flash: stop caching protection state
[openocd.git] / src / flash / nor / cfi.c
1 /***************************************************************************
2 * Copyright (C) 2005, 2007 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * Copyright (C) 2009 Michael Schwingen *
5 * michael@schwingen.org *
6 * Copyright (C) 2010 Øyvind Harboe <oyvind.harboe@zylin.com> *
7 * *
8 * This program is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This program is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this program; if not, write to the *
20 * Free Software Foundation, Inc., *
21 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
22 ***************************************************************************/
23 #ifdef HAVE_CONFIG_H
24 #include "config.h"
25 #endif
26
27 #include "imp.h"
28 #include "cfi.h"
29 #include "non_cfi.h"
30 #include <target/arm.h>
31 #include <helper/binarybuffer.h>
32 #include <target/algorithm.h>
33
34
35 #define CFI_MAX_BUS_WIDTH 4
36 #define CFI_MAX_CHIP_WIDTH 4
37
38 /* defines internal maximum size for code fragment in cfi_intel_write_block() */
39 #define CFI_MAX_INTEL_CODESIZE 256
40
41 static struct cfi_unlock_addresses cfi_unlock_addresses[] =
42 {
43 [CFI_UNLOCK_555_2AA] = { .unlock1 = 0x555, .unlock2 = 0x2aa },
44 [CFI_UNLOCK_5555_2AAA] = { .unlock1 = 0x5555, .unlock2 = 0x2aaa },
45 };
46
47 /* CFI fixups foward declarations */
48 static void cfi_fixup_0002_erase_regions(struct flash_bank *flash, void *param);
49 static void cfi_fixup_0002_unlock_addresses(struct flash_bank *flash, void *param);
50 static void cfi_fixup_atmel_reversed_erase_regions(struct flash_bank *flash, void *param);
51
52 /* fixup after reading cmdset 0002 primary query table */
53 static const struct cfi_fixup cfi_0002_fixups[] = {
54 {CFI_MFR_SST, 0x00D4, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
55 {CFI_MFR_SST, 0x00D5, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
56 {CFI_MFR_SST, 0x00D6, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
57 {CFI_MFR_SST, 0x00D7, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
58 {CFI_MFR_SST, 0x2780, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
59 {CFI_MFR_ATMEL, 0x00C8, cfi_fixup_atmel_reversed_erase_regions, NULL},
60 {CFI_MFR_FUJITSU, 0x226b, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
61 {CFI_MFR_AMIC, 0xb31a, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
62 {CFI_MFR_MX, 0x225b, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
63 {CFI_MFR_AMD, 0x225b, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
64 {CFI_MFR_ANY, CFI_ID_ANY, cfi_fixup_0002_erase_regions, NULL},
65 {0, 0, NULL, NULL}
66 };
67
68 /* fixup after reading cmdset 0001 primary query table */
69 static const struct cfi_fixup cfi_0001_fixups[] = {
70 {0, 0, NULL, NULL}
71 };
72
73 static void cfi_fixup(struct flash_bank *bank, const struct cfi_fixup *fixups)
74 {
75 struct cfi_flash_bank *cfi_info = bank->driver_priv;
76 const struct cfi_fixup *f;
77
78 for (f = fixups; f->fixup; f++)
79 {
80 if (((f->mfr == CFI_MFR_ANY) || (f->mfr == cfi_info->manufacturer)) &&
81 ((f->id == CFI_ID_ANY) || (f->id == cfi_info->device_id)))
82 {
83 f->fixup(bank, f->param);
84 }
85 }
86 }
87
88 /* inline uint32_t flash_address(struct flash_bank *bank, int sector, uint32_t offset) */
89 static __inline__ uint32_t flash_address(struct flash_bank *bank, int sector, uint32_t offset)
90 {
91 struct cfi_flash_bank *cfi_info = bank->driver_priv;
92
93 if (cfi_info->x16_as_x8) offset *= 2;
94
95 /* while the sector list isn't built, only accesses to sector 0 work */
96 if (sector == 0)
97 return bank->base + offset * bank->bus_width;
98 else
99 {
100 if (!bank->sectors)
101 {
102 LOG_ERROR("BUG: sector list not yet built");
103 exit(-1);
104 }
105 return bank->base + bank->sectors[sector].offset + offset * bank->bus_width;
106 }
107
108 }
109
110 static void cfi_command(struct flash_bank *bank, uint8_t cmd, uint8_t *cmd_buf)
111 {
112 int i;
113
114 /* clear whole buffer, to ensure bits that exceed the bus_width
115 * are set to zero
116 */
117 for (i = 0; i < CFI_MAX_BUS_WIDTH; i++)
118 cmd_buf[i] = 0;
119
120 if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
121 {
122 for (i = bank->bus_width; i > 0; i--)
123 {
124 *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
125 }
126 }
127 else
128 {
129 for (i = 1; i <= bank->bus_width; i++)
130 {
131 *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
132 }
133 }
134 }
135
136 static int cfi_send_command(struct flash_bank *bank, uint8_t cmd, uint32_t address)
137 {
138 uint8_t command[CFI_MAX_BUS_WIDTH];
139
140 cfi_command(bank, cmd, command);
141 return target_write_memory(bank->target, address, bank->bus_width, 1, command);
142 }
143
144 /* read unsigned 8-bit value from the bank
145 * flash banks are expected to be made of similar chips
146 * the query result should be the same for all
147 */
148 static uint8_t cfi_query_u8(struct flash_bank *bank, int sector, uint32_t offset)
149 {
150 struct target *target = bank->target;
151 uint8_t data[CFI_MAX_BUS_WIDTH];
152
153 target_read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 1, data);
154
155 if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
156 return data[0];
157 else
158 return data[bank->bus_width - 1];
159 }
160
161 /* read unsigned 8-bit value from the bank
162 * in case of a bank made of multiple chips,
163 * the individual values are ORed
164 */
165 static uint8_t cfi_get_u8(struct flash_bank *bank, int sector, uint32_t offset)
166 {
167 struct target *target = bank->target;
168 uint8_t data[CFI_MAX_BUS_WIDTH];
169 int i;
170
171 target_read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 1, data);
172
173 if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
174 {
175 for (i = 0; i < bank->bus_width / bank->chip_width; i++)
176 data[0] |= data[i];
177
178 return data[0];
179 }
180 else
181 {
182 uint8_t value = 0;
183 for (i = 0; i < bank->bus_width / bank->chip_width; i++)
184 value |= data[bank->bus_width - 1 - i];
185
186 return value;
187 }
188 }
189
190 static uint16_t cfi_query_u16(struct flash_bank *bank, int sector, uint32_t offset)
191 {
192 struct target *target = bank->target;
193 struct cfi_flash_bank *cfi_info = bank->driver_priv;
194 uint8_t data[CFI_MAX_BUS_WIDTH * 2];
195
196 if (cfi_info->x16_as_x8)
197 {
198 uint8_t i;
199 for (i = 0;i < 2;i++)
200 target_read_memory(target, flash_address(bank, sector, offset + i), bank->bus_width, 1,
201 &data[i*bank->bus_width]);
202 }
203 else
204 target_read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 2, data);
205
206 if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
207 return data[0] | data[bank->bus_width] << 8;
208 else
209 return data[bank->bus_width - 1] | data[(2 * bank->bus_width) - 1] << 8;
210 }
211
212 static uint32_t cfi_query_u32(struct flash_bank *bank, int sector, uint32_t offset)
213 {
214 struct target *target = bank->target;
215 struct cfi_flash_bank *cfi_info = bank->driver_priv;
216 uint8_t data[CFI_MAX_BUS_WIDTH * 4];
217
218 if (cfi_info->x16_as_x8)
219 {
220 uint8_t i;
221 for (i = 0;i < 4;i++)
222 target_read_memory(target, flash_address(bank, sector, offset + i), bank->bus_width, 1,
223 &data[i*bank->bus_width]);
224 }
225 else
226 target_read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 4, data);
227
228 if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
229 return data[0] | data[bank->bus_width] << 8 | data[bank->bus_width * 2] << 16 | data[bank->bus_width * 3] << 24;
230 else
231 return data[bank->bus_width - 1] | data[(2* bank->bus_width) - 1] << 8 |
232 data[(3 * bank->bus_width) - 1] << 16 | data[(4 * bank->bus_width) - 1] << 24;
233 }
234
235 static void cfi_intel_clear_status_register(struct flash_bank *bank)
236 {
237 struct target *target = bank->target;
238
239 if (target->state != TARGET_HALTED)
240 {
241 LOG_ERROR("BUG: attempted to clear status register while target wasn't halted");
242 exit(-1);
243 }
244
245 cfi_send_command(bank, 0x50, flash_address(bank, 0, 0x0));
246 }
247
248 static uint8_t cfi_intel_wait_status_busy(struct flash_bank *bank, int timeout)
249 {
250 uint8_t status;
251
252 while ((!((status = cfi_get_u8(bank, 0, 0x0)) & 0x80)) && (timeout-- > 0))
253 {
254 LOG_DEBUG("status: 0x%x", status);
255 alive_sleep(1);
256 }
257
258 /* mask out bit 0 (reserved) */
259 status = status & 0xfe;
260
261 LOG_DEBUG("status: 0x%x", status);
262
263 if ((status & 0x80) != 0x80)
264 {
265 LOG_ERROR("timeout while waiting for WSM to become ready");
266 }
267 else if (status != 0x80)
268 {
269 LOG_ERROR("status register: 0x%x", status);
270 if (status & 0x2)
271 LOG_ERROR("Block Lock-Bit Detected, Operation Abort");
272 if (status & 0x4)
273 LOG_ERROR("Program suspended");
274 if (status & 0x8)
275 LOG_ERROR("Low Programming Voltage Detected, Operation Aborted");
276 if (status & 0x10)
277 LOG_ERROR("Program Error / Error in Setting Lock-Bit");
278 if (status & 0x20)
279 LOG_ERROR("Error in Block Erasure or Clear Lock-Bits");
280 if (status & 0x40)
281 LOG_ERROR("Block Erase Suspended");
282
283 cfi_intel_clear_status_register(bank);
284 }
285
286 return status;
287 }
288
289 static int cfi_spansion_wait_status_busy(struct flash_bank *bank, int timeout)
290 {
291 uint8_t status, oldstatus;
292 struct cfi_flash_bank *cfi_info = bank->driver_priv;
293
294 oldstatus = cfi_get_u8(bank, 0, 0x0);
295
296 do {
297 status = cfi_get_u8(bank, 0, 0x0);
298 if ((status ^ oldstatus) & 0x40) {
299 if (status & cfi_info->status_poll_mask & 0x20) {
300 oldstatus = cfi_get_u8(bank, 0, 0x0);
301 status = cfi_get_u8(bank, 0, 0x0);
302 if ((status ^ oldstatus) & 0x40) {
303 LOG_ERROR("dq5 timeout, status: 0x%x", status);
304 return(ERROR_FLASH_OPERATION_FAILED);
305 } else {
306 LOG_DEBUG("status: 0x%x", status);
307 return(ERROR_OK);
308 }
309 }
310 } else { /* no toggle: finished, OK */
311 LOG_DEBUG("status: 0x%x", status);
312 return(ERROR_OK);
313 }
314
315 oldstatus = status;
316 alive_sleep(1);
317 } while (timeout-- > 0);
318
319 LOG_ERROR("timeout, status: 0x%x", status);
320
321 return(ERROR_FLASH_BUSY);
322 }
323
324 static int cfi_read_intel_pri_ext(struct flash_bank *bank)
