, &byte)) != ERROR_OK)
1902 {
1903 return retval;
1904 }
1905 cfi_add_byte(bank, current_word, byte);
1906 }
1907
1908 retval = cfi_write_word(bank, current_word, write_p);
1909 if (retval != ERROR_OK)
1910 return retval;
1911 write_p = copy_p;
1912 }
1913
1914 /* handle blocks of bus_size aligned bytes */
1915 blk_count = count & ~(bank->bus_width - 1); /* round down, leave tail bytes */
1916 switch (cfi_info->pri_id)
1917 {
1918 /* try block writes (fails without working area) */
1919 case 1:
1920 case 3:
1921 retval = cfi_intel_write_block(bank, buffer, write_p, blk_count);
1922 break;
1923 case 2:
1924 retval = cfi_spansion_write_block(bank, buffer, write_p, blk_count);
1925 break;
1926 default:
1927 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
1928 retval = ERROR_FLASH_OPERATION_FAILED;
1929 break;
1930 }
1931 if (retval == ERROR_OK)
1932 {
1933 /* Increment pointers and decrease count on succesful block write */
1934 buffer += blk_count;
1935 write_p += blk_count;
1936 count -= blk_count;
1937 }
1938 else
1939 {
1940 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1941 {
1942 //adjust buffersize for chip width
1943 uint32_t buffersize = (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
1944 uint32_t buffermask = buffersize-1;
1945 uint32_t bufferwsize;
1946
1947 switch (bank->chip_width)
1948 {
1949 case 4 : bufferwsize = buffersize / 4; break;
1950 case 2 : bufferwsize = buffersize / 2; break;
1951 case 1 : bufferwsize = buffersize; break;
1952 default:
1953 LOG_ERROR("Unsupported chip width %d", bank->chip_width);
1954 return ERROR_FLASH_OPERATION_FAILED;
1955 }
1956
1957 bufferwsize/=(bank->bus_width / bank->chip_width);
1958
1959 /* fall back to memory writes */
1960 while (count >= (uint32_t)bank->bus_width)
1961 {
1962 int fallback;
1963 if ((write_p & 0xff) == 0)
1964 {
1965 LOG_INFO("Programming at %08" PRIx32 ", count %08" PRIx32 " bytes remaining", write_p, count);
1966 }
1967 fallback = 1;
1968 if ((bufferwsize > 0) && (count >= buffersize) && !(write_p & buffermask))
1969 {
1970 retval = cfi_write_words(bank, buffer, bufferwsize, write_p);
1971 if (retval == ERROR_OK)
1972 {
1973 buffer += buffersize;
1974 write_p += buffersize;
1975 count -= buffersize;
1976 fallback = 0;
1977 }
1978 }
1979 /* try the slow way? */
1980 if (fallback)
1981 {
1982 for (i = 0; i < bank->bus_width; i++)
1983 current_word[i] = 0;
1984
1985 for (i = 0; i < bank->bus_width; i++)
1986 {
1987 cfi_add_byte(bank, current_word, *buffer++);
1988 }
1989
1990 retval = cfi_write_word(bank, current_word, write_p);
1991 if (retval != ERROR_OK)
1992 return retval;
1993
1994 write_p += bank->bus_width;
1995 count -= bank->bus_width;
1996 }
1997 }
1998 }
1999 else
2000 return retval;
2001 }
2002
2003 /* return to read array mode, so we can read from flash again for padding */
2004 if ((retval = cfi_reset(bank)) != ERROR_OK)
2005 {
2006 return retval;
2007 }
2008
2009 /* handle unaligned tail bytes */
2010 if (count > 0)
2011 {
2012 LOG_INFO("Fixup %" PRId32 " unaligned tail bytes", count);
2013
2014 copy_p = write_p;
2015 for (i = 0; i < bank->bus_width; i++)
2016 current_word[i] = 0;
2017
2018 for (i = 0; (i < bank->bus_width) && (count > 0); ++i, ++copy_p)
2019 {
2020 cfi_add_byte(bank, current_word, *buffer++);
2021 count--;
2022 }
2023 for (; i < bank->bus_width; ++i, ++copy_p)
2024 {
2025 uint8_t byte;
2026 if ((retval = target_read_memory(target, copy_p, 1, 1, &byte)) != ERROR_OK)
2027 {
2028 return retval;
2029 }
2030 cfi_add_byte(bank, current_word, byte);
2031 }
2032 retval = cfi_write_word(bank, current_word, write_p);
