flash/stm32l4x: add support of STM32WB1x
[openocd.git] / src / flash / nor / cfi.c
1 /***************************************************************************
2 * Copyright (C) 2005, 2007 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * Copyright (C) 2009 Michael Schwingen *
5 * michael@schwingen.org *
6 * Copyright (C) 2010 Øyvind Harboe <oyvind.harboe@zylin.com> *
7 * Copyright (C) 2010 by Antonio Borneo <borneo.antonio@gmail.com> *
8 * *
9 * This program is free software; you can redistribute it and/or modify *
10 * it under the terms of the GNU General Public License as published by *
11 * the Free Software Foundation; either version 2 of the License, or *
12 * (at your option) any later version. *
13 * *
14 * This program is distributed in the hope that it will be useful, *
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
17 * GNU General Public License for more details. *
18 * *
19 * You should have received a copy of the GNU General Public License *
20 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
21 ***************************************************************************/
22
23 #ifdef HAVE_CONFIG_H
24 #include "config.h"
25 #endif
26
27 #include "imp.h"
28 #include "cfi.h"
29 #include "non_cfi.h"
30 #include <target/arm.h>
31 #include <target/arm7_9_common.h>
32 #include <target/armv7m.h>
33 #include <target/mips32.h>
34 #include <helper/binarybuffer.h>
35 #include <target/algorithm.h>
36
37 /* defines internal maximum size for code fragment in cfi_intel_write_block() */
38 #define CFI_MAX_INTEL_CODESIZE 256
39
40 /* some id-types with specific handling */
41 #define AT49BV6416 0x00d6
42 #define AT49BV6416T 0x00d2
43
44 static const struct cfi_unlock_addresses cfi_unlock_addresses[] = {
45 [CFI_UNLOCK_555_2AA] = { .unlock1 = 0x555, .unlock2 = 0x2aa },
46 [CFI_UNLOCK_5555_2AAA] = { .unlock1 = 0x5555, .unlock2 = 0x2aaa },
47 };
48
49 static const int cfi_status_poll_mask_dq6_dq7 = CFI_STATUS_POLL_MASK_DQ6_DQ7;
50
51 /* CFI fixups forward declarations */
52 static void cfi_fixup_0002_erase_regions(struct flash_bank *bank, const void *param);
53 static void cfi_fixup_0002_unlock_addresses(struct flash_bank *bank, const void *param);
54 static void cfi_fixup_reversed_erase_regions(struct flash_bank *bank, const void *param);
55 static void cfi_fixup_0002_write_buffer(struct flash_bank *bank, const void *param);
56 static void cfi_fixup_0002_polling_bits(struct flash_bank *bank, const void *param);
57
58 /* fixup after reading cmdset 0002 primary query table */
59 static const struct cfi_fixup cfi_0002_fixups[] = {
60 {CFI_MFR_SST, 0x00D4, cfi_fixup_0002_unlock_addresses,
61 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
62 {CFI_MFR_SST, 0x00D5, cfi_fixup_0002_unlock_addresses,
63 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
64 {CFI_MFR_SST, 0x00D6, cfi_fixup_0002_unlock_addresses,
65 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
66 {CFI_MFR_SST, 0x00D7, cfi_fixup_0002_unlock_addresses,
67 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
68 {CFI_MFR_SST, 0x2780, cfi_fixup_0002_unlock_addresses,
69 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
70 {CFI_MFR_SST, 0x274b, cfi_fixup_0002_unlock_addresses,
71 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
72 {CFI_MFR_SST, 0x235f, cfi_fixup_0002_polling_bits, /* 39VF3201C */
73 &cfi_status_poll_mask_dq6_dq7},
74 {CFI_MFR_SST, 0x236d, cfi_fixup_0002_unlock_addresses,
75 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
76 {CFI_MFR_ATMEL, 0x00C8, cfi_fixup_reversed_erase_regions, NULL},
77 {CFI_MFR_ST, 0x22C4, cfi_fixup_reversed_erase_regions, NULL}, /* M29W160ET */
78 {CFI_MFR_FUJITSU, 0x22ea, cfi_fixup_0002_unlock_addresses,
79 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
80 {CFI_MFR_FUJITSU, 0x226b, cfi_fixup_0002_unlock_addresses,
81 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
82 {CFI_MFR_AMIC, 0xb31a, cfi_fixup_0002_unlock_addresses,
83 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
84 {CFI_MFR_MX, 0x225b, cfi_fixup_0002_unlock_addresses,
85 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
86 {CFI_MFR_EON, 0x225b, cfi_fixup_0002_unlock_addresses,
87 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
88 {CFI_MFR_AMD, 0x225b, cfi_fixup_0002_unlock_addresses,
89 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
90 {CFI_MFR_ANY, CFI_ID_ANY, cfi_fixup_0002_erase_regions, NULL},
91 {CFI_MFR_ST, 0x227E, cfi_fixup_0002_write_buffer, NULL},/* M29W128G */
92 {0, 0, NULL, NULL}
93 };
94
95 /* fixup after reading cmdset 0001 primary query table */
96 static const struct cfi_fixup cfi_0001_fixups[] = {
97 {0, 0, NULL, NULL}
98 };
99
100 static void cfi_fixup(struct flash_bank *bank, const struct cfi_fixup *fixups)
101 {
102 struct cfi_flash_bank *cfi_info = bank->driver_priv;
103
104 for (const struct cfi_fixup *f = fixups; f->fixup; f++) {
105 if (((f->mfr == CFI_MFR_ANY) || (f->mfr == cfi_info->manufacturer)) &&
106 ((f->id == CFI_ID_ANY) || (f->id == cfi_info->device_id)))
107 f->fixup(bank, f->param);
108 }
109 }
110
111 uint32_t cfi_flash_address(struct flash_bank *bank, int sector, uint32_t offset)
112 {
113 struct cfi_flash_bank *cfi_info = bank->driver_priv;
114
115 if (cfi_info->x16_as_x8)
116 offset *= 2;
117
118 /* while the sector list isn't built, only accesses to sector 0 work */
119 if (sector == 0)
120 return bank->base + offset * bank->bus_width;
121 else {
122 if (!bank->sectors) {
123 LOG_ERROR("BUG: sector list not yet built");
124 exit(-1);
125 }
126 return bank->base + bank->sectors[sector].offset + offset * bank->bus_width;
127 }
128 }
129
130 static int cfi_target_write_memory(struct flash_bank *bank, target_addr_t addr,
131 uint32_t count, const uint8_t *buffer)
132 {
133 struct cfi_flash_bank *cfi_info = bank->driver_priv;
134 if (cfi_info->write_mem) {
135 return cfi_info->write_mem(bank, addr, count, buffer);
136 } else {
137 return target_write_memory(bank->target, addr, bank->bus_width,
138 count, buffer);
139 }
140 }
141
142 int cfi_target_read_memory(struct flash_bank *bank, target_addr_t addr,
143 uint32_t count, uint8_t *buffer)
144 {
145 struct cfi_flash_bank *cfi_info = bank->driver_priv;
146 if (cfi_info->read_mem) {
147 return cfi_info->read_mem(bank, addr, count, buffer);
148 } else {
149 return target_read_memory(bank->target, addr, bank->bus_width,
150 count, buffer);
151 }
152 }
153
154 static void cfi_command(struct flash_bank *bank, uint8_t cmd, uint8_t *cmd_buf)
155 {
156 struct cfi_flash_bank *cfi_info = bank->driver_priv;
157
158 /* clear whole buffer, to ensure bits that exceed the bus_width
159 * are set to zero
160 */
161 for (size_t i = 0; i < CFI_MAX_BUS_WIDTH; i++)
162 cmd_buf[i] = 0;
163
164 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN) {
165 for (unsigned int i = bank->bus_width; i > 0; i--)
166 *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
167 } else {
168 for (unsigned int i = 1; i <= bank->bus_width; i++)
169 *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
170 }
171 }
172
173 int cfi_send_command(struct flash_bank *bank, uint8_t cmd, uint32_t address)
174 {
175 uint8_t command[CFI_MAX_BUS_WIDTH];
176
177 cfi_command(bank, cmd, command);
178 return cfi_target_write_memory(bank, address, 1, command);
179 }
180
181 /* read unsigned 8-bit value from the bank
182 * flash banks are expected to be made of similar chips
183 * the query result should be the same for all
184 */
185 static int cfi_query_u8(struct flash_bank *bank, int sector, uint32_t offset, uint8_t *val)
186 {
187 struct cfi_flash_bank *cfi_info = bank->driver_priv;
188 uint8_t data[CFI_MAX_BUS_WIDTH];
189
190 int retval;
191 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, sector, offset),
192 1, data);
193 if (retval != ERROR_OK)
194 return retval;
195
196 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN)
197 *val = data[0];
198 else
199 *val = data[bank->bus_width - 1];
200
201 return ERROR_OK;
202 }
203
204 /* read unsigned 8-bit value from the bank
205 * in case of a bank made of multiple chips,
206 * the individual values are ORed
207 */
208 static int cfi_get_u8(struct flash_bank *bank, int sector, uint32_t offset, uint8_t *val)
209 {
210 struct cfi_flash_bank *cfi_info = bank->driver_priv;
211 uint8_t data[CFI_MAX_BUS_WIDTH];
212
213 int retval;
214 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, sector, offset),
215 1, data);
216 if (retval != ERROR_OK)
217 return retval;
218
219 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN) {
220 for (unsigned int i = 0; i < bank->bus_width / bank->chip_width; i++)
221 data[0] |= data[i];
222
223 *val = data[0];
224 } else {
225 uint8_t value = 0;
226 for (unsigned int i = 0; i < bank->bus_width / bank->chip_width; i++)
227 value |= data[bank->bus_width - 1 - i];
228
229 *val = value;
230 }
231 return ERROR_OK;
232 }
233
234 static int cfi_query_u16(struct flash_bank *bank, int sector, uint32_t offset, uint16_t *val)
235 {
236 struct cfi_flash_bank *cfi_info = bank->driver_priv;
237 uint8_t data[CFI_MAX_BUS_WIDTH * 2];
238 int retval;
239
240 if (cfi_info->x16_as_x8) {
241 for (uint8_t i = 0; i < 2; i++) {
242 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, sector, offset + i),
243 1, &data[i * bank->bus_width]);
244 if (retval != ERROR_OK)
245 return retval;
246 }
247 } else {
248 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, sector, offset),
249 2, data);
250 if (retval != ERROR_OK)
251 return retval;
252 }
253
254 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN)
255 *val = data[0] | data[bank->bus_width] << 8;
256 else
257 *val = data[bank->bus_width - 1] | data[(2 * bank->bus_width) - 1] << 8;
258
259 return ERROR_OK;
260 }
261
262 static int cfi_query_u32(struct flash_bank *bank, int sector, uint32_t offset, uint32_t *val)
263 {
264 struct cfi_flash_bank *cfi_info = bank->driver_priv;
265 uint8_t data[CFI_MAX_BUS_WIDTH * 4];
266 int retval;
267
268 if (cfi_info->x16_as_x8) {
269 for (uint8_t i = 0; i < 4; i++) {
270 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, sector, offset + i),
271 1, &data[i * bank->bus_width]);
272 if (retval != ERROR_OK)
273 return retval;
274 }
275 } else {
276 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, sector, offset),
277 4, data);
278 if (retval != ERROR_OK)
279 return retval;
280 }
281
282 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN)
283 *val = data[0] | data[bank->bus_width] << 8 |
284 data[bank->bus_width * 2] << 16 | data[bank->bus_width * 3] << 24;
285 else
286 *val = data[bank->bus_width - 1] | data[(2 * bank->bus_width) - 1] << 8 |
287 data[(3 * bank->bus_width) - 1] << 16 |
288 data[(4 * bank->bus_width) - 1] << 24;
289
290 return ERROR_OK;
291 }
292
293 int cfi_reset(struct flash_bank *bank)
294 {
295 struct cfi_flash_bank *cfi_info = bank->driver_priv;
296 int retval = ERROR_OK;
297
298 retval = cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
299 if (retval != ERROR_OK)
300 return retval;
301
302 retval = cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
303 if (retval != ERROR_OK)
304 return retval;
305
306 if (cfi_info->manufacturer == 0x20 &&
307 (cfi_info->device_id == 0x227E || cfi_info->device_id == 0x7E)) {
308 /* Numonix M29W128G is cmd 0xFF intolerant - causes internal undefined state
309 * so we send an extra 0xF0 reset to fix the bug */
310 retval = cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x00));
311 if (retval != ERROR_OK)
312 return retval;
313 }
314
315 return retval;
316 }
317
318 static void cfi_intel_clear_status_register(struct flash_bank *bank)
319 {
320 cfi_send_command(bank, 0x50, cfi_flash_address(bank, 0, 0x0));
321 }
322
323 static int cfi_intel_wait_status_busy(struct flash_bank *bank, int timeout, uint8_t *val)
324 {
325 uint8_t status;
326
327 int retval = ERROR_OK;
328
329 for (;; ) {
330 if (timeout-- < 0) {
331 LOG_ERROR("timeout while waiting for WSM to become ready");
332 return ERROR_FAIL;
333 }
334
335 retval = cfi_get_u8(bank, 0, 0x0, &status);
336 if (retval != ERROR_OK)
337 return retval;
338
339 if (status & 0x80)
340 break;
341
342 alive_sleep(1);
343 }
344
345 /* mask out bit 0 (reserved) */
346 status = status & 0xfe;
347
348 LOG_DEBUG("status: 0x%x", status);
349
350 if (status != 0x80) {
351 LOG_ERROR("status register: 0x%x", status);
352 if (status & 0x2)
353 LOG_ERROR("Block Lock-Bit Detected, Operation Abort");
354 if (status & 0x4)
355 LOG_ERROR("Program suspended");
356 if (status & 0x8)
357 LOG_ERROR("Low Programming Voltage Detected, Operation Aborted");
358 if (status & 0x10)
359 LOG_ERROR("Program Error / Error in Setting Lock-Bit");
360 if (status & 0x20)
361 LOG_ERROR("Error in Block Erasure or Clear Lock-Bits");
362 if (status & 0x40)
363 LOG_ERROR("Block Erase Suspended");
364
365 cfi_intel_clear_status_register(bank);
366
367 retval = ERROR_FAIL;
368 }
369
370 *val = status;
371 return retval;
372 }
373
374 int cfi_spansion_wait_status_busy(struct flash_bank *bank, int timeout)
375 {
376 uint8_t status, oldstatus;
377 struct cfi_flash_bank *cfi_info = bank->driver_priv;
378 int retval;
379
380 retval = cfi_get_u8(bank, 0, 0x0, &oldstatus);
381 if (retval != ERROR_OK)
382 return retval;
383
384 do {
385 retval = cfi_get_u8(bank, 0, 0x0, &status);
386
387 if (retval != ERROR_OK)
388 return retval;
389
390 if ((status ^ oldstatus) & 0x40) {
391 if (status & cfi_info->status_poll_mask & 0x20) {
392 retval = cfi_get_u8(bank, 0, 0x0, &oldstatus);
393 if (retval != ERROR_OK)
394 return retval;
395 retval = cfi_get_u8(bank, 0, 0x0, &status);
396 if (retval != ERROR_OK)
397 return retval;
398 if ((status ^ oldstatus) & 0x40) {
399 LOG_ERROR("dq5 timeout, status: 0x%x", status);
400 return ERROR_FLASH_OPERATION_FAILED;
401 } else {
402 LOG_DEBUG("status: 0x%x", status);
403 return ERROR_OK;
404 }
405 }
406 } else {/* no toggle: finished, OK */
407 LOG_DEBUG("status: 0x%x", status);
408 return ERROR_OK;
409 }
