flash/stm32l4x: add support of STM32U57x/U58x
[openocd.git] / src / flash / nor / stm32l4x.c
1 /***************************************************************************
2 * Copyright (C) 2015 by Uwe Bonnes *
3 * bon@elektron.ikp.physik.tu-darmstadt.de *
4 * *
5 * Copyright (C) 2019 by Tarek Bochkati for STMicroelectronics *
6 * tarek.bouchkati@gmail.com *
7 * *
8 * This program is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This program is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
20 ***************************************************************************/
21
22 #ifdef HAVE_CONFIG_H
23 #include "config.h"
24 #endif
25
26 #include "imp.h"
27 #include <helper/align.h>
28 #include <helper/binarybuffer.h>
29 #include <target/algorithm.h>
30 #include <target/cortex_m.h>
31 #include "bits.h"
32 #include "stm32l4x.h"
33
34 /* STM32L4xxx series for reference.
35 *
36 * RM0351 (STM32L4x5/STM32L4x6)
37 * http://www.st.com/resource/en/reference_manual/dm00083560.pdf
38 *
39 * RM0394 (STM32L43x/44x/45x/46x)
40 * http://www.st.com/resource/en/reference_manual/dm00151940.pdf
41 *
42 * RM0432 (STM32L4R/4Sxx)
43 * http://www.st.com/resource/en/reference_manual/dm00310109.pdf
44 *
45 * STM32L476RG Datasheet (for erase timing)
46 * http://www.st.com/resource/en/datasheet/stm32l476rg.pdf
47 *
48 * The RM0351 devices have normally two banks, but on 512 and 256 kiB devices
49 * an option byte is available to map all sectors to the first bank.
50 * Both STM32 banks are treated as one OpenOCD bank, as other STM32 devices
51 * handlers do!
52 *
53 * RM0394 devices have a single bank only.
54 *
55 * RM0432 devices have single and dual bank operating modes.
56 * - for STM32L4R/Sxx the FLASH size is 2Mbyte or 1Mbyte.
57 * - for STM32L4P/Q5x the FLASH size is 1Mbyte or 512Kbyte.
58 * Bank page (sector) size is 4Kbyte (dual mode) or 8Kbyte (single mode).
59 *
60 * Bank mode is controlled by two different bits in option bytes register.
61 * - for STM32L4R/Sxx
62 * In 2M FLASH devices bit 22 (DBANK) controls Dual Bank mode.
63 * In 1M FLASH devices bit 21 (DB1M) controls Dual Bank mode.
64 * - for STM32L4P5/Q5x
65 * In 1M FLASH devices bit 22 (DBANK) controls Dual Bank mode.
66 * In 512K FLASH devices bit 21 (DB512K) controls Dual Bank mode.
67 *
68 */
69
70 /* STM32WBxxx series for reference.
71 *
72 * RM0434 (STM32WB55)
73 * http://www.st.com/resource/en/reference_manual/dm00318631.pdf
74 *
75 * RM0471 (STM32WB50)
76 * http://www.st.com/resource/en/reference_manual/dm00622834.pdf
77 */
78
79 /* STM32WLxxx series for reference.
80 *
81 * RM0461 (STM32WLEx)
82 * http://www.st.com/resource/en/reference_manual/dm00530369.pdf
83 *
84 * RM0453 (STM32WL5x)
85 * http://www.st.com/resource/en/reference_manual/dm00451556.pdf
86 */
87
88 /* STM32G0xxx series for reference.
89 *
90 * RM0444 (STM32G0x1)
91 * http://www.st.com/resource/en/reference_manual/dm00371828.pdf
92 *
93 * RM0454 (STM32G0x0)
94 * http://www.st.com/resource/en/reference_manual/dm00463896.pdf
95 */
96
97 /* STM32G4xxx series for reference.
98 *
99 * RM0440 (STM32G43x/44x/47x/48x/49x/4Ax)
100 * http://www.st.com/resource/en/reference_manual/dm00355726.pdf
101 *
102 * Cat. 2 devices have single bank only, page size is 2kByte.
103 *
104 * Cat. 3 devices have single and dual bank operating modes,
105 * Page size is 2kByte (dual mode) or 4kByte (single mode).
106 *
107 * Bank mode is controlled by bit 22 (DBANK) in option bytes register.
108 * Both banks are treated as a single OpenOCD bank.
109 *
110 * Cat. 4 devices have single bank only, page size is 2kByte.
111 */
112
113 /* STM32L5xxx series for reference.
114 *
115 * RM0428 (STM32L552xx/STM32L562xx)
116 * http://www.st.com/resource/en/reference_manual/dm00346336.pdf
117 */
118
119 /* Erase time can be as high as 25ms, 10x this and assume it's toast... */
120
121 #define FLASH_ERASE_TIMEOUT 250
122 #define FLASH_WRITE_TIMEOUT 50
123
124
125 /* relevant STM32L4 flags ****************************************************/
126 #define F_NONE 0
127 /* this flag indicates if the device flash is with dual bank architecture */
128 #define F_HAS_DUAL_BANK BIT(0)
129 /* this flags is used for dual bank devices only, it indicates if the
130 * 4 WRPxx are usable if the device is configured in single-bank mode */
131 #define F_USE_ALL_WRPXX BIT(1)
132 /* this flag indicates if the device embeds a TrustZone security feature */
133 #define F_HAS_TZ BIT(2)
134 /* this flag indicates if the device has the same flash registers as STM32L5 */
135 #define F_HAS_L5_FLASH_REGS BIT(3)
136 /* this flag indicates that programming should be done in quad-word
137 * the default programming word size is double-word */
138 #define F_QUAD_WORD_PROG BIT(4)
139 /* end of STM32L4 flags ******************************************************/
140
141
142 enum stm32l4_flash_reg_index {
143 STM32_FLASH_ACR_INDEX,
144 STM32_FLASH_KEYR_INDEX,
145 STM32_FLASH_OPTKEYR_INDEX,
146 STM32_FLASH_SR_INDEX,
147 STM32_FLASH_CR_INDEX,
148 /* for some devices like STM32WL5x, the CPU2 have a dedicated C2CR register w/o LOCKs,
149 * so it uses the C2CR for flash operations and CR for checking locks and locking */
150 STM32_FLASH_CR_WLK_INDEX, /* FLASH_CR_WITH_LOCK */
151 STM32_FLASH_OPTR_INDEX,
152 STM32_FLASH_WRP1AR_INDEX,
153 STM32_FLASH_WRP1BR_INDEX,
154 STM32_FLASH_WRP2AR_INDEX,
155 STM32_FLASH_WRP2BR_INDEX,
156 STM32_FLASH_REG_INDEX_NUM,
157 };
158
159 enum stm32l4_rdp {
160 RDP_LEVEL_0 = 0xAA,
161 RDP_LEVEL_0_5 = 0x55, /* for devices with TrustZone enabled */
162 RDP_LEVEL_1 = 0x00,
163 RDP_LEVEL_2 = 0xCC
164 };
165
166 static const uint32_t stm32l4_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
167 [STM32_FLASH_ACR_INDEX] = 0x000,
168 [STM32_FLASH_KEYR_INDEX] = 0x008,
169 [STM32_FLASH_OPTKEYR_INDEX] = 0x00C,
170 [STM32_FLASH_SR_INDEX] = 0x010,
171 [STM32_FLASH_CR_INDEX] = 0x014,
172 [STM32_FLASH_OPTR_INDEX] = 0x020,
173 [STM32_FLASH_WRP1AR_INDEX] = 0x02C,
174 [STM32_FLASH_WRP1BR_INDEX] = 0x030,
175 [STM32_FLASH_WRP2AR_INDEX] = 0x04C,
176 [STM32_FLASH_WRP2BR_INDEX] = 0x050,
177 };
178
179 static const uint32_t stm32wl_cpu2_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
180 [STM32_FLASH_ACR_INDEX] = 0x000,
181 [STM32_FLASH_KEYR_INDEX] = 0x008,
182 [STM32_FLASH_OPTKEYR_INDEX] = 0x010,
183 [STM32_FLASH_SR_INDEX] = 0x060,
184 [STM32_FLASH_CR_INDEX] = 0x064,
185 [STM32_FLASH_CR_WLK_INDEX] = 0x014,
186 [STM32_FLASH_OPTR_INDEX] = 0x020,
187 [STM32_FLASH_WRP1AR_INDEX] = 0x02C,
188 [STM32_FLASH_WRP1BR_INDEX] = 0x030,
189 };
190
191 static const uint32_t stm32l5_ns_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
192 [STM32_FLASH_ACR_INDEX] = 0x000,
193 [STM32_FLASH_KEYR_INDEX] = 0x008, /* NSKEYR */
194 [STM32_FLASH_OPTKEYR_INDEX] = 0x010,
195 [STM32_FLASH_SR_INDEX] = 0x020, /* NSSR */
196 [STM32_FLASH_CR_INDEX] = 0x028, /* NSCR */
197 [STM32_FLASH_OPTR_INDEX] = 0x040,
198 [STM32_FLASH_WRP1AR_INDEX] = 0x058,
199 [STM32_FLASH_WRP1BR_INDEX] = 0x05C,
200 [STM32_FLASH_WRP2AR_INDEX] = 0x068,
201 [STM32_FLASH_WRP2BR_INDEX] = 0x06C,
202 };
203
204 static const uint32_t stm32l5_s_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
205 [STM32_FLASH_ACR_INDEX] = 0x000,
206 [STM32_FLASH_KEYR_INDEX] = 0x00C, /* SECKEYR */
207 [STM32_FLASH_OPTKEYR_INDEX] = 0x010,
208 [STM32_FLASH_SR_INDEX] = 0x024, /* SECSR */
209 [STM32_FLASH_CR_INDEX] = 0x02C, /* SECCR */
210 [STM32_FLASH_OPTR_INDEX] = 0x040,
211 [STM32_FLASH_WRP1AR_INDEX] = 0x058,
212 [STM32_FLASH_WRP1BR_INDEX] = 0x05C,
213 [STM32_FLASH_WRP2AR_INDEX] = 0x068,
214 [STM32_FLASH_WRP2BR_INDEX] = 0x06C,
215 };
216
217 struct stm32l4_rev {
218 const uint16_t rev;
219 const char *str;
220 };
221
222 struct stm32l4_part_info {
223 uint16_t id;
224 const char *device_str;
225 const struct stm32l4_rev *revs;
226 const size_t num_revs;
227 const uint16_t max_flash_size_kb;
228 const uint32_t flags; /* one bit per feature, see STM32L4 flags: macros F_XXX */
229 const uint32_t flash_regs_base;
230 const uint32_t fsize_addr;
231 const uint32_t otp_base;
232 const uint32_t otp_size;
233 };
234
235 struct stm32l4_flash_bank {
236 bool probed;
237 uint32_t idcode;
238 unsigned int bank1_sectors;
239 bool dual_bank_mode;
240 int hole_sectors;
241 uint32_t user_bank_size;
242 uint32_t data_width;
243 uint32_t cr_bker_mask;
244 uint32_t sr_bsy_mask;
245 uint32_t wrpxxr_mask;
246 const struct stm32l4_part_info *part_info;
247 uint32_t flash_regs_base;
248 const uint32_t *flash_regs;
249 bool otp_enabled;
250 bool use_flashloader;
251 enum stm32l4_rdp rdp;
252 bool tzen;