2033 if (retval != ERROR_OK)
2034 return retval;
2035 }
2036
2037 /* return to read array mode */
2038 return cfi_reset(bank);
2039 }
2040
2041 static void cfi_fixup_atmel_reversed_erase_regions(struct flash_bank *bank, void *param)
2042 {
2043 (void) param;
2044 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2045 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2046
2047 pri_ext->_reversed_geometry = 1;
2048 }
2049
2050 static void cfi_fixup_0002_erase_regions(struct flash_bank *bank, void *param)
2051 {
2052 int i;
2053 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2054 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2055 (void) param;
2056
2057 if ((pri_ext->_reversed_geometry) || (pri_ext->TopBottom == 3))
2058 {
2059 LOG_DEBUG("swapping reversed erase region information on cmdset 0002 device");
2060
2061 for (i = 0; i < cfi_info->num_erase_regions / 2; i++)
2062 {
2063 int j = (cfi_info->num_erase_regions - 1) - i;
2064 uint32_t swap;
2065
2066 swap = cfi_info->erase_region_info[i];
2067 cfi_info->erase_region_info[i] = cfi_info->erase_region_info[j];
2068 cfi_info->erase_region_info[j] = swap;
2069 }
2070 }
2071 }
2072
2073 static void cfi_fixup_0002_unlock_addresses(struct flash_bank *bank, void *param)
2074 {
2075 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2076 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2077 struct cfi_unlock_addresses *unlock_addresses = param;
2078
2079 pri_ext->_unlock1 = unlock_addresses->unlock1;
2080 pri_ext->_unlock2 = unlock_addresses->unlock2;
2081 }
2082
2083
2084 static int cfi_query_string(struct flash_bank *bank, int address)
2085 {
2086 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2087 int retval;
2088
2089 if ((retval = cfi_send_command(bank, 0x98, flash_address(bank, 0, address))) != ERROR_OK)
2090 {
2091 return retval;
2092 }
2093
2094 cfi_info->qry[0] = cfi_query_u8(bank, 0, 0x10);
2095 cfi_info->qry[1] = cfi_query_u8(bank, 0, 0x11);
2096 cfi_info->qry[2] = cfi_query_u8(bank, 0, 0x12);
2097
2098 LOG_DEBUG("CFI qry returned: 0x%2.2x 0x%2.2x 0x%2.2x", cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2]);
2099
2100 if ((cfi_info->qry[0] != 'Q') || (cfi_info->qry[1] != 'R') || (cfi_info->qry[2] != 'Y'))
2101 {
2102 if ((retval = cfi_reset(bank)) != ERROR_OK)
2103 {
2104 return retval;
2105 }
2106 LOG_ERROR("Could not probe bank: no QRY");
2107 return ERROR_FLASH_BANK_INVALID;
2108 }
2109
2110 return ERROR_OK;
2111 }
2112
2113 static int cfi_probe(struct flash_bank *bank)
2114 {
2115 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2116 struct target *target = bank->target;
2117 int num_sectors = 0;
2118 int i;
2119 int sector = 0;
2120 uint32_t unlock1 = 0x555;
2121 uint32_t unlock2 = 0x2aa;
2122 int retval;
2123
2124 if (bank->target->state != TARGET_HALTED)
2125 {
2126 LOG_ERROR("Target not halted");
2127 return ERROR_TARGET_NOT_HALTED;
2128 }
2129
2130 cfi_info->probed = 0;
2131
2132 /* JEDEC standard JESD21C uses 0x5555 and 0x2aaa as unlock addresses,
2133 * while CFI compatible AMD/Spansion flashes use 0x555 and 0x2aa
2134 */
2135 if (cfi_info->jedec_probe)
2136 {
2137 unlock1 = 0x5555;
2138 unlock2 = 0x2aaa;
2139 }
2140
2141 /* switch to read identifier codes mode ("AUTOSELECT") */
2142 if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, unlock1))) != ERROR_OK)
2143 {
2144 return retval;
2145 }
2146 if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, unlock2))) != ERROR_OK)
2147 {
2148 return retval;
2149 }
2150 if ((retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, unlock1))) != ERROR_OK)