410
411 oldstatus = status;
412 alive_sleep(1);
413 } while (timeout-- > 0);
414
415 LOG_ERROR("timeout, status: 0x%x", status);
416
417 return ERROR_FLASH_BUSY;
418 }
419
420 static int cfi_read_intel_pri_ext(struct flash_bank *bank)
421 {
422 int retval;
423 struct cfi_flash_bank *cfi_info = bank->driver_priv;
424 struct cfi_intel_pri_ext *pri_ext;
425
426 free(cfi_info->pri_ext);
427
428 pri_ext = malloc(sizeof(struct cfi_intel_pri_ext));
429 if (!pri_ext) {
430 LOG_ERROR("Out of memory");
431 return ERROR_FAIL;
432 }
433 cfi_info->pri_ext = pri_ext;
434
435 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &pri_ext->pri[0]);
436 if (retval != ERROR_OK)
437 return retval;
438 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &pri_ext->pri[1]);
439 if (retval != ERROR_OK)
440 return retval;
441 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &pri_ext->pri[2]);
442 if (retval != ERROR_OK)
443 return retval;
444
445 if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I')) {
446 retval = cfi_reset(bank);
447 if (retval != ERROR_OK)
448 return retval;
449 LOG_ERROR("Could not read bank flash bank information");
450 return ERROR_FLASH_BANK_INVALID;
451 }
452
453 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &pri_ext->major_version);
454 if (retval != ERROR_OK)
455 return retval;
456 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &pri_ext->minor_version);
457 if (retval != ERROR_OK)
458 return retval;
459
460 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1],
461 pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
462
463 retval = cfi_query_u32(bank, 0, cfi_info->pri_addr + 5, &pri_ext->feature_support);
464 if (retval != ERROR_OK)
465 return retval;
466 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9, &pri_ext->suspend_cmd_support);
467 if (retval != ERROR_OK)
468 return retval;
469 retval = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xa, &pri_ext->blk_status_reg_mask);
470 if (retval != ERROR_OK)
471 return retval;
472
473 LOG_DEBUG("feature_support: 0x%" PRIx32 ", suspend_cmd_support: "
474 "0x%x, blk_status_reg_mask: 0x%x",
475 pri_ext->feature_support,
476 pri_ext->suspend_cmd_support,
477 pri_ext->blk_status_reg_mask);
478
479 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xc, &pri_ext->vcc_optimal);
480 if (retval != ERROR_OK)
481 return retval;
482 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xd, &pri_ext->vpp_optimal);
483 if (retval != ERROR_OK)
484 return retval;
485
486 LOG_DEBUG("Vcc opt: %x.%x, Vpp opt: %u.%x",
487 (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
488 (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
489
490 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xe, &pri_ext->num_protection_fields);
491 if (retval != ERROR_OK)
492 return retval;
493 if (pri_ext->num_protection_fields != 1) {
494 LOG_WARNING("expected one protection register field, but found %i",
495 pri_ext->num_protection_fields);
496 }
497
498 retval = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xf, &pri_ext->prot_reg_addr);
499 if (retval != ERROR_OK)
500 return retval;
501 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x11, &pri_ext->fact_prot_reg_size);
502 if (retval != ERROR_OK)
503 return retval;
504 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x12, &pri_ext->user_prot_reg_size);
505 if (retval != ERROR_OK)
506 return retval;
507
508 LOG_DEBUG("protection_fields: %i, prot_reg_addr: 0x%x, "
509 "factory pre-programmed: %i, user programmable: %i",
510 pri_ext->num_protection_fields, pri_ext->prot_reg_addr,
511 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
512
513 return ERROR_OK;
514 }
515
516 static int cfi_read_spansion_pri_ext(struct flash_bank *bank)
517 {
518 int retval;
519 struct cfi_flash_bank *cfi_info = bank->driver_priv;
520 struct cfi_spansion_pri_ext *pri_ext;
521
522 free(cfi_info->pri_ext);
523
524 pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
525 if (!pri_ext) {
526 LOG_ERROR("Out of memory");
527 return ERROR_FAIL;
528 }
529 cfi_info->pri_ext = pri_ext;
530
531 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &pri_ext->pri[0]);
532 if (retval != ERROR_OK)
533 return retval;
534 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &pri_ext->pri[1]);
535 if (retval != ERROR_OK)
536 return retval;
537 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &pri_ext->pri[2]);
538 if (retval != ERROR_OK)
539 return retval;
540
541 /* default values for implementation specific workarounds */
542 pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
543 pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
544 pri_ext->_reversed_geometry = 0;
545
546 if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I')) {
547 retval = cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
548 if (retval != ERROR_OK)
549 return retval;
550 LOG_ERROR("Could not read spansion bank information");
551 return ERROR_FLASH_BANK_INVALID;
552 }
553
554 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &pri_ext->major_version);
555 if (retval != ERROR_OK)
556 return retval;
557 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &pri_ext->minor_version);
558 if (retval != ERROR_OK)
559 return retval;
560
561 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1],
562 pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
563
564 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5, &pri_ext->silicon_revision);
565 if (retval != ERROR_OK)
566 return retval;
567 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6, &pri_ext->erase_suspend);
568 if (retval != ERROR_OK)
569 return retval;
570 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7, &pri_ext->blk_prot);
571 if (retval != ERROR_OK)
572 return retval;
573 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8, &pri_ext->tmp_blk_unprotected);
574 if (retval != ERROR_OK)
575 return retval;
576 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9, &pri_ext->blk_prot_unprot);
577 if (retval != ERROR_OK)
578 return retval;
579 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 10, &pri_ext->simultaneous_ops);
580 if (retval != ERROR_OK)
581 return retval;
582 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 11, &pri_ext->burst_mode);
583 if (retval != ERROR_OK)
584 return retval;
585 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 12, &pri_ext->page_mode);
586 if (retval != ERROR_OK)
587 return retval;
588 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 13, &pri_ext->vpp_min);
589 if (retval != ERROR_OK)
590 return retval;
591 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 14, &pri_ext->vpp_max);
592 if (retval != ERROR_OK)
593 return retval;
594 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 15, &pri_ext->top_bottom);
595 if (retval != ERROR_OK)
596 return retval;
597
598 LOG_DEBUG("Silicon Revision: 0x%x, Erase Suspend: 0x%x, Block protect: 0x%x",
599 pri_ext->silicon_revision, pri_ext->erase_suspend, pri_ext->blk_prot);
600
601 LOG_DEBUG("Temporary Unprotect: 0x%x, Block Protect Scheme: 0x%x, "
602 "Simultaneous Ops: 0x%x", pri_ext->tmp_blk_unprotected,
603 pri_ext->blk_prot_unprot, pri_ext->simultaneous_ops);
604
605 LOG_DEBUG("Burst Mode: 0x%x, Page Mode: 0x%x, ", pri_ext->burst_mode, pri_ext->page_mode);
606
607
608 LOG_DEBUG("Vpp min: %u.%x, Vpp max: %u.%x",
609 (pri_ext->vpp_min & 0xf0) >> 4, pri_ext->vpp_min & 0x0f,
610 (pri_ext->vpp_max & 0xf0) >> 4, pri_ext->vpp_max & 0x0f);
611
612 LOG_DEBUG("WP# protection 0x%x", pri_ext->top_bottom);
613
614 return ERROR_OK;
615 }
616
617 static int cfi_read_atmel_pri_ext(struct flash_bank *bank)
618 {
619 int retval;
620 struct cfi_atmel_pri_ext atmel_pri_ext;
621 struct cfi_flash_bank *cfi_info = bank->driver_priv;
622 struct cfi_spansion_pri_ext *pri_ext;
623
624 free(cfi_info->pri_ext);
625
626 pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
627 if (!pri_ext) {
628 LOG_ERROR("Out of memory");
629 return ERROR_FAIL;
630 }
631
632 /* ATMEL devices use the same CFI primary command set (0x2) as AMD/Spansion,
633 * but a different primary extended query table.
634 * We read the atmel table, and prepare a valid AMD/Spansion query table.
635 */
636
637 memset(pri_ext, 0, sizeof(struct cfi_spansion_pri_ext));
638
639 cfi_info->pri_ext = pri_ext;
640
641 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &atmel_pri_ext.pri[0]);
642 if (retval != ERROR_OK)
643 return retval;
644 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &atmel_pri_ext.pri[1]);
645 if (retval != ERROR_OK)
646 return retval;
647 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &atmel_pri_ext.pri[2]);
648 if (retval != ERROR_OK)
649 return retval;
650
651 if ((atmel_pri_ext.pri[0] != 'P') || (atmel_pri_ext.pri[1] != 'R')
652 || (atmel_pri_ext.pri[2] != 'I')) {
653 retval = cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
654 if (retval != ERROR_OK)
655 return retval;
656 LOG_ERROR("Could not read atmel bank information");
657 return ERROR_FLASH_BANK_INVALID;
658 }
659
660 pri_ext->pri[0] = atmel_pri_ext.pri[0];
661 pri_ext->pri[1] = atmel_pri_ext.pri[1];
662 pri_ext->pri[2] = atmel_pri_ext.pri[2];
663
664 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &atmel_pri_ext.major_version);
665 if (retval != ERROR_OK)
666 return retval;
667 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &atmel_pri_ext.minor_version);
668 if (retval != ERROR_OK)
669 return retval;
670
671 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", atmel_pri_ext.pri[0],
672 atmel_pri_ext.pri[1], atmel_pri_ext.pri[2],
673 atmel_pri_ext.major_version, atmel_pri_ext.minor_version);
674
675 pri_ext->major_version = atmel_pri_ext.major_version;
676 pri_ext->minor_version = atmel_pri_ext.minor_version;
677
678 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5, &atmel_pri_ext.features);
679 if (retval != ERROR_OK)
680 return retval;
681 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6, &atmel_pri_ext.bottom_boot);
682 if (retval != ERROR_OK)
683 return retval;
684 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7, &atmel_pri_ext.burst_mode);
685 if (retval != ERROR_OK)
686 return retval;
687 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8, &atmel_pri_ext.page_mode);
688 if (retval != ERROR_OK)
689 return retval;
690
691 LOG_DEBUG(
692 "features: 0x%2.2x, bottom_boot: 0x%2.2x, burst_mode: 0x%2.2x, page_mode: 0x%2.2x",
693 atmel_pri_ext.features,
694 atmel_pri_ext.bottom_boot,
695 atmel_pri_ext.burst_mode,
696 atmel_pri_ext.page_mode);
697
698 if (atmel_pri_ext.features & 0x02)
699 pri_ext->erase_suspend = 2;
700
701 /* some chips got it backwards... */
702 if (cfi_info->device_id == AT49BV6416 ||
703 cfi_info->device_id == AT49BV6416T) {
704 if (atmel_pri_ext.bottom_boot)
705 pri_ext->top_bottom = 3;
706 else
707 pri_ext->top_bottom = 2;
708 } else {
709 if (atmel_pri_ext.bottom_boot)
710 pri_ext->top_bottom = 2;
711 else
712 pri_ext->top_bottom = 3;
713 }
714
715 pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
716 pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
717
718 return ERROR_OK;
719 }
720
721 static int cfi_read_0002_pri_ext(struct flash_bank *bank)
722 {
723 struct cfi_flash_bank *cfi_info = bank->driver_priv;
724
725 if (cfi_info->manufacturer == CFI_MFR_ATMEL)
726 return cfi_read_atmel_pri_ext(bank);
727 else
728 return cfi_read_spansion_pri_ext(bank);
729 }
730
731 static int cfi_spansion_info(struct flash_bank *bank, struct command_invocation *cmd)
732 {
733 struct cfi_flash_bank *cfi_info = bank->driver_priv;
734 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
735
736 command_print_sameline(cmd, "\nSpansion primary algorithm extend information:\n");
737
738 command_print_sameline(cmd, "pri: '%c%c%c', version: %c.%c\n",
739 pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2],
740 pri_ext->major_version, pri_ext->minor_version);
741
742 command_print_sameline(cmd, "Silicon Rev.: 0x%x, Address Sensitive unlock: 0x%x\n",
743 (pri_ext->silicon_revision) >> 2,
744 (pri_ext->silicon_revision) & 0x03);
745
746 command_print_sameline(cmd, "Erase Suspend: 0x%x, Sector Protect: 0x%x\n",
747 pri_ext->erase_suspend,
748 pri_ext->blk_prot);
749
750 command_print_sameline(cmd, "VppMin: %u.%x, VppMax: %u.%x\n",
751 (pri_ext->vpp_min & 0xf0) >> 4, pri_ext->vpp_min & 0x0f,
752 (pri_ext->vpp_max & 0xf0) >> 4, pri_ext->vpp_max & 0x0f);
753
754 return ERROR_OK;
755 }
756
757 static int cfi_intel_info(struct flash_bank *bank, struct command_invocation *cmd)
758 {
759 struct cfi_flash_bank *cfi_info = bank->driver_priv;
760 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
761
762 command_print_sameline(cmd, "\nintel primary algorithm extend information:\n");
763
764 command_print_sameline(cmd, "pri: '%c%c%c', version: %c.%c\n",
765 pri_ext->pri[0],
766 pri_ext->pri[1],
767 pri_ext->pri[2],
768 pri_ext->major_version,
769 pri_ext->minor_version);
770
771 command_print_sameline(cmd, "feature_support: 0x%" PRIx32 ", "
772 "suspend_cmd_support: 0x%x, blk_status_reg_mask: 0x%x\n",
773 pri_ext->feature_support,
774 pri_ext->suspend_cmd_support,
775 pri_ext->blk_status_reg_mask);
776
777 command_print_sameline(cmd, "Vcc opt: %x.%x, Vpp opt: %u.%x\n",
778 (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
779 (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
780
781 command_print_sameline(cmd, "protection_fields: %i, prot_reg_addr: 0x%x, "
782 "factory pre-programmed: %i, user programmable: %i\n",
783 pri_ext->num_protection_fields, pri_ext->prot_reg_addr,
784 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
785
786 return ERROR_OK;
787 }
788
789 int cfi_flash_bank_cmd(struct flash_bank *bank, unsigned int argc, const char **argv)
790 {
791 struct cfi_flash_bank *cfi_info;
792 bool bus_swap = false;
793
794 if (argc < 6)
795 return ERROR_COMMAND_SYNTAX_ERROR;
796
797 /* both widths must:
798 * - not exceed max value;
799 * - not be null;
800 * - be equal to a power of 2.