253 uint32_t optr;
254 };
255
256 enum stm32_bank_id {
257 STM32_BANK1,
258 STM32_BANK2,
259 STM32_ALL_BANKS
260 };
261
262 struct stm32l4_wrp {
263 enum stm32l4_flash_reg_index reg_idx;
264 uint32_t value;
265 bool used;
266 int first;
267 int last;
268 int offset;
269 };
270
271 /* human readable list of families this drivers supports (sorted alphabetically) */
272 static const char *device_families = "STM32G0/G4/L4/L4+/L5/U5/WB/WL";
273
274 static const struct stm32l4_rev stm32_415_revs[] = {
275 { 0x1000, "1" }, { 0x1001, "2" }, { 0x1003, "3" }, { 0x1007, "4" }
276 };
277
278 static const struct stm32l4_rev stm32_435_revs[] = {
279 { 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
280 };
281
282 static const struct stm32l4_rev stm32_460_revs[] = {
283 { 0x1000, "A/Z" } /* A and Z, no typo in RM! */, { 0x2000, "B" },
284 };
285
286 static const struct stm32l4_rev stm32_461_revs[] = {
287 { 0x1000, "A" }, { 0x2000, "B" },
288 };
289
290 static const struct stm32l4_rev stm32_462_revs[] = {
291 { 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
292 };
293
294 static const struct stm32l4_rev stm32_464_revs[] = {
295 { 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
296 };
297
298 static const struct stm32l4_rev stm32_466_revs[] = {
299 { 0x1000, "A" }, { 0x1001, "Z" }, { 0x2000, "B" },
300 };
301
302 static const struct stm32l4_rev stm32_467_revs[] = {
303 { 0x1000, "A" },
304 };
305
306 static const struct stm32l4_rev stm32_468_revs[] = {
307 { 0x1000, "A" }, { 0x2000, "B" }, { 0x2001, "Z" },
308 };
309
310 static const struct stm32l4_rev stm32_469_revs[] = {
311 { 0x1000, "A" }, { 0x2000, "B" }, { 0x2001, "Z" },
312 };
313
314 static const struct stm32l4_rev stm32_470_revs[] = {
315 { 0x1000, "A" }, { 0x1001, "Z" }, { 0x1003, "Y" }, { 0x100F, "W" },
316 };
317
318 static const struct stm32l4_rev stm32_471_revs[] = {
319 { 0x1001, "Z" },
320 };
321
322 static const struct stm32l4_rev stm32_472_revs[] = {
323 { 0x1000, "A" }, { 0x2000, "B" },
324 };
325
326 static const struct stm32l4_rev stm32_479_revs[] = {
327 { 0x1000, "A" },
328 };
329
330 static const struct stm32l4_rev stm32_482_revs[] = {
331 { 0x1000, "A" }, { 0x1001, "Z" }, { 0x1003, "Y" }, { 0x2000, "B" },
332 };
333
334 static const struct stm32l4_rev stm32_495_revs[] = {
335 { 0x2001, "2.1" },
336 };
337
338 static const struct stm32l4_rev stm32_496_revs[] = {
339 { 0x1000, "A" },
340 };
341
342 static const struct stm32l4_rev stm32_497_revs[] = {
343 { 0x1000, "1.0" },
344 };
345
346 static const struct stm32l4_part_info stm32l4_parts[] = {
347 {
348 .id = 0x415,
349 .revs = stm32_415_revs,
350 .num_revs = ARRAY_SIZE(stm32_415_revs),
351 .device_str = "STM32L47/L48xx",
352 .max_flash_size_kb = 1024,
353 .flags = F_HAS_DUAL_BANK,
354 .flash_regs_base = 0x40022000,
355 .fsize_addr = 0x1FFF75E0,
356 .otp_base = 0x1FFF7000,
357 .otp_size = 1024,
358 },
359 {
360 .id = 0x435,
361 .revs = stm32_435_revs,
362 .num_revs = ARRAY_SIZE(stm32_435_revs),
363 .device_str = "STM32L43/L44xx",
364 .max_flash_size_kb = 256,
365 .flags = F_NONE,
366 .flash_regs_base = 0x40022000,
367 .fsize_addr = 0x1FFF75E0,
368 .otp_base = 0x1FFF7000,
369 .otp_size = 1024,
370 },
371 {
372 .id = 0x460,
373 .revs = stm32_460_revs,
374 .num_revs = ARRAY_SIZE(stm32_460_revs),
375 .device_str = "STM32G07/G08xx",
376 .max_flash_size_kb = 128,
377 .flags = F_NONE,
378 .flash_regs_base = 0x40022000,
379 .fsize_addr = 0x1FFF75E0,
380 .otp_base = 0x1FFF7000,
381 .otp_size = 1024,
382 },
383 {
384 .id = 0x461,
385 .revs = stm32_461_revs,
386 .num_revs = ARRAY_SIZE(stm32_461_revs),
387 .device_str = "STM32L49/L4Axx",
388 .max_flash_size_kb = 1024,
389 .flags = F_HAS_DUAL_BANK,
390 .flash_regs_base = 0x40022000,
391 .fsize_addr = 0x1FFF75E0,
392 .otp_base = 0x1FFF7000,
393 .otp_size = 1024,
394 },
395 {
396 .id = 0x462,
397 .revs = stm32_462_revs,
398 .num_revs = ARRAY_SIZE(stm32_462_revs),
399 .device_str = "STM32L45/L46xx",
400 .max_flash_size_kb = 512,
401 .flags = F_NONE,
402 .flash_regs_base = 0x40022000,
403 .fsize_addr = 0x1FFF75E0,
404 .otp_base = 0x1FFF7000,
405 .otp_size = 1024,
406 },
407 {
408 .id = 0x464,
409 .revs = stm32_464_revs,
410 .num_revs = ARRAY_SIZE(stm32_464_revs),
411 .device_str = "STM32L41/L42xx",
412 .max_flash_size_kb = 128,
413 .flags = F_NONE,
414 .flash_regs_base = 0x40022000,
415 .fsize_addr = 0x1FFF75E0,
416 .otp_base = 0x1FFF7000,
417 .otp_size = 1024,
418 },
419 {
420 .id = 0x466,
421 .revs = stm32_466_revs,
422 .num_revs = ARRAY_SIZE(stm32_466_revs),
423 .device_str = "STM32G03/G04xx",
424 .max_flash_size_kb = 64,
425 .flags = F_NONE,
426 .flash_regs_base = 0x40022000,
427 .fsize_addr = 0x1FFF75E0,
428 .otp_base = 0x1FFF7000,
429 .otp_size = 1024,
430 },
431 {
432 .id = 0x467,
433 .revs = stm32_467_revs,
434 .num_revs = ARRAY_SIZE(stm32_467_revs),
435 .device_str = "STM32G0Bx/G0Cx",
436 .max_flash_size_kb = 512,
437 .flags = F_HAS_DUAL_BANK,
438 .flash_regs_base = 0x40022000,
439 .fsize_addr = 0x1FFF75E0,
440 .otp_base = 0x1FFF7000,
441 .otp_size = 1024,
442 },
443 {
444 .id = 0x468,
445 .revs = stm32_468_revs,
446 .num_revs = ARRAY_SIZE(stm32_468_revs),
447 .device_str = "STM32G43/G44xx",
448 .max_flash_size_kb = 128,
449 .flags = F_NONE,
450 .flash_regs_base = 0x40022000,
451 .fsize_addr = 0x1FFF75E0,
452 .otp_base = 0x1FFF7000,
453 .otp_size = 1024,
454 },
455 {
456 .id = 0x469,
457 .revs = stm32_469_revs,
458 .num_revs = ARRAY_SIZE(stm32_469_revs),
459 .device_str = "STM32G47/G48xx",
460 .max_flash_size_kb = 512,
461 .flags = F_HAS_DUAL_BANK | F_USE_ALL_WRPXX,
462 .flash_regs_base = 0x40022000,
463 .fsize_addr = 0x1FFF75E0,
464 .otp_base = 0x1FFF7000,
465 .otp_size = 1024,
466 },
467 {
468 .id = 0x470,
469 .revs = stm32_470_revs,
470 .num_revs = ARRAY_SIZE(stm32_470_revs),
471 .device_str = "STM32L4R/L4Sxx",
472 .max_flash_size_kb = 2048,
473 .flags = F_HAS_DUAL_BANK | F_USE_ALL_WRPXX,
474 .flash_regs_base = 0x40022000,
475 .fsize_addr = 0x1FFF75E0,
476 .otp_base = 0x1FFF7000,
477 .otp_size = 1024,
478 },
479 {
480 .id = 0x471,
481 .revs = stm32_471_revs,
482 .num_revs = ARRAY_SIZE(stm32_471_revs),
483 .device_str = "STM32L4P5/L4Q5x",
484 .max_flash_size_kb = 1024,
485 .flags = F_HAS_DUAL_BANK | F_USE_ALL_WRPXX,
486 .flash_regs_base = 0x40022000,
487 .fsize_addr = 0x1FFF75E0,
488 .otp_base = 0x1FFF7000,
489 .otp_size = 1024,
490 },
491 {
492 .id = 0x472,
493 .revs = stm32_472_revs,
494 .num_revs = ARRAY_SIZE(stm32_472_revs),
495 .device_str = "STM32L55/L56xx",
496 .max_flash_size_kb = 512,
497 .flags = F_HAS_DUAL_BANK | F_USE_ALL_WRPXX | F_HAS_TZ | F_HAS_L5_FLASH_REGS,
498 .flash_regs_base = 0x40022000,
499 .fsize_addr = 0x0BFA05E0,
500 .otp_base = 0x0BFA0000,
501 .otp_size = 512,
502 },
503 {
504 .id = 0x479,
505 .revs = stm32_479_revs,
506 .num_revs = ARRAY_SIZE(stm32_479_revs),
507 .device_str = "STM32G49/G4Axx",
508 .max_flash_size_kb = 512,
509 .flags = F_NONE,
510 .flash_regs_base = 0x40022000,
511 .fsize_addr = 0x1FFF75E0,
512 .otp_base = 0x1FFF7000,
513 .otp_size = 1024,
514 },
515 {
516 .id = 0x482,
517 .revs = stm32_482_revs,
518 .num_revs = ARRAY_SIZE(stm32_482_revs),
519 .device_str = "STM32U57/U58xx",
520 .max_flash_size_kb = 2048,
521 .flags = F_HAS_DUAL_BANK | F_QUAD_WORD_PROG | F_HAS_TZ | F_HAS_L5_FLASH_REGS,
522 .flash_regs_base = 0x40022000,
523 .fsize_addr = 0x0BFA07A0,
524 .otp_base = 0x0BFA0000,
525 .otp_size = 512,
526 },
527 {
528 .id = 0x495,
529 .revs = stm32_495_revs,
530 .num_revs = ARRAY_SIZE(stm32_495_revs),
531 .device_str = "STM32WB5x",
532 .max_flash_size_kb = 1024,
533 .flags = F_NONE,
534 .flash_regs_base = 0x58004000,
535 .fsize_addr = 0x1FFF75E0,
536 .otp_base = 0x1FFF7000,
537 .otp_size = 1024,
538 },
539 {
540 .id = 0x496,
541 .revs = stm32_496_revs,
542 .num_revs = ARRAY_SIZE(stm32_496_revs),
543 .device_str = "STM32WB3x",
544 .max_flash_size_kb = 512,
545 .flags = F_NONE,
546 .flash_regs_base = 0x58004000,
547 .fsize_addr = 0x1FFF75E0,
548 .otp_base = 0x1FFF7000,
549 .otp_size = 1024,
550 },
551 {
552 .id = 0x497,
553 .revs = stm32_497_revs,
554 .num_revs = ARRAY_SIZE(stm32_497_revs),
555 .device_str = "STM32WLEx/WL5x",
556 .max_flash_size_kb = 256,
557 .flags = F_NONE,
558 .flash_regs_base = 0x58004000,
559 .fsize_addr = 0x1FFF75E0,
560 .otp_base = 0x1FFF7000,
561 .otp_size = 1024,
562 },
563 };
564
565 /* flash bank stm32l4x <base> <size> 0 0 <target#> */
566 FLASH_BANK_COMMAND_HANDLER(stm32l4_flash_bank_command)
567 {
568 struct stm32l4_flash_bank *stm32l4_info;
569
570 if (CMD_ARGC < 6)
571 return ERROR_COMMAND_SYNTAX_ERROR;
572