2151 {
2152 return retval;
2153 }
2154
2155 if (bank->chip_width == 1)
2156 {
2157 uint8_t manufacturer, device_id;
2158 if ((retval = target_read_u8(target, flash_address(bank, 0, 0x00), &manufacturer)) != ERROR_OK)
2159 {
2160 return retval;
2161 }
2162 if ((retval = target_read_u8(target, flash_address(bank, 0, 0x01), &device_id)) != ERROR_OK)
2163 {
2164 return retval;
2165 }
2166 cfi_info->manufacturer = manufacturer;
2167 cfi_info->device_id = device_id;
2168 }
2169 else if (bank->chip_width == 2)
2170 {
2171 if ((retval = target_read_u16(target, flash_address(bank, 0, 0x00), &cfi_info->manufacturer)) != ERROR_OK)
2172 {
2173 return retval;
2174 }
2175 if ((retval = target_read_u16(target, flash_address(bank, 0, 0x01), &cfi_info->device_id)) != ERROR_OK)
2176 {
2177 return retval;
2178 }
2179 }
2180
2181 LOG_INFO("Flash Manufacturer/Device: 0x%04x 0x%04x", cfi_info->manufacturer, cfi_info->device_id);
2182 /* switch back to read array mode */
2183 if ((retval = cfi_reset(bank)) != ERROR_OK)
2184 {
2185 return retval;
2186 }
2187
2188 /* check device/manufacturer ID for known non-CFI flashes. */
2189 cfi_fixup_non_cfi(bank);
2190
2191 /* query only if this is a CFI compatible flash,
2192 * otherwise the relevant info has already been filled in
2193 */
2194 if (cfi_info->not_cfi == 0)
2195 {
2196 int retval;
2197
2198 /* enter CFI query mode
2199 * according to JEDEC Standard No. 68.01,
2200 * a single bus sequence with address = 0x55, data = 0x98 should put
2201 * the device into CFI query mode.
2202 *
2203 * SST flashes clearly violate this, and we will consider them incompatbile for now
2204 */
2205
2206 retval = cfi_query_string(bank, 0x55);
2207 if (retval != ERROR_OK)
2208 {
2209 /*
2210 * Spansion S29WS-N CFI query fix is to try 0x555 if 0x55 fails. Should
2211 * be harmless enough:
2212 *
2213 * http://www.infradead.org/pipermail/linux-mtd/2005-September/013618.html
2214 */
2215 LOG_USER("Try workaround w/0x555 instead of 0x55 to get QRY.");
2216 retval = cfi_query_string(bank, 0x555);
2217 }
2218 if (retval != ERROR_OK)
2219 return retval;
2220
2221 cfi_info->pri_id = cfi_query_u16(bank, 0, 0x13);
2222 cfi_info->pri_addr = cfi_query_u16(bank, 0, 0x15);
2223 cfi_info->alt_id = cfi_query_u16(bank, 0, 0x17);
2224 cfi_info->alt_addr = cfi_query_u16(bank, 0, 0x19);
2225
2226 LOG_DEBUG("qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: 0x%4.4x, alt_id: 0x%4.4x, alt_addr: 0x%4.4x", cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2], cfi_info->pri_id, cfi_info->pri_addr, cfi_info->alt_id, cfi_info->alt_addr);
2227
2228 cfi_info->vcc_min = cfi_query_u8(bank, 0, 0x1b);
2229 cfi_info->vcc_max = cfi_query_u8(bank, 0, 0x1c);
2230 cfi_info->vpp_min = cfi_query_u8(bank, 0, 0x1d);
2231 cfi_info->vpp_max = cfi_query_u8(bank, 0, 0x1e);
2232 cfi_info->word_write_timeout_typ = cfi_query_u8(bank, 0, 0x1f);
2233 cfi_info->buf_write_timeout_typ = cfi_query_u8(bank, 0, 0x20);
2234 cfi_info->block_erase_timeout_typ = cfi_query_u8(bank, 0, 0x21);
2235 cfi_info->chip_erase_timeout_typ = cfi_query_u8(bank, 0, 0x22);
2236 cfi_info->word_write_timeout_max = cfi_query_u8(bank, 0, 0x23);
2237 cfi_info->buf_write_timeout_max = cfi_query_u8(bank, 0, 0x24);
2238 cfi_info->block_erase_timeout_max = cfi_query_u8(bank, 0, 0x25);
2239 cfi_info->chip_erase_timeout_max = cfi_query_u8(bank, 0, 0x26);
2240
2241 LOG_DEBUG("Vcc min: %x.%x, Vcc max: %x.%x, Vpp min: %u.%x, Vpp max: %u.%x",
2242 (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
2243 (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