325 {
326 int retval;
327 struct cfi_flash_bank *cfi_info = bank->driver_priv;
328 struct cfi_intel_pri_ext *pri_ext = malloc(sizeof(struct cfi_intel_pri_ext));
329
330 cfi_info->pri_ext = pri_ext;
331
332 pri_ext->pri[0] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0);
333 pri_ext->pri[1] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1);
334 pri_ext->pri[2] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2);
335
336 if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I'))
337 {
338 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
339 {
340 return retval;
341 }
342 if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
343 {
344 return retval;
345 }
346 LOG_ERROR("Could not read bank flash bank information");
347 return ERROR_FLASH_BANK_INVALID;
348 }
349
350 pri_ext->major_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3);
351 pri_ext->minor_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4);
352
353 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
354
355 pri_ext->feature_support = cfi_query_u32(bank, 0, cfi_info->pri_addr + 5);
356 pri_ext->suspend_cmd_support = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9);
357 pri_ext->blk_status_reg_mask = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xa);
358
359 LOG_DEBUG("feature_support: 0x%" PRIx32 ", suspend_cmd_support: 0x%x, blk_status_reg_mask: 0x%x",
360 pri_ext->feature_support,
361 pri_ext->suspend_cmd_support,
362 pri_ext->blk_status_reg_mask);
363
364 pri_ext->vcc_optimal = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xc);
365 pri_ext->vpp_optimal = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xd);
366
367 LOG_DEBUG("Vcc opt: %x.%x, Vpp opt: %u.%x",
368 (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
369 (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
370
371 pri_ext->num_protection_fields = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xe);
372 if (pri_ext->num_protection_fields != 1)
373 {
374 LOG_WARNING("expected one protection register field, but found %i", pri_ext->num_protection_fields);
375 }
376
377 pri_ext->prot_reg_addr = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xf);
378 pri_ext->fact_prot_reg_size = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x11);
379 pri_ext->user_prot_reg_size = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x12);
380
381 LOG_DEBUG("protection_fields: %i, prot_reg_addr: 0x%x, factory pre-programmed: %i, user programmable: %i", pri_ext->num_protection_fields, pri_ext->prot_reg_addr, 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
382
383 return ERROR_OK;
384 }
385
386 static int cfi_read_spansion_pri_ext(struct flash_bank *bank)
387 {
388 int retval;
389 struct cfi_flash_bank *cfi_info = bank->driver_priv;
390 struct cfi_spansion_pri_ext *pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
391
392 cfi_info->pri_ext = pri_ext;
393
394 pri_ext->pri[0] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0);
395 pri_ext->pri[1] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1);
396 pri_ext->pri[2] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2);
397
398 if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I'))
399 {
400 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
401 {
402 return retval;
403 }
404 LOG_ERROR("Could not read spansion bank information");
405 return ERROR_FLASH_BANK_INVALID;
406 }
407
408 pri_ext->major_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3);
409 pri_ext->minor_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4);
410
411 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
412
413 pri_ext->SiliconRevision = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5);
414 pri_ext->EraseSuspend = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6);
415 pri_ext->BlkProt = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7);
416 pri_ext->TmpBlkUnprotect = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8);
417 pri_ext->BlkProtUnprot = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9);
418 pri_ext->SimultaneousOps = cfi_query_u8(bank, 0, cfi_info->pri_addr + 10);
419 pri_ext->BurstMode = cfi_query_u8(bank, 0, cfi_info->pri_addr + 11);
420 pri_ext->PageMode = cfi_query_u8(bank, 0, cfi_info->pri_addr + 12);
421 pri_ext->VppMin = cfi_query_u8(bank, 0, cfi_info->pri_addr + 13);
422 pri_ext->VppMax = cfi_query_u8(bank, 0, cfi_info->pri_addr + 14);
423 pri_ext->TopBottom = cfi_query_u8(bank, 0, cfi_info->pri_addr + 15);
424
425 LOG_DEBUG("Silicon Revision: 0x%x, Erase Suspend: 0x%x, Block protect: 0x%x", pri_ext->SiliconRevision,
426 pri_ext->EraseSuspend, pri_ext->BlkProt);
427
428 LOG_DEBUG("Temporary Unprotect: 0x%x, Block Protect Scheme: 0x%x, Simultaneous Ops: 0x%x", pri_ext->TmpBlkUnprotect,
429 pri_ext->BlkProtUnprot, pri_ext->SimultaneousOps);
430
431 LOG_DEBUG("Burst Mode: 0x%x, Page Mode: 0x%x, ", pri_ext->BurstMode, pri_ext->PageMode);
432
433
434 LOG_DEBUG("Vpp min: %u.%x, Vpp max: %u.%x",
435 (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
436 (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
437
438 LOG_DEBUG("WP# protection 0x%x", pri_ext->TopBottom);
439
440 /* default values for implementation specific workarounds */
441 pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
442 pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
443 pri_ext->_reversed_geometry = 0;
444
445 return ERROR_OK;
446 }
447
448 static int cfi_read_atmel_pri_ext(struct flash_bank *bank)
449 {
450 int retval;
451 struct cfi_atmel_pri_ext atmel_pri_ext;
452 struct cfi_flash_bank *cfi_info = bank->driver_priv;
453 struct cfi_spansion_pri_ext *pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
454
455 /* ATMEL devices use the same CFI primary command set (0x2) as AMD/Spansion,
456 * but a different primary extended query table.
457 * We read the atmel table, and prepare a valid AMD/Spansion query table.
458 */
459
460 memset(pri_ext, 0, sizeof(struct cfi_spansion_pri_ext));
461
462 cfi_info->pri_ext = pri_ext;
463
464 atmel_pri_ext.pri[0] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0);
465 atmel_pri_ext.pri[1] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1);
466 atmel_pri_ext.pri[2] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2);
467
468 if ((atmel_pri_ext.pri[0] != 'P') || (atmel_pri_ext.pri[1] != 'R') || (atmel_pri_ext.pri[2] != 'I'))
469 {
470 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
471 {
472 return retval;
473 }
474 LOG_ERROR("Could not read atmel bank information");
475 return ERROR_FLASH_BANK_INVALID;
476 }
477
478 pri_ext->pri[0] = atmel_pri_ext.pri[0];
479 pri_ext->pri[1] = atmel_pri_ext.pri[1];
480 pri_ext->pri[2] = atmel_pri_ext.pri[2];
481
482 atmel_pri_ext.major_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3);
483 atmel_pri_ext.minor_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4);
484
485 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", atmel_pri_ext.pri[0], atmel_pri_ext.pri[1], atmel_pri_ext.pri[2], atmel_pri_ext.major_version, atmel_pri_ext.minor_version);
486
487 pri_ext->major_version = atmel_pri_ext.major_version;
488 pri_ext->minor_version = atmel_pri_ext.minor_version;
489
490 atmel_pri_ext.features = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5);
491 atmel_pri_ext.bottom_boot = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6);
492 atmel_pri_ext.burst_mode = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7);
493 atmel_pri_ext.page_mode = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8);
494
495 LOG_DEBUG("features: 0x%2.2x, bottom_boot: 0x%2.2x, burst_mode: 0x%2.2x, page_mode: 0x%2.2x",
496 atmel_pri_ext.features, atmel_pri_ext.bottom_boot, atmel_pri_ext.burst_mode, atmel_pri_ext.page_mode);
497
498 if (atmel_pri_ext.features & 0x02)
499 pri_ext->EraseSuspend = 2;
500
501 if (atmel_pri_ext.bottom_boot)
502 pri_ext->TopBottom = 2;
503 else
504 pri_ext->TopBottom = 3;
505
506 pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
507 pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
508
509 return ERROR_OK;
510 }
511
512 static int cfi_read_0002_pri_ext(struct flash_bank *bank)
513 {
514 struct cfi_flash_bank *cfi_info = bank->driver_priv;
515
516 if (cfi_info->manufacturer == CFI_MFR_ATMEL)
517 {
518 return cfi_read_atmel_pri_ext(bank);
519 }
520 else
521 {
522 return cfi_read_spansion_pri_ext(bank);
523 }
524 }
525
526 static int cfi_spansion_info(struct flash_bank *bank, char *buf, int buf_size)
527 {
528 int printed;
529 struct cfi_flash_bank *cfi_info = bank->driver_priv;
530 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
531
532 printed = snprintf(buf, buf_size, "\nSpansion primary algorithm extend information:\n");
533 buf += printed;
534 buf_size -= printed;
535
536 printed = snprintf(buf, buf_size, "pri: '%c%c%c', version: %c.%c\n", pri_ext->pri[0],
537 pri_ext->pri[1], pri_ext->pri[2],
538 pri_ext->major_version, pri_ext->minor_version);
539 buf += printed;
540 buf_size -= printed;
541
542 printed = snprintf(buf, buf_size, "Silicon Rev.: 0x%x, Address Sensitive unlock: 0x%x\n",
543 (pri_ext->SiliconRevision) >> 2,
544 (pri_ext->SiliconRevision) & 0x03);
545 buf += printed;
546 buf_size -= printed;
547
548 printed = snprintf(buf, buf_size, "Erase Suspend: 0x%x, Sector Protect: 0x%x\n",
549 pri_ext->EraseSuspend,
550 pri_ext->BlkProt);
551 buf += printed;
552 buf_size -= printed;
553
554 printed = snprintf(buf, buf_size, "VppMin: %u.%x, VppMax: %u.%x\n",
555 (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
556 (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
557
558 return ERROR_OK;
559 }
560
561 static int cfi_intel_info(struct flash_bank *bank, char *buf, int buf_size)
562 {
563 int printed;
564 struct cfi_flash_bank *cfi_info = bank->driver_priv;
565 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
566
567 printed = snprintf(buf, buf_size, "\nintel primary algorithm extend information:\n");
568 buf += printed;
569 buf_size -= printed;
570
571 printed = snprintf(buf, buf_size, "pri: '%c%c%c', version: %c.%c\n", pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
572 buf += printed;
573 buf_size -= printed;
574