573 /* fix-up bank base address: 0 is used for normal flash memory */
574 if (bank->base == 0)
575 bank->base = STM32_FLASH_BANK_BASE;
576
577 stm32l4_info = calloc(1, sizeof(struct stm32l4_flash_bank));
578 if (!stm32l4_info)
579 return ERROR_FAIL; /* Checkme: What better error to use?*/
580 bank->driver_priv = stm32l4_info;
581
582 stm32l4_info->probed = false;
583 stm32l4_info->otp_enabled = false;
584 stm32l4_info->user_bank_size = bank->size;
585 stm32l4_info->use_flashloader = true;
586
587 return ERROR_OK;
588 }
589
590 /* bitmap helper extension */
591 struct range {
592 unsigned int start;
593 unsigned int end;
594 };
595
596 static void bitmap_to_ranges(unsigned long *bitmap, unsigned int nbits,
597 struct range *ranges, unsigned int *ranges_count) {
598 *ranges_count = 0;
599 bool last_bit = 0, cur_bit;
600 for (unsigned int i = 0; i < nbits; i++) {
601 cur_bit = test_bit(i, bitmap);
602
603 if (cur_bit && !last_bit) {
604 (*ranges_count)++;
605 ranges[*ranges_count - 1].start = i;
606 ranges[*ranges_count - 1].end = i;
607 } else if (cur_bit && last_bit) {
608 /* update (increment) the end this range */
609 ranges[*ranges_count - 1].end = i;
610 }
611
612 last_bit = cur_bit;
613 }
614 }
615
616 static inline int range_print_one(struct range *range, char *str)
617 {
618 if (range->start == range->end)
619 return sprintf(str, "[%d]", range->start);
620
621 return sprintf(str, "[%d,%d]", range->start, range->end);
622 }
623
624 static char *range_print_alloc(struct range *ranges, unsigned int ranges_count)
625 {
626 /* each range will be printed like the following: [start,end]
627 * start and end, both are unsigned int, an unsigned int takes 10 characters max
628 * plus 3 characters for '[', ',' and ']'
629 * thus means each range can take maximum 23 character
630 * after each range we add a ' ' as separator and finally we need the '\0'
631 * if the ranges_count is zero we reserve one char for '\0' to return an empty string */
632 char *str = calloc(1, ranges_count * (24 * sizeof(char)) + 1);
633 char *ptr = str;
634
635 for (unsigned int i = 0; i < ranges_count; i++) {
636 ptr += range_print_one(&(ranges[i]), ptr);
637
638 if (i < ranges_count - 1)
639 *(ptr++) = ' ';
640 }
641
642 return str;
643 }
644
645 /* end of bitmap helper extension */
646
647 static inline bool stm32l4_is_otp(struct flash_bank *bank)
648 {
649 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
650 return bank->base == stm32l4_info->part_info->otp_base;
651 }
652
653 static int stm32l4_otp_enable(struct flash_bank *bank, bool enable)
654 {
655 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
656
657 if (!stm32l4_is_otp(bank))
658 return ERROR_FAIL;
659
660 char *op_str = enable ? "enabled" : "disabled";
661
662 LOG_INFO("OTP memory (bank #%d) is %s%s for write commands",
663 bank->bank_number,
664 stm32l4_info->otp_enabled == enable ? "already " : "",
665 op_str);
666
667 stm32l4_info->otp_enabled = enable;
668
669 return ERROR_OK;
670 }
671
672 static inline bool stm32l4_otp_is_enabled(struct flash_bank *bank)
673 {
674 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
675 return stm32l4_info->otp_enabled;
676 }
677
678 static void stm32l4_sync_rdp_tzen(struct flash_bank *bank)
679 {
680 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
681
682 bool tzen = false;
683
684 if (stm32l4_info->part_info->flags & F_HAS_TZ)
685 tzen = (stm32l4_info->optr & FLASH_TZEN) != 0;
686
687 uint32_t rdp = stm32l4_info->optr & FLASH_RDP_MASK;
688
689 /* for devices without TrustZone:
690 * RDP level 0 and 2 values are to 0xAA and 0xCC
691 * Any other value corresponds to RDP level 1
692 * for devices with TrusZone:
693 * RDP level 0 and 2 values are 0xAA and 0xCC
694 * RDP level 0.5 value is 0x55 only if TZEN = 1
695 * Any other value corresponds to RDP level 1, including 0x55 if TZEN = 0
696 */
697
698 if (rdp != RDP_LEVEL_0 && rdp != RDP_LEVEL_2) {
699 if (!tzen || (tzen && rdp != RDP_LEVEL_0_5))
700 rdp = RDP_LEVEL_1;
701 }
702
703 stm32l4_info->tzen = tzen;
704 stm32l4_info->rdp = rdp;
705 }
706
707 static inline uint32_t stm32l4_get_flash_reg(struct flash_bank *bank, uint32_t reg_offset)
708 {
709 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
710 return stm32l4_info->flash_regs_base + reg_offset;
711 }
712
713 static inline uint32_t stm32l4_get_flash_reg_by_index(struct flash_bank *bank,
714 enum stm32l4_flash_reg_index reg_index)
715 {
716 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
717 return stm32l4_get_flash_reg(bank, stm32l4_info->flash_regs[reg_index]);
718 }
719
720 static inline int stm32l4_read_flash_reg(struct flash_bank *bank, uint32_t reg_offset, uint32_t *value)
721 {
722 return target_read_u32(bank->target, stm32l4_get_flash_reg(bank, reg_offset), value);
723 }
724
725 static inline int stm32l4_read_flash_reg_by_index(struct flash_bank *bank,
726 enum stm32l4_flash_reg_index reg_index, uint32_t *value)
727 {
728 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
729 return stm32l4_read_flash_reg(bank, stm32l4_info->flash_regs[reg_index], value);
730 }
731
732 static inline int stm32l4_write_flash_reg(struct flash_bank *bank, uint32_t reg_offset, uint32_t value)
733 {
734 return target_write_u32(bank->target, stm32l4_get_flash_reg(bank, reg_offset), value);
735 }
736
737 static inline int stm32l4_write_flash_reg_by_index(struct flash_bank *bank,
738 enum stm32l4_flash_reg_index reg_index, uint32_t value)
739 {
740 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
741 return stm32l4_write_flash_reg(bank, stm32l4_info->flash_regs[reg_index], value);
742 }
743
744 static int stm32l4_wait_status_busy(struct flash_bank *bank, int timeout)
745 {
746 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
747 uint32_t status;
748 int retval = ERROR_OK;
749
750 /* wait for busy to clear */
751 for (;;) {
752 retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX, &status);
753 if (retval != ERROR_OK)
754 return retval;
755 LOG_DEBUG("status: 0x%" PRIx32 "", status);
756 if ((status & stm32l4_info->sr_bsy_mask) == 0)
757 break;
758 if (timeout-- <= 0) {
759 LOG_ERROR("timed out waiting for flash");
760 return ERROR_FAIL;
761 }
762 alive_sleep(1);
763 }
764
765 if (status & FLASH_WRPERR) {
766 LOG_ERROR("stm32x device protected");
767 retval = ERROR_FAIL;
768 }
769
770 /* Clear but report errors */
771 if (status & FLASH_ERROR) {
772 if (retval == ERROR_OK)
773 retval = ERROR_FAIL;
774 /* If this operation fails, we ignore it and report the original
775 * retval
776 */
777 stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX, status & FLASH_ERROR);
778 }
779
780 return retval;
781 }
782
783 /** set all FLASH_SECBB registers to the same value */
784 static int stm32l4_set_secbb(struct flash_bank *bank, uint32_t value)
785 {
786 /* This function should be used only with device with TrustZone, do just a security check */
787 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
788 assert(stm32l4_info->part_info->flags & F_HAS_TZ);
789
790 /* based on RM0438 Rev6 for STM32L5x devices:
791 * to modify a page block-based security attribution, it is recommended to
792 * 1- check that no flash operation is ongoing on the related page
793 * 2- add ISB instruction after modifying the page security attribute in SECBBxRy
794 * this step is not need in case of JTAG direct access
795 */
796 int retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
797 if (retval != ERROR_OK)
798 return retval;
799
800 /* write SECBBxRy registers */
801 LOG_DEBUG("setting secure block-based areas registers (SECBBxRy) to 0x%08x", value);
802
803 const uint8_t secbb_regs[] = {
804 FLASH_SECBB1(1), FLASH_SECBB1(2), FLASH_SECBB1(3), FLASH_SECBB1(4), /* bank 1 SECBB register offsets */
805 FLASH_SECBB2(1), FLASH_SECBB2(2), FLASH_SECBB2(3), FLASH_SECBB2(4) /* bank 2 SECBB register offsets */
806 };
807
808
809 unsigned int num_secbb_regs = ARRAY_SIZE(secbb_regs);
810
811 /* in single bank mode, it's useless to modify FLASH_SECBB2Rx registers
812 * then consider only the first half of secbb_regs
813 */
814 if (!stm32l4_info->dual_bank_mode)
815 num_secbb_regs /= 2;
816
817 for (unsigned int i = 0; i < num_secbb_regs; i++) {
818 retval = stm32l4_write_flash_reg(bank, secbb_regs[i], value);
819 if (retval != ERROR_OK)
820 return retval;
821 }
822
823 return ERROR_OK;
824 }
825
826 static inline int stm32l4_get_flash_cr_with_lock_index(struct flash_bank *bank)
827 {
828 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
829 return (stm32l4_info->flash_regs[STM32_FLASH_CR_WLK_INDEX]) ?