801 * bus must be wide enough to hold one chip */
802 if ((bank->chip_width > CFI_MAX_CHIP_WIDTH)
803 || (bank->bus_width > CFI_MAX_BUS_WIDTH)
804 || (bank->chip_width == 0)
805 || (bank->bus_width == 0)
806 || (bank->chip_width & (bank->chip_width - 1))
807 || (bank->bus_width & (bank->bus_width - 1))
808 || (bank->chip_width > bank->bus_width)) {
809 LOG_ERROR("chip and bus width have to specified in bytes");
810 return ERROR_FLASH_BANK_INVALID;
811 }
812
813 cfi_info = calloc(1, sizeof(struct cfi_flash_bank));
814 if (!cfi_info) {
815 LOG_ERROR("No memory for flash bank info");
816 return ERROR_FAIL;
817 }
818 bank->driver_priv = cfi_info;
819
820 for (unsigned i = 6; i < argc; i++) {
821 if (strcmp(argv[i], "x16_as_x8") == 0)
822 cfi_info->x16_as_x8 = true;
823 else if (strcmp(argv[i], "data_swap") == 0)
824 cfi_info->data_swap = true;
825 else if (strcmp(argv[i], "bus_swap") == 0)
826 bus_swap = true;
827 else if (strcmp(argv[i], "jedec_probe") == 0)
828 cfi_info->jedec_probe = true;
829 }
830
831 if (bus_swap)
832 cfi_info->endianness =
833 bank->target->endianness == TARGET_LITTLE_ENDIAN ?
834 TARGET_BIG_ENDIAN : TARGET_LITTLE_ENDIAN;
835 else
836 cfi_info->endianness = bank->target->endianness;
837
838 /* bank wasn't probed yet */
839 cfi_info->qry[0] = 0xff;
840
841 return ERROR_OK;
842 }
843
844 /* flash_bank cfi <base> <size> <chip_width> <bus_width> <target#> [options]
845 */
846 FLASH_BANK_COMMAND_HANDLER(cfi_flash_bank_command)
847 {
848 return cfi_flash_bank_cmd(bank, CMD_ARGC, CMD_ARGV);
849 }
850
851 static int cfi_intel_erase(struct flash_bank *bank, unsigned int first,
852 unsigned int last)
853 {
854 int retval;
855 struct cfi_flash_bank *cfi_info = bank->driver_priv;
856
857 cfi_intel_clear_status_register(bank);
858
859 for (unsigned int i = first; i <= last; i++) {
860 retval = cfi_send_command(bank, 0x20, cfi_flash_address(bank, i, 0x0));
861 if (retval != ERROR_OK)
862 return retval;
863
864 retval = cfi_send_command(bank, 0xd0, cfi_flash_address(bank, i, 0x0));
865 if (retval != ERROR_OK)
866 return retval;
867
868 uint8_t status;
869 retval = cfi_intel_wait_status_busy(bank, cfi_info->block_erase_timeout, &status);
870 if (retval != ERROR_OK)
871 return retval;
872
873 if (status != 0x80) {
874 retval = cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
875 if (retval != ERROR_OK)
876 return retval;
877
878 LOG_ERROR("couldn't erase block %u of flash bank at base "
879 TARGET_ADDR_FMT, i, bank->base);
880 return ERROR_FLASH_OPERATION_FAILED;
881 }
882 }
883
884 return cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
885 }
886
887 int cfi_spansion_unlock_seq(struct flash_bank *bank)
888 {
889 int retval;
890 struct cfi_flash_bank *cfi_info = bank->driver_priv;
891 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
892
893 retval = cfi_send_command(bank, 0xaa, cfi_flash_address(bank, 0, pri_ext->_unlock1));
894 if (retval != ERROR_OK)
895 return retval;
896
897 retval = cfi_send_command(bank, 0x55, cfi_flash_address(bank, 0, pri_ext->_unlock2));
898 if (retval != ERROR_OK)
899 return retval;
900
901 return ERROR_OK;
902 }
903
904 static int cfi_spansion_erase(struct flash_bank *bank, unsigned int first,
905 unsigned int last)
906 {
907 int retval;
908 struct cfi_flash_bank *cfi_info = bank->driver_priv;
909 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
910
911 for (unsigned int i = first; i <= last; i++) {
912 retval = cfi_spansion_unlock_seq(bank);
913 if (retval != ERROR_OK)
914 return retval;
915
916 retval = cfi_send_command(bank, 0x80, cfi_flash_address(bank, 0, pri_ext->_unlock1));
917 if (retval != ERROR_OK)
918 return retval;
919
920 retval = cfi_spansion_unlock_seq(bank);
921 if (retval != ERROR_OK)
922 return retval;
923
924 retval = cfi_send_command(bank, 0x30, cfi_flash_address(bank, i, 0x0));
925 if (retval != ERROR_OK)
926 return retval;
927
928 if (cfi_spansion_wait_status_busy(bank, cfi_info->block_erase_timeout) != ERROR_OK) {
929 retval = cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
930 if (retval != ERROR_OK)
931 return retval;
932
933 LOG_ERROR("couldn't erase block %i of flash bank at base "
934 TARGET_ADDR_FMT, i, bank->base);
935 return ERROR_FLASH_OPERATION_FAILED;
936 }
937 }
938
939 return cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
940 }
941
942 int cfi_erase(struct flash_bank *bank, unsigned int first,
943 unsigned int last)
944 {
945 struct cfi_flash_bank *cfi_info = bank->driver_priv;
946
947 if (bank->target->state != TARGET_HALTED) {
948 LOG_ERROR("Target not halted");
949 return ERROR_TARGET_NOT_HALTED;
950 }
951
952 if ((last < first) || (last >= bank->num_sectors))
953 return ERROR_FLASH_SECTOR_INVALID;
954
955 if (cfi_info->qry[0] != 'Q')
956 return ERROR_FLASH_BANK_NOT_PROBED;
957
958 switch (cfi_info->pri_id) {
959 case 1:
960 case 3:
961 return cfi_intel_erase(bank, first, last);
962 case 2:
963 return cfi_spansion_erase(bank, first, last);
964 default:
965 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
966 break;
967 }
968
969 return ERROR_OK;
970 }
971
972 static int cfi_intel_protect(struct flash_bank *bank, int set,
973 unsigned int first, unsigned int last)
974 {
975 int retval;
976 struct cfi_flash_bank *cfi_info = bank->driver_priv;
977 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
978 int retry = 0;
979
980 /* if the device supports neither legacy lock/unlock (bit 3) nor
981 * instant individual block locking (bit 5).
982 */
983 if (!(pri_ext->feature_support & 0x28)) {
984 LOG_ERROR("lock/unlock not supported on flash");
985 return ERROR_FLASH_OPERATION_FAILED;
986 }
987
988 cfi_intel_clear_status_register(bank);
989
990 for (unsigned int i = first; i <= last; i++) {
991 retval = cfi_send_command(bank, 0x60, cfi_flash_address(bank, i, 0x0));
992 if (retval != ERROR_OK)
993 return retval;
994 if (set) {
995 retval = cfi_send_command(bank, 0x01, cfi_flash_address(bank, i, 0x0));
996 if (retval != ERROR_OK)
997 return retval;
998 bank->sectors[i].is_protected = 1;
999 } else {
1000 retval = cfi_send_command(bank, 0xd0, cfi_flash_address(bank, i, 0x0));
1001 if (retval != ERROR_OK)
1002 return retval;
1003 bank->sectors[i].is_protected = 0;
1004 }
1005
1006 /* instant individual block locking doesn't require reading of the status register
1007 **/
1008 if (!(pri_ext->feature_support & 0x20)) {
1009 /* Clear lock bits operation may take up to 1.4s */
1010 uint8_t status;
1011 retval = cfi_intel_wait_status_busy(bank, 1400, &status);
1012 if (retval != ERROR_OK)
1013 return retval;
1014 } else {
1015 uint8_t block_status;
1016 /* read block lock bit, to verify status */
1017 retval = cfi_send_command(bank, 0x90, cfi_flash_address(bank, 0, 0x55));
1018 if (retval != ERROR_OK)
1019 return retval;
1020 retval = cfi_get_u8(bank, i, 0x2, &block_status);
1021 if (retval != ERROR_OK)
1022 return retval;
1023
1024 if ((block_status & 0x1) != set) {
1025 LOG_ERROR(
1026 "couldn't change block lock status (set = %i, block_status = 0x%2.2x)",
1027 set, block_status);
1028 retval = cfi_send_command(bank, 0x70, cfi_flash_address(bank, 0, 0x55));
1029 if (retval != ERROR_OK)
1030 return retval;
1031 uint8_t status;
1032 retval = cfi_intel_wait_status_busy(bank, 10, &status);
1033 if (retval != ERROR_OK)
1034 return retval;
1035
1036 if (retry > 10)
1037 return ERROR_FLASH_OPERATION_FAILED;
1038 else {
1039 i--;
1040 retry++;
1041 }
1042 }
1043 }
1044 }
1045
1046 /* if the device doesn't support individual block lock bits set/clear,
1047 * all blocks have been unlocked in parallel, so we set those that should be protected
1048 */
1049 if ((!set) && (!(pri_ext->feature_support & 0x20))) {
1050 /* FIX!!! this code path is broken!!!
1051 *
1052 * The correct approach is:
1053 *
1054 * 1. read out current protection status
1055 *
1056 * 2. override read out protection status w/unprotected.
1057 *
1058 * 3. re-protect what should be protected.
1059 *
1060 */
1061 for (unsigned int i = 0; i < bank->num_sectors; i++) {
1062 if (bank->sectors[i].is_protected == 1) {
1063 cfi_intel_clear_status_register(bank);
1064
1065 retval = cfi_send_command(bank, 0x60, cfi_flash_address(bank, i, 0x0));
1066 if (retval != ERROR_OK)
1067 return retval;
1068
1069 retval = cfi_send_command(bank, 0x01, cfi_flash_address(bank, i, 0x0));
1070 if (retval != ERROR_OK)
1071 return retval;
1072
1073 uint8_t status;
1074 retval = cfi_intel_wait_status_busy(bank, 100, &status);
1075 if (retval != ERROR_OK)
1076 return retval;
1077 }
1078 }
1079 }
1080
1081 return cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
1082 }
1083
1084 int cfi_protect(struct flash_bank *bank, int set, unsigned int first,
1085 unsigned int last)
1086 {
1087 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1088
1089 if (bank->target->state != TARGET_HALTED) {
1090 LOG_ERROR("Target not halted");
1091 return ERROR_TARGET_NOT_HALTED;
1092 }
1093
1094 if (cfi_info->qry[0] != 'Q')
1095 return ERROR_FLASH_BANK_NOT_PROBED;
1096
1097 switch (cfi_info->pri_id) {
1098 case 1:
1099 case 3:
1100 return cfi_intel_protect(bank, set, first, last);
1101 default:
1102 LOG_WARNING("protect: cfi primary command set %i unsupported", cfi_info->pri_id);
1103 return ERROR_OK;
1104 }
1105 }
1106
1107 static uint32_t cfi_command_val(struct flash_bank *bank, uint8_t cmd)
1108 {
1109 struct target *target = bank->target;
1110
1111 uint8_t buf[CFI_MAX_BUS_WIDTH];
1112 cfi_command(bank, cmd, buf);
1113 switch (bank->bus_width) {
1114 case 1:
1115 return buf[0];
1116 case 2:
1117 return target_buffer_get_u16(target, buf);
1118 case 4:
1119 return target_buffer_get_u32(target, buf);
1120 default:
1121 LOG_ERROR("Unsupported bank buswidth %u, can't do block memory writes",
1122 bank->bus_width);
1123 return 0;
1124 }
1125 }
1126
1127 static int cfi_intel_write_block(struct flash_bank *bank, const uint8_t *buffer,
1128 uint32_t address, uint32_t count)
1129 {
1130 struct target *target = bank->target;
1131 struct reg_param reg_params[7];
1132 struct arm_algorithm arm_algo;
1133 struct working_area *write_algorithm;
1134 struct working_area *source = NULL;
1135 uint32_t buffer_size = 32768;
1136 uint32_t write_command_val, busy_pattern_val, error_pattern_val;
1137
1138 /* algorithm register usage:
1139 * r0: source address (in RAM)
1140 * r1: target address (in Flash)
1141 * r2: count
1142 * r3: flash write command
1143 * r4: status byte (returned to host)
1144 * r5: busy test pattern
1145 * r6: error test pattern
1146 */
1147
1148 /* see contrib/loaders/flash/armv4_5_cfi_intel_32.s for src */
1149 static const uint32_t word_32_code[] = {
1150 0xe4904004, /* loop: ldr r4, [r0], #4 */
1151 0xe5813000, /* str r3, [r1] */
1152 0xe5814000, /* str r4, [r1] */
1153 0xe5914000, /* busy: ldr r4, [r1] */
1154 0xe0047005, /* and r7, r4, r5 */
1155 0xe1570005, /* cmp r7, r5 */
1156 0x1afffffb, /* bne busy */
1157 0xe1140006, /* tst r4, r6 */
1158 0x1a000003, /* bne done */
1159 0xe2522001, /* subs r2, r2, #1 */
1160 0x0a000001, /* beq done */
1161 0xe2811004, /* add r1, r1 #4 */
1162 0xeafffff2, /* b loop */
1163 0xeafffffe /* done: b -2 */
1164 };
1165
1166 /* see contrib/loaders/flash/armv4_5_cfi_intel_16.s for src */
1167 static const uint32_t word_16_code[] = {
1168 0xe0d040b2, /* loop: ldrh r4, [r0], #2 */
1169 0xe1c130b0, /* strh r3, [r1] */
1170 0xe1c140b0, /* strh r4, [r1] */
1171 0xe1d140b0, /* busy ldrh r4, [r1] */
1172 0xe0047005, /* and r7, r4, r5 */
1173 0xe1570005, /* cmp r7, r5 */
1174 0x1afffffb, /* bne busy */
1175 0xe1140006, /* tst r4, r6 */
1176 0x1a000003, /* bne done */
1177 0xe2522001, /* subs r2, r2, #1 */
1178 0x0a000001, /* beq done */
1179 0xe2811002, /* add r1, r1 #2 */
1180 0xeafffff2, /* b loop */
1181 0xeafffffe /* done: b -2 */
1182 };
1183
1184 /* see contrib/loaders/flash/armv4_5_cfi_intel_8.s for src */
1185 static const uint32_t word_8_code[] = {
1186 0xe4d04001, /* loop: ldrb r4, [r0], #1 */
1187 0xe5c13000, /* strb r3, [r1] */
1188 0xe5c14000, /* strb r4, [r1] */
1189 0xe5d14000, /* busy ldrb r4, [r1] */
1190 0xe0047005, /* and r7, r4, r5 */
1191 0xe1570005, /* cmp r7, r5 */
1192 0x1afffffb, /* bne busy */
1193 0xe1140006, /* tst r4, r6 */
1194 0x1a000003, /* bne done */
1195 0xe2522001, /* subs r2, r2, #1 */
1196 0x0a000001, /* beq done */
1197 0xe2811001, /* add r1, r1 #1 */
1198 0xeafffff2, /* b loop */
1199 0xeafffffe /* done: b -2 */
1200 };
1201 uint8_t target_code[4*CFI_MAX_INTEL_CODESIZE];
1202 const uint32_t *target_code_src;
1203 uint32_t target_code_size;
1204 int retval = ERROR_OK;
1205
1206 /* check we have a supported arch */
1207 if (is_arm(target_to_arm(target))) {
1208 /* All other ARM CPUs have 32 bit instructions */
1209 arm_algo.common_magic = ARM_COMMON_MAGIC;
1210 arm_algo.core_mode = ARM_MODE_SVC;
1211 arm_algo.core_state = ARM_STATE_ARM;
1212 } else {
1213 LOG_ERROR("Unknown architecture");
1214 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1215 }
1216
1217 cfi_intel_clear_status_register(bank);
1218
1219 /* If we are setting up the write_algorithm, we need target_code_src
1220 * if not we only need target_code_size. */
1221
1222 /* However, we don't want to create multiple code paths, so we
1223 * do the unnecessary evaluation of target_code_src, which the
1224 * compiler will probably nicely optimize away if not needed */
1225
1226 /* prepare algorithm code for target endian */
1227 switch (bank->bus_width) {
1228 case 1:
1229 target_code_src = word_8_code;
1230 target_code_size = sizeof(word_8_code);
1231 break;
1232 case 2:
1233 target_code_src = word_16_code;
1234 target_code_size = sizeof(word_16_code);
1235 break;
1236 case 4:
1237 target_code_src = word_32_code;
1238 target_code_size = sizeof(word_32_code);
1239 break;
1240 default:
1241 LOG_ERROR("Unsupported bank buswidth %u, can't do block memory writes",
1242 bank->bus_width);
1243 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1244 }
1245
1246 /* flash write code */
1247 if (target_code_size > sizeof(target_code)) {
1248 LOG_WARNING("Internal error - target code buffer to small. "
1249 "Increase CFI_MAX_INTEL_CODESIZE and recompile.");
1250 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1251 }
1252
1253 target_buffer_set_u32_array(target, target_code, target_code_size / 4, target_code_src);
1254
1255 /* Get memory for block write handler */
1256 retval = target_alloc_working_area(target,
1257 target_code_size,
1258 &write_algorithm);
1259 if (retval != ERROR_OK) {
1260 LOG_WARNING("No working area available, can't do block memory writes");
1261 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1262 }
1263
1264 /* write algorithm code to working area */
1265 retval = target_write_buffer(target, write_algorithm->address,
1266 target_code_size, target_code);
1267 if (retval != ERROR_OK) {
1268 LOG_ERROR("Unable to write block write code to target");
1269 goto cleanup;
1270 }
1271
1272 /* Get a workspace buffer for the data to flash starting with 32k size.