575 printed = snprintf(buf, buf_size, "feature_support: 0x%" PRIx32 ", suspend_cmd_support: 0x%x, blk_status_reg_mask: 0x%x\n", pri_ext->feature_support, pri_ext->suspend_cmd_support, pri_ext->blk_status_reg_mask);
576 buf += printed;
577 buf_size -= printed;
578
579 printed = snprintf(buf, buf_size, "Vcc opt: %x.%x, Vpp opt: %u.%x\n",
580 (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
581 (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
582 buf += printed;
583 buf_size -= printed;
584
585 printed = snprintf(buf, buf_size, "protection_fields: %i, prot_reg_addr: 0x%x, factory pre-programmed: %i, user programmable: %i\n", pri_ext->num_protection_fields, pri_ext->prot_reg_addr, 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
586
587 return ERROR_OK;
588 }
589
590 /* flash_bank cfi <base> <size> <chip_width> <bus_width> <target#> [options]
591 */
592 FLASH_BANK_COMMAND_HANDLER(cfi_flash_bank_command)
593 {
594 struct cfi_flash_bank *cfi_info;
595
596 if (CMD_ARGC < 6)
597 {
598 LOG_WARNING("incomplete flash_bank cfi configuration");
599 return ERROR_FLASH_BANK_INVALID;
600 }
601
602 if ((bank->chip_width > CFI_MAX_CHIP_WIDTH)
603 || (bank->bus_width > CFI_MAX_BUS_WIDTH))
604 {
605 LOG_ERROR("chip and bus width have to specified in bytes");
606 return ERROR_FLASH_BANK_INVALID;
607 }
608
609 cfi_info = malloc(sizeof(struct cfi_flash_bank));
610 cfi_info->probed = 0;
611 bank->driver_priv = cfi_info;
612
613 cfi_info->write_algorithm = NULL;
614
615 cfi_info->x16_as_x8 = 0;
616 cfi_info->jedec_probe = 0;
617 cfi_info->not_cfi = 0;
618
619 for (unsigned i = 6; i < CMD_ARGC; i++)
620 {
621 if (strcmp(CMD_ARGV[i], "x16_as_x8") == 0)
622 {
623 cfi_info->x16_as_x8 = 1;
624 }
625 else if (strcmp(CMD_ARGV[i], "jedec_probe") == 0)
626 {
627 cfi_info->jedec_probe = 1;
628 }
629 }
630
631 cfi_info->write_algorithm = NULL;
632
633 /* bank wasn't probed yet */
634 cfi_info->qry[0] = -1;
635
636 return ERROR_OK;
637 }
638
639 static int cfi_intel_erase(struct flash_bank *bank, int first, int last)
640 {
641 int retval;
642 struct cfi_flash_bank *cfi_info = bank->driver_priv;
643 int i;
644
645 cfi_intel_clear_status_register(bank);
646
647 for (i = first; i <= last; i++)
648 {
649 if ((retval = cfi_send_command(bank, 0x20, flash_address(bank, i, 0x0))) != ERROR_OK)
650 {
651 return retval;
652 }
653
654 if ((retval = cfi_send_command(bank, 0xd0, flash_address(bank, i, 0x0))) != ERROR_OK)
655 {
656 return retval;
657 }
658
659 if (cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->block_erase_timeout_typ)) == 0x80)
660 bank->sectors[i].is_erased = 1;
661 else
662 {
663 if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
664 {
665 return retval;
666 }
667
668 LOG_ERROR("couldn't erase block %i of flash bank at base 0x%" PRIx32 , i, bank->base);
669 return ERROR_FLASH_OPERATION_FAILED;
670 }
671 }
672
673 return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
674 }
675
676 static int cfi_spansion_erase(struct flash_bank *bank, int first, int last)
677 {
678 int retval;
679 struct cfi_flash_bank *cfi_info = bank->driver_priv;
680 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
681 int i;
682
683 for (i = first; i <= last; i++)
684 {
685 if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
686 {
687 return retval;
688 }
689
690 if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
691 {
692 return retval;
693 }
694
695 if ((retval = cfi_send_command(bank, 0x80, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
696 {
697 return retval;
698 }
699
700 if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
701 {
702 return retval;
703 }
704
705 if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
706 {
707 return retval;
708 }
709
710 if ((retval = cfi_send_command(bank, 0x30, flash_address(bank, i, 0x0))) != ERROR_OK)
711 {
712 return retval;
713 }
714
715 if (cfi_spansion_wait_status_busy(bank, 1000 * (1 << cfi_info->block_erase_timeout_typ)) == ERROR_OK)
716 bank->sectors[i].is_erased = 1;
717 else
718 {
719 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
720 {
721 return retval;
722 }
723
724 LOG_ERROR("couldn't erase block %i of flash bank at base 0x%" PRIx32, i, bank->base);
725 return ERROR_FLASH_OPERATION_FAILED;
726 }
727 }
728
729 return cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
730 }
731
732 static int cfi_erase(struct flash_bank *bank, int first, int last)
733 {
734 struct cfi_flash_bank *cfi_info = bank->driver_priv;
735
736 if (bank->target->state != TARGET_HALTED)
737 {
738 LOG_ERROR("Target not halted");
739 return ERROR_TARGET_NOT_HALTED;
740 }
741
742 if ((first < 0) || (last < first) || (last >= bank->num_sectors))
743 {
744 return ERROR_FLASH_SECTOR_INVALID;
745 }
746
747 if (cfi_info->qry[0] != 'Q')
748 return ERROR_FLASH_BANK_NOT_PROBED;
749
750 switch (cfi_info->pri_id)
751 {
752 case 1:
753 case 3:
754 return cfi_intel_erase(bank, first, last);
755 break;
756 case 2:
757 return cfi_spansion_erase(bank, first, last);
758 break;
759 default:
760 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
761 break;
762 }
763
764 return ERROR_OK;
765 }
766
767 static int cfi_intel_protect(struct flash_bank *bank, int set, int first, int last)
768 {
769 int retval;
770 struct cfi_flash_bank *cfi_info = bank->driver_priv;
771 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
772 struct target *target = bank->target; /* FIXME: to be removed */
773 uint8_t command[CFI_MAX_BUS_WIDTH]; /* FIXME: to be removed */
774 int retry = 0;
775 int i;
776
777 /* if the device supports neither legacy lock/unlock (bit 3) nor
778 * instant individual block locking (bit 5).
779 */
780 if (!(pri_ext->feature_support & 0x28))
781 return ERROR_FLASH_OPERATION_FAILED;
782
783 cfi_intel_clear_status_register(bank);
784
785 for (i = first; i <= last; i++)
786 {
787 cfi_command(bank, 0x60, command); /* FIXME: to be removed */
788 LOG_DEBUG("address: 0x%4.4" PRIx32 ", command: 0x%4.4" PRIx32, flash_address(bank, i, 0x0), target_buffer_get_u32(target, command));
789 if ((retval = cfi_send_command(bank, 0x60, flash_address(bank, i, 0x0))) != ERROR_OK)
790 {
791 return retval;
792 }
793 if (set)
794 {
795 cfi_command(bank, 0x01, command); /* FIXME: to be removed */
796 LOG_DEBUG("address: 0x%4.4" PRIx32 ", command: 0x%4.4" PRIx32 , flash_address(bank, i, 0x0), target_buffer_get_u32(target, command));
797 if ((retval = cfi_send_command(bank, 0x01, flash_address(bank, i, 0x0))) != ERROR_OK)
798 {
799 return retval;
800 }
801 bank->sectors[i].is_protected = 1;
802 }
803 else
804 {
805 cfi_command(bank, 0xd0, command); /* FIXME: to be removed */
806 LOG_DEBUG("address: 0x%4.4" PRIx32 ", command: 0x%4.4" PRIx32, flash_address(bank, i, 0x0), target_buffer_get_u32(target, command));
807 if ((retval = cfi_send_command(bank, 0xd0, flash_address(bank, i, 0x0))) != ERROR_OK)
808 {
809 return retval;
810 }
811 bank->sectors[i].is_protected = 0;
812 }
813
814 /* instant individual block locking doesn't require reading of the status register */
815 if (!(pri_ext->feature_support & 0x20))
816 {
817 /* Clear lock bits operation may take up to 1.4s */
818 cfi_intel_wait_status_busy(bank, 1400);
819 }
820 else
821 {
822 uint8_t block_status;
823 /* read block lock bit, to verify status */
824 if ((retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, 0x55))) != ERROR_OK)
825 {
826 return retval;
827 }
828 block_status = cfi_get_u8(bank, i, 0x2);
829
830 if ((block_status & 0x1) != set)
831 {
832 LOG_ERROR("couldn't change block lock status (set = %i, block_status = 0x%2.2x)", set, block_status);
833 if ((retval = cfi_send_command(bank, 0x70, flash_address(bank, 0, 0x55))) != ERROR_OK)
834 {
835 return retval;
836 }
837 cfi_intel_wait_status_busy(bank, 10);
838
839 if (retry > 10)
840 return ERROR_FLASH_OPERATION_FAILED;
841 else
842 {
843 i--;
844 retry++;
845 }
846 }
847 }
848 }
849
850 /* if the device doesn't support individual block lock bits set/clear,
851 * all blocks have been unlocked in parallel, so we set those that should be protected
852 */
853 if ((!set) && (!(pri_ext->feature_support & 0x20)))
854 {
855 /* FIX!!! this code path is broken!!!
856 *
857 * The correct approach is:
858 *
859 * 1. read out current protection status
860 *
861 * 2. override read out protection status w/unprotected.
862 *
863 * 3. re-protect what should be protected.
864 *
865 */
866 for (i = 0; i < bank->num_sectors; i++)
867 {
868 if (bank->sectors[i].is_protected == 1)
869 {
870 cfi_intel_clear_status_register(bank);
871
872 if ((retval = cfi_send_command(bank, 0x60, flash_address(bank, i, 0x0))) != ERROR_OK)
873 {
874 return retval;
875 }
876
877 if ((retval = cfi_send_command(bank, 0x01, flash_address(bank, i, 0x0))) != ERROR_OK)
878 {
879 return retval;
880 }
881
882 cfi_intel_wait_status_busy(bank, 100);
883 }
884 }
885 }
886
887 return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
888 }
889
890 static int cfi_protect(struct flash_bank *bank, int set, int first, int last)
891 {
892 struct cfi_flash_bank *cfi_info = bank->driver_priv;
893
894 if (bank->target->state != TARGET_HALTED)
895 {
896 LOG_ERROR("Target not halted");
897 return ERROR_TARGET_NOT_HALTED;
898 }
899
900 if ((first < 0) || (last < first) || (last >= bank->num_sectors))
901 {
902 LOG_ERROR("Invalid sector range");
903 return ERROR_FLASH_SECTOR_INVALID;
904 }
905
906 if (cfi_info->qry[0] != 'Q')
907 return ERROR_FLASH_BANK_NOT_PROBED;
908
909 switch (cfi_info->pri_id)
910 {
911 case 1:
912 case 3:
913 return cfi_intel_protect(bank, set, first, last);
914 break;
915 default:
916 LOG_ERROR("protect: cfi primary command set %i unsupported", cfi_info->pri_id);
917 return ERROR_FAIL;
918 }
919 }
920
921 /* FIXME Replace this by a simple memcpy() - still unsure about sideeffects */
922 static void cfi_add_byte(struct flash_bank *bank, uint8_t *word, uint8_t byte)
923 {
924 /* struct target *target = bank->target; */
925
926 int i;
927
928 /* NOTE:
929 * The data to flash must not be changed in endian! We write a bytestrem in
930 * target byte order already. Only the control and status byte lane of the flash
931 * WSM is interpreted by the CPU in different ways, when read a uint16_t or uint32_t
932 * word (data seems to be in the upper or lower byte lane for uint16_t accesses).