830 STM32_FLASH_CR_WLK_INDEX : STM32_FLASH_CR_INDEX;
831 }
832
833 static int stm32l4_unlock_reg(struct flash_bank *bank)
834 {
835 const uint32_t flash_cr_index = stm32l4_get_flash_cr_with_lock_index(bank);
836 uint32_t ctrl;
837
838 /* first check if not already unlocked
839 * otherwise writing on STM32_FLASH_KEYR will fail
840 */
841 int retval = stm32l4_read_flash_reg_by_index(bank, flash_cr_index, &ctrl);
842 if (retval != ERROR_OK)
843 return retval;
844
845 if ((ctrl & FLASH_LOCK) == 0)
846 return ERROR_OK;
847
848 /* unlock flash registers */
849 retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_KEYR_INDEX, KEY1);
850 if (retval != ERROR_OK)
851 return retval;
852
853 retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_KEYR_INDEX, KEY2);
854 if (retval != ERROR_OK)
855 return retval;
856
857 retval = stm32l4_read_flash_reg_by_index(bank, flash_cr_index, &ctrl);
858 if (retval != ERROR_OK)
859 return retval;
860
861 if (ctrl & FLASH_LOCK) {
862 LOG_ERROR("flash not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
863 return ERROR_TARGET_FAILURE;
864 }
865
866 return ERROR_OK;
867 }
868
869 static int stm32l4_unlock_option_reg(struct flash_bank *bank)
870 {
871 const uint32_t flash_cr_index = stm32l4_get_flash_cr_with_lock_index(bank);
872 uint32_t ctrl;
873
874 int retval = stm32l4_read_flash_reg_by_index(bank, flash_cr_index, &ctrl);
875 if (retval != ERROR_OK)
876 return retval;
877
878 if ((ctrl & FLASH_OPTLOCK) == 0)
879 return ERROR_OK;
880
881 /* unlock option registers */
882 retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_OPTKEYR_INDEX, OPTKEY1);
883 if (retval != ERROR_OK)
884 return retval;
885
886 retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_OPTKEYR_INDEX, OPTKEY2);
887 if (retval != ERROR_OK)
888 return retval;
889
890 retval = stm32l4_read_flash_reg_by_index(bank, flash_cr_index, &ctrl);
891 if (retval != ERROR_OK)
892 return retval;
893
894 if (ctrl & FLASH_OPTLOCK) {
895 LOG_ERROR("options not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
896 return ERROR_TARGET_FAILURE;
897 }
898
899 return ERROR_OK;
900 }
901
902 static int stm32l4_perform_obl_launch(struct flash_bank *bank)
903 {
904 int retval, retval2;
905
906 retval = stm32l4_unlock_reg(bank);
907 if (retval != ERROR_OK)
908 goto err_lock;
909
910 retval = stm32l4_unlock_option_reg(bank);
911 if (retval != ERROR_OK)
912 goto err_lock;
913
914 /* Set OBL_LAUNCH bit in CR -> system reset and option bytes reload,
915 * but the RMs explicitly do *NOT* list this as power-on reset cause, and:
916 * "Note: If the read protection is set while the debugger is still
917 * connected through JTAG/SWD, apply a POR (power-on reset) instead of a system reset."
918 */
919
920 /* "Setting OBL_LAUNCH generates a reset so the option byte loading is performed under system reset" */
921 /* Due to this reset ST-Link reports an SWD_DP_ERROR, despite the write was successful,
922 * then just ignore the returned value */
923 stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, FLASH_OBL_LAUNCH);
924
925 /* Need to re-probe after change */
926 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
927 stm32l4_info->probed = false;
928
929 err_lock:
930 retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank),
931 FLASH_LOCK | FLASH_OPTLOCK);
932
933 if (retval != ERROR_OK)
934 return retval;
935
936 return retval2;
937 }
938
939 static int stm32l4_write_option(struct flash_bank *bank, uint32_t reg_offset,
940 uint32_t value, uint32_t mask)
941 {
942 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
943 uint32_t optiondata;
944 int retval, retval2;
945
946 retval = stm32l4_read_flash_reg(bank, reg_offset, &optiondata);
947 if (retval != ERROR_OK)
948 return retval;
949
950 /* for STM32L5 and similar devices, use always non-secure
951 * registers for option bytes programming */
952 const uint32_t *saved_flash_regs = stm32l4_info->flash_regs;
953 if (stm32l4_info->part_info->flags & F_HAS_L5_FLASH_REGS)
954 stm32l4_info->flash_regs = stm32l5_ns_flash_regs;
955
956 retval = stm32l4_unlock_reg(bank);
957 if (retval != ERROR_OK)
958 goto err_lock;
959
960 retval = stm32l4_unlock_option_reg(bank);
961 if (retval != ERROR_OK)
962 goto err_lock;
963
964 optiondata = (optiondata & ~mask) | (value & mask);
965
966 retval = stm32l4_write_flash_reg(bank, reg_offset, optiondata);
967 if (retval != ERROR_OK)
968 goto err_lock;
969
970 retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, FLASH_OPTSTRT);
971 if (retval != ERROR_OK)
972 goto err_lock;
973
974 retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
975
976 err_lock:
977 retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank),
978 FLASH_LOCK | FLASH_OPTLOCK);
979 stm32l4_info->flash_regs = saved_flash_regs;
980
981 if (retval != ERROR_OK)
982 return retval;
983
984 return retval2;
985 }
986
987 static int stm32l4_get_one_wrpxy(struct flash_bank *bank, struct stm32l4_wrp *wrpxy,
988 enum stm32l4_flash_reg_index reg_idx, int offset)
989 {
990 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
991 int ret;
992
993 wrpxy->reg_idx = reg_idx;
994 wrpxy->offset = offset;
995
996 ret = stm32l4_read_flash_reg_by_index(bank, wrpxy->reg_idx , &wrpxy->value);
997 if (ret != ERROR_OK)
998 return ret;
999
1000 wrpxy->first = (wrpxy->value & stm32l4_info->wrpxxr_mask) + wrpxy->offset;
1001 wrpxy->last = ((wrpxy->value >> 16) & stm32l4_info->wrpxxr_mask) + wrpxy->offset;
1002 wrpxy->used = wrpxy->first <= wrpxy->last;
1003
1004 return ERROR_OK;
1005 }
1006
1007 static int stm32l4_get_all_wrpxy(struct flash_bank *bank, enum stm32_bank_id dev_bank_id,
1008 struct stm32l4_wrp *wrpxy, unsigned int *n_wrp)
1009 {
1010 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1011 int ret;
1012
1013 *n_wrp = 0;
1014
1015 /* for single bank devices there is 2 WRP regions.