2244 (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
2245 (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
2246 LOG_DEBUG("typ. word write timeout: %u, typ. buf write timeout: %u, typ. block erase timeout: %u, typ. chip erase timeout: %u", 1 << cfi_info->word_write_timeout_typ, 1 << cfi_info->buf_write_timeout_typ,
2247 1 << cfi_info->block_erase_timeout_typ, 1 << cfi_info->chip_erase_timeout_typ);
2248 LOG_DEBUG("max. word write timeout: %u, max. buf write timeout: %u, max. block erase timeout: %u, max. chip erase timeout: %u", (1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
2249 (1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
2250 (1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ),
2251 (1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ));
2252
2253 cfi_info->dev_size = 1 << cfi_query_u8(bank, 0, 0x27);
2254 cfi_info->interface_desc = cfi_query_u16(bank, 0, 0x28);
2255 cfi_info->max_buf_write_size = cfi_query_u16(bank, 0, 0x2a);
2256 cfi_info->num_erase_regions = cfi_query_u8(bank, 0, 0x2c);
2257
2258 LOG_DEBUG("size: 0x%" PRIx32 ", interface desc: %i, max buffer write size: %x", cfi_info->dev_size, cfi_info->interface_desc, (1 << cfi_info->max_buf_write_size));
2259
2260 if (cfi_info->num_erase_regions)
2261 {
2262 cfi_info->erase_region_info = malloc(4 * cfi_info->num_erase_regions);
2263 for (i = 0; i < cfi_info->num_erase_regions; i++)
2264 {
2265 cfi_info->erase_region_info[i] = cfi_query_u32(bank, 0, 0x2d + (4 * i));
2266 LOG_DEBUG("erase region[%i]: %" PRIu32 " blocks of size 0x%" PRIx32 "",
2267 i,
2268 (cfi_info->erase_region_info[i] & 0xffff) + 1,
2269 (cfi_info->erase_region_info[i] >> 16) * 256);
2270 }
2271 }
2272 else
2273 {
2274 cfi_info->erase_region_info = NULL;
2275 }
2276
2277 /* We need to read the primary algorithm extended query table before calculating
2278 * the sector layout to be able to apply fixups
2279 */
2280 switch (cfi_info->pri_id)
2281 {
2282 /* Intel command set (standard and extended) */
2283 case 0x0001:
2284 case 0x0003:
2285 cfi_read_intel_pri_ext(bank);
2286 break;
2287 /* AMD/Spansion, Atmel, ... command set */
2288 case 0x0002:
2289 cfi_info->status_poll_mask = CFI_STATUS_POLL_MASK_DQ5_DQ6_DQ7; /* default for all CFI flashs */
2290 cfi_read_0002_pri_ext(bank);
2291 break;
2292 default:
2293 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2294 break;
2295 }
2296
2297 /* return to read array mode
2298 * we use both reset commands, as some Intel flashes fail to recognize the 0xF0 command
2299 */
2300 if ((retval = cfi_reset(bank)) != ERROR_OK)
2301 {
2302 return retval;
2303 }
2304 } /* end CFI case */
2305
2306 /* apply fixups depending on the primary command set */
2307 switch (cfi_info->pri_id)
2308 {
2309 /* Intel command set (standard and extended) */
2310 case 0x0001:
2311 case 0x0003:
2312 cfi_fixup(bank, cfi_0001_fixups);
2313 break;
2314 /* AMD/Spansion, Atmel, ... command set */
2315 case 0x0002:
2316 cfi_fixup(bank, cfi_0002_fixups);
2317 break;
2318 default:
2319 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2320 break;
2321 }
2322
2323 if ((cfi_info->dev_size * bank->bus_width / bank->chip_width) != bank->size)
2324 {
2325 LOG_WARNING("configuration specifies 0x%" PRIx32 " size, but a 0x%" PRIx32 " size flash was found", bank->size, cfi_info->dev_size);
2326 }
2327
2328 if (cfi_info->num_erase_regions == 0)
2329 {
2330 /* a device might have only one erase block, spanning the whole device */
2331 bank->num_sectors = 1;
2332 bank->sectors = malloc(sizeof(struct flash_sector));
2333
2334 bank->sectors[sector].offset = 0x0;