933 */
934
935 #if 0
936 if (target->endianness == TARGET_LITTLE_ENDIAN)
937 {
938 #endif
939 /* shift bytes */
940 for (i = 0; i < bank->bus_width - 1; i++)
941 word[i] = word[i + 1];
942 word[bank->bus_width - 1] = byte;
943 #if 0
944 }
945 else
946 {
947 /* shift bytes */
948 for (i = bank->bus_width - 1; i > 0; i--)
949 word[i] = word[i - 1];
950 word[0] = byte;
951 }
952 #endif
953 }
954
955 /* Convert code image to target endian */
956 /* FIXME create general block conversion fcts in target.c?) */
957 static void cfi_fix_code_endian(struct target *target, uint8_t *dest, const uint32_t *src, uint32_t count)
958 {
959 uint32_t i;
960 for (i = 0; i< count; i++)
961 {
962 target_buffer_set_u32(target, dest, *src);
963 dest += 4;
964 src++;
965 }
966 }
967
968 static uint32_t cfi_command_val(struct flash_bank *bank, uint8_t cmd)
969 {
970 struct target *target = bank->target;
971
972 uint8_t buf[CFI_MAX_BUS_WIDTH];
973 cfi_command(bank, cmd, buf);
974 switch (bank->bus_width)
975 {
976 case 1 :
977 return buf[0];
978 break;
979 case 2 :
980 return target_buffer_get_u16(target, buf);
981 break;
982 case 4 :
983 return target_buffer_get_u32(target, buf);
984 break;
985 default :
986 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width);
987 return 0;
988 }
989 }
990
991 static int cfi_intel_write_block(struct flash_bank *bank, uint8_t *buffer, uint32_t address, uint32_t count)
992 {
993 struct cfi_flash_bank *cfi_info = bank->driver_priv;
994 struct target *target = bank->target;
995 struct reg_param reg_params[7];
996 struct arm_algorithm armv4_5_info;
997 struct working_area *source;
998 uint32_t buffer_size = 32768;
999 uint32_t write_command_val, busy_pattern_val, error_pattern_val;
1000
1001 /* algorithm register usage:
1002 * r0: source address (in RAM)
1003 * r1: target address (in Flash)
1004 * r2: count
1005 * r3: flash write command
1006 * r4: status byte (returned to host)
1007 * r5: busy test pattern
1008 * r6: error test pattern
1009 */
1010
1011 static const uint32_t word_32_code[] = {
1012 0xe4904004, /* loop: ldr r4, [r0], #4 */
1013 0xe5813000, /* str r3, [r1] */
1014 0xe5814000, /* str r4, [r1] */
1015 0xe5914000, /* busy: ldr r4, [r1] */
1016 0xe0047005, /* and r7, r4, r5 */
1017 0xe1570005, /* cmp r7, r5 */
1018 0x1afffffb, /* bne busy */
1019 0xe1140006, /* tst r4, r6 */
1020 0x1a000003, /* bne done */
1021 0xe2522001, /* subs r2, r2, #1 */
1022 0x0a000001, /* beq done */
1023 0xe2811004, /* add r1, r1 #4 */
1024 0xeafffff2, /* b loop */
1025 0xeafffffe /* done: b -2 */
1026 };
1027
1028 static const uint32_t word_16_code[] = {
1029 0xe0d040b2, /* loop: ldrh r4, [r0], #2 */
1030 0xe1c130b0, /* strh r3, [r1] */
1031 0xe1c140b0, /* strh r4, [r1] */
1032 0xe1d140b0, /* busy ldrh r4, [r1] */
1033 0xe0047005, /* and r7, r4, r5 */
1034 0xe1570005, /* cmp r7, r5 */
1035 0x1afffffb, /* bne busy */
1036 0xe1140006, /* tst r4, r6 */
1037 0x1a000003, /* bne done */
1038 0xe2522001, /* subs r2, r2, #1 */
1039 0x0a000001, /* beq done */
1040 0xe2811002, /* add r1, r1 #2 */
1041 0xeafffff2, /* b loop */
1042 0xeafffffe /* done: b -2 */
1043 };
1044
1045 static const uint32_t word_8_code[] = {
1046 0xe4d04001, /* loop: ldrb r4, [r0], #1 */
1047 0xe5c13000, /* strb r3, [r1] */
1048 0xe5c14000, /* strb r4, [r1] */
1049 0xe5d14000, /* busy ldrb r4, [r1] */
1050 0xe0047005, /* and r7, r4, r5 */
1051 0xe1570005, /* cmp r7, r5 */
1052 0x1afffffb, /* bne busy */
1053 0xe1140006, /* tst r4, r6 */
1054 0x1a000003, /* bne done */
1055 0xe2522001, /* subs r2, r2, #1 */
1056 0x0a000001, /* beq done */
1057 0xe2811001, /* add r1, r1 #1 */
1058 0xeafffff2, /* b loop */
1059 0xeafffffe /* done: b -2 */
1060 };
1061 uint8_t target_code[4*CFI_MAX_INTEL_CODESIZE];
1062 const uint32_t *target_code_src;
1063 uint32_t target_code_size;
1064 int retval = ERROR_OK;
1065
1066
1067 cfi_intel_clear_status_register(bank);
1068
1069 armv4_5_info.common_magic = ARM_COMMON_MAGIC;
1070 armv4_5_info.core_mode = ARM_MODE_SVC;
1071 armv4_5_info.core_state = ARM_STATE_ARM;
1072
1073 /* If we are setting up the write_algorith, we need target_code_src */
1074 /* if not we only need target_code_size. */
1075
1076 /* However, we don't want to create multiple code paths, so we */
1077 /* do the unecessary evaluation of target_code_src, which the */
1078 /* compiler will probably nicely optimize away if not needed */
1079
1080 /* prepare algorithm code for target endian */
1081 switch (bank->bus_width)
1082 {
1083 case 1 :
1084 target_code_src = word_8_code;
1085 target_code_size = sizeof(word_8_code);
1086 break;
1087 case 2 :
1088 target_code_src = word_16_code;
1089 target_code_size = sizeof(word_16_code);
1090 break;
1091 case 4 :
1092 target_code_src = word_32_code;
1093 target_code_size = sizeof(word_32_code);
1094 break;
1095 default:
1096 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width);
1097 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1098 }
1099
1100 /* flash write code */
1101 if (!cfi_info->write_algorithm)
1102 {
1103 if (target_code_size > sizeof(target_code))
1104 {
1105 LOG_WARNING("Internal error - target code buffer to small. Increase CFI_MAX_INTEL_CODESIZE and recompile.");
1106 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1107 }
1108 cfi_fix_code_endian(target, target_code, target_code_src, target_code_size / 4);
1109
1110 /* Get memory for block write handler */
1111 retval = target_alloc_working_area(target, target_code_size, &cfi_info->write_algorithm);
1112 if (retval != ERROR_OK)
1113 {
1114 LOG_WARNING("No working area available, can't do block memory writes");
1115 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1116 };
1117
1118 /* write algorithm code to working area */
1119 retval = target_write_buffer(target, cfi_info->write_algorithm->address, target_code_size, target_code);
1120 if (retval != ERROR_OK)
1121 {
1122 LOG_ERROR("Unable to write block write code to target");
1123 goto cleanup;
1124 }
1125 }
1126
1127 /* Get a workspace buffer for the data to flash starting with 32k size.
1128 Half size until buffer would be smaller 256 Bytem then fail back */
1129 /* FIXME Why 256 bytes, why not 32 bytes (smallest flash write page */
1130 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK)
1131 {
1132 buffer_size /= 2;
1133 if (buffer_size <= 256)
1134 {
1135 LOG_WARNING("no large enough working area available, can't do block memory writes");
1136 retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1137 goto cleanup;
1138 }
1139 };
1140
1141 /* setup algo registers */
1142 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1143 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1144 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1145 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1146 init_reg_param(&reg_params[4], "r4", 32, PARAM_IN);
1147 init_reg_param(&reg_params[5], "r5", 32, PARAM_OUT);
1148 init_reg_param(&reg_params[6], "r6", 32, PARAM_OUT);
1149
1150 /* prepare command and status register patterns */
1151 write_command_val = cfi_command_val(bank, 0x40);
1152 busy_pattern_val = cfi_command_val(bank, 0x80);
1153 error_pattern_val = cfi_command_val(bank, 0x7e);
1154
1155 LOG_DEBUG("Using target buffer at 0x%08" PRIx32 " and of size 0x%04" PRIx32, source->address, buffer_size);
1156
1157 /* Programming main loop */
1158 while (count > 0)
1159 {
1160 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1161 uint32_t wsm_error;
1162
1163 if ((retval = target_write_buffer(target, source->address, thisrun_count, buffer)) != ERROR_OK)
1164 {
1165 goto cleanup;
1166 }
1167
1168 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1169 buf_set_u32(reg_params[1].value, 0, 32, address);
1170 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1171
1172 buf_set_u32(reg_params[3].value, 0, 32, write_command_val);
1173 buf_set_u32(reg_params[5].value, 0, 32, busy_pattern_val);
1174 buf_set_u32(reg_params[6].value, 0, 32, error_pattern_val);
1175
1176 LOG_DEBUG("Write 0x%04" PRIx32 " bytes to flash at 0x%08" PRIx32 , thisrun_count, address);
1177
1178 /* Execute algorithm, assume breakpoint for last instruction */
1179 retval = target_run_algorithm(target, 0, NULL, 7, reg_params,
1180 cfi_info->write_algorithm->address,
1181 cfi_info->write_algorithm->address + target_code_size - sizeof(uint32_t),
1182 10000, /* 10s should be enough for max. 32k of data */
1183 &armv4_5_info);
1184
1185 /* On failure try a fall back to direct word writes */
1186 if (retval != ERROR_OK)
1187 {
1188 cfi_intel_clear_status_register(bank);
1189 LOG_ERROR("Execution of flash algorythm failed. Can't fall back. Please report.");
1190 retval = ERROR_FLASH_OPERATION_FAILED;
1191 /* retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE; */
1192 /* FIXME To allow fall back or recovery, we must save the actual status
1193 somewhere, so that a higher level code can start recovery. */
1194 goto cleanup;
1195 }
1196
1197 /* Check return value from algo code */
1198 wsm_error = buf_get_u32(reg_params[4].value, 0, 32) & error_pattern_val;
1199 if (wsm_error)
1200 {
1201 /* read status register (outputs debug inforation) */
1202 cfi_intel_wait_status_busy(bank, 100);
1203 cfi_intel_clear_status_register(bank);
1204 retval = ERROR_FLASH_OPERATION_FAILED;
1205 goto cleanup;
1206 }
1207
1208 buffer += thisrun_count;
1209 address += thisrun_count;
1210 count -= thisrun_count;
1211 }
1212
1213 /* free up resources */
1214 cleanup:
1215 if (source)
1216 target_free_working_area(target, source);
1217
1218 if (cfi_info->write_algorithm)
1219 {
1220 target_free_working_area(target, cfi_info->write_algorithm);
1221 cfi_info->write_algorithm = NULL;
1222 }
1223
1224 destroy_reg_param(&reg_params[0]);
1225 destroy_reg_param(&reg_params[1]);
1226 destroy_reg_param(&reg_params[2]);
1227 destroy_reg_param(&reg_params[3]);
1228 destroy_reg_param(&reg_params[4]);
1229 destroy_reg_param(&reg_params[5]);
1230 destroy_reg_param(&reg_params[6]);
1231
1232 return retval;
1233 }
1234
1235 static int cfi_spansion_write_block(struct flash_bank *bank, uint8_t *buffer, uint32_t address, uint32_t count)