1016 * for dual bank devices there is 2 WRP regions per bank,
1017 * if configured as single bank only 2 WRP are usable
1018 * except for STM32L4R/S/P/Q, G4 cat3, L5 ... all 4 WRP are usable
1019 * note: this should be revised, if a device will have the SWAP banks option
1020 */
1021
1022 int wrp2y_sectors_offset = -1; /* -1 : unused */
1023
1024 /* if bank_id is BANK1 or ALL_BANKS */
1025 if (dev_bank_id != STM32_BANK2) {
1026 /* get FLASH_WRP1AR */
1027 ret = stm32l4_get_one_wrpxy(bank, &wrpxy[(*n_wrp)++], STM32_FLASH_WRP1AR_INDEX, 0);
1028 if (ret != ERROR_OK)
1029 return ret;
1030
1031 /* get WRP1BR */
1032 ret = stm32l4_get_one_wrpxy(bank, &wrpxy[(*n_wrp)++], STM32_FLASH_WRP1BR_INDEX, 0);
1033 if (ret != ERROR_OK)
1034 return ret;
1035
1036 /* for some devices (like STM32L4R/S) in single-bank mode, the 4 WRPxx are usable */
1037 if ((stm32l4_info->part_info->flags & F_USE_ALL_WRPXX) && !stm32l4_info->dual_bank_mode)
1038 wrp2y_sectors_offset = 0;
1039 }
1040
1041 /* if bank_id is BANK2 or ALL_BANKS */
1042 if (dev_bank_id != STM32_BANK1 && stm32l4_info->dual_bank_mode)
1043 wrp2y_sectors_offset = stm32l4_info->bank1_sectors;
1044
1045 if (wrp2y_sectors_offset > -1) {
1046 /* get WRP2AR */
1047 ret = stm32l4_get_one_wrpxy(bank, &wrpxy[(*n_wrp)++], STM32_FLASH_WRP2AR_INDEX, wrp2y_sectors_offset);
1048 if (ret != ERROR_OK)
1049 return ret;
1050
1051 /* get WRP2BR */
1052 ret = stm32l4_get_one_wrpxy(bank, &wrpxy[(*n_wrp)++], STM32_FLASH_WRP2BR_INDEX, wrp2y_sectors_offset);
1053 if (ret != ERROR_OK)
1054 return ret;
1055 }
1056
1057 return ERROR_OK;
1058 }
1059
1060 static int stm32l4_write_one_wrpxy(struct flash_bank *bank, struct stm32l4_wrp *wrpxy)
1061 {
1062 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1063
1064 int wrp_start = wrpxy->first - wrpxy->offset;
1065 int wrp_end = wrpxy->last - wrpxy->offset;
1066
1067 uint32_t wrp_value = (wrp_start & stm32l4_info->wrpxxr_mask) | ((wrp_end & stm32l4_info->wrpxxr_mask) << 16);
1068
1069 return stm32l4_write_option(bank, stm32l4_info->flash_regs[wrpxy->reg_idx], wrp_value, 0xffffffff);
1070 }
1071
1072 static int stm32l4_write_all_wrpxy(struct flash_bank *bank, struct stm32l4_wrp *wrpxy, unsigned int n_wrp)
1073 {
1074 int ret;
1075
1076 for (unsigned int i = 0; i < n_wrp; i++) {
1077 ret = stm32l4_write_one_wrpxy(bank, &wrpxy[i]);
1078 if (ret != ERROR_OK)
1079 return ret;
1080 }
1081
1082 return ERROR_OK;
1083 }
1084
1085 static int stm32l4_protect_check(struct flash_bank *bank)
1086 {
1087 unsigned int n_wrp;
1088 struct stm32l4_wrp wrpxy[4];
1089
1090 int ret = stm32l4_get_all_wrpxy(bank, STM32_ALL_BANKS, wrpxy, &n_wrp);
1091 if (ret != ERROR_OK)
1092 return ret;
1093
1094 /* initialize all sectors as unprotected */
1095 for (unsigned int i = 0; i < bank->num_sectors; i++)
1096 bank->sectors[i].is_protected = 0;
1097
1098 /* now check WRPxy and mark the protected sectors */
1099 for (unsigned int i = 0; i < n_wrp; i++) {
1100 if (wrpxy[i].used) {
1101 for (int s = wrpxy[i].first; s <= wrpxy[i].last; s++)
1102 bank->sectors[s].is_protected = 1;
1103 }
1104 }
1105
1106 return ERROR_OK;
1107 }
1108
1109 static int stm32l4_erase(struct flash_bank *bank, unsigned int first,
1110 unsigned int last)
1111 {
1112 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1113 int retval, retval2;
1114
1115 assert((first <= last) && (last < bank->num_sectors));
1116
1117 if (stm32l4_is_otp(bank)) {
1118 LOG_ERROR("cannot erase OTP memory");
1119 return ERROR_FLASH_OPER_UNSUPPORTED;
1120 }
1121
1122 if (bank->target->state != TARGET_HALTED) {
1123 LOG_ERROR("Target not halted");
1124 return ERROR_TARGET_NOT_HALTED;
1125 }
1126
1127 if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
1128 /* set all FLASH pages as secure */
1129 retval = stm32l4_set_secbb(bank, FLASH_SECBB_SECURE);
1130 if (retval != ERROR_OK) {
1131 /* restore all FLASH pages as non-secure */
1132 stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE); /* ignore the return value */
1133 return retval;
1134 }
1135 }
1136
1137 retval = stm32l4_unlock_reg(bank);
1138 if (retval != ERROR_OK)
1139 goto err_lock;
1140
1141 /*
1142 Sector Erase
1143 To erase a sector, follow the procedure below:
1144 1. Check that no Flash memory operation is ongoing by
1145 checking the BSY bit in the FLASH_SR register
1146 2. Set the PER bit and select the page and bank
1147 you wish to erase in the FLASH_CR register
1148 3. Set the STRT bit in the FLASH_CR register
1149 4. Wait for the BSY bit to be cleared
1150 */
1151
1152 for (unsigned int i = first; i <= last; i++) {
1153 uint32_t erase_flags;
1154 erase_flags = FLASH_PER | FLASH_STRT;
1155
1156 if (i >= stm32l4_info->bank1_sectors) {
1157 uint8_t snb;
1158 snb = i - stm32l4_info->bank1_sectors;
1159 erase_flags |= snb << FLASH_PAGE_SHIFT | stm32l4_info->cr_bker_mask;
1160 } else
1161 erase_flags |= i << FLASH_PAGE_SHIFT;
1162 retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, erase_flags);
1163 if (retval != ERROR_OK)
1164 break;
1165
1166 retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
1167 if (retval != ERROR_OK)
1168 break;
1169 }
1170
1171 err_lock:
1172 retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank), FLASH_LOCK);
1173
1174 if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
1175 /* restore all FLASH pages as non-secure */
1176 int retval3 = stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE);
1177 if (retval3 != ERROR_OK)
1178 return retval3;
1179 }
1180
1181 if (retval != ERROR_OK)
1182 return retval;
1183
1184 return retval2;
1185 }
1186
1187 static int stm32l4_protect(struct flash_bank *bank, int set, unsigned int first, unsigned int last)
1188 {
1189 struct target *target = bank->target;
1190 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1191 int ret = ERROR_OK;
1192 unsigned int i;
1193
1194 if (stm32l4_is_otp(bank)) {
1195 LOG_ERROR("cannot protect/unprotect OTP memory");
1196 return ERROR_FLASH_OPER_UNSUPPORTED;
1197 }
1198
1199 if (target->state != TARGET_HALTED) {
1200 LOG_ERROR("Target not halted");
1201 return ERROR_TARGET_NOT_HALTED;
1202 }
1203
1204 /* the requested sectors could be located into bank1 and/or bank2 */
1205 bool use_bank2 = false;
1206 if (last >= stm32l4_info->bank1_sectors) {
1207 if (first < stm32l4_info->bank1_sectors) {
1208 /* the requested sectors for (un)protection are shared between
1209 * bank 1 and 2, then split the operation */
1210
1211 /* 1- deal with bank 1 sectors */
1212 LOG_DEBUG("The requested sectors for %s are shared between bank 1 and 2",
1213 set ? "protection" : "unprotection");
1214 ret = stm32l4_protect(bank, set, first, stm32l4_info->bank1_sectors - 1);
1215 if (ret != ERROR_OK)
1216 return ret;
1217
1218 /* 2- then continue with bank 2 sectors */
1219 first = stm32l4_info->bank1_sectors;
1220 }
1221
1222 use_bank2 = true;
1223 }
1224
1225 /* refresh the sectors' protection */
1226 ret = stm32l4_protect_check(bank);
1227 if (ret != ERROR_OK)
1228 return ret;
1229
1230 /* check if the desired protection is already configured */
1231 for (i = first; i <= last; i++) {
1232 if (bank->sectors[i].is_protected != set)
1233 break;
1234 else if (i == last) {
1235 LOG_INFO("The specified sectors are already %s", set ? "protected" : "unprotected");
1236 return ERROR_OK;
1237 }
1238 }
1239
1240 /* all sectors from first to last (or part of them) could have different
1241 * protection other than the requested */
1242 unsigned int n_wrp;
1243 struct stm32l4_wrp wrpxy[4];
1244
1245 ret = stm32l4_get_all_wrpxy(bank, use_bank2 ? STM32_BANK2 : STM32_BANK1, wrpxy, &n_wrp);
1246 if (ret != ERROR_OK)
1247 return ret;
1248
1249 /* use bitmap and range helpers to optimize the WRP usage */
1250 DECLARE_BITMAP(pages, bank->num_sectors);
1251 bitmap_zero(pages, bank->num_sectors);
1252
1253 for (i = 0; i < n_wrp; i++) {
1254 if (wrpxy[i].used) {
1255 for (int p = wrpxy[i].first; p <= wrpxy[i].last; p++)
1256 set_bit(p, pages);
1257 }
1258 }
1259
1260 /* we have at most 'n_wrp' WRP areas
1261 * add one range if the user is trying to protect a fifth range */
1262 struct range ranges[n_wrp + 1];
1263 unsigned int ranges_count = 0;
1264
1265 bitmap_to_ranges(pages, bank->num_sectors, ranges, &ranges_count);
1266
1267 /* pretty-print the currently protected ranges */
1268 if (ranges_count > 0) {
1269 char *ranges_str = range_print_alloc(ranges, ranges_count);
1270 LOG_DEBUG("current protected areas: %s", ranges_str);
1271 free(ranges_str);
1272 } else
1273 LOG_DEBUG("current protected areas: none");
1274
1275 if (set) { /* flash protect */
1276 for (i = first; i <= last; i++)
1277 set_bit(i, pages);
1278 } else { /* flash unprotect */
1279 for (i = first; i <= last; i++)
1280 clear_bit(i, pages);
1281 }
1282
1283 /* check the ranges_count after the user request */
1284 bitmap_to_ranges(pages, bank->num_sectors, ranges, &ranges_count);
1285
1286 /* pretty-print the requested areas for protection */
1287 if (ranges_count > 0) {
1288 char *ranges_str = range_print_alloc(ranges, ranges_count);
1289 LOG_DEBUG("requested areas for protection: %s", ranges_str);
1290 free(ranges_str);
1291 } else
1292 LOG_DEBUG("requested areas for protection: none");
1293
1294 if (ranges_count > n_wrp) {
1295 LOG_ERROR("cannot set the requested protection "
1296 "(only %u write protection areas are available)" , n_wrp);
1297 return ERROR_FAIL;
1298 }
1299
1300 /* re-init all WRPxy as disabled (first > last)*/
1301 for (i = 0; i < n_wrp; i++) {
1302 wrpxy[i].first = wrpxy[i].offset + 1;
1303 wrpxy[i].last = wrpxy[i].offset;
1304 }
1305
1306 /* then configure WRPxy areas */