1273 * Half size until buffer would be smaller 256 Bytes then fail back */
1274 /* FIXME Why 256 bytes, why not 32 bytes (smallest flash write page */
1275 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
1276 buffer_size /= 2;
1277 if (buffer_size <= 256) {
1278 LOG_WARNING(
1279 "no large enough working area available, can't do block memory writes");
1280 retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1281 goto cleanup;
1282 }
1283 }
1284
1285 /* setup algo registers */
1286 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1287 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1288 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1289 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1290 init_reg_param(&reg_params[4], "r4", 32, PARAM_IN);
1291 init_reg_param(&reg_params[5], "r5", 32, PARAM_OUT);
1292 init_reg_param(&reg_params[6], "r6", 32, PARAM_OUT);
1293
1294 /* prepare command and status register patterns */
1295 write_command_val = cfi_command_val(bank, 0x40);
1296 busy_pattern_val = cfi_command_val(bank, 0x80);
1297 error_pattern_val = cfi_command_val(bank, 0x7e);
1298
1299 LOG_DEBUG("Using target buffer at " TARGET_ADDR_FMT " and of size 0x%04" PRIx32,
1300 source->address, buffer_size);
1301
1302 /* Programming main loop */
1303 while (count > 0) {
1304 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1305 uint32_t wsm_error;
1306
1307 retval = target_write_buffer(target, source->address, thisrun_count, buffer);
1308 if (retval != ERROR_OK)
1309 goto cleanup;
1310
1311 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1312 buf_set_u32(reg_params[1].value, 0, 32, address);
1313 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1314
1315 buf_set_u32(reg_params[3].value, 0, 32, write_command_val);
1316 buf_set_u32(reg_params[5].value, 0, 32, busy_pattern_val);
1317 buf_set_u32(reg_params[6].value, 0, 32, error_pattern_val);
1318
1319 LOG_DEBUG("Write 0x%04" PRIx32 " bytes to flash at 0x%08" PRIx32,
1320 thisrun_count, address);
1321
1322 /* Execute algorithm, assume breakpoint for last instruction */
1323 retval = target_run_algorithm(target, 0, NULL, 7, reg_params,
1324 write_algorithm->address,
1325 write_algorithm->address + target_code_size -
1326 sizeof(uint32_t),
1327 10000, /* 10s should be enough for max. 32k of data */
1328 &arm_algo);
1329
1330 /* On failure try a fall back to direct word writes */
1331 if (retval != ERROR_OK) {
1332 cfi_intel_clear_status_register(bank);
1333 LOG_ERROR(
1334 "Execution of flash algorithm failed. Can't fall back. Please report.");
1335 retval = ERROR_FLASH_OPERATION_FAILED;
1336 /* retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE; */
1337 /* FIXME To allow fall back or recovery, we must save the actual status
1338 * somewhere, so that a higher level code can start recovery. */
1339 goto cleanup;
1340 }
1341
1342 /* Check return value from algo code */
1343 wsm_error = buf_get_u32(reg_params[4].value, 0, 32) & error_pattern_val;
1344 if (wsm_error) {
1345 /* read status register (outputs debug information) */
1346 uint8_t status;
1347 cfi_intel_wait_status_busy(bank, 100, &status);
1348 cfi_intel_clear_status_register(bank);
1349 retval = ERROR_FLASH_OPERATION_FAILED;
1350 goto cleanup;
1351 }
1352
1353 buffer += thisrun_count;
1354 address += thisrun_count;
1355 count -= thisrun_count;
1356
1357 keep_alive();
1358 }
1359
1360 /* free up resources */
1361 cleanup:
1362 if (source)
1363 target_free_working_area(target, source);
1364
1365 target_free_working_area(target, write_algorithm);
1366
1367 destroy_reg_param(&reg_params[0]);
1368 destroy_reg_param(&reg_params[1]);
1369 destroy_reg_param(&reg_params[2]);
1370 destroy_reg_param(&reg_params[3]);
1371 destroy_reg_param(&reg_params[4]);
1372 destroy_reg_param(&reg_params[5]);
1373 destroy_reg_param(&reg_params[6]);
1374
1375 return retval;
1376 }
1377
1378 static int cfi_spansion_write_block_mips(struct flash_bank *bank, const uint8_t *buffer,
1379 uint32_t address, uint32_t count)
1380 {
1381 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1382 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
1383 struct target *target = bank->target;
1384 struct reg_param reg_params[10];
1385 struct mips32_algorithm mips32_info;
1386 struct working_area *write_algorithm;
1387 struct working_area *source;
1388 uint32_t buffer_size = 32768;
1389 uint32_t status;
1390 int retval = ERROR_OK;
1391
1392 /* input parameters -
1393 * 4 A0 = source address
1394 * 5 A1 = destination address
1395 * 6 A2 = number of writes
1396 * 7 A3 = flash write command
1397 * 8 T0 = constant to mask DQ7 bits (also used for Dq5 with shift)
1398 * output parameters -
1399 * 9 T1 = 0x80 ok 0x00 bad
1400 * temp registers -
1401 * 10 T2 = value read from flash to test status
1402 * 11 T3 = holding register
1403 * unlock registers -
1404 * 12 T4 = unlock1_addr
1405 * 13 T5 = unlock1_cmd
1406 * 14 T6 = unlock2_addr
1407 * 15 T7 = unlock2_cmd */
1408
1409 static const uint32_t mips_word_16_code[] = {
1410 /* start: */
1411 MIPS32_LHU(0, 9, 0, 4), /* lhu $t1, ($a0) ; out = &saddr */
1412 MIPS32_ADDI(0, 4, 4, 2), /* addi $a0, $a0, 2 ; saddr += 2 */
1413 MIPS32_SH(0, 13, 0, 12), /* sh $t5, ($t4) ; *fl_unl_addr1 = fl_unl_cmd1 */
1414 MIPS32_SH(0, 15, 0, 14), /* sh $t7, ($t6) ; *fl_unl_addr2 = fl_unl_cmd2 */
1415 MIPS32_SH(0, 7, 0, 12), /* sh $a3, ($t4) ; *fl_unl_addr1 = fl_write_cmd */
1416 MIPS32_SH(0, 9, 0, 5), /* sh $t1, ($a1) ; *daddr = out */
1417 MIPS32_NOP, /* nop */
1418 /* busy: */
1419 MIPS32_LHU(0, 10, 0, 5), /* lhu $t2, ($a1) ; temp1 = *daddr */
1420 MIPS32_XOR(0, 11, 9, 10), /* xor $t3, $a0, $t2 ; temp2 = out ^ temp1; */
1421 MIPS32_AND(0, 11, 8, 11), /* and $t3, $t0, $t3 ; temp2 = temp2 & DQ7mask */
1422 MIPS32_BNE(0, 11, 8, 13), /* bne $t3, $t0, cont ; if (temp2 != DQ7mask) goto cont */
1423 MIPS32_NOP, /* nop */
1424
1425 MIPS32_SRL(0, 10, 8, 2), /* srl $t2,$t0,2 ; temp1 = DQ7mask >> 2 */
1426 MIPS32_AND(0, 11, 10, 11), /* and $t3, $t2, $t3 ; temp2 = temp2 & temp1 */
1427 MIPS32_BNE(0, 11, 10, NEG16(8)), /* bne $t3, $t2, busy ; if (temp2 != temp1) goto busy */
1428 MIPS32_NOP, /* nop */
1429
1430 MIPS32_LHU(0, 10, 0, 5), /* lhu $t2, ($a1) ; temp1 = *daddr */
1431 MIPS32_XOR(0, 11, 9, 10), /* xor $t3, $a0, $t2 ; temp2 = out ^ temp1; */
1432 MIPS32_AND(0, 11, 8, 11), /* and $t3, $t0, $t3 ; temp2 = temp2 & DQ7mask */
1433 MIPS32_BNE(0, 11, 8, 4), /* bne $t3, $t0, cont ; if (temp2 != DQ7mask) goto cont */
1434 MIPS32_NOP, /* nop */
1435
1436 MIPS32_XOR(0, 9, 9, 9), /* xor $t1, $t1, $t1 ; out = 0 */
1437 MIPS32_BEQ(0, 9, 0, 11), /* beq $t1, $zero, done ; if (out == 0) goto done */
1438 MIPS32_NOP, /* nop */
1439 /* cont: */
1440 MIPS32_ADDI(0, 6, 6, NEG16(1)), /* addi, $a2, $a2, -1 ; numwrites-- */
1441 MIPS32_BNE(0, 6, 0, 5), /* bne $a2, $zero, cont2 ; if (numwrite != 0) goto cont2 */
1442 MIPS32_NOP, /* nop */
1443
1444 MIPS32_LUI(0, 9, 0), /* lui $t1, 0 */
1445 MIPS32_ORI(0, 9, 9, 0x80), /* ori $t1, $t1, 0x80 ; out = 0x80 */
1446
1447 MIPS32_B(0, 4), /* b done ; goto done */
1448 MIPS32_NOP, /* nop */
1449 /* cont2: */
1450 MIPS32_ADDI(0, 5, 5, 2), /* addi $a0, $a0, 2 ; daddr += 2 */
1451 MIPS32_B(0, NEG16(33)), /* b start ; goto start */
1452 MIPS32_NOP, /* nop */
1453 /* done: */
1454 MIPS32_SDBBP(0), /* sdbbp ; break(); */
1455 };
1456
1457 mips32_info.common_magic = MIPS32_COMMON_MAGIC;
1458 mips32_info.isa_mode = MIPS32_ISA_MIPS32;
1459
1460 int target_code_size = 0;
1461 const uint32_t *target_code_src = NULL;
1462
1463 switch (bank->bus_width) {
1464 case 2:
1465 /* Check for DQ5 support */
1466 if (cfi_info->status_poll_mask & (1 << 5)) {
1467 target_code_src = mips_word_16_code;
1468 target_code_size = sizeof(mips_word_16_code);
1469 } else {
1470 LOG_ERROR("Need DQ5 support");
1471 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1472 /* target_code_src = mips_word_16_code_dq7only; */
1473 /* target_code_size = sizeof(mips_word_16_code_dq7only); */
1474 }
1475 break;
1476 default:
1477 LOG_ERROR("Unsupported bank buswidth %u, can't do block memory writes",
1478 bank->bus_width);
1479 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1480 }
1481
1482 /* flash write code */
1483 uint8_t *target_code;
1484
1485 /* convert bus-width dependent algorithm code to correct endianness */
1486 target_code = malloc(target_code_size);
1487 if (!target_code) {
1488 LOG_ERROR("Out of memory");
1489 return ERROR_FAIL;
1490 }
1491
1492 target_buffer_set_u32_array(target, target_code, target_code_size / 4, target_code_src);
1493
1494 /* allocate working area */
1495 retval = target_alloc_working_area(target, target_code_size,
1496 &write_algorithm);
1497 if (retval != ERROR_OK) {
1498 free(target_code);
1499 return retval;
1500 }
1501
1502 /* write algorithm code to working area */
1503 retval = target_write_buffer(target, write_algorithm->address,
1504 target_code_size, target_code);
1505 if (retval != ERROR_OK) {
1506 free(target_code);
1507 return retval;
1508 }
1509
1510 free(target_code);
1511
1512 /* the following code still assumes target code is fixed 24*4 bytes */
1513
1514 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
1515 buffer_size /= 2;
1516 if (buffer_size <= 256) {
1517 /* we already allocated the writing code, but failed to get a
1518 * buffer, free the algorithm */
1519 target_free_working_area(target, write_algorithm);
1520
1521 LOG_WARNING(
1522 "not enough working area available, can't do block memory writes");
1523 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1524 }
1525 }
1526
1527 init_reg_param(&reg_params[0], "r4", 32, PARAM_OUT);
1528 init_reg_param(&reg_params[1], "r5", 32, PARAM_OUT);
1529 init_reg_param(&reg_params[2], "r6", 32, PARAM_OUT);
1530 init_reg_param(&reg_params[3], "r7", 32, PARAM_OUT);
1531 init_reg_param(&reg_params[4], "r8", 32, PARAM_OUT);
1532 init_reg_param(&reg_params[5], "r9", 32, PARAM_IN);
1533 init_reg_param(&reg_params[6], "r12", 32, PARAM_OUT);
1534 init_reg_param(&reg_params[7], "r13", 32, PARAM_OUT);
1535 init_reg_param(&reg_params[8], "r14", 32, PARAM_OUT);
1536 init_reg_param(&reg_params[9], "r15", 32, PARAM_OUT);
1537
1538 while (count > 0) {
1539 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1540
1541 retval = target_write_buffer(target, source->address, thisrun_count, buffer);
1542 if (retval != ERROR_OK)
1543 break;
1544
1545 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1546 buf_set_u32(reg_params[1].value, 0, 32, address);
1547 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1548 buf_set_u32(reg_params[3].value, 0, 32, cfi_command_val(bank, 0xA0));
1549 buf_set_u32(reg_params[4].value, 0, 32, cfi_command_val(bank, 0x80));
1550 buf_set_u32(reg_params[6].value, 0, 32, cfi_flash_address(bank, 0, pri_ext->_unlock1));
1551 buf_set_u32(reg_params[7].value, 0, 32, 0xaaaaaaaa);
1552 buf_set_u32(reg_params[8].value, 0, 32, cfi_flash_address(bank, 0, pri_ext->_unlock2));
1553 buf_set_u32(reg_params[9].value, 0, 32, 0x55555555);
1554
1555 retval = target_run_algorithm(target, 0, NULL, 10, reg_params,
1556 write_algorithm->address,
1557 write_algorithm->address + ((target_code_size) - 4),
1558 10000, &mips32_info);
1559 if (retval != ERROR_OK)
1560 break;
1561
1562 status = buf_get_u32(reg_params[5].value, 0, 32);
1563 if (status != 0x80) {
1564 LOG_ERROR("flash write block failed status: 0x%" PRIx32, status);
1565 retval = ERROR_FLASH_OPERATION_FAILED;
1566 break;
1567 }
1568
1569 buffer += thisrun_count;
1570 address += thisrun_count;
1571 count -= thisrun_count;
1572 }
1573
1574 target_free_all_working_areas(target);
1575
1576 destroy_reg_param(&reg_params[0]);
1577 destroy_reg_param(&reg_params[1]);
1578 destroy_reg_param(&reg_params[2]);
1579 destroy_reg_param(&reg_params[3]);
1580 destroy_reg_param(&reg_params[4]);