1236 {
1237 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1238 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
1239 struct target *target = bank->target;
1240 struct reg_param reg_params[10];
1241 struct arm_algorithm armv4_5_info;
1242 struct working_area *source;
1243 uint32_t buffer_size = 32768;
1244 uint32_t status;
1245 int retval, retvaltemp;
1246 int exit_code = ERROR_OK;
1247
1248 /* input parameters - */
1249 /* R0 = source address */
1250 /* R1 = destination address */
1251 /* R2 = number of writes */
1252 /* R3 = flash write command */
1253 /* R4 = constant to mask DQ7 bits (also used for Dq5 with shift) */
1254 /* output parameters - */
1255 /* R5 = 0x80 ok 0x00 bad */
1256 /* temp registers - */
1257 /* R6 = value read from flash to test status */
1258 /* R7 = holding register */
1259 /* unlock registers - */
1260 /* R8 = unlock1_addr */
1261 /* R9 = unlock1_cmd */
1262 /* R10 = unlock2_addr */
1263 /* R11 = unlock2_cmd */
1264
1265 static const uint32_t word_32_code[] = {
1266 /* 00008100 <sp_32_code>: */
1267 0xe4905004, /* ldr r5, [r0], #4 */
1268 0xe5889000, /* str r9, [r8] */
1269 0xe58ab000, /* str r11, [r10] */
1270 0xe5883000, /* str r3, [r8] */
1271 0xe5815000, /* str r5, [r1] */
1272 0xe1a00000, /* nop */
1273 /* */
1274 /* 00008110 <sp_32_busy>: */
1275 0xe5916000, /* ldr r6, [r1] */
1276 0xe0257006, /* eor r7, r5, r6 */
1277 0xe0147007, /* ands r7, r4, r7 */
1278 0x0a000007, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
1279 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1280 0x0afffff9, /* beq 8110 <sp_32_busy> ; b if DQ5 low */
1281 0xe5916000, /* ldr r6, [r1] */
1282 0xe0257006, /* eor r7, r5, r6 */
1283 0xe0147007, /* ands r7, r4, r7 */
1284 0x0a000001, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
1285 0xe3a05000, /* mov r5, #0 ; 0x0 - return 0x00, error */
1286 0x1a000004, /* bne 8154 <sp_32_done> */
1287 /* */
1288 /* 00008140 <sp_32_cont>: */
1289 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1290 0x03a05080, /* moveq r5, #128 ; 0x80 */
1291 0x0a000001, /* beq 8154 <sp_32_done> */
1292 0xe2811004, /* add r1, r1, #4 ; 0x4 */
1293 0xeaffffe8, /* b 8100 <sp_32_code> */
1294 /* */
1295 /* 00008154 <sp_32_done>: */
1296 0xeafffffe /* b 8154 <sp_32_done> */
1297 };
1298
1299 static const uint32_t word_16_code[] = {
1300 /* 00008158 <sp_16_code>: */
1301 0xe0d050b2, /* ldrh r5, [r0], #2 */
1302 0xe1c890b0, /* strh r9, [r8] */
1303 0xe1cab0b0, /* strh r11, [r10] */
1304 0xe1c830b0, /* strh r3, [r8] */
1305 0xe1c150b0, /* strh r5, [r1] */
1306 0xe1a00000, /* nop (mov r0,r0) */
1307 /* */
1308 /* 00008168 <sp_16_busy>: */
1309 0xe1d160b0, /* ldrh r6, [r1] */
1310 0xe0257006, /* eor r7, r5, r6 */
1311 0xe0147007, /* ands r7, r4, r7 */
1312 0x0a000007, /* beq 8198 <sp_16_cont> */
1313 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1314 0x0afffff9, /* beq 8168 <sp_16_busy> */
1315 0xe1d160b0, /* ldrh r6, [r1] */
1316 0xe0257006, /* eor r7, r5, r6 */
1317 0xe0147007, /* ands r7, r4, r7 */
1318 0x0a000001, /* beq 8198 <sp_16_cont> */
1319 0xe3a05000, /* mov r5, #0 ; 0x0 */
1320 0x1a000004, /* bne 81ac <sp_16_done> */
1321 /* */
1322 /* 00008198 <sp_16_cont>: */
1323 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1324 0x03a05080, /* moveq r5, #128 ; 0x80 */
1325 0x0a000001, /* beq 81ac <sp_16_done> */
1326 0xe2811002, /* add r1, r1, #2 ; 0x2 */
1327 0xeaffffe8, /* b 8158 <sp_16_code> */
1328 /* */
1329 /* 000081ac <sp_16_done>: */
1330 0xeafffffe /* b 81ac <sp_16_done> */
1331 };
1332
1333 static const uint32_t word_16_code_dq7only[] = {
1334 /* <sp_16_code>: */
1335 0xe0d050b2, /* ldrh r5, [r0], #2 */
1336 0xe1c890b0, /* strh r9, [r8] */
1337 0xe1cab0b0, /* strh r11, [r10] */
1338 0xe1c830b0, /* strh r3, [r8] */
1339 0xe1c150b0, /* strh r5, [r1] */
1340 0xe1a00000, /* nop (mov r0,r0) */
1341 /* */
1342 /* <sp_16_busy>: */
1343 0xe1d160b0, /* ldrh r6, [r1] */
1344 0xe0257006, /* eor r7, r5, r6 */
1345 0xe2177080, /* ands r7, #0x80 */
1346 0x1afffffb, /* bne 8168 <sp_16_busy> */
1347 /* */
1348 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1349 0x03a05080, /* moveq r5, #128 ; 0x80 */
1350 0x0a000001, /* beq 81ac <sp_16_done> */
1351 0xe2811002, /* add r1, r1, #2 ; 0x2 */
1352 0xeafffff0, /* b 8158 <sp_16_code> */
1353 /* */
1354 /* 000081ac <sp_16_done>: */
1355 0xeafffffe /* b 81ac <sp_16_done> */
1356 };
1357
1358 static const uint32_t word_8_code[] = {
1359 /* 000081b0 <sp_16_code_end>: */
1360 0xe4d05001, /* ldrb r5, [r0], #1 */
1361 0xe5c89000, /* strb r9, [r8] */
1362 0xe5cab000, /* strb r11, [r10] */
1363 0xe5c83000, /* strb r3, [r8] */
1364 0xe5c15000, /* strb r5, [r1] */
1365 0xe1a00000, /* nop (mov r0,r0) */
1366 /* */
1367 /* 000081c0 <sp_8_busy>: */
1368 0xe5d16000, /* ldrb r6, [r1] */
1369 0xe0257006, /* eor r7, r5, r6 */
1370 0xe0147007, /* ands r7, r4, r7 */
1371 0x0a000007, /* beq 81f0 <sp_8_cont> */
1372 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1373 0x0afffff9, /* beq 81c0 <sp_8_busy> */
1374 0xe5d16000, /* ldrb r6, [r1] */
1375 0xe0257006, /* eor r7, r5, r6 */
1376 0xe0147007, /* ands r7, r4, r7 */
1377 0x0a000001, /* beq 81f0 <sp_8_cont> */
1378 0xe3a05000, /* mov r5, #0 ; 0x0 */
1379 0x1a000004, /* bne 8204 <sp_8_done> */
1380 /* */
1381 /* 000081f0 <sp_8_cont>: */
1382 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1383 0x03a05080, /* moveq r5, #128 ; 0x80 */
1384 0x0a000001, /* beq 8204 <sp_8_done> */
1385 0xe2811001, /* add r1, r1, #1 ; 0x1 */
1386 0xeaffffe8, /* b 81b0 <sp_16_code_end> */
1387 /* */
1388 /* 00008204 <sp_8_done>: */
1389 0xeafffffe /* b 8204 <sp_8_done> */
1390 };
1391
1392 armv4_5_info.common_magic = ARM_COMMON_MAGIC;
1393 armv4_5_info.core_mode = ARM_MODE_SVC;
1394 armv4_5_info.core_state = ARM_STATE_ARM;
1395
1396 int target_code_size;
1397 const uint32_t *target_code_src;
1398
1399 switch (bank->bus_width)
1400 {
1401 case 1 :
1402 target_code_src = word_8_code;
1403 target_code_size = sizeof(word_8_code);
1404 break;
1405 case 2 :
1406 /* Check for DQ5 support */
1407 if( cfi_info->status_poll_mask & (1 << 5) )
1408 {
1409 target_code_src = word_16_code;
1410 target_code_size = sizeof(word_16_code);
1411 }
1412 else
1413 {
1414 /* No DQ5 support. Use DQ7 DATA# polling only. */
1415 target_code_src = word_16_code_dq7only;
1416 target_code_size = sizeof(word_16_code_dq7only);
1417 }
1418 break;
1419 case 4 :
1420 target_code_src = word_32_code;
1421 target_code_size = sizeof(word_32_code);
1422 break;
1423 default:
1424 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width);
1425 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1426 }
1427
1428 /* flash write code */
1429 if (!cfi_info->write_algorithm)
1430 {
1431 uint8_t *target_code;
1432
1433 /* convert bus-width dependent algorithm code to correct endiannes */
1434 target_code = malloc(target_code_size);
1435 cfi_fix_code_endian(target, target_code, target_code_src, target_code_size / 4);
1436
1437 /* allocate working area */
1438 retval = target_alloc_working_area(target, target_code_size,
1439 &cfi_info->write_algorithm);
1440 if (retval != ERROR_OK)
1441 {
1442 free(target_code);
1443 return retval;
1444 }
1445
1446 /* write algorithm code to working area */
1447 if ((retval = target_write_buffer(target, cfi_info->write_algorithm->address,
1448 target_code_size, target_code)) != ERROR_OK)
1449 {
1450 free(target_code);
1451 return retval;
1452 }
1453
1454 free(target_code);
1455 }
1456 /* the following code still assumes target code is fixed 24*4 bytes */
1457
1458 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK)
1459 {
1460 buffer_size /= 2;
1461 if (buffer_size <= 256)
1462 {
1463 /* if we already allocated the writing code, but failed to get a buffer, free the algorithm */
1464 if (cfi_info->write_algorithm)
1465 target_free_working_area(target, cfi_info->write_algorithm);
1466
1467 LOG_WARNING("not enough working area available, can't do block memory writes");
1468 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1469 }
1470 };
1471
1472 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1473 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1474 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1475 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1476 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
1477 init_reg_param(&reg_params[5], "r5", 32, PARAM_IN);
1478 init_reg_param(&reg_params[6], "r8", 32, PARAM_OUT);
1479 init_reg_param(&reg_params[7], "r9", 32, PARAM_OUT);
1480 init_reg_param(&reg_params[8], "r10", 32, PARAM_OUT);
1481 init_reg_param(&reg_params[9], "r11", 32, PARAM_OUT);
1482
1483 while (count > 0)
1484 {
1485 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1486
1487 retvaltemp = target_write_buffer(target, source->address, thisrun_count, buffer);
1488
1489 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1490 buf_set_u32(reg_params[1].value, 0, 32, address);
1491 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1492 buf_set_u32(reg_params[3].value, 0, 32, cfi_command_val(bank, 0xA0));
1493 buf_set_u32(reg_params[4].value, 0, 32, cfi_command_val(bank, 0x80));
1494 buf_set_u32(reg_params[6].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock1));
1495 buf_set_u32(reg_params[7].value, 0, 32, 0xaaaaaaaa);
1496 buf_set_u32(reg_params[8].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock2));
1497 buf_set_u32(reg_params[9].value, 0, 32, 0x55555555);
1498
1499 retval = target_run_algorithm(target, 0, NULL, 10, reg_params,
1500 cfi_info->write_algorithm->address,
1501 cfi_info->write_algorithm->address + ((target_code_size) - 4),
1502 10000, &armv4_5_info);
1503
1504 status = buf_get_u32(reg_params[5].value, 0, 32);
1505
1506 if ((retval != ERROR_OK) || (retvaltemp != ERROR_OK) || status != 0x80)
1507 {
1508 LOG_DEBUG("status: 0x%" PRIx32 , status);
1509 exit_code = ERROR_FLASH_OPERATION_FAILED;
1510 break;
1511 }
1512
1513 buffer += thisrun_count;
1514 address += thisrun_count;
1515 count -= thisrun_count;
1516 }
1517
1518 target_free_all_working_areas(target);
1519