2335 bank->sectors[sector].size = bank->size;
2336 bank->sectors[sector].is_erased = -1;
2337 bank->sectors[sector].is_protected = -1;
2338 }
2339 else
2340 {
2341 uint32_t offset = 0;
2342
2343 for (i = 0; i < cfi_info->num_erase_regions; i++)
2344 {
2345 num_sectors += (cfi_info->erase_region_info[i] & 0xffff) + 1;
2346 }
2347
2348 bank->num_sectors = num_sectors;
2349 bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
2350
2351 for (i = 0; i < cfi_info->num_erase_regions; i++)
2352 {
2353 uint32_t j;
2354 for (j = 0; j < (cfi_info->erase_region_info[i] & 0xffff) + 1; j++)
2355 {
2356 bank->sectors[sector].offset = offset;
2357 bank->sectors[sector].size = ((cfi_info->erase_region_info[i] >> 16) * 256) * bank->bus_width / bank->chip_width;
2358 offset += bank->sectors[sector].size;
2359 bank->sectors[sector].is_erased = -1;
2360 bank->sectors[sector].is_protected = -1;
2361 sector++;
2362 }
2363 }
2364 if (offset != (cfi_info->dev_size * bank->bus_width / bank->chip_width))
2365 {
2366 LOG_WARNING("CFI size is 0x%" PRIx32 ", but total sector size is 0x%" PRIx32 "", \
2367 (cfi_info->dev_size * bank->bus_width / bank->chip_width), offset);
2368 }
2369 }
2370
2371 cfi_info->probed = 1;
2372
2373 return ERROR_OK;
2374 }
2375
2376 static int cfi_auto_probe(struct flash_bank *bank)
2377 {
2378 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2379 if (cfi_info->probed)
2380 return ERROR_OK;
2381 return cfi_probe(bank);
2382 }
2383
2384 static int cfi_intel_protect_check(struct flash_bank *bank)
2385 {
2386 int retval;
2387 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2388 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
2389 int i;
2390
2391 /* check if block lock bits are supported on this device */
2392 if (!(pri_ext->blk_status_reg_mask & 0x1))
2393 return ERROR_FLASH_OPERATION_FAILED;
2394
2395 if ((retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, 0x55))) != ERROR_OK)
2396 {
2397 return retval;
2398 }
2399
2400 for (i = 0; i < bank->num_sectors; i++)
2401 {
2402 uint8_t block_status = cfi_get_u8(bank, i, 0x2);
2403
2404 if (block_status & 1)
2405 bank->sectors[i].is_protected = 1;
2406 else
2407 bank->sectors[i].is_protected = 0;
2408 }
2409
2410 return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
2411 }
2412
2413 static int cfi_spansion_protect_check(struct flash_bank *bank)
2414 {
2415 int retval;
2416 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2417 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2418 int i;
2419
2420 if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
2421 {
2422 return retval;
2423 }
2424
2425 if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
2426 {
2427 return retval;
2428 }
2429
2430 if ((retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
2431 {
2432 return retval;
2433 }
2434
2435 for (i = 0; i < bank->num_sectors; i++)
2436 {
2437 uint8_t block_status = cfi_get_u8(bank, i, 0x2);
2438
2439 if (block_status & 1)
2440 bank->sectors[i].is_protected = 1;
2441 else
2442 bank->sectors[i].is_protected = 0;
2443 }
2444
2445 return cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
2446 }
2447
2448 static int cfi_protect_check(struct flash_bank *bank)
2449 {
2450 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2451
2452 if (bank->target->state != TARGET_HALTED)
2453 {
2454 LOG_ERROR("Target not halted");
2455 return ERROR_TARGET_NOT_HALTED;
2456 }
2457
2458 if (cfi_info->qry[0] != 'Q')
2459 return ERROR_FLASH_BANK_NOT_PROBED;
2460
2461 switch (cfi_info->pri_id)
2462 {
2463 case 1:
2464 case 3:
2465 return cfi_intel_protect_check(bank);
2466 break;
2467 case 2:
2468 return cfi_spansion_protect_check(bank);
2469 break;
2470 default:
2471 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2472 break;
2473 }
2474
2475 return ERROR_OK;
2476 }
2477
2478 static int cfi_info(struct flash_bank *bank, char *buf, int buf_size)
2479 {
2480 int printed;
2481 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2482
2483 if (cfi_info->qry[0] == (char)-1)
2484 {
2485 printed = snprintf(buf, buf_size, "\ncfi flash bank not probed yet\n");
2486 return ERROR_OK;
2487 }
2488
2489 if (cfi_info->not_cfi == 0)
2490 printed = snprintf(buf, buf_size, "\ncfi information:\n");
2491 else
2492 printed = snprintf(buf, buf_size, "\nnon-cfi flash:\n");
2493 buf += printed;
2494 buf_size -= printed;
2495
2496 printed = snprintf(buf, buf_size, "\nmfr: 0x%4.4x, id:0x%4.4x\n",
2497 cfi_info->manufacturer, cfi_info->device_id);
2498 buf += printed;
2499 buf_size -= printed;
2500
2501 if (cfi_info->not_cfi == 0)
2502 {
2503 printed = snprintf(buf, buf_size, "qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: 0x%4.4x, alt_id: 0x%4.4x, alt_addr: 0x%4.4x\n", cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2], cfi_info->pri_id, cfi_info->pri_addr, cfi_info->alt_id, cfi_info->alt_addr);
2504 buf += printed;
2505 buf_size -= printed;
2506
2507 printed = snprintf(buf, buf_size, "Vcc min: %x.%x, Vcc max: %x.%x, Vpp min: %u.%x, Vpp max: %u.%x\n",
2508 (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
2509 (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
2510 (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
2511 (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
2512 buf += printed;
2513 buf_size -= printed;
2514
2515 printed = snprintf(buf, buf_size, "typ. word write timeout: %u, typ. buf write timeout: %u, typ. block erase timeout: %u, typ. chip erase timeout: %u\n",
2516 1 << cfi_info->word_write_timeout_typ,
2517 1 << cfi_info->buf_write_timeout_typ,
2518 1 << cfi_info->block_erase_timeout_typ,
2519 1 << cfi_info->chip_erase_timeout_typ);
2520 buf += printed;
2521 buf_size -= printed;
2522
2523 printed = snprintf(buf, buf_size, "max. word write timeout: %u, max. buf write timeout: %u, max. block erase timeout: %u, max. chip erase timeout: %u\n",
2524 (1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
2525 (1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
2526 (1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ),
2527 (1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ));
2528 buf += printed;
2529 buf_size -= printed;
2530
2531 printed = snprintf(buf, buf_size, "size: 0x%" PRIx32 ", interface desc: %i, max buffer write size: %x\n",
2532 cfi_info->dev_size,
2533 cfi_info->interface_desc,
2534 1 << cfi_info->max_buf_write_size);
2535 buf += printed;
2536 buf_size -= printed;
2537
2538 switch (cfi_info->pri_id)
2539 {
2540 case 1:
2541 case 3:
2542 cfi_intel_info(bank, buf, buf_size);
2543 break;
2544 case 2:
2545 cfi_spansion_info(bank, buf, buf_size);
2546 break;
2547 default:
2548 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2549 break;
2550 }
2551 }
2552
2553 return ERROR_OK;
2554 }
2555
2556 struct flash_driver cfi_flash = {
2557 .name = "cfi",
2558 .flash_bank_command = cfi_flash_bank_command,
2559 .erase = cfi_erase,
2560 .protect = cfi_protect,
2561 .write = cfi_write,
2562 .probe = cfi_probe,
2563 .auto_probe = cfi_auto_probe,
2564 .erase_check = default_flash_blank_check,
2565 .protect_check = cfi_protect_check,
2566 .info = cfi_info,
2567 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)