1581 destroy_reg_param(&reg_params[5]);
1582 destroy_reg_param(&reg_params[6]);
1583 destroy_reg_param(&reg_params[7]);
1584 destroy_reg_param(&reg_params[8]);
1585 destroy_reg_param(&reg_params[9]);
1586
1587 return retval;
1588 }
1589
1590 static int cfi_spansion_write_block(struct flash_bank *bank, const uint8_t *buffer,
1591 uint32_t address, uint32_t count)
1592 {
1593 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1594 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
1595 struct target *target = bank->target;
1596 struct reg_param reg_params[10];
1597 void *arm_algo;
1598 struct arm_algorithm armv4_5_algo;
1599 struct armv7m_algorithm armv7m_algo;
1600 struct working_area *write_algorithm;
1601 struct working_area *source;
1602 uint32_t buffer_size = 32768;
1603 uint32_t status;
1604 int retval = ERROR_OK;
1605
1606 /* input parameters -
1607 * R0 = source address
1608 * R1 = destination address
1609 * R2 = number of writes
1610 * R3 = flash write command
1611 * R4 = constant to mask DQ7 bits (also used for Dq5 with shift)
1612 * output parameters -
1613 * R5 = 0x80 ok 0x00 bad
1614 * temp registers -
1615 * R6 = value read from flash to test status
1616 * R7 = holding register
1617 * unlock registers -
1618 * R8 = unlock1_addr
1619 * R9 = unlock1_cmd
1620 * R10 = unlock2_addr
1621 * R11 = unlock2_cmd */
1622
1623 /* see contrib/loaders/flash/armv4_5_cfi_span_32.s for src */
1624 static const uint32_t armv4_5_word_32_code[] = {
1625 /* 00008100 <sp_32_code>: */
1626 0xe4905004, /* ldr r5, [r0], #4 */
1627 0xe5889000, /* str r9, [r8] */
1628 0xe58ab000, /* str r11, [r10] */
1629 0xe5883000, /* str r3, [r8] */
1630 0xe5815000, /* str r5, [r1] */
1631 0xe1a00000, /* nop */
1632 /* 00008110 <sp_32_busy>: */
1633 0xe5916000, /* ldr r6, [r1] */
1634 0xe0257006, /* eor r7, r5, r6 */
1635 0xe0147007, /* ands r7, r4, r7 */
1636 0x0a000007, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
1637 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1638 0x0afffff9, /* beq 8110 <sp_32_busy> ; b if DQ5 low */
1639 0xe5916000, /* ldr r6, [r1] */
1640 0xe0257006, /* eor r7, r5, r6 */
1641 0xe0147007, /* ands r7, r4, r7 */
1642 0x0a000001, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
1643 0xe3a05000, /* mov r5, #0 ; 0x0 - return 0x00, error */
1644 0x1a000004, /* bne 8154 <sp_32_done> */
1645 /* 00008140 <sp_32_cont>: */
1646 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1647 0x03a05080, /* moveq r5, #128 ; 0x80 */
1648 0x0a000001, /* beq 8154 <sp_32_done> */
1649 0xe2811004, /* add r1, r1, #4 ; 0x4 */
1650 0xeaffffe8, /* b 8100 <sp_32_code> */
1651 /* 00008154 <sp_32_done>: */
1652 0xeafffffe /* b 8154 <sp_32_done> */
1653 };
1654
1655 /* see contrib/loaders/flash/armv4_5_cfi_span_16.s for src */
1656 static const uint32_t armv4_5_word_16_code[] = {
1657 /* 00008158 <sp_16_code>: */
1658 0xe0d050b2, /* ldrh r5, [r0], #2 */
1659 0xe1c890b0, /* strh r9, [r8] */
1660 0xe1cab0b0, /* strh r11, [r10] */
1661 0xe1c830b0, /* strh r3, [r8] */
1662 0xe1c150b0, /* strh r5, [r1] */
1663 0xe1a00000, /* nop (mov r0,r0) */
1664 /* 00008168 <sp_16_busy>: */
1665 0xe1d160b0, /* ldrh r6, [r1] */
1666 0xe0257006, /* eor r7, r5, r6 */
1667 0xe0147007, /* ands r7, r4, r7 */
1668 0x0a000007, /* beq 8198 <sp_16_cont> */
1669 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1670 0x0afffff9, /* beq 8168 <sp_16_busy> */
1671 0xe1d160b0, /* ldrh r6, [r1] */
1672 0xe0257006, /* eor r7, r5, r6 */
1673 0xe0147007, /* ands r7, r4, r7 */
1674 0x0a000001, /* beq 8198 <sp_16_cont> */
1675 0xe3a05000, /* mov r5, #0 ; 0x0 */
1676 0x1a000004, /* bne 81ac <sp_16_done> */
1677 /* 00008198 <sp_16_cont>: */
1678 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1679 0x03a05080, /* moveq r5, #128 ; 0x80 */
1680 0x0a000001, /* beq 81ac <sp_16_done> */
1681 0xe2811002, /* add r1, r1, #2 ; 0x2 */
1682 0xeaffffe8, /* b 8158 <sp_16_code> */
1683 /* 000081ac <sp_16_done>: */
1684 0xeafffffe /* b 81ac <sp_16_done> */
1685 };
1686
1687 /* see contrib/loaders/flash/armv7m_cfi_span_16.s for src */
1688 static const uint32_t armv7m_word_16_code[] = {
1689 0x5B02F830,
1690 0x9000F8A8,
1691 0xB000F8AA,
1692 0x3000F8A8,
1693 0xBF00800D,
1694 0xEA85880E,
1695 0x40270706,
1696 0xEA16D00A,
1697 0xD0F70694,
1698 0xEA85880E,
1699 0x40270706,
1700 0xF04FD002,
1701 0xD1070500,
1702 0xD0023A01,
1703 0x0102F101,
1704 0xF04FE7E0,
1705 0xE7FF0580,
1706 0x0000BE00
1707 };
1708
1709 /* see contrib/loaders/flash/armv7m_cfi_span_16_dq7.s for src */
1710 static const uint32_t armv7m_word_16_code_dq7only[] = {
1711 /* 00000000 <code>: */
1712 0x5B02F830, /* ldrh.w r5, [r0], #2 */
1713 0x9000F8A8, /* strh.w r9, [r8] */
1714 0xB000F8AA, /* strh.w fp, [sl] */
1715 0x3000F8A8, /* strh.w r3, [r8] */
1716 0xBF00800D, /* strh r5, [r1, #0] */
1717 /* nop */
1718
1719 /* 00000014 <busy>: */
1720 0xEA85880E, /* ldrh r6, [r1, #0] */
1721 /* eor.w r7, r5, r6 */
1722 0x40270706, /* ands r7, r4 */
1723 0x3A01D1FA, /* bne.n 14 <busy> */
1724 /* subs r2, #1 */
1725 0xF101D002, /* beq.n 28 <success> */
1726 0xE7EB0102, /* add.w r1, r1, #2 */
1727 /* b.n 0 <code> */
1728
1729 /* 00000028 <success>: */
1730 0x0580F04F, /* mov.w r5, #128 */
1731 0xBF00E7FF, /* b.n 30 <done> */
1732 /* nop (for alignment purposes) */
1733
1734 /* 00000030 <done>: */
1735 0x0000BE00 /* bkpt 0x0000 */
1736 };
1737
1738 /* see contrib/loaders/flash/armv4_5_cfi_span_16_dq7.s for src */
1739 static const uint32_t armv4_5_word_16_code_dq7only[] = {
1740 /* <sp_16_code>: */
1741 0xe0d050b2, /* ldrh r5, [r0], #2 */
1742 0xe1c890b0, /* strh r9, [r8] */
1743 0xe1cab0b0, /* strh r11, [r10] */
1744 0xe1c830b0, /* strh r3, [r8] */
1745 0xe1c150b0, /* strh r5, [r1] */
1746 0xe1a00000, /* nop (mov r0,r0) */
1747 /* <sp_16_busy>: */
1748 0xe1d160b0, /* ldrh r6, [r1] */
1749 0xe0257006, /* eor r7, r5, r6 */
1750 0xe2177080, /* ands r7, #0x80 */
1751 0x1afffffb, /* bne 8168 <sp_16_busy> */
1752 /* */
1753 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1754 0x03a05080, /* moveq r5, #128 ; 0x80 */
1755 0x0a000001, /* beq 81ac <sp_16_done> */
1756 0xe2811002, /* add r1, r1, #2 ; 0x2 */
1757 0xeafffff0, /* b 8158 <sp_16_code> */
1758 /* 000081ac <sp_16_done>: */
1759 0xeafffffe /* b 81ac <sp_16_done> */
1760 };
1761
1762 /* see contrib/loaders/flash/armv4_5_cfi_span_8.s for src */
1763 static const uint32_t armv4_5_word_8_code[] = {
1764 /* 000081b0 <sp_16_code_end>: */
1765 0xe4d05001, /* ldrb r5, [r0], #1 */
1766 0xe5c89000, /* strb r9, [r8] */
1767 0xe5cab000, /* strb r11, [r10] */
1768 0xe5c83000, /* strb r3, [r8] */
1769 0xe5c15000, /* strb r5, [r1] */
1770 0xe1a00000, /* nop (mov r0,r0) */
1771 /* 000081c0 <sp_8_busy>: */
1772 0xe5d16000, /* ldrb r6, [r1] */
1773 0xe0257006, /* eor r7, r5, r6 */
1774 0xe0147007, /* ands r7, r4, r7 */
1775 0x0a000007, /* beq 81f0 <sp_8_cont> */
1776 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1777 0x0afffff9, /* beq 81c0 <sp_8_busy> */
1778 0xe5d16000, /* ldrb r6, [r1] */
1779 0xe0257006, /* eor r7, r5, r6 */
1780 0xe0147007, /* ands r7, r4, r7 */
1781 0x0a000001, /* beq 81f0 <sp_8_cont> */
1782 0xe3a05000, /* mov r5, #0 ; 0x0 */
1783 0x1a000004, /* bne 8204 <sp_8_done> */
1784 /* 000081f0 <sp_8_cont>: */
1785 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1786 0x03a05080, /* moveq r5, #128 ; 0x80 */
1787 0x0a000001, /* beq 8204 <sp_8_done> */
1788 0xe2811001, /* add r1, r1, #1 ; 0x1 */
1789 0xeaffffe8, /* b 81b0 <sp_16_code_end> */
1790 /* 00008204 <sp_8_done>: */
1791 0xeafffffe /* b 8204 <sp_8_done> */
1792 };
1793
1794 if (strncmp(target_type_name(target), "mips_m4k", 8) == 0)
1795 return cfi_spansion_write_block_mips(bank, buffer, address, count);
1796
1797 if (is_armv7m(target_to_armv7m(target))) { /* armv7m target */
1798 armv7m_algo.common_magic = ARMV7M_COMMON_MAGIC;
1799 armv7m_algo.core_mode = ARM_MODE_THREAD;
1800 arm_algo = &armv7m_algo;
1801 } else if (is_arm(target_to_arm(target))) {
1802 /* All other ARM CPUs have 32 bit instructions */
1803 armv4_5_algo.common_magic = ARM_COMMON_MAGIC;
1804 armv4_5_algo.core_mode = ARM_MODE_SVC;
1805 armv4_5_algo.core_state = ARM_STATE_ARM;
1806 arm_algo = &armv4_5_algo;
1807 } else {
1808 LOG_ERROR("Unknown architecture");
1809 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1810 }
1811
1812 int target_code_size = 0;
1813 const uint32_t *target_code_src = NULL;
1814
1815 switch (bank->bus_width) {
1816 case 1:
1817 if (is_armv7m(target_to_armv7m(target))) {
1818 LOG_ERROR("Unknown ARM architecture");
1819 return ERROR_FAIL;
1820 }
1821 target_code_src = armv4_5_word_8_code;
1822 target_code_size = sizeof(armv4_5_word_8_code);
1823 break;
1824 case 2:
1825 /* Check for DQ5 support */
1826 if (cfi_info->status_poll_mask & (1 << 5)) {
1827 if (is_armv7m(target_to_armv7m(target))) {
1828 /* armv7m target */
1829 target_code_src = armv7m_word_16_code;
1830 target_code_size = sizeof(armv7m_word_16_code);
1831 } else { /* armv4_5 target */
1832 target_code_src = armv4_5_word_16_code;
1833 target_code_size = sizeof(armv4_5_word_16_code);
1834 }
1835 } else {
1836 /* No DQ5 support. Use DQ7 DATA# polling only. */
1837 if (is_armv7m(target_to_armv7m(target))) {
1838 /* armv7m target */
1839 target_code_src = armv7m_word_16_code_dq7only;
1840 target_code_size = sizeof(armv7m_word_16_code_dq7only);
1841 } else { /* armv4_5 target */
1842 target_code_src = armv4_5_word_16_code_dq7only;
1843 target_code_size = sizeof(armv4_5_word_16_code_dq7only);
1844 }
1845 }
1846 break;
1847 case 4:
1848 if (is_armv7m(target_to_armv7m(target))) {
1849 LOG_ERROR("Unknown ARM architecture");
1850 return ERROR_FAIL;
1851 }
1852 target_code_src = armv4_5_word_32_code;
1853 target_code_size = sizeof(armv4_5_word_32_code);
1854 break;
1855 default:
1856 LOG_ERROR("Unsupported bank buswidth %u, can't do block memory writes",
1857 bank->bus_width);
1858 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1859 }
1860
1861 /* flash write code */
1862 uint8_t *target_code;
1863
1864 /* convert bus-width dependent algorithm code to correct endianness */
1865 target_code = malloc(target_code_size);
1866 if (!target_code) {
1867 LOG_ERROR("Out of memory");
1868 return ERROR_FAIL;
1869 }
1870
1871 target_buffer_set_u32_array(target, target_code, target_code_size / 4, target_code_src);
1872
1873 /* allocate working area */
1874 retval = target_alloc_working_area(target, target_code_size,
1875 &write_algorithm);
1876 if (retval != ERROR_OK) {
1877 free(target_code);
1878 return retval;
1879 }
1880
1881 /* write algorithm code to working area */
1882 retval = target_write_buffer(target, write_algorithm->address,
1883 target_code_size, target_code);
1884 if (retval != ERROR_OK) {
1885 free(target_code);
1886 return retval;
1887 }
1888
1889 free(target_code);
1890
1891 /* the following code still assumes target code is fixed 24*4 bytes */
1892
1893 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
1894 buffer_size /= 2;
1895 if (buffer_size <= 256) {
1896 /* we already allocated the writing code, but failed to get a
1897 * buffer, free the algorithm */
1898 target_free_working_area(target, write_algorithm);
1899
1900 LOG_WARNING(
1901 "not enough working area available, can't do block memory writes");
1902 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1903 }
1904 }
1905
1906 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1907 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1908 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1909 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1910 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
1911 init_reg_param(&reg_params[5], "r5", 32, PARAM_IN);
1912 init_reg_param(&reg_params[6], "r8", 32, PARAM_OUT);
1913 init_reg_param(&reg_params[7], "r9", 32, PARAM_OUT);
1914 init_reg_param(&reg_params[8], "r10", 32, PARAM_OUT);