1520 destroy_reg_param(&reg_params[0]);
1521 destroy_reg_param(&reg_params[1]);
1522 destroy_reg_param(&reg_params[2]);
1523 destroy_reg_param(&reg_params[3]);
1524 destroy_reg_param(&reg_params[4]);
1525 destroy_reg_param(&reg_params[5]);
1526 destroy_reg_param(&reg_params[6]);
1527 destroy_reg_param(&reg_params[7]);
1528 destroy_reg_param(&reg_params[8]);
1529 destroy_reg_param(&reg_params[9]);
1530
1531 return exit_code;
1532 }
1533
1534 static int cfi_intel_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
1535 {
1536 int retval;
1537 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1538 struct target *target = bank->target;
1539
1540 cfi_intel_clear_status_register(bank);
1541 if ((retval = cfi_send_command(bank, 0x40, address)) != ERROR_OK)
1542 {
1543 return retval;
1544 }
1545
1546 if ((retval = target_write_memory(target, address, bank->bus_width, 1, word)) != ERROR_OK)
1547 {
1548 return retval;
1549 }
1550
1551 if (cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->word_write_timeout_max)) != 0x80)
1552 {
1553 if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
1554 {
1555 return retval;
1556 }
1557
1558 LOG_ERROR("couldn't write word at base 0x%" PRIx32 ", address %" PRIx32 , bank->base, address);
1559 return ERROR_FLASH_OPERATION_FAILED;
1560 }
1561
1562 return ERROR_OK;
1563 }
1564
1565 static int cfi_intel_write_words(struct flash_bank *bank, uint8_t *word, uint32_t wordcount, uint32_t address)
1566 {
1567 int retval;
1568 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1569 struct target *target = bank->target;
1570
1571 /* Calculate buffer size and boundary mask */
1572 uint32_t buffersize = (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
1573 uint32_t buffermask = buffersize-1;
1574 uint32_t bufferwsize;
1575
1576 /* Check for valid range */
1577 if (address & buffermask)
1578 {
1579 LOG_ERROR("Write address at base 0x%" PRIx32 ", address %" PRIx32 " not aligned to 2^%d boundary",
1580 bank->base, address, cfi_info->max_buf_write_size);
1581 return ERROR_FLASH_OPERATION_FAILED;
1582 }
1583 switch (bank->chip_width)
1584 {
1585 case 4 : bufferwsize = buffersize / 4; break;
1586 case 2 : bufferwsize = buffersize / 2; break;
1587 case 1 : bufferwsize = buffersize; break;
1588 default:
1589 LOG_ERROR("Unsupported chip width %d", bank->chip_width);
1590 return ERROR_FLASH_OPERATION_FAILED;
1591 }
1592
1593 bufferwsize/=(bank->bus_width / bank->chip_width);
1594
1595
1596 /* Check for valid size */
1597 if (wordcount > bufferwsize)
1598 {
1599 LOG_ERROR("Number of data words %" PRId32 " exceeds available buffersize %" PRId32 , wordcount, buffersize);
1600 return ERROR_FLASH_OPERATION_FAILED;
1601 }
1602
1603 /* Write to flash buffer */
1604 cfi_intel_clear_status_register(bank);
1605
1606 /* Initiate buffer operation _*/
1607 if ((retval = cfi_send_command(bank, 0xe8, address)) != ERROR_OK)
1608 {
1609 return retval;
1610 }
1611 if (cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->buf_write_timeout_max)) != 0x80)
1612 {
1613 if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
1614 {
1615 return retval;
1616 }
1617
1618 LOG_ERROR("couldn't start buffer write operation at base 0x%" PRIx32 ", address %" PRIx32 , bank->base, address);
1619 return ERROR_FLASH_OPERATION_FAILED;
1620 }
1621
1622 /* Write buffer wordcount-1 and data words */
1623 if ((retval = cfi_send_command(bank, bufferwsize-1, address)) != ERROR_OK)
1624 {
1625 return retval;
1626 }
1627
1628 if ((retval = target_write_memory(target, address, bank->bus_width, bufferwsize, word)) != ERROR_OK)
1629 {
1630 return retval;
1631 }
1632
1633 /* Commit write operation */
1634 if ((retval = cfi_send_command(bank, 0xd0, address)) != ERROR_OK)
1635 {
1636 return retval;
1637 }
1638 if (cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->buf_write_timeout_max)) != 0x80)
1639 {
1640 if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
1641 {
1642 return retval;
1643 }
1644
1645 LOG_ERROR("Buffer write at base 0x%" PRIx32 ", address %" PRIx32 " failed.", bank->base, address);
1646 return ERROR_FLASH_OPERATION_FAILED;
1647 }
1648
1649 return ERROR_OK;
1650 }
1651
1652 static int cfi_spansion_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
1653 {
1654 int retval;
1655 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1656 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
1657 struct target *target = bank->target;
1658
1659 if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
1660 {
1661 return retval;
1662 }
1663
1664 if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
1665 {
1666 return retval;
1667 }
1668
1669 if ((retval = cfi_send_command(bank, 0xa0, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
1670 {
1671 return retval;
1672 }
1673
1674 if ((retval = target_write_memory(target, address, bank->bus_width, 1, word)) != ERROR_OK)
1675 {
1676 return retval;
1677 }
1678
1679 if (cfi_spansion_wait_status_busy(bank, 1000 * (1 << cfi_info->word_write_timeout_max)) != ERROR_OK)
1680 {
1681 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
1682 {
1683 return retval;
1684 }
1685
1686 LOG_ERROR("couldn't write word at base 0x%" PRIx32 ", address %" PRIx32 , bank->base, address);
1687 return ERROR_FLASH_OPERATION_FAILED;
1688 }
1689
1690 return ERROR_OK;
1691 }
1692
1693 static int cfi_spansion_write_words(struct flash_bank *bank, uint8_t *word, uint32_t wordcount, uint32_t address)
1694 {
1695 int retval;
1696 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1697 struct target *target = bank->target;
1698 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
1699
1700 /* Calculate buffer size and boundary mask */
1701 uint32_t buffersize = (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
1702 uint32_t buffermask = buffersize-1;
1703 uint32_t bufferwsize;
1704
1705 /* Check for valid range */
1706 if (address & buffermask)
1707 {
1708 LOG_ERROR("Write address at base 0x%" PRIx32 ", address %" PRIx32 " not aligned to 2^%d boundary", bank->base, address, cfi_info->max_buf_write_size);
1709 return ERROR_FLASH_OPERATION_FAILED;
1710 }
1711 switch (bank->chip_width)
1712 {
1713 case 4 : bufferwsize = buffersize / 4; break;
1714 case 2 : bufferwsize = buffersize / 2; break;
1715 case 1 : bufferwsize = buffersize; break;
1716 default:
1717 LOG_ERROR("Unsupported chip width %d", bank->chip_width);
1718 return ERROR_FLASH_OPERATION_FAILED;
1719 }
1720
1721 bufferwsize/=(bank->bus_width / bank->chip_width);
1722
1723 /* Check for valid size */
1724 if (wordcount > bufferwsize)
1725 {
1726 LOG_ERROR("Number of data words %" PRId32 " exceeds available buffersize %" PRId32, wordcount, buffersize);
1727 return ERROR_FLASH_OPERATION_FAILED;
1728 }
1729
1730 // Unlock
1731 if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
1732 {
1733 return retval;
1734 }
1735
1736 if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
1737 {
1738 return retval;
1739 }
1740
1741 // Buffer load command
1742 if ((retval = cfi_send_command(bank, 0x25, address)) != ERROR_OK)
1743 {
1744 return retval;
1745 }
1746
1747 /* Write buffer wordcount-1 and data words */
1748 if ((retval = cfi_send_command(bank, bufferwsize-1, address)) != ERROR_OK)
1749 {
1750 return retval;
1751 }
1752
1753 if ((retval = target_write_memory(target, address, bank->bus_width, bufferwsize, word)) != ERROR_OK)
1754 {
1755 return retval;
1756 }
1757
1758 /* Commit write operation */
1759 if ((retval = cfi_send_command(bank, 0x29, address)) != ERROR_OK)
1760 {
1761 return retval;
1762 }
1763
1764 if (cfi_spansion_wait_status_busy(bank, 1000 * (1 << cfi_info->word_write_timeout_max)) != ERROR_OK)
1765 {
1766 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
1767 {
1768 return retval;
1769 }
1770
1771 LOG_ERROR("couldn't write block at base 0x%" PRIx32 ", address %" PRIx32 ", size %" PRIx32 , bank->base, address, bufferwsize);
1772 return ERROR_FLASH_OPERATION_FAILED;
1773 }
1774
1775 return ERROR_OK;
1776 }
1777
1778 static int cfi_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
1779 {
1780 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1781
1782 switch (cfi_info->pri_id)
1783 {
1784 case 1:
1785 case 3:
1786 return cfi_intel_write_word(bank, word, address);
1787 break;
1788 case 2:
1789 return cfi_spansion_write_word(bank, word, address);
1790 break;
1791 default:
1792 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
1793 break;
1794 }
1795
1796 return ERROR_FLASH_OPERATION_FAILED;
1797 }
1798
1799 static int cfi_write_words(struct flash_bank *bank, uint8_t *word, uint32_t wordcount, uint32_t address)
1800 {
1801 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1802
1803 switch (cfi_info->pri_id)
1804 {
1805 case 1:
1806 case 3:
1807 return cfi_intel_write_words(bank, word, wordcount, address);
1808 break;
1809 case 2:
1810 return cfi_spansion_write_words(bank, word, wordcount, address);
1811 break;
1812 default:
1813 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
1814 break;
1815 }
1816
1817 return ERROR_FLASH_OPERATION_FAILED;
1818 }
1819
1820 static int cfi_write(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
1821 {
1822 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1823 struct target *target = bank->target;
1824 uint32_t address = bank->base + offset; /* address of first byte to be programmed */
1825 uint32_t write_p, copy_p;
1826 int align; /* number of unaligned bytes */
1827 int blk_count; /* number of bus_width bytes for block copy */
1828 uint8_t current_word[CFI_MAX_BUS_WIDTH * 4]; /* word (bus_width size) currently being programmed */
1829 int i;
1830 int retval;
1831
1832 if (bank->target->state != TARGET_HALTED)
1833 {
1834 LOG_ERROR("Target not halted");
1835 return ERROR_TARGET_NOT_HALTED;
1836 }
1837
1838 if (offset + count > bank->size)
1839 return ERROR_FLASH_DST_OUT_OF_BANK;
1840
1841 if (cfi_info->qry[0] != 'Q')
1842 return ERROR_FLASH_BANK_NOT_PROBED;
1843
1844 /* start at the first byte of the first word (bus_width size) */
1845 write_p = address & ~(bank->bus_width - 1);
1846 if ((align = address - write_p) != 0)
1847 {