1307 for (i = 0; i < ranges_count; i++) {
1308 wrpxy[i].first = ranges[i].start;
1309 wrpxy[i].last = ranges[i].end;
1310 }
1311
1312 /* finally write WRPxy registers */
1313 return stm32l4_write_all_wrpxy(bank, wrpxy, n_wrp);
1314 }
1315
1316 /* count is the size divided by stm32l4_info->data_width */
1317 static int stm32l4_write_block(struct flash_bank *bank, const uint8_t *buffer,
1318 uint32_t offset, uint32_t count)
1319 {
1320 struct target *target = bank->target;
1321 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1322 uint32_t buffer_size;
1323 struct working_area *write_algorithm;
1324 struct working_area *source;
1325 uint32_t address = bank->base + offset;
1326 struct reg_param reg_params[6];
1327 struct armv7m_algorithm armv7m_info;
1328 int retval = ERROR_OK;
1329
1330 static const uint8_t stm32l4_flash_write_code[] = {
1331 #include "../../../contrib/loaders/flash/stm32/stm32l4x.inc"
1332 };
1333
1334 if (target_alloc_working_area(target, sizeof(stm32l4_flash_write_code),
1335 &write_algorithm) != ERROR_OK) {
1336 LOG_WARNING("no working area available, can't do block memory writes");
1337 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1338 }
1339
1340 retval = target_write_buffer(target, write_algorithm->address,
1341 sizeof(stm32l4_flash_write_code),
1342 stm32l4_flash_write_code);
1343 if (retval != ERROR_OK) {
1344 target_free_working_area(target, write_algorithm);
1345 return retval;
1346 }
1347
1348 /* memory buffer, size *must* be multiple of stm32l4_info->data_width
1349 * plus one dword for rp and one for wp */
1350 /* FIXME, currently only STM32U5 devices do have a different data_width,
1351 * but STM32U5 device flash programming does not go through this function
1352 * so temporarily continue to consider the default data_width = 8 */
1353 buffer_size = target_get_working_area_avail(target) & ~(2 * sizeof(uint32_t) - 1);
1354 if (buffer_size < 256) {
1355 LOG_WARNING("large enough working area not available, can't do block memory writes");
1356 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1357 } else if (buffer_size > 16384) {
1358 /* probably won't benefit from more than 16k ... */
1359 buffer_size = 16384;
1360 }
1361
1362 if (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
1363 LOG_ERROR("allocating working area failed");
1364 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1365 }
1366
1367 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
1368 armv7m_info.core_mode = ARM_MODE_THREAD;
1369
1370 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* buffer start, status (out) */
1371 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* buffer end */
1372 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* target address */
1373 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT); /* count (double word-64bit) */
1374 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT); /* flash status register */
1375 init_reg_param(&reg_params[5], "r5", 32, PARAM_OUT); /* flash control register */
1376
1377 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1378 buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
1379 buf_set_u32(reg_params[2].value, 0, 32, address);
1380 buf_set_u32(reg_params[3].value, 0, 32, count);
1381 buf_set_u32(reg_params[4].value, 0, 32, stm32l4_get_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX));
1382 buf_set_u32(reg_params[5].value, 0, 32, stm32l4_get_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX));
1383
1384 retval = target_run_flash_async_algorithm(target, buffer, count, stm32l4_info->data_width,
1385 0, NULL,
1386 ARRAY_SIZE(reg_params), reg_params,
1387 source->address, source->size,
1388 write_algorithm->address, 0,
1389 &armv7m_info);
1390
1391 if (retval == ERROR_FLASH_OPERATION_FAILED) {
1392 LOG_ERROR("error executing stm32l4 flash write algorithm");
1393
1394 uint32_t error = buf_get_u32(reg_params[0].value, 0, 32) & FLASH_ERROR;
1395
1396 if (error & FLASH_WRPERR)
1397 LOG_ERROR("flash memory write protected");
1398
1399 if (error != 0) {
1400 LOG_ERROR("flash write failed = %08" PRIx32, error);
1401 /* Clear but report errors */
1402 stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX, error);
1403 retval = ERROR_FAIL;
1404 }
1405 }
1406
1407 target_free_working_area(target, source);
1408 target_free_working_area(target, write_algorithm);
1409
1410 destroy_reg_param(&reg_params[0]);
1411 destroy_reg_param(&reg_params[1]);
1412 destroy_reg_param(&reg_params[2]);
1413 destroy_reg_param(&reg_params[3]);
1414 destroy_reg_param(&reg_params[4]);
1415 destroy_reg_param(&reg_params[5]);
1416
1417 return retval;
1418 }
1419
1420 /* count is the size divided by stm32l4_info->data_width */
1421 static int stm32l4_write_block_without_loader(struct flash_bank *bank, const uint8_t *buffer,
1422 uint32_t offset, uint32_t count)
1423 {
1424 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1425 struct target *target = bank->target;
1426 uint32_t address = bank->base + offset;
1427 int retval = ERROR_OK;
1428
1429 /* wait for BSY bit */
1430 retval = stm32l4_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
1431 if (retval != ERROR_OK)
1432 return retval;
1433
1434 /* set PG in FLASH_CR */
1435 retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, FLASH_PG);
1436 if (retval != ERROR_OK)
1437 return retval;
1438
1439
1440 /* write directly to flash memory */
1441 const uint8_t *src = buffer;
1442 const uint32_t data_width_in_words = stm32l4_info->data_width / 4;
1443 while (count--) {
1444 retval = target_write_memory(target, address, 4, data_width_in_words, src);
1445 if (retval != ERROR_OK)
1446 return retval;
1447
1448 /* wait for BSY bit */
1449 retval = stm32l4_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
1450 if (retval != ERROR_OK)
1451 return retval;
1452
1453 src += stm32l4_info->data_width;
1454 address += stm32l4_info->data_width;
1455 }
1456
1457 /* reset PG in FLASH_CR */
1458 retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, 0);
1459 if (retval != ERROR_OK)
1460 return retval;
1461
1462 return retval;
1463 }
1464
1465 static int stm32l4_write(struct flash_bank *bank, const uint8_t *buffer,
1466 uint32_t offset, uint32_t count)
1467 {
1468 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1469 int retval = ERROR_OK, retval2;
1470
1471 if (stm32l4_is_otp(bank) && !stm32l4_otp_is_enabled(bank)) {
1472 LOG_ERROR("OTP memory is disabled for write commands");
1473 return ERROR_FAIL;
1474 }
1475
1476 if (bank->target->state != TARGET_HALTED) {
1477 LOG_ERROR("Target not halted");
1478 return ERROR_TARGET_NOT_HALTED;
1479 }
1480
1481 /* ensure that stm32l4_info->data_width is 'at least' a multiple of dword */
1482 assert(stm32l4_info->data_width % 8 == 0);
1483
1484 /* The flash write must be aligned to the 'stm32l4_info->data_width' boundary.
1485 * The flash infrastructure ensures it, do just a security check */
1486 assert(offset % stm32l4_info->data_width == 0);
1487 assert(count % stm32l4_info->data_width == 0);
1488
1489 /* STM32G4xxx Cat. 3 devices may have gaps between banks, check whether
1490 * data to be written does not go into a gap:
1491 * suppose buffer is fully contained in bank from sector 0 to sector
1492 * num->sectors - 1 and sectors are ordered according to offset
1493 */
1494 struct flash_sector *head = &bank->sectors[0];
1495 struct flash_sector *tail = &bank->sectors[bank->num_sectors - 1];
1496
1497 while ((head < tail) && (offset >= (head + 1)->offset)) {
1498 /* buffer does not intersect head nor gap behind head */
1499 head++;
1500 }
1501
1502 while ((head < tail) && (offset + count <= (tail - 1)->offset + (tail - 1)->size)) {
1503 /* buffer does not intersect tail nor gap before tail */
1504 --tail;
1505 }
1506
1507 LOG_DEBUG("data: 0x%08" PRIx32 " - 0x%08" PRIx32 ", sectors: 0x%08" PRIx32 " - 0x%08" PRIx32,
1508 offset, offset + count - 1, head->offset, tail->offset + tail->size - 1);
1509
1510 /* Now check that there is no gap from head to tail, this should work
1511 * even for multiple or non-symmetric gaps
1512 */
1513 while (head < tail) {
1514 if (head->offset + head->size != (head + 1)->offset) {
1515 LOG_ERROR("write into gap from " TARGET_ADDR_FMT " to " TARGET_ADDR_FMT,
1516 bank->base + head->offset + head->size,
1517 bank->base + (head + 1)->offset - 1);
1518 retval = ERROR_FLASH_DST_OUT_OF_BANK;
1519 }
1520 head++;
1521 }
1522
1523 if (retval != ERROR_OK)
1524 return retval;
1525
1526 if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
1527 /* set all FLASH pages as secure */
1528 retval = stm32l4_set_secbb(bank, FLASH_SECBB_SECURE);
1529 if (retval != ERROR_OK) {
1530 /* restore all FLASH pages as non-secure */
1531 stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE); /* ignore the return value */
1532 return retval;
1533 }
1534 }
1535
1536 retval = stm32l4_unlock_reg(bank);
1537 if (retval != ERROR_OK)
1538 goto err_lock;
1539
1540 /**
1541 * FIXME update the flash loader to use a custom FLASH_SR_BSY mask
1542 * Workaround for STM32G0Bx/G0Cx devices in dual bank mode,
1543 * as the flash loader does not use the SR_BSY2
1544 */
1545 bool use_flashloader = stm32l4_info->use_flashloader;
1546 if ((stm32l4_info->part_info->id == 0x467) && stm32l4_info->dual_bank_mode) {
1547 LOG_INFO("Couldn't use the flash loader in dual-bank mode");
1548 use_flashloader = false;
1549 } else if (stm32l4_info->part_info->id == 0x482) {
1550 /**
1551 * FIXME the current flashloader does not support writing in quad-words
1552 * which is required for STM32U5 devices.