1915 init_reg_param(&reg_params[9], "r11", 32, PARAM_OUT);
1916
1917 while (count > 0) {
1918 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1919
1920 retval = target_write_buffer(target, source->address, thisrun_count, buffer);
1921 if (retval != ERROR_OK)
1922 break;
1923
1924 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1925 buf_set_u32(reg_params[1].value, 0, 32, address);
1926 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1927 buf_set_u32(reg_params[3].value, 0, 32, cfi_command_val(bank, 0xA0));
1928 buf_set_u32(reg_params[4].value, 0, 32, cfi_command_val(bank, 0x80));
1929 buf_set_u32(reg_params[6].value, 0, 32, cfi_flash_address(bank, 0, pri_ext->_unlock1));
1930 buf_set_u32(reg_params[7].value, 0, 32, 0xaaaaaaaa);
1931 buf_set_u32(reg_params[8].value, 0, 32, cfi_flash_address(bank, 0, pri_ext->_unlock2));
1932 buf_set_u32(reg_params[9].value, 0, 32, 0x55555555);
1933
1934 retval = target_run_algorithm(target, 0, NULL, 10, reg_params,
1935 write_algorithm->address,
1936 write_algorithm->address + ((target_code_size) - 4),
1937 10000, arm_algo);
1938 if (retval != ERROR_OK)
1939 break;
1940
1941 status = buf_get_u32(reg_params[5].value, 0, 32);
1942 if (status != 0x80) {
1943 LOG_ERROR("flash write block failed status: 0x%" PRIx32, status);
1944 retval = ERROR_FLASH_OPERATION_FAILED;
1945 break;
1946 }
1947
1948 buffer += thisrun_count;
1949 address += thisrun_count;
1950 count -= thisrun_count;
1951 }
1952
1953 target_free_all_working_areas(target);
1954
1955 destroy_reg_param(&reg_params[0]);
1956 destroy_reg_param(&reg_params[1]);
1957 destroy_reg_param(&reg_params[2]);
1958 destroy_reg_param(&reg_params[3]);
1959 destroy_reg_param(&reg_params[4]);
1960 destroy_reg_param(&reg_params[5]);
1961 destroy_reg_param(&reg_params[6]);
1962 destroy_reg_param(&reg_params[7]);
1963 destroy_reg_param(&reg_params[8]);
1964 destroy_reg_param(&reg_params[9]);
1965
1966 return retval;
1967 }
1968
1969 static int cfi_intel_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
1970 {
1971 int retval;
1972 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1973
1974 cfi_intel_clear_status_register(bank);
1975 retval = cfi_send_command(bank, 0x40, address);
1976 if (retval != ERROR_OK)
1977 return retval;
1978
1979 retval = cfi_target_write_memory(bank, address, 1, word);
1980 if (retval != ERROR_OK)
1981 return retval;
1982
1983 uint8_t status;
1984 retval = cfi_intel_wait_status_busy(bank, cfi_info->word_write_timeout, &status);
1985 if (retval != ERROR_OK)
1986 return retval;
1987 if (status != 0x80) {
1988 retval = cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
1989 if (retval != ERROR_OK)
1990 return retval;
1991
1992 LOG_ERROR("couldn't write word at base " TARGET_ADDR_FMT
1993 ", address 0x%" PRIx32,
1994 bank->base, address);
1995 return ERROR_FLASH_OPERATION_FAILED;
1996 }
1997
1998 return ERROR_OK;
1999 }
2000
2001 static int cfi_intel_write_words(struct flash_bank *bank, const uint8_t *word,
2002 uint32_t wordcount, uint32_t address)
2003 {
2004 int retval;
2005 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2006
2007 /* Calculate buffer size and boundary mask
2008 * buffersize is (buffer size per chip) * (number of chips)
2009 * bufferwsize is buffersize in words */
2010 uint32_t buffersize =
2011 (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
2012 uint32_t buffermask = buffersize-1;
2013 uint32_t bufferwsize = buffersize / bank->bus_width;
2014
2015 /* Check for valid range */
2016 if (address & buffermask) {
2017 LOG_ERROR("Write address at base " TARGET_ADDR_FMT ", address 0x%"
2018 PRIx32 " not aligned to 2^%d boundary",
2019 bank->base, address, cfi_info->max_buf_write_size);
2020 return ERROR_FLASH_OPERATION_FAILED;
2021 }
2022
2023 /* Check for valid size */
2024 if (wordcount > bufferwsize) {
2025 LOG_ERROR("Number of data words %" PRIu32 " exceeds available buffersize %" PRIu32,
2026 wordcount, buffersize);
2027 return ERROR_FLASH_OPERATION_FAILED;
2028 }
2029
2030 /* Write to flash buffer */
2031 cfi_intel_clear_status_register(bank);
2032
2033 /* Initiate buffer operation _*/
2034 retval = cfi_send_command(bank, 0xe8, address);
2035 if (retval != ERROR_OK)
2036 return retval;
2037 uint8_t status;
2038 retval = cfi_intel_wait_status_busy(bank, cfi_info->buf_write_timeout, &status);
2039 if (retval != ERROR_OK)
2040 return retval;
2041 if (status != 0x80) {
2042 retval = cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
2043 if (retval != ERROR_OK)
2044 return retval;
2045
2046 LOG_ERROR(
2047 "couldn't start buffer write operation at base " TARGET_ADDR_FMT
2048 ", address 0x%" PRIx32,
2049 bank->base,
2050 address);
2051 return ERROR_FLASH_OPERATION_FAILED;
2052 }
2053
2054 /* Write buffer wordcount-1 and data words */
2055 retval = cfi_send_command(bank, bufferwsize-1, address);
2056 if (retval != ERROR_OK)
2057 return retval;
2058
2059 retval = cfi_target_write_memory(bank, address, bufferwsize, word);
2060 if (retval != ERROR_OK)
2061 return retval;
2062
2063 /* Commit write operation */
2064 retval = cfi_send_command(bank, 0xd0, address);
2065 if (retval != ERROR_OK)
2066 return retval;
2067
2068 retval = cfi_intel_wait_status_busy(bank, cfi_info->buf_write_timeout, &status);
2069 if (retval != ERROR_OK)
2070 return retval;
2071
2072 if (status != 0x80) {
2073 retval = cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
2074 if (retval != ERROR_OK)
2075 return retval;
2076
2077 LOG_ERROR("Buffer write at base " TARGET_ADDR_FMT
2078 ", address 0x%" PRIx32 " failed.", bank->base, address);
2079 return ERROR_FLASH_OPERATION_FAILED;
2080 }
2081
2082 return ERROR_OK;
2083 }
2084
2085 static int cfi_spansion_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
2086 {
2087 int retval;
2088 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2089 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2090
2091 retval = cfi_spansion_unlock_seq(bank);
2092 if (retval != ERROR_OK)
2093 return retval;
2094
2095 retval = cfi_send_command(bank, 0xa0, cfi_flash_address(bank, 0, pri_ext->_unlock1));
2096 if (retval != ERROR_OK)
2097 return retval;
2098
2099 retval = cfi_target_write_memory(bank, address, 1, word);
2100 if (retval != ERROR_OK)
2101 return retval;
2102
2103 if (cfi_spansion_wait_status_busy(bank, cfi_info->word_write_timeout) != ERROR_OK) {
2104 retval = cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
2105 if (retval != ERROR_OK)
2106 return retval;
2107
2108 LOG_ERROR("couldn't write word at base " TARGET_ADDR_FMT
2109 ", address 0x%" PRIx32, bank->base, address);
2110 return ERROR_FLASH_OPERATION_FAILED;
2111 }
2112
2113 return ERROR_OK;
2114 }
2115
2116 static int cfi_spansion_write_words(struct flash_bank *bank, const uint8_t *word,
2117 uint32_t wordcount, uint32_t address)
2118 {
2119 int retval;
2120 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2121
2122 /* Calculate buffer size and boundary mask
2123 * buffersize is (buffer size per chip) * (number of chips)
2124 * bufferwsize is buffersize in words */
2125 uint32_t buffersize =
2126 (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
2127 uint32_t buffermask = buffersize-1;
2128 uint32_t bufferwsize = buffersize / bank->bus_width;
2129
2130 /* Check for valid range */
2131 if (address & buffermask) {
2132 LOG_ERROR("Write address at base " TARGET_ADDR_FMT
2133 ", address 0x%" PRIx32 " not aligned to 2^%d boundary",
2134 bank->base, address, cfi_info->max_buf_write_size);
2135 return ERROR_FLASH_OPERATION_FAILED;
2136 }
2137
2138 /* Check for valid size */
2139 if (wordcount > bufferwsize) {
2140 LOG_ERROR("Number of data words %" PRIu32 " exceeds available buffersize %"
2141 PRIu32, wordcount, buffersize);
2142 return ERROR_FLASH_OPERATION_FAILED;
2143 }
2144
2145 /* Unlock */
2146 retval = cfi_spansion_unlock_seq(bank);
2147 if (retval != ERROR_OK)
2148 return retval;
2149
2150 /* Buffer load command */
2151 retval = cfi_send_command(bank, 0x25, address);
2152 if (retval != ERROR_OK)
2153 return retval;
2154
2155 /* Write buffer wordcount-1 and data words */
2156 retval = cfi_send_command(bank, bufferwsize-1, address);
2157 if (retval != ERROR_OK)
2158 return retval;
2159
2160 retval = cfi_target_write_memory(bank, address, bufferwsize, word);
2161 if (retval != ERROR_OK)
2162 return retval;
2163
2164 /* Commit write operation */
2165 retval = cfi_send_command(bank, 0x29, address);
2166 if (retval != ERROR_OK)
2167 return retval;
2168
2169 if (cfi_spansion_wait_status_busy(bank, cfi_info->buf_write_timeout) != ERROR_OK) {
2170 retval = cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
2171 if (retval != ERROR_OK)
2172 return retval;
2173
2174 LOG_ERROR("couldn't write block at base " TARGET_ADDR_FMT
2175 ", address 0x%" PRIx32 ", size 0x%" PRIx32, bank->base, address,
2176 bufferwsize);
2177 return ERROR_FLASH_OPERATION_FAILED;
2178 }
2179
2180 return ERROR_OK;
2181 }
2182
2183 int cfi_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
2184 {
2185 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2186
2187 switch (cfi_info->pri_id) {
2188 case 1:
2189 case 3:
2190 return cfi_intel_write_word(bank, word, address);
2191 case 2:
2192 return cfi_spansion_write_word(bank, word, address);
2193 default:
2194 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2195 break;
2196 }
2197
2198 return ERROR_FLASH_OPERATION_FAILED;
2199 }
2200
2201 static int cfi_write_words(struct flash_bank *bank, const uint8_t *word,
2202 uint32_t wordcount, uint32_t address)
2203 {
2204 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2205
2206 if (cfi_info->buf_write_timeout_typ == 0) {
2207 /* buffer writes are not supported */
2208 LOG_DEBUG("Buffer Writes Not Supported");
2209 return ERROR_FLASH_OPER_UNSUPPORTED;
2210 }
2211
2212 switch (cfi_info->pri_id) {
2213 case 1:
2214 case 3:
2215 return cfi_intel_write_words(bank, word, wordcount, address);
2216 case 2:
2217 return cfi_spansion_write_words(bank, word, wordcount, address);
2218 default:
2219 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2220 break;
2221 }
2222
2223 return ERROR_FLASH_OPERATION_FAILED;
2224 }
2225
2226 static int cfi_read(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
2227 {
2228 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2229 uint32_t address = bank->base + offset;
2230 uint32_t read_p;
2231 int align; /* number of unaligned bytes */
2232 uint8_t current_word[CFI_MAX_BUS_WIDTH];
2233 int retval;
2234
2235 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
2236 (int)count, (unsigned)offset);
2237
2238 if (bank->target->state != TARGET_HALTED) {
2239 LOG_ERROR("Target not halted");
2240 return ERROR_TARGET_NOT_HALTED;
2241 }
2242
2243 if (offset + count > bank->size)
2244 return ERROR_FLASH_DST_OUT_OF_BANK;
2245
2246 if (cfi_info->qry[0] != 'Q')
2247 return ERROR_FLASH_BANK_NOT_PROBED;
2248
2249 /* start at the first byte of the first word (bus_width size) */
2250 read_p = address & ~(bank->bus_width - 1);
2251 align = address - read_p;
2252 if (align != 0) {
2253 LOG_INFO("Fixup %d unaligned read head bytes", align);
2254
2255 /* read a complete word from flash */
2256 retval = cfi_target_read_memory(bank, read_p, 1, current_word);
2257 if (retval != ERROR_OK)
2258 return retval;
2259
2260 /* take only bytes we need */
2261 for (unsigned int i = align; (i < bank->bus_width) && (count > 0); i++, count--)
2262 *buffer++ = current_word[i];
2263
2264 read_p += bank->bus_width;
2265 }
2266
2267 align = count / bank->bus_width;
2268 if (align) {
2269 retval = cfi_target_read_memory(bank, read_p, align, buffer);
2270 if (retval != ERROR_OK)
2271 return retval;
2272
2273 read_p += align * bank->bus_width;
2274 buffer += align * bank->bus_width;
2275 count -= align * bank->bus_width;
2276 }
2277