1848 LOG_INFO("Fixup %d unaligned head bytes", align);
1849
1850 for (i = 0; i < bank->bus_width; i++)
1851 current_word[i] = 0;
1852 copy_p = write_p;
1853
1854 /* copy bytes before the first write address */
1855 for (i = 0; i < align; ++i, ++copy_p)
1856 {
1857 uint8_t byte;
1858 if ((retval = target_read_memory(target, copy_p, 1, 1, &byte)) != ERROR_OK)
1859 {
1860 return retval;
1861 }
1862 cfi_add_byte(bank, current_word, byte);
1863 }
1864
1865 /* add bytes from the buffer */
1866 for (; (i < bank->bus_width) && (count > 0); i++)
1867 {
1868 cfi_add_byte(bank, current_word, *buffer++);
1869 count--;
1870 copy_p++;
1871 }
1872
1873 /* if the buffer is already finished, copy bytes after the last write address */
1874 for (; (count == 0) && (i < bank->bus_width); ++i, ++copy_p)
1875 {
1876 uint8_t byte;
1877 if ((retval = target_read_memory(target, copy_p, 1, 1, &byte)) != ERROR_OK)
1878 {
1879 return retval;
1880 }
1881 cfi_add_byte(bank, current_word, byte);
1882 }
1883
1884 retval = cfi_write_word(bank, current_word, write_p);
1885 if (retval != ERROR_OK)
1886 return retval;
1887 write_p = copy_p;
1888 }
1889
1890 /* handle blocks of bus_size aligned bytes */
1891 blk_count = count & ~(bank->bus_width - 1); /* round down, leave tail bytes */
1892 switch (cfi_info->pri_id)
1893 {
1894 /* try block writes (fails without working area) */
1895 case 1:
1896 case 3:
1897 retval = cfi_intel_write_block(bank, buffer, write_p, blk_count);
1898 break;
1899 case 2:
1900 retval = cfi_spansion_write_block(bank, buffer, write_p, blk_count);
1901 break;
1902 default:
1903 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
1904 retval = ERROR_FLASH_OPERATION_FAILED;
1905 break;
1906 }
1907 if (retval == ERROR_OK)
1908 {
1909 /* Increment pointers and decrease count on succesful block write */
1910 buffer += blk_count;
1911 write_p += blk_count;
1912 count -= blk_count;
1913 }
1914 else
1915 {
1916 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1917 {
1918 //adjust buffersize for chip width
1919 uint32_t buffersize = (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
1920 uint32_t buffermask = buffersize-1;
1921 uint32_t bufferwsize;
1922
1923 switch (bank->chip_width)
1924 {
1925 case 4 : bufferwsize = buffersize / 4; break;
1926 case 2 : bufferwsize = buffersize / 2; break;
1927 case 1 : bufferwsize = buffersize; break;
1928 default:
1929 LOG_ERROR("Unsupported chip width %d", bank->chip_width);
1930 return ERROR_FLASH_OPERATION_FAILED;
1931 }
1932
1933 bufferwsize/=(bank->bus_width / bank->chip_width);
1934
1935 /* fall back to memory writes */
1936 while (count >= (uint32_t)bank->bus_width)
1937 {
1938 int fallback;
1939 if ((write_p & 0xff) == 0)
1940 {
1941 LOG_INFO("Programming at %08" PRIx32 ", count %08" PRIx32 " bytes remaining", write_p, count);
1942 }
1943 fallback = 1;
1944 if ((bufferwsize > 0) && (count >= buffersize) && !(write_p & buffermask))
1945 {
1946 retval = cfi_write_words(bank, buffer, bufferwsize, write_p);
1947 if (retval == ERROR_OK)
1948 {
1949 buffer += buffersize;
1950 write_p += buffersize;
1951 count -= buffersize;
1952 fallback = 0;
1953 }
1954 }
1955 /* try the slow way? */
1956 if (fallback)
1957 {
1958 for (i = 0; i < bank->bus_width; i++)
1959 current_word[i] = 0;
1960
1961 for (i = 0; i < bank->bus_width; i++)
1962 {
1963 cfi_add_byte(bank, current_word, *buffer++);
1964 }
1965
1966 retval = cfi_write_word(bank, current_word, write_p);
1967 if (retval != ERROR_OK)
1968 return retval;
1969
1970 write_p += bank->bus_width;
1971 count -= bank->bus_width;
1972 }
1973 }
1974 }
1975 else
1976 return retval;
1977 }
1978
1979 /* return to read array mode, so we can read from flash again for padding */
1980 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
1981 {
1982 return retval;
1983 }
1984 if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
1985 {
1986 return retval;
1987 }
1988
1989 /* handle unaligned tail bytes */
1990 if (count > 0)
1991 {
1992 LOG_INFO("Fixup %" PRId32 " unaligned tail bytes", count);
1993
1994 copy_p = write_p;
1995 for (i = 0; i < bank->bus_width; i++)
1996 current_word[i] = 0;
1997
1998 for (i = 0; (i < bank->bus_width) && (count > 0); ++i, ++copy_p)
1999 {
2000 cfi_add_byte(bank, current_word, *buffer++);
2001 count--;
2002 }
2003 for (; i < bank->bus_width; ++i, ++copy_p)
2004 {
2005 uint8_t byte;
2006 if ((retval = target_read_memory(target, copy_p, 1, 1, &byte)) != ERROR_OK)
2007 {
2008 return retval;
2009 }
2010 cfi_add_byte(bank, current_word, byte);
2011 }
2012 retval = cfi_write_word(bank, current_word, write_p);
2013 if (retval != ERROR_OK)
2014 return retval;
2015 }
2016
2017 /* return to read array mode */
2018 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
2019 {
2020 return retval;
2021 }
2022 return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
2023 }
2024
2025 static void cfi_fixup_atmel_reversed_erase_regions(struct flash_bank *bank, void *param)
2026 {
2027 (void) param;
2028 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2029 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2030
2031 pri_ext->_reversed_geometry = 1;
2032 }
2033
2034 static void cfi_fixup_0002_erase_regions(struct flash_bank *bank, void *param)
2035 {
2036 int i;
2037 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2038 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2039 (void) param;
2040
2041 if ((pri_ext->_reversed_geometry) || (pri_ext->TopBottom == 3))
2042 {
2043 LOG_DEBUG("swapping reversed erase region information on cmdset 0002 device");
2044
2045 for (i = 0; i < cfi_info->num_erase_regions / 2; i++)
2046 {
2047 int j = (cfi_info->num_erase_regions - 1) - i;
2048 uint32_t swap;
2049
2050 swap = cfi_info->erase_region_info[i];
2051 cfi_info->erase_region_info[i] = cfi_info->erase_region_info[j];
2052 cfi_info->erase_region_info[j] = swap;
2053 }
2054 }
2055 }
2056
2057 static void cfi_fixup_0002_unlock_addresses(struct flash_bank *bank, void *param)
2058 {
2059 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2060 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2061 struct cfi_unlock_addresses *unlock_addresses = param;
2062
2063 pri_ext->_unlock1 = unlock_addresses->unlock1;
2064 pri_ext->_unlock2 = unlock_addresses->unlock2;
2065 }
2066
2067
2068 static int cfi_query_string(struct flash_bank *bank, int address)
2069 {
2070 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2071 int retval;
2072
2073 if ((retval = cfi_send_command(bank, 0x98, flash_address(bank, 0, address))) != ERROR_OK)
2074 {
2075 return retval;
2076 }
2077
2078 cfi_info->qry[0] = cfi_query_u8(bank, 0, 0x10);
2079 cfi_info->qry[1] = cfi_query_u8(bank, 0, 0x11);
2080 cfi_info->qry[2] = cfi_query_u8(bank, 0, 0x12);
2081
2082 LOG_DEBUG("CFI qry returned: 0x%2.2x 0x%2.2x 0x%2.2x", cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2]);
2083
2084 if ((cfi_info->qry[0] != 'Q') || (cfi_info->qry[1] != 'R') || (cfi_info->qry[2] != 'Y'))
2085 {
2086 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
2087 {
2088 return retval;
2089 }
2090 if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
2091 {
2092 return retval;
2093 }
2094 LOG_ERROR("Could not probe bank: no QRY");
2095 return ERROR_FLASH_BANK_INVALID;
2096 }
2097
2098 return ERROR_OK;
2099 }
2100
2101 static int cfi_probe(struct flash_bank *bank)
2102 {
2103 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2104 struct target *target = bank->target;
2105 int num_sectors = 0;
2106 int i;
2107 int sector = 0;
2108 uint32_t unlock1 = 0x555;
2109 uint32_t unlock2 = 0x2aa;
2110 int retval;
2111
2112 if (bank->target->state != TARGET_HALTED)
2113 {
2114 LOG_ERROR("Target not halted");
2115 return ERROR_TARGET_NOT_HALTED;
2116 }
2117
2118 cfi_info->probed = 0;
2119
2120 /* JEDEC standard JESD21C uses 0x5555 and 0x2aaa as unlock addresses,
2121 * while CFI compatible AMD/Spansion flashes use 0x555 and 0x2aa
2122 */
2123 if (cfi_info->jedec_probe)
2124 {
2125 unlock1 = 0x5555;
2126 unlock2 = 0x2aaa;
2127 }
2128
2129 /* switch to read identifier codes mode ("AUTOSELECT") */
2130 if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, unlock1))) != ERROR_OK)
2131 {
2132 return retval;
2133 }
2134 if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, unlock2))) != ERROR_OK)
2135 {
2136 return retval;
2137 }
2138 if ((retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, unlock1))) != ERROR_OK)
2139 {
2140 return retval;
2141 }
2142
2143 if (bank->chip_width == 1)
2144 {
2145 uint8_t manufacturer, device_id;
2146 if ((retval = target_read_u8(target, flash_address(bank, 0, 0x00), &manufacturer)) != ERROR_OK)
2147 {
2148 return retval;
2149 }
2150 if ((retval = target_read_u8(target, flash_address(bank, 0, 0x01), &device_id)) != ERROR_OK)
2151 {
2152 return retval;
2153 }
2154 cfi_info->manufacturer = manufacturer;
2155 cfi_info->device_id = device_id;
2156 }
2157 else if (bank->chip_width == 2)
2158 {
2159 if ((retval = target_read_u16(target, flash_address(bank, 0, 0x00), &cfi_info->manufacturer)) != ERROR_OK)
2160 {
2161 return retval;
2162 }
2163 if ((retval = target_read_u16(target, flash_address(bank, 0, 0x01), &cfi_info->device_id)) != ERROR_OK)
2164 {
2165 return retval;
2166 }
2167 }
2168
2169 LOG_INFO("Flash Manufacturer/Device: 0x%04x 0x%04x", cfi_info->manufacturer, cfi_info->device_id);
2170 /* switch back to read array mode */
2171 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x00))) != ERROR_OK)
2172 {
2173 return retval;
2174 }
2175 if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x00))) != ERROR_OK)
2176 {
2177 return retval;
2178 }
2179
2180 /* check device/manufacturer ID for known non-CFI flashes. */
2181 cfi_fixup_non_cfi(bank);
2182
2183 /* query only if this is a CFI compatible flash,
2184 * otherwise the relevant info has already been filled in
2185 */
2186 if (cfi_info->not_cfi == 0)
2187 {
2188 int retval;
2189
2190 /* enter CFI query mode
2191 * according to JEDEC Standard No. 68.01,
2192 * a single bus sequence with address = 0x55, data = 0x98 should put
2193 * the device into CFI query mode.