1553 */
1554 use_flashloader = false;
1555 }
1556
1557 if (use_flashloader) {
1558 /* For TrustZone enabled devices, when TZEN is set and RDP level is 0.5,
1559 * the debug is possible only in non-secure state.
1560 * Thus means the flashloader will run in non-secure mode,
1561 * and the workarea need to be in non-secure RAM */
1562 if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0_5))
1563 LOG_INFO("RDP level is 0.5, the work-area should reside in non-secure RAM");
1564
1565 retval = stm32l4_write_block(bank, buffer, offset,
1566 count / stm32l4_info->data_width);
1567 }
1568
1569 if (!use_flashloader || retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
1570 LOG_INFO("falling back to single memory accesses");
1571 retval = stm32l4_write_block_without_loader(bank, buffer, offset,
1572 count / stm32l4_info->data_width);
1573 }
1574
1575 err_lock:
1576 retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank), FLASH_LOCK);
1577
1578 if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
1579 /* restore all FLASH pages as non-secure */
1580 int retval3 = stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE);
1581 if (retval3 != ERROR_OK)
1582 return retval3;
1583 }
1584
1585 if (retval != ERROR_OK) {
1586 LOG_ERROR("block write failed");
1587 return retval;
1588 }
1589 return retval2;
1590 }
1591
1592 static int stm32l4_read_idcode(struct flash_bank *bank, uint32_t *id)
1593 {
1594 int retval;
1595
1596 /* try reading possible IDCODE registers, in the following order */
1597 uint32_t dbgmcu_idcode[] = {DBGMCU_IDCODE_L4_G4, DBGMCU_IDCODE_G0, DBGMCU_IDCODE_L5};
1598
1599 for (unsigned int i = 0; i < ARRAY_SIZE(dbgmcu_idcode); i++) {
1600 retval = target_read_u32(bank->target, dbgmcu_idcode[i], id);
1601 if ((retval == ERROR_OK) && ((*id & 0xfff) != 0) && ((*id & 0xfff) != 0xfff))
1602 return ERROR_OK;
1603 }
1604
1605 /* Workaround for STM32WL5x devices:
1606 * DBGMCU_IDCODE cannot be read using CPU1 (Cortex-M0+) at AP1,
1607 * to solve this read the UID64 (IEEE 64-bit unique device ID register) */
1608
1609 struct cortex_m_common *cortex_m = target_to_cm(bank->target);
1610
1611 if (cortex_m->core_info->partno == CORTEX_M0P_PARTNO && cortex_m->armv7m.debug_ap->ap_num == 1) {
1612 uint32_t uid64_ids;
1613
1614 /* UID64 is contains
1615 * - Bits 63:32 : DEVNUM (unique device number, different for each individual device)
1616 * - Bits 31:08 : STID (company ID) = 0x0080E1
1617 * - Bits 07:00 : DEVID (device ID) = 0x15
1618 *
1619 * read only the fixed values {STID,DEVID} from UID64_IDS to identify the device as STM32WLx
1620 */
1621 retval = target_read_u32(bank->target, UID64_IDS, &uid64_ids);
1622 if (retval == ERROR_OK && uid64_ids == UID64_IDS_STM32WL) {
1623 /* force the DEV_ID to 0x497 and the REV_ID to unknown */
1624 *id = 0x00000497;
1625 return ERROR_OK;
1626 }
1627 }
1628
1629 LOG_ERROR("can't get the device id");
1630 return (retval == ERROR_OK) ? ERROR_FAIL : retval;
1631 }
1632
1633 static const char *get_stm32l4_rev_str(struct flash_bank *bank)
1634 {
1635 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1636 const struct stm32l4_part_info *part_info = stm32l4_info->part_info;
1637 assert(part_info);
1638
1639 const uint16_t rev_id = stm32l4_info->idcode >> 16;
1640 for (unsigned int i = 0; i < part_info->num_revs; i++) {
1641 if (rev_id == part_info->revs[i].rev)
1642 return part_info->revs[i].str;
1643 }
1644 return "'unknown'";
1645 }
1646
1647 static const char *get_stm32l4_bank_type_str(struct flash_bank *bank)
1648 {
1649 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1650 assert(stm32l4_info->part_info);
1651 return stm32l4_is_otp(bank) ? "OTP" :
1652 stm32l4_info->dual_bank_mode ? "Flash dual" :
1653 "Flash single";
1654 }
1655
1656 static int stm32l4_probe(struct flash_bank *bank)
1657 {
1658 struct target *target = bank->target;
1659 struct armv7m_common *armv7m = target_to_armv7m(target);
1660 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1661 const struct stm32l4_part_info *part_info;
1662 uint16_t flash_size_kb = 0xffff;
1663
1664 stm32l4_info->probed = false;
1665
1666 /* read stm32 device id registers */
1667 int retval = stm32l4_read_idcode(bank, &stm32l4_info->idcode);
1668 if (retval != ERROR_OK)
1669 return retval;
1670
1671 const uint32_t device_id = stm32l4_info->idcode & 0xFFF;
1672
1673 for (unsigned int n = 0; n < ARRAY_SIZE(stm32l4_parts); n++) {
1674 if (device_id == stm32l4_parts[n].id) {
1675 stm32l4_info->part_info = &stm32l4_parts[n];
1676 break;
1677 }
1678 }
1679
1680 if (!stm32l4_info->part_info) {
1681 LOG_WARNING("Cannot identify target as an %s family device.", device_families);
1682 return ERROR_FAIL;
1683 }
1684
1685 part_info = stm32l4_info->part_info;
1686 const char *rev_str = get_stm32l4_rev_str(bank);
1687 const uint16_t rev_id = stm32l4_info->idcode >> 16;
1688
1689 LOG_INFO("device idcode = 0x%08" PRIx32 " (%s - Rev %s : 0x%04x)",
1690 stm32l4_info->idcode, part_info->device_str, rev_str, rev_id);
1691
1692 stm32l4_info->flash_regs_base = stm32l4_info->part_info->flash_regs_base;
1693 stm32l4_info->data_width = (part_info->flags & F_QUAD_WORD_PROG) ? 16 : 8;
1694 stm32l4_info->cr_bker_mask = FLASH_BKER;
1695 stm32l4_info->sr_bsy_mask = FLASH_BSY;
1696
1697 /* Set flash write alignment boundaries.