2278 if (count) {
2279 LOG_INFO("Fixup %" PRIu32 " unaligned read tail bytes", count);
2280
2281 /* read a complete word from flash */
2282 retval = cfi_target_read_memory(bank, read_p, 1, current_word);
2283 if (retval != ERROR_OK)
2284 return retval;
2285
2286 /* take only bytes we need */
2287 for (unsigned int i = 0; (i < bank->bus_width) && (count > 0); i++, count--)
2288 *buffer++ = current_word[i];
2289 }
2290
2291 return ERROR_OK;
2292 }
2293
2294 static int cfi_write(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count)
2295 {
2296 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2297 uint32_t address = bank->base + offset; /* address of first byte to be programmed */
2298 uint32_t write_p;
2299 int align; /* number of unaligned bytes */
2300 int blk_count; /* number of bus_width bytes for block copy */
2301 uint8_t current_word[CFI_MAX_BUS_WIDTH * 4]; /* word (bus_width size) currently being
2302 *programmed */
2303 uint8_t *swapped_buffer = NULL;
2304 const uint8_t *real_buffer = NULL;
2305 int retval;
2306
2307 if (bank->target->state != TARGET_HALTED) {
2308 LOG_ERROR("Target not halted");
2309 return ERROR_TARGET_NOT_HALTED;
2310 }
2311
2312 if (offset + count > bank->size)
2313 return ERROR_FLASH_DST_OUT_OF_BANK;
2314
2315 if (cfi_info->qry[0] != 'Q')
2316 return ERROR_FLASH_BANK_NOT_PROBED;
2317
2318 /* start at the first byte of the first word (bus_width size) */
2319 write_p = address & ~(bank->bus_width - 1);
2320 align = address - write_p;
2321 if (align != 0) {
2322 LOG_INFO("Fixup %d unaligned head bytes", align);
2323
2324 /* read a complete word from flash */
2325 retval = cfi_target_read_memory(bank, write_p, 1, current_word);
2326 if (retval != ERROR_OK)
2327 return retval;
2328
2329 /* replace only bytes that must be written */
2330 for (unsigned int i = align; (i < bank->bus_width) && (count > 0); i++, count--)
2331 if (cfi_info->data_swap)
2332 /* data bytes are swapped (reverse endianness) */
2333 current_word[bank->bus_width - i] = *buffer++;
2334 else
2335 current_word[i] = *buffer++;
2336
2337 retval = cfi_write_word(bank, current_word, write_p);
2338 if (retval != ERROR_OK)
2339 return retval;
2340 write_p += bank->bus_width;
2341 }
2342
2343 if (cfi_info->data_swap && count) {
2344 swapped_buffer = malloc(count & ~(bank->bus_width - 1));
2345 switch (bank->bus_width) {
2346 case 2:
2347 buf_bswap16(swapped_buffer, buffer,
2348 count & ~(bank->bus_width - 1));
2349 break;
2350 case 4:
2351 buf_bswap32(swapped_buffer, buffer,
2352 count & ~(bank->bus_width - 1));
2353 break;
2354 }
2355 real_buffer = buffer;
2356 buffer = swapped_buffer;
2357 }
2358
2359 /* handle blocks of bus_size aligned bytes */
2360 blk_count = count & ~(bank->bus_width - 1); /* round down, leave tail bytes */
2361 switch (cfi_info->pri_id) {
2362 /* try block writes (fails without working area) */
2363 case 1:
2364 case 3:
2365 retval = cfi_intel_write_block(bank, buffer, write_p, blk_count);
2366 break;
2367 case 2:
2368 retval = cfi_spansion_write_block(bank, buffer, write_p, blk_count);
2369 break;
2370 default:
2371 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2372 retval = ERROR_FLASH_OPERATION_FAILED;
2373 break;
2374 }
2375 if (retval == ERROR_OK) {
2376 /* Increment pointers and decrease count on successful block write */
2377 buffer += blk_count;
2378 write_p += blk_count;
2379 count -= blk_count;
2380 } else {
2381 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
2382 /* Calculate buffer size and boundary mask
2383 * buffersize is (buffer size per chip) * (number of chips)
2384 * bufferwsize is buffersize in words */
2385 uint32_t buffersize =
2386 (1UL <<
2387 cfi_info->max_buf_write_size) *
2388 (bank->bus_width / bank->chip_width);
2389 uint32_t buffermask = buffersize-1;
2390 uint32_t bufferwsize = buffersize / bank->bus_width;
2391
2392 /* fall back to memory writes */
2393 while (count >= (uint32_t)bank->bus_width) {
2394 bool fallback;
2395 if ((write_p & 0xff) == 0) {
2396 LOG_INFO("Programming at 0x%08" PRIx32 ", count 0x%08"
2397 PRIx32 " bytes remaining", write_p, count);
2398 }
2399 fallback = true;
2400 if ((bufferwsize > 0) && (count >= buffersize) &&
2401 !(write_p & buffermask)) {
2402 retval = cfi_write_words(bank, buffer, bufferwsize, write_p);
2403 if (retval == ERROR_OK) {
2404 buffer += buffersize;
2405 write_p += buffersize;
2406 count -= buffersize;
2407 fallback = false;
2408 } else if (retval != ERROR_FLASH_OPER_UNSUPPORTED)
2409 return retval;
2410 }
2411 /* try the slow way? */
2412 if (fallback) {
2413 for (unsigned int i = 0; i < bank->bus_width; i++)
2414 current_word[i] = *buffer++;
2415
2416 retval = cfi_write_word(bank, current_word, write_p);
2417 if (retval != ERROR_OK)
2418 return retval;
2419
2420 write_p += bank->bus_width;
2421 count -= bank->bus_width;
2422 }
2423 }
2424 } else
2425 return retval;
2426 }
2427
2428 if (swapped_buffer) {
2429 buffer = real_buffer + (buffer - swapped_buffer);
2430 free(swapped_buffer);
2431 }
2432
2433 /* return to read array mode, so we can read from flash again for padding */
2434 retval = cfi_reset(bank);
2435 if (retval != ERROR_OK)
2436 return retval;
2437
2438 /* handle unaligned tail bytes */
2439 if (count > 0) {
2440 LOG_INFO("Fixup %" PRIu32 " unaligned tail bytes", count);
2441
2442 /* read a complete word from flash */
2443 retval = cfi_target_read_memory(bank, write_p, 1, current_word);
2444 if (retval != ERROR_OK)
2445 return retval;
2446
2447 /* replace only bytes that must be written */
2448 for (unsigned int i = 0; (i < bank->bus_width) && (count > 0); i++, count--)
2449 if (cfi_info->data_swap)
2450 /* data bytes are swapped (reverse endianness) */
2451 current_word[bank->bus_width - i] = *buffer++;
2452 else
2453 current_word[i] = *buffer++;
2454
2455 retval = cfi_write_word(bank, current_word, write_p);
2456 if (retval != ERROR_OK)
2457 return retval;
2458 }
2459
2460 /* return to read array mode */
2461 return cfi_reset(bank);
2462 }
2463
2464 static void cfi_fixup_reversed_erase_regions(struct flash_bank *bank, const void *param)
2465 {
2466 (void) param;
2467 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2468 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2469
2470 pri_ext->_reversed_geometry = 1;
2471 }
2472
2473 static void cfi_fixup_0002_erase_regions(struct flash_bank *bank, const void *param)
2474 {
2475 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2476 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2477 (void) param;
2478
2479 if ((pri_ext->_reversed_geometry) || (pri_ext->top_bottom == 3)) {
2480 LOG_DEBUG("swapping reversed erase region information on cmdset 0002 device");
2481
2482 for (unsigned int i = 0; i < cfi_info->num_erase_regions / 2; i++) {
2483 int j = (cfi_info->num_erase_regions - 1) - i;
2484 uint32_t swap;
2485
2486 swap = cfi_info->erase_region_info[i];
2487 cfi_info->erase_region_info[i] = cfi_info->erase_region_info[j];
2488 cfi_info->erase_region_info[j] = swap;
2489 }
2490 }
2491 }
2492
2493 static void cfi_fixup_0002_unlock_addresses(struct flash_bank *bank, const void *param)
2494 {
2495 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2496 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2497 const struct cfi_unlock_addresses *unlock_addresses = param;
2498
2499 pri_ext->_unlock1 = unlock_addresses->unlock1;
2500 pri_ext->_unlock2 = unlock_addresses->unlock2;
2501 }
2502
2503 static void cfi_fixup_0002_polling_bits(struct flash_bank *bank, const void *param)
2504 {
2505 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2506 const int *status_poll_mask = param;
2507
2508 cfi_info->status_poll_mask = *status_poll_mask;
2509 }
2510
2511
2512 static int cfi_query_string(struct flash_bank *bank, int address)
2513 {
2514 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2515 int retval;
2516
2517 retval = cfi_send_command(bank, 0x98, cfi_flash_address(bank, 0, address));
2518 if (retval != ERROR_OK)
2519 return retval;
2520
2521 retval = cfi_query_u8(bank, 0, 0x10, &cfi_info->qry[0]);
2522 if (retval != ERROR_OK)
2523 return retval;
2524 retval = cfi_query_u8(bank, 0, 0x11, &cfi_info->qry[1]);
2525 if (retval != ERROR_OK)
2526 return retval;
2527 retval = cfi_query_u8(bank, 0, 0x12, &cfi_info->qry[2]);
2528 if (retval != ERROR_OK)
2529 return retval;
2530
2531 LOG_DEBUG("CFI qry returned: 0x%2.2x 0x%2.2x 0x%2.2x",
2532 cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2]);
2533
2534 if ((cfi_info->qry[0] != 'Q') || (cfi_info->qry[1] != 'R') || (cfi_info->qry[2] != 'Y')) {
2535 retval = cfi_reset(bank);
2536 if (retval != ERROR_OK)
2537 return retval;
2538 LOG_ERROR("Could not probe bank: no QRY");
2539 return ERROR_FLASH_BANK_INVALID;
2540 }
2541
2542 return ERROR_OK;
2543 }
2544
2545 int cfi_probe(struct flash_bank *bank)
2546 {
2547 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2548 struct target *target = bank->target;
2549 unsigned int num_sectors = 0;
2550 int sector = 0;
2551 uint32_t unlock1 = 0x555;
2552 uint32_t unlock2 = 0x2aa;
2553 int retval;
2554 uint8_t value_buf0[CFI_MAX_BUS_WIDTH], value_buf1[CFI_MAX_BUS_WIDTH];
2555
2556 if (bank->target->state != TARGET_HALTED) {
2557 LOG_ERROR("Target not halted");
2558 return ERROR_TARGET_NOT_HALTED;
2559 }
2560
2561 cfi_info->probed = false;
2562 cfi_info->num_erase_regions = 0;
2563
2564 free(bank->sectors);
2565 bank->sectors = NULL;
2566
2567 free(cfi_info->erase_region_info);
2568 cfi_info->erase_region_info = NULL;
2569
2570 /* JEDEC standard JESD21C uses 0x5555 and 0x2aaa as unlock addresses,
2571 * while CFI compatible AMD/Spansion flashes use 0x555 and 0x2aa
2572 */
2573 if (cfi_info->jedec_probe) {
2574 unlock1 = 0x5555;
2575 unlock2 = 0x2aaa;
2576 }
2577
2578 /* switch to read identifier codes mode ("AUTOSELECT") */
2579 retval = cfi_send_command(bank, 0xaa, cfi_flash_address(bank, 0, unlock1));
2580 if (retval != ERROR_OK)
2581 return retval;
2582 retval = cfi_send_command(bank, 0x55, cfi_flash_address(bank, 0, unlock2));
2583 if (retval != ERROR_OK)
2584 return retval;
2585 retval = cfi_send_command(bank, 0x90, cfi_flash_address(bank, 0, unlock1));
2586 if (retval != ERROR_OK)
2587 return retval;
2588
2589 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, 0, 0x00),
2590 1, value_buf0);
2591 if (retval != ERROR_OK)
2592 return retval;
2593 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, 0, 0x01),
2594 1, value_buf1);
2595 if (retval != ERROR_OK)
2596 return retval;
2597 switch (bank->chip_width) {
2598 case 1:
2599 cfi_info->manufacturer = *value_buf0;
2600 cfi_info->device_id = *value_buf1;
2601 break;
2602 case 2:
2603 cfi_info->manufacturer = target_buffer_get_u16(target, value_buf0);
2604 cfi_info->device_id = target_buffer_get_u16(target, value_buf1);
2605 break;
2606 case 4:
2607 cfi_info->manufacturer = target_buffer_get_u32(target, value_buf0);
2608 cfi_info->device_id = target_buffer_get_u32(target, value_buf1);
2609 break;
2610 default:
2611 LOG_ERROR("Unsupported bank chipwidth %u, can't probe memory",
2612 bank->chip_width);
2613 return ERROR_FLASH_OPERATION_FAILED;
2614 }
2615
2616 LOG_INFO("Flash Manufacturer/Device: 0x%04x 0x%04x",
2617 cfi_info->manufacturer, cfi_info->device_id);
2618 /* switch back to read array mode */
2619 retval = cfi_reset(bank);
2620 if (retval != ERROR_OK)
2621 return retval;
2622
2623 /* check device/manufacturer ID for known non-CFI flashes. */
2624 cfi_fixup_non_cfi(bank);
2625
2626 /* query only if this is a CFI compatible flash,
2627 * otherwise the relevant info has already been filled in
2628 */
2629 if (!cfi_info->not_cfi) {
2630 /* enter CFI query mode
2631 * according to JEDEC Standard No. 68.01,
2632 * a single bus sequence with address = 0x55, data = 0x98 should put
2633 * the device into CFI query mode.