2194 *
2195 * SST flashes clearly violate this, and we will consider them incompatbile for now
2196 */
2197
2198 retval = cfi_query_string(bank, 0x55);
2199 if (retval != ERROR_OK)
2200 {
2201 /*
2202 * Spansion S29WS-N CFI query fix is to try 0x555 if 0x55 fails. Should
2203 * be harmless enough:
2204 *
2205 * http://www.infradead.org/pipermail/linux-mtd/2005-September/013618.html
2206 */
2207 LOG_USER("Try workaround w/0x555 instead of 0x55 to get QRY.");
2208 retval = cfi_query_string(bank, 0x555);
2209 }
2210 if (retval != ERROR_OK)
2211 return retval;
2212
2213 cfi_info->pri_id = cfi_query_u16(bank, 0, 0x13);
2214 cfi_info->pri_addr = cfi_query_u16(bank, 0, 0x15);
2215 cfi_info->alt_id = cfi_query_u16(bank, 0, 0x17);
2216 cfi_info->alt_addr = cfi_query_u16(bank, 0, 0x19);
2217
2218 LOG_DEBUG("qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: 0x%4.4x, alt_id: 0x%4.4x, alt_addr: 0x%4.4x", cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2], cfi_info->pri_id, cfi_info->pri_addr, cfi_info->alt_id, cfi_info->alt_addr);
2219
2220 cfi_info->vcc_min = cfi_query_u8(bank, 0, 0x1b);
2221 cfi_info->vcc_max = cfi_query_u8(bank, 0, 0x1c);
2222 cfi_info->vpp_min = cfi_query_u8(bank, 0, 0x1d);
2223 cfi_info->vpp_max = cfi_query_u8(bank, 0, 0x1e);
2224 cfi_info->word_write_timeout_typ = cfi_query_u8(bank, 0, 0x1f);
2225 cfi_info->buf_write_timeout_typ = cfi_query_u8(bank, 0, 0x20);
2226 cfi_info->block_erase_timeout_typ = cfi_query_u8(bank, 0, 0x21);
2227 cfi_info->chip_erase_timeout_typ = cfi_query_u8(bank, 0, 0x22);
2228 cfi_info->word_write_timeout_max = cfi_query_u8(bank, 0, 0x23);
2229 cfi_info->buf_write_timeout_max = cfi_query_u8(bank, 0, 0x24);
2230 cfi_info->block_erase_timeout_max = cfi_query_u8(bank, 0, 0x25);
2231 cfi_info->chip_erase_timeout_max = cfi_query_u8(bank, 0, 0x26);
2232
2233 LOG_DEBUG("Vcc min: %x.%x, Vcc max: %x.%x, Vpp min: %u.%x, Vpp max: %u.%x",
2234 (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
2235 (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
2236 (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
2237 (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
2238 LOG_DEBUG("typ. word write timeout: %u, typ. buf write timeout: %u, typ. block erase timeout: %u, typ. chip erase timeout: %u", 1 << cfi_info->word_write_timeout_typ, 1 << cfi_info->buf_write_timeout_typ,
2239 1 << cfi_info->block_erase_timeout_typ, 1 << cfi_info->chip_erase_timeout_typ);
2240 LOG_DEBUG("max. word write timeout: %u, max. buf write timeout: %u, max. block erase timeout: %u, max. chip erase timeout: %u", (1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
2241 (1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
2242 (1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ),
2243 (1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ));
2244
2245 cfi_info->dev_size = 1 << cfi_query_u8(bank, 0, 0x27);
2246 cfi_info->interface_desc = cfi_query_u16(bank, 0, 0x28);
2247 cfi_info->max_buf_write_size = cfi_query_u16(bank, 0, 0x2a);
2248 cfi_info->num_erase_regions = cfi_query_u8(bank, 0, 0x2c);
2249
2250 LOG_DEBUG("size: 0x%" PRIx32 ", interface desc: %i, max buffer write size: %x", cfi_info->dev_size, cfi_info->interface_desc, (1 << cfi_info->max_buf_write_size));
2251
2252 if (cfi_info->num_erase_regions)
2253 {
2254 cfi_info->erase_region_info = malloc(4 * cfi_info->num_erase_regions);
2255 for (i = 0; i < cfi_info->num_erase_regions; i++)
2256 {
2257 cfi_info->erase_region_info[i] = cfi_query_u32(bank, 0, 0x2d + (4 * i));
2258 LOG_DEBUG("erase region[%i]: %" PRIu32 " blocks of size 0x%" PRIx32 "",
2259 i,
2260 (cfi_info->erase_region_info[i] & 0xffff) + 1,
2261 (cfi_info->erase_region_info[i] >> 16) * 256);
2262 }
2263 }
2264 else
2265 {
2266 cfi_info->erase_region_info = NULL;
2267 }
2268
2269 /* We need to read the primary algorithm extended query table before calculating
2270 * the sector layout to be able to apply fixups
2271 */
2272 switch (cfi_info->pri_id)
2273 {
2274 /* Intel command set (standard and extended) */
2275 case 0x0001:
2276 case 0x0003:
2277 cfi_read_intel_pri_ext(bank);
2278 break;
2279 /* AMD/Spansion, Atmel, ... command set */
2280 case 0x0002:
2281 cfi_info->status_poll_mask = CFI_STATUS_POLL_MASK_DQ5_DQ6_DQ7; /* default for all CFI flashs */
2282 cfi_read_0002_pri_ext(bank);
2283 break;
2284 default:
2285 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2286 break;
2287 }
2288
2289 /* return to read array mode
2290 * we use both reset commands, as some Intel flashes fail to recognize the 0xF0 command
2291 */
2292 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
2293 {
2294 return retval;
2295 }
2296 if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
2297 {
2298 return retval;
2299 }
2300 } /* end CFI case */
2301
2302 /* apply fixups depending on the primary command set */
2303 switch (cfi_info->pri_id)
2304 {
2305 /* Intel command set (standard and extended) */
2306 case 0x0001:
2307 case 0x0003:
2308 cfi_fixup(bank, cfi_0001_fixups);
2309 break;
2310 /* AMD/Spansion, Atmel, ... command set */
2311 case 0x0002:
2312 cfi_fixup(bank, cfi_0002_fixups);
2313 break;
2314 default:
2315 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2316 break;
2317 }
2318
2319 if ((cfi_info->dev_size * bank->bus_width / bank->chip_width) != bank->size)
2320 {
2321 LOG_WARNING("configuration specifies 0x%" PRIx32 " size, but a 0x%" PRIx32 " size flash was found", bank->size, cfi_info->dev_size);
2322 }
2323
2324 if (cfi_info->num_erase_regions == 0)
2325 {
2326 /* a device might have only one erase block, spanning the whole device */
2327 bank->num_sectors = 1;
2328 bank->sectors = malloc(sizeof(struct flash_sector));
2329
2330 bank->sectors[sector].offset = 0x0;
2331 bank->sectors[sector].size = bank->size;
2332 bank->sectors[sector].is_erased = -1;
2333 bank->sectors[sector].is_protected = -1;
2334 }
2335 else
2336 {
2337 uint32_t offset = 0;
2338
2339 for (i = 0; i < cfi_info->num_erase_regions; i++)
2340 {
2341 num_sectors += (cfi_info->erase_region_info[i] & 0xffff) + 1;
2342 }
2343
2344 bank->num_sectors = num_sectors;
2345 bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
2346
2347 for (i = 0; i < cfi_info->num_erase_regions; i++)
2348 {
2349 uint32_t j;
2350 for (j = 0; j < (cfi_info->erase_region_info[i] & 0xffff) + 1; j++)
2351 {
2352 bank->sectors[sector].offset = offset;
2353 bank->sectors[sector].size = ((cfi_info->erase_region_info[i] >> 16) * 256) * bank->bus_width / bank->chip_width;
2354 offset += bank->sectors[sector].size;
2355 bank->sectors[sector].is_erased = -1;
2356 bank->sectors[sector].is_protected = -1;
2357 sector++;
2358 }
2359 }
2360 if (offset != (cfi_info->dev_size * bank->bus_width / bank->chip_width))
2361 {
2362 LOG_WARNING("CFI size is 0x%" PRIx32 ", but total sector size is 0x%" PRIx32 "", \
2363 (cfi_info->dev_size * bank->bus_width / bank->chip_width), offset);
2364 }
2365 }
2366
2367 cfi_info->probed = 1;
2368
2369 return ERROR_OK;
2370 }
2371
2372 static int cfi_auto_probe(struct flash_bank *bank)
2373 {
2374 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2375 if (cfi_info->probed)
2376 return ERROR_OK;
2377 return cfi_probe(bank);
2378 }
2379
2380
2381 static int cfi_intel_protect_check(struct flash_bank *bank)
2382 {
2383 int retval;
2384 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2385 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
2386 int i;
2387
2388 /* check if block lock bits are supported on this device */
2389 if (!(pri_ext->blk_status_reg_mask & 0x1))
2390 return ERROR_FLASH_OPERATION_FAILED;
2391
2392 if ((retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, 0x55))) != ERROR_OK)
2393 {
2394 return retval;
2395 }
2396
2397 for (i = 0; i < bank->num_sectors; i++)
2398 {
2399 uint8_t block_status = cfi_get_u8(bank, i, 0x2);
2400
2401 if (block_status & 1)
2402 bank->sectors[i].is_protected = 1;
2403 else
2404 bank->sectors[i].is_protected = 0;
2405 }
2406
2407 return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
2408 }
2409
2410 static int cfi_spansion_protect_check(struct flash_bank *bank)
2411 {
2412 int retval;
2413 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2414 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2415 int i;
2416
2417 if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
2418 {
2419 return retval;
2420 }
2421
2422 if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
2423 {
2424 return retval;
2425 }
2426
2427 if ((retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
2428 {
2429 return retval;
2430 }
2431
2432 for (i = 0; i < bank->num_sectors; i++)
2433 {
2434 uint8_t block_status = cfi_get_u8(bank, i, 0x2);
2435
2436 if (block_status & 1)
2437 bank->sectors[i].is_protected = 1;
2438 else
2439 bank->sectors[i].is_protected = 0;
2440 }
2441
2442 return cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
2443 }
2444
2445 static int cfi_protect_check(struct flash_bank *bank)
2446 {
2447 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2448
2449 if (bank->target->state != TARGET_HALTED)
2450 {
2451 LOG_ERROR("Target not halted");
2452 return ERROR_TARGET_NOT_HALTED;
2453 }
2454
2455 if (cfi_info->qry[0] != 'Q')
2456 return ERROR_FLASH_BANK_NOT_PROBED;
2457
2458 switch (cfi_info->pri_id)
2459 {
2460 case 1:
2461 case 3:
2462 return cfi_intel_protect_check(bank);
2463 break;
2464 case 2:
2465 return cfi_spansion_protect_check(bank);
2466 break;
2467 default:
2468 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2469 break;
2470 }
2471
2472 return ERROR_OK;
2473 }
2474
2475 static int cfi_info(struct flash_bank *bank, char *buf, int buf_size)
2476 {
2477 int printed;
2478 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2479
2480 if (cfi_info->qry[0] == (char)-1)
2481 {
2482 printed = snprintf(buf, buf_size, "\ncfi flash bank not probed yet\n");
2483 return ERROR_OK;
2484 }
2485
2486 if (cfi_info->not_cfi == 0)
2487 printed = snprintf(buf, buf_size, "\ncfi information:\n");
2488 else
2489 printed = snprintf(buf, buf_size, "\nnon-cfi flash:\n");
2490 buf += printed;
2491 buf_size -= printed;
2492
2493 printed = snprintf(buf, buf_size, "\nmfr: 0x%4.4x, id:0x%4.4x\n",
2494 cfi_info->manufacturer, cfi_info->device_id);
2495 buf += printed;
2496 buf_size -= printed;
2497
2498 if (cfi_info->not_cfi == 0)
2499 {
2500 printed = snprintf(buf, buf_size, "qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: 0x%4.4x, alt_id: 0x%4.4x, alt_addr: 0x%4.4x\n", cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2], cfi_info->pri_id, cfi_info->pri_addr, cfi_info->alt_id, cfi_info->alt_addr);
2501 buf += printed;
2502 buf_size -= printed;
2503
2504 printed = snprintf(buf, buf_size, "Vcc min: %x.%x, Vcc max: %x.%x, Vpp min: %u.%x, Vpp max: %u.%x\n",
2505 (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
2506 (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
2507 (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
2508 (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
2509 buf += printed;
2510 buf_size -= printed;
2511
2512 printed = snprintf(buf, buf_size, "typ. word write timeout: %u, typ. buf write timeout: %u, typ. block erase timeout: %u, typ. chip erase timeout: %u\n",
2513 1 << cfi_info->word_write_timeout_typ,
2514 1 << cfi_info->buf_write_timeout_typ,
2515 1 << cfi_info->block_erase_timeout_typ,
2516 1 << cfi_info->chip_erase_timeout_typ);
2517 buf += printed;
2518 buf_size -= printed;
2519
2520 printed = snprintf(buf, buf_size, "max. word write timeout: %u, max. buf write timeout: %u, max. block erase timeout: %u, max. chip erase timeout: %u\n",
2521 (1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
2522 (1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
2523 (1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ),
2524 (1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ));
2525 buf += printed;
2526 buf_size -= printed;
2527
2528 printed = snprintf(buf, buf_size, "size: 0x%" PRIx32 ", interface desc: %i, max buffer write size: %x\n",
2529 cfi_info->dev_size,
2530 cfi_info->interface_desc,
2531 1 << cfi_info->max_buf_write_size);
2532 buf += printed;
2533 buf_size -= printed;
2534
2535 switch (cfi_info->pri_id)
2536 {
2537 case 1:
2538 case 3:
2539 cfi_intel_info(bank, buf, buf_size);
2540 break;
2541 case 2:
2542 cfi_spansion_info(bank, buf, buf_size);
2543 break;
2544 default:
2545 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2546 break;
2547 }
2548 }
2549
2550 return ERROR_OK;
2551 }
2552
2553 struct flash_driver cfi_flash = {
2554 .name = "cfi",
2555 .flash_bank_command = cfi_flash_bank_command,
2556 .erase = cfi_erase,
2557 .protect = cfi_protect,
2558 .write = cfi_write,
2559 .probe = cfi_probe,
2560 .auto_probe = cfi_auto_probe,
2561 .erase_check = default_flash_blank_check,
2562 .protect_check = cfi_protect_check,
2563 .info = cfi_info,
2564 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)