2634 *
2635 * SST flashes clearly violate this, and we will consider them incompatible for now
2636 */
2637
2638 retval = cfi_query_string(bank, 0x55);
2639 if (retval != ERROR_OK) {
2640 /*
2641 * Spansion S29WS-N CFI query fix is to try 0x555 if 0x55 fails. Should
2642 * be harmless enough:
2643 *
2644 * http://www.infradead.org/pipermail/linux-mtd/2005-September/013618.html
2645 */
2646 LOG_USER("Try workaround w/0x555 instead of 0x55 to get QRY.");
2647 retval = cfi_query_string(bank, 0x555);
2648 }
2649 if (retval != ERROR_OK)
2650 return retval;
2651
2652 retval = cfi_query_u16(bank, 0, 0x13, &cfi_info->pri_id);
2653 if (retval != ERROR_OK)
2654 return retval;
2655 retval = cfi_query_u16(bank, 0, 0x15, &cfi_info->pri_addr);
2656 if (retval != ERROR_OK)
2657 return retval;
2658 retval = cfi_query_u16(bank, 0, 0x17, &cfi_info->alt_id);
2659 if (retval != ERROR_OK)
2660 return retval;
2661 retval = cfi_query_u16(bank, 0, 0x19, &cfi_info->alt_addr);
2662 if (retval != ERROR_OK)
2663 return retval;
2664
2665 LOG_DEBUG("qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: 0x%4.4x, alt_id: "
2666 "0x%4.4x, alt_addr: 0x%4.4x", cfi_info->qry[0], cfi_info->qry[1],
2667 cfi_info->qry[2], cfi_info->pri_id, cfi_info->pri_addr,
2668 cfi_info->alt_id, cfi_info->alt_addr);
2669
2670 retval = cfi_query_u8(bank, 0, 0x1b, &cfi_info->vcc_min);
2671 if (retval != ERROR_OK)
2672 return retval;
2673 retval = cfi_query_u8(bank, 0, 0x1c, &cfi_info->vcc_max);
2674 if (retval != ERROR_OK)
2675 return retval;
2676 retval = cfi_query_u8(bank, 0, 0x1d, &cfi_info->vpp_min);
2677 if (retval != ERROR_OK)
2678 return retval;
2679 retval = cfi_query_u8(bank, 0, 0x1e, &cfi_info->vpp_max);
2680 if (retval != ERROR_OK)
2681 return retval;
2682
2683 retval = cfi_query_u8(bank, 0, 0x1f, &cfi_info->word_write_timeout_typ);
2684 if (retval != ERROR_OK)
2685 return retval;
2686 retval = cfi_query_u8(bank, 0, 0x20, &cfi_info->buf_write_timeout_typ);
2687 if (retval != ERROR_OK)
2688 return retval;
2689 retval = cfi_query_u8(bank, 0, 0x21, &cfi_info->block_erase_timeout_typ);
2690 if (retval != ERROR_OK)
2691 return retval;
2692 retval = cfi_query_u8(bank, 0, 0x22, &cfi_info->chip_erase_timeout_typ);
2693 if (retval != ERROR_OK)
2694 return retval;
2695 retval = cfi_query_u8(bank, 0, 0x23, &cfi_info->word_write_timeout_max);
2696 if (retval != ERROR_OK)
2697 return retval;
2698 retval = cfi_query_u8(bank, 0, 0x24, &cfi_info->buf_write_timeout_max);
2699 if (retval != ERROR_OK)
2700 return retval;
2701 retval = cfi_query_u8(bank, 0, 0x25, &cfi_info->block_erase_timeout_max);
2702 if (retval != ERROR_OK)
2703 return retval;
2704 retval = cfi_query_u8(bank, 0, 0x26, &cfi_info->chip_erase_timeout_max);
2705 if (retval != ERROR_OK)
2706 return retval;
2707
2708 uint8_t data;
2709 retval = cfi_query_u8(bank, 0, 0x27, &data);
2710 if (retval != ERROR_OK)
2711 return retval;
2712 cfi_info->dev_size = 1 << data;
2713
2714 retval = cfi_query_u16(bank, 0, 0x28, &cfi_info->interface_desc);
2715 if (retval != ERROR_OK)
2716 return retval;
2717 retval = cfi_query_u16(bank, 0, 0x2a, &cfi_info->max_buf_write_size);
2718 if (retval != ERROR_OK)
2719 return retval;
2720 retval = cfi_query_u8(bank, 0, 0x2c, &cfi_info->num_erase_regions);
2721 if (retval != ERROR_OK)
2722 return retval;
2723
2724 LOG_DEBUG("size: 0x%" PRIx32 ", interface desc: %i, max buffer write size: 0x%x",
2725 cfi_info->dev_size, cfi_info->interface_desc,
2726 (1 << cfi_info->max_buf_write_size));
2727
2728 if (cfi_info->num_erase_regions) {
2729 cfi_info->erase_region_info = malloc(sizeof(*cfi_info->erase_region_info)
2730 * cfi_info->num_erase_regions);
2731 for (unsigned int i = 0; i < cfi_info->num_erase_regions; i++) {
2732 retval = cfi_query_u32(bank,
2733 0,
2734 0x2d + (4 * i),
2735 &cfi_info->erase_region_info[i]);
2736 if (retval != ERROR_OK)
2737 return retval;
2738 LOG_DEBUG(
2739 "erase region[%i]: %" PRIu32 " blocks of size 0x%" PRIx32 "",
2740 i,
2741 (cfi_info->erase_region_info[i] & 0xffff) + 1,
2742 (cfi_info->erase_region_info[i] >> 16) * 256);
2743 }
2744 } else
2745 cfi_info->erase_region_info = NULL;
2746
2747 /* We need to read the primary algorithm extended query table before calculating
2748 * the sector layout to be able to apply fixups
2749 */
2750 switch (cfi_info->pri_id) {
2751 /* Intel command set (standard and extended) */
2752 case 0x0001:
2753 case 0x0003:
2754 cfi_read_intel_pri_ext(bank);
2755 break;
2756 /* AMD/Spansion, Atmel, ... command set */
2757 case 0x0002:
2758 cfi_info->status_poll_mask = CFI_STATUS_POLL_MASK_DQ5_DQ6_DQ7; /*
2759 *default
2760 *for
2761 *all
2762 *CFI
2763 *flashes
2764 **/
2765 cfi_read_0002_pri_ext(bank);
2766 break;
2767 default:
2768 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2769 break;
2770 }
2771
2772 /* return to read array mode
2773 * we use both reset commands, as some Intel flashes fail to recognize the 0xF0 command
2774 */
2775 retval = cfi_reset(bank);
2776 if (retval != ERROR_OK)
2777 return retval;
2778 } /* end CFI case */
2779
2780 LOG_DEBUG("Vcc min: %x.%x, Vcc max: %x.%x, Vpp min: %u.%x, Vpp max: %u.%x",
2781 (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
2782 (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
2783 (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
2784 (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
2785
2786 LOG_DEBUG("typ. word write timeout: %u us, typ. buf write timeout: %u us, "
2787 "typ. block erase timeout: %u ms, typ. chip erase timeout: %u ms",
2788 1 << cfi_info->word_write_timeout_typ, 1 << cfi_info->buf_write_timeout_typ,
2789 1 << cfi_info->block_erase_timeout_typ, 1 << cfi_info->chip_erase_timeout_typ);
2790
2791 LOG_DEBUG("max. word write timeout: %u us, max. buf write timeout: %u us, "
2792 "max. block erase timeout: %u ms, max. chip erase timeout: %u ms",
2793 (1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
2794 (1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
2795 (1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ),
2796 (1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ));
2797
2798 /* convert timeouts to real values in ms */
2799 cfi_info->word_write_timeout = DIV_ROUND_UP((1L << cfi_info->word_write_timeout_typ) *
2800 (1L << cfi_info->word_write_timeout_max), 1000);
2801 cfi_info->buf_write_timeout = DIV_ROUND_UP((1L << cfi_info->buf_write_timeout_typ) *
2802 (1L << cfi_info->buf_write_timeout_max), 1000);
2803 cfi_info->block_erase_timeout = (1L << cfi_info->block_erase_timeout_typ) *
2804 (1L << cfi_info->block_erase_timeout_max);
2805 cfi_info->chip_erase_timeout = (1L << cfi_info->chip_erase_timeout_typ) *
2806 (1L << cfi_info->chip_erase_timeout_max);
2807
2808 LOG_DEBUG("calculated word write timeout: %u ms, buf write timeout: %u ms, "
2809 "block erase timeout: %u ms, chip erase timeout: %u ms",
2810 cfi_info->word_write_timeout, cfi_info->buf_write_timeout,
2811 cfi_info->block_erase_timeout, cfi_info->chip_erase_timeout);
2812
2813 /* apply fixups depending on the primary command set */
2814 switch (cfi_info->pri_id) {
2815 /* Intel command set (standard and extended) */
2816 case 0x0001:
2817 case 0x0003:
2818 cfi_fixup(bank, cfi_0001_fixups);
2819 break;
2820 /* AMD/Spansion, Atmel, ... command set */
2821 case 0x0002:
2822 cfi_fixup(bank, cfi_0002_fixups);
2823 break;
2824 default:
2825 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2826 break;
2827 }
2828
2829 if ((cfi_info->dev_size * bank->bus_width / bank->chip_width) != bank->size) {
2830 LOG_WARNING("configuration specifies 0x%" PRIx32 " size, but a 0x%" PRIx32
2831 " size flash was found", bank->size, cfi_info->dev_size);
2832 }
2833
2834 if (cfi_info->num_erase_regions == 0) {
2835 /* a device might have only one erase block, spanning the whole device */
2836 bank->num_sectors = 1;
2837 bank->sectors = malloc(sizeof(struct flash_sector));
2838
2839 bank->sectors[sector].offset = 0x0;
2840 bank->sectors[sector].size = bank->size;
2841 bank->sectors[sector].is_erased = -1;
2842 bank->sectors[sector].is_protected = -1;
2843 } else {
2844 uint32_t offset = 0;
2845
2846 for (unsigned int i = 0; i < cfi_info->num_erase_regions; i++)
2847 num_sectors += (cfi_info->erase_region_info[i] & 0xffff) + 1;
2848
2849 bank->num_sectors = num_sectors;
2850 bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
2851
2852 for (unsigned int i = 0; i < cfi_info->num_erase_regions; i++) {
2853 for (uint32_t j = 0; j < (cfi_info->erase_region_info[i] & 0xffff) + 1; j++) {
2854 bank->sectors[sector].offset = offset;
2855 bank->sectors[sector].size =
2856 ((cfi_info->erase_region_info[i] >> 16) * 256)
2857 * bank->bus_width / bank->chip_width;
2858 offset += bank->sectors[sector].size;
2859 bank->sectors[sector].is_erased = -1;
2860 bank->sectors[sector].is_protected = -1;
2861 sector++;
2862 }
2863 }
2864 if (offset != (cfi_info->dev_size * bank->bus_width / bank->chip_width)) {
2865 LOG_WARNING(
2866 "CFI size is 0x%" PRIx32 ", but total sector size is 0x%" PRIx32 "",
2867 (cfi_info->dev_size * bank->bus_width / bank->chip_width),
2868 offset);
2869 }
2870 }
2871
2872 cfi_info->probed = true;
2873
2874 return ERROR_OK;
2875 }
2876
2877 int cfi_auto_probe(struct flash_bank *bank)
2878 {
2879 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2880 if (cfi_info->probed)
2881 return ERROR_OK;
2882 return cfi_probe(bank);
2883 }
2884
2885 static int cfi_intel_protect_check(struct flash_bank *bank)
2886 {
2887 int retval;
2888 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2889 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
2890
2891 /* check if block lock bits are supported on this device */
2892 if (!(pri_ext->blk_status_reg_mask & 0x1))
2893 return ERROR_FLASH_OPERATION_FAILED;
2894
2895 retval = cfi_send_command(bank, 0x90, cfi_flash_address(bank, 0, 0x55));
2896 if (retval != ERROR_OK)
2897 return retval;
2898
2899 for (unsigned int i = 0; i < bank->num_sectors; i++) {
2900 uint8_t block_status;
2901 retval = cfi_get_u8(bank, i, 0x2, &block_status);
2902 if (retval != ERROR_OK)
2903 return retval;
2904
2905 if (block_status & 1)
2906 bank->sectors[i].is_protected = 1;
2907 else
2908 bank->sectors[i].is_protected = 0;
2909 }
2910
2911 return cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
2912 }
2913
2914 static int cfi_spansion_protect_check(struct flash_bank *bank)
2915 {
2916 int retval;
2917 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2918 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2919
2920 retval = cfi_spansion_unlock_seq(bank);
2921 if (retval != ERROR_OK)
2922 return retval;
2923
2924 retval = cfi_send_command(bank, 0x90, cfi_flash_address(bank, 0, pri_ext->_unlock1));
2925 if (retval != ERROR_OK)
2926 return retval;
2927
2928 for (unsigned int i = 0; i < bank->num_sectors; i++) {
2929 uint8_t block_status;
2930 retval = cfi_get_u8(bank, i, 0x2, &block_status);
2931 if (retval != ERROR_OK)
2932 return retval;
2933
2934 if (block_status & 1)
2935 bank->sectors[i].is_protected = 1;
2936 else
2937 bank->sectors[i].is_protected = 0;
2938 }
2939
2940 return cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
2941 }
2942
2943 int cfi_protect_check(struct flash_bank *bank)
2944 {
2945 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2946
2947 if (bank->target->state != TARGET_HALTED) {
2948 LOG_ERROR("Target not halted");
2949 return ERROR_TARGET_NOT_HALTED;
2950 }
2951
2952 if (cfi_info->qry[0] != 'Q')
2953 return ERROR_FLASH_BANK_NOT_PROBED;
2954
2955 switch (cfi_info->pri_id) {
2956 case 1:
2957 case 3:
2958 return cfi_intel_protect_check(bank);
2959 case 2:
2960 return cfi_spansion_protect_check(bank);
2961 default:
2962 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2963 break;
2964 }
2965
2966 return ERROR_OK;
2967 }
2968
2969 int cfi_get_info(struct flash_bank *bank, struct command_invocation *cmd)
2970 {
2971 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2972
2973 if (cfi_info->qry[0] == 0xff) {
2974 command_print_sameline(cmd, "\ncfi flash bank not probed yet\n");
2975 return ERROR_OK;
2976 }
2977
2978 if (!cfi_info->not_cfi)
2979 command_print_sameline(cmd, "\nCFI flash: ");
2980 else
2981 command_print_sameline(cmd, "\nnon-CFI flash: ");
2982
2983 command_print_sameline(cmd, "mfr: 0x%4.4x, id:0x%4.4x\n",
2984 cfi_info->manufacturer, cfi_info->device_id);
2985
2986 command_print_sameline(cmd, "qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: "
2987 "0x%4.4x, alt_id: 0x%4.4x, alt_addr: 0x%4.4x\n",
2988 cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2],
2989 cfi_info->pri_id, cfi_info->pri_addr, cfi_info->alt_id, cfi_info->alt_addr);
2990
2991 command_print_sameline(cmd, "Vcc min: %x.%x, Vcc max: %x.%x, "
2992 "Vpp min: %u.%x, Vpp max: %u.%x\n",
2993 (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
2994 (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
2995 (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
2996 (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
2997
2998 command_print_sameline(cmd, "typ. word write timeout: %u us, "
2999 "typ. buf write timeout: %u us, "
3000 "typ. block erase timeout: %u ms, "
3001 "typ. chip erase timeout: %u ms\n",
3002 1 << cfi_info->word_write_timeout_typ,
3003 1 << cfi_info->buf_write_timeout_typ,
3004 1 << cfi_info->block_erase_timeout_typ,
3005 1 << cfi_info->chip_erase_timeout_typ);
3006
3007 command_print_sameline(cmd, "max. word write timeout: %u us, "
3008 "max. buf write timeout: %u us, max. "
3009 "block erase timeout: %u ms, max. chip erase timeout: %u ms\n",
3010 (1 <<
3011 cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
3012 (1 <<
3013 cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
3014 (1 <<
3015 cfi_info->block_erase_timeout_max) *
3016 (1 << cfi_info->block_erase_timeout_typ),
3017 (1 <<
3018 cfi_info->chip_erase_timeout_max) *
3019 (1 << cfi_info->chip_erase_timeout_typ));
3020
3021 command_print_sameline(cmd, "size: 0x%" PRIx32 ", interface desc: %i, "
3022 "max buffer write size: 0x%x\n",
3023 cfi_info->dev_size,
3024 cfi_info->interface_desc,
3025 1 << cfi_info->max_buf_write_size);
3026
3027 switch (cfi_info->pri_id) {
3028 case 1:
3029 case 3:
3030 cfi_intel_info(bank, cmd);
3031 break;
3032 case 2:
3033 cfi_spansion_info(bank, cmd);
3034 break;
3035 default:
3036 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
3037 break;
3038 }
3039
3040 return ERROR_OK;
3041 }
3042
3043 static void cfi_fixup_0002_write_buffer(struct flash_bank *bank, const void *param)
3044 {
3045 struct cfi_flash_bank *cfi_info = bank->driver_priv;
3046
3047 /* disable write buffer for M29W128G */
3048 cfi_info->buf_write_timeout_typ = 0;
3049 }
3050
3051 const struct flash_driver cfi_flash = {
3052 .name = "cfi",
3053 .flash_bank_command = cfi_flash_bank_command,
3054 .erase = cfi_erase,
3055 .protect = cfi_protect,
3056 .write = cfi_write,
3057 .read = cfi_read,
3058 .probe = cfi_probe,
3059 .auto_probe = cfi_auto_probe,
3060 /* FIXME: access flash at bus_width size */
3061 .erase_check = default_flash_blank_check,
3062 .protect_check = cfi_protect_check,
3063 .info = cfi_get_info,
3064 .free_driver_priv = default_flash_free_driver_priv,
3065 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)