1698 * Ask the flash infrastructure to ensure required alignment */
1699 bank->write_start_alignment = bank->write_end_alignment = stm32l4_info->data_width;
1700
1701 /* initialise the flash registers layout */
1702 if (part_info->flags & F_HAS_L5_FLASH_REGS)
1703 stm32l4_info->flash_regs = stm32l5_ns_flash_regs;
1704 else
1705 stm32l4_info->flash_regs = stm32l4_flash_regs;
1706
1707 /* read flash option register */
1708 retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_OPTR_INDEX, &stm32l4_info->optr);
1709 if (retval != ERROR_OK)
1710 return retval;
1711
1712 stm32l4_sync_rdp_tzen(bank);
1713
1714 /* for devices with trustzone, use flash secure registers when TZEN=1 and RDP is LEVEL_0 */
1715 if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
1716 if (part_info->flags & F_HAS_L5_FLASH_REGS) {
1717 stm32l4_info->flash_regs_base |= STM32L5_REGS_SEC_OFFSET;
1718 stm32l4_info->flash_regs = stm32l5_s_flash_regs;
1719 } else {
1720 LOG_ERROR("BUG: device supported incomplete");
1721 return ERROR_NOT_IMPLEMENTED;
1722 }
1723 }
1724
1725 if (part_info->flags & F_HAS_TZ)
1726 LOG_INFO("TZEN = %d : TrustZone %s by option bytes",
1727 stm32l4_info->tzen,
1728 stm32l4_info->tzen ? "enabled" : "disabled");
1729
1730 LOG_INFO("RDP level %s (0x%02X)",
1731 stm32l4_info->rdp == RDP_LEVEL_0 ? "0" : stm32l4_info->rdp == RDP_LEVEL_0_5 ? "0.5" : "1",
1732 stm32l4_info->rdp);
1733
1734 if (stm32l4_is_otp(bank)) {
1735 bank->size = part_info->otp_size;
1736
1737 LOG_INFO("OTP size is %d bytes, base address is " TARGET_ADDR_FMT, bank->size, bank->base);
1738
1739 /* OTP memory is considered as one sector */
1740 free(bank->sectors);
1741 bank->num_sectors = 1;
1742 bank->sectors = alloc_block_array(0, part_info->otp_size, 1);
1743
1744 if (!bank->sectors) {
1745 LOG_ERROR("failed to allocate bank sectors");
1746 return ERROR_FAIL;
1747 }
1748
1749 stm32l4_info->probed = true;
1750 return ERROR_OK;
1751 } else if (bank->base != STM32_FLASH_BANK_BASE && bank->base != STM32_FLASH_S_BANK_BASE) {
1752 LOG_ERROR("invalid bank base address");
1753 return ERROR_FAIL;
1754 }
1755
1756 /* get flash size from target. */
1757 retval = target_read_u16(target, part_info->fsize_addr, &flash_size_kb);
1758
1759 /* failed reading flash size or flash size invalid (early silicon),
1760 * default to max target family */
1761 if (retval != ERROR_OK || flash_size_kb == 0xffff || flash_size_kb == 0
1762 || flash_size_kb > part_info->max_flash_size_kb) {
1763 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
1764 part_info->max_flash_size_kb);
1765 flash_size_kb = part_info->max_flash_size_kb;
1766 }
1767
1768 /* if the user sets the size manually then ignore the probed value
1769 * this allows us to work around devices that have a invalid flash size register value */
1770 if (stm32l4_info->user_bank_size) {
1771 LOG_WARNING("overriding size register by configured bank size - MAY CAUSE TROUBLE");
1772 flash_size_kb = stm32l4_info->user_bank_size / 1024;
1773 }
1774
1775 LOG_INFO("flash size = %dkbytes", flash_size_kb);
1776
1777 /* did we assign a flash size? */
1778 assert((flash_size_kb != 0xffff) && flash_size_kb);
1779
1780 stm32l4_info->bank1_sectors = 0;
1781 stm32l4_info->hole_sectors = 0;
1782
1783 int num_pages = 0;
1784 int page_size_kb = 0;
1785
1786 stm32l4_info->dual_bank_mode = false;
1787 bool use_dbank_bit = false;
1788
1789 switch (device_id) {
1790 case 0x415: /* STM32L47/L48xx */
1791 case 0x461: /* STM32L49/L4Axx */
1792 /* if flash size is max (1M) the device is always dual bank
1793 * 0x415: has variants with 512K
1794 * 0x461: has variants with 512 and 256
1795 * for these variants:
1796 * if DUAL_BANK = 0 -> single bank
1797 * else -> dual bank without gap
1798 * note: the page size is invariant
1799 */
1800 page_size_kb = 2;
1801 num_pages = flash_size_kb / page_size_kb;
1802 stm32l4_info->bank1_sectors = num_pages;
1803
1804 /* check DUAL_BANK bit[21] if the flash is less than 1M */
1805 if (flash_size_kb == 1024 || (stm32l4_info->optr & BIT(21))) {
1806 stm32l4_info->dual_bank_mode = true;
1807 stm32l4_info->bank1_sectors = num_pages / 2;
1808 }
1809 break;
1810 case 0x435: /* STM32L43/L44xx */
1811 case 0x460: /* STM32G07/G08xx */
1812 case 0x462: /* STM32L45/L46xx */
1813 case 0x464: /* STM32L41/L42xx */
1814 case 0x466: /* STM32G03/G04xx */
1815 case 0x468: /* STM32G43/G44xx */
1816 case 0x479: /* STM32G49/G4Axx */
1817 /* single bank flash */
1818 page_size_kb = 2;
1819 num_pages = flash_size_kb / page_size_kb;
1820 stm32l4_info->bank1_sectors = num_pages;
1821 break;
1822 case 0x467: /* STM32G0B/G0Cxx */
1823 /* single/dual bank depending on bit(21) */
1824 page_size_kb = 2;
1825 num_pages = flash_size_kb / page_size_kb;
1826 stm32l4_info->bank1_sectors = num_pages;
1827 stm32l4_info->cr_bker_mask = FLASH_BKER_G0;
1828
1829 /* check DUAL_BANK bit */
1830 if (stm32l4_info->optr & BIT(21)) {
1831 stm32l4_info->sr_bsy_mask = FLASH_BSY | FLASH_BSY2;
1832 stm32l4_info->dual_bank_mode = true;
1833 stm32l4_info->bank1_sectors = num_pages / 2;
1834 }
1835 break;
1836 case 0x469: /* STM32G47/G48xx */
1837 /* STM32G47/8 can be single/dual bank:
1838 * if DUAL_BANK = 0 -> single bank
1839 * else -> dual bank WITH gap
1840 */
1841 page_size_kb = 4;
1842 num_pages = flash_size_kb / page_size_kb;
1843 stm32l4_info->bank1_sectors = num_pages;
1844 if (stm32l4_info->optr & BIT(22)) {
1845 stm32l4_info->dual_bank_mode = true;
1846 page_size_kb = 2;
1847 num_pages = flash_size_kb / page_size_kb;
1848 stm32l4_info->bank1_sectors = num_pages / 2;
1849
1850 /* for devices with trimmed flash, there is a gap between both banks */
1851 stm32l4_info->hole_sectors =
1852 (part_info->max_flash_size_kb - flash_size_kb) / (2 * page_size_kb);
1853 }
1854 break;
1855 case 0x470: /* STM32L4R/L4Sxx */
1856 case 0x471: /* STM32L4P5/L4Q5x */
1857 /* STM32L4R/S can be single/dual bank:
1858 * if size = 2M check DBANK bit(22)
1859 * if size = 1M check DB1M bit(21)
1860 * STM32L4P/Q can be single/dual bank
1861 * if size = 1M check DBANK bit(22)
1862 * if size = 512K check DB512K bit(21)
1863 */
1864 page_size_kb = 8;
1865 num_pages = flash_size_kb / page_size_kb;
1866 stm32l4_info->bank1_sectors = num_pages;
1867 use_dbank_bit = flash_size_kb == part_info->max_flash_size_kb;
1868 if ((use_dbank_bit && (stm32l4_info->optr & BIT(22))) ||
1869 (!use_dbank_bit && (stm32l4_info->optr & BIT(21)))) {
1870 stm32l4_info->dual_bank_mode = true;
1871 page_size_kb = 4;
1872 num_pages = flash_size_kb / page_size_kb;
1873 stm32l4_info->bank1_sectors = num_pages / 2;
1874 }
1875 break;
1876 case 0x472: /* STM32L55/L56xx */
1877 /* STM32L55/L56xx can be single/dual bank:
1878 * if size = 512K check DBANK bit(22)
1879 * if size = 256K check DB256K bit(21)
1880 */
1881 page_size_kb = 4;
1882 num_pages = flash_size_kb / page_size_kb;
1883 stm32l4_info->bank1_sectors = num_pages;
1884 use_dbank_bit = flash_size_kb == part_info->max_flash_size_kb;
1885 if ((use_dbank_bit && (stm32l4_info->optr & BIT(22))) ||
1886 (!use_dbank_bit && (stm32l4_info->optr & BIT(21)))) {
1887 stm32l4_info->dual_bank_mode = true;
1888 page_size_kb = 2;
1889 num_pages = flash_size_kb / page_size_kb;
1890 stm32l4_info->bank1_sectors = num_pages / 2;
1891 }
1892 break;
1893 case 0x482: /* STM32U57/U58xx */
1894 /* if flash size is max (2M) the device is always dual bank
1895 * otherwise check DUALBANK bit(21)
1896 */
1897 page_size_kb = 8;
1898 num_pages = flash_size_kb / page_size_kb;
1899 stm32l4_info->bank1_sectors = num_pages;
1900 if ((flash_size_kb == part_info->max_flash_size_kb) || (stm32l4_info->optr & BIT(21))) {
1901 stm32l4_info->dual_bank_mode = true;
1902 stm32l4_info->bank1_sectors = num_pages / 2;
1903 }
1904 break;
1905 case 0x495: /* STM32WB5x */
1906 case 0x496: /* STM32WB3x */
1907 /* single bank flash */
1908 page_size_kb = 4;
1909 num_pages = flash_size_kb / page_size_kb;
1910 stm32l4_info->bank1_sectors = num_pages;
1911 break;
1912 case 0x497: /* STM32WLEx/WL5x */
1913 /* single bank flash */
1914 page_size_kb = 2;
1915 num_pages = flash_size_kb / page_size_kb;
1916 stm32l4_info->bank1_sectors = num_pages;
1917 if (armv7m->debug_ap->ap_num == 1)
1918 stm32l4_info->flash_regs = stm32wl_cpu2_flash_regs;
1919 break;
1920 default:
1921 LOG_ERROR("unsupported device");
1922 return ERROR_FAIL;
1923 }
1924
1925 LOG_INFO("flash mode : %s-bank", stm32l4_info->dual_bank_mode ? "dual" : "single");
1926
1927 const int gap_size_kb = stm32l4_info->hole_sectors * page_size_kb;
1928
1929 if (gap_size_kb != 0) {
1930 LOG_INFO("gap detected from 0x%08x to 0x%08x",
1931 STM32_FLASH_BANK_BASE + stm32l4_info->bank1_sectors
1932 * page_size_kb * 1024,
1933 STM32_FLASH_BANK_BASE + (stm32l4_info->bank1_sectors
1934 * page_size_kb + gap_size_kb) * 1024 - 1);
1935 }
1936
1937 /* number of significant bits in WRPxxR differs per device,
1938 * always right adjusted, on some devices non-implemented
1939 * bits read as '0', on others as '1' ...
1940 * notably G4 Cat. 2 implement only 6 bits, contradicting the RM
1941 */
1942
1943 /* use *max_flash_size* instead of actual size as the trimmed versions
1944 * certainly use the same number of bits
1945 * max_flash_size is always power of two, so max_pages too
1946 */
1947 uint32_t max_pages = stm32l4_info->part_info->max_flash_size_kb / page_size_kb;
1948 assert(IS_PWR_OF_2(max_pages));
1949
1950 /* in dual bank mode number of pages is doubled, but extra bit is bank selection */
1951 stm32l4_info->wrpxxr_mask = ((max_pages >> (stm32l4_info->dual_bank_mode ? 1 : 0)) - 1);
1952 assert((stm32l4_info->wrpxxr_mask & 0xFFFF0000) == 0);
1953 LOG_DEBUG("WRPxxR mask 0x%04" PRIx16, (uint16_t)stm32l4_info->wrpxxr_mask);
1954
1955 free(bank->sectors);
1956
1957 bank->size = (flash_size_kb + gap_size_kb) * 1024;
1958 bank->num_sectors = num_pages;
1959 bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors);
1960 if (!bank->sectors) {
1961 LOG_ERROR("failed to allocate bank sectors");
1962 return ERROR_FAIL;
1963 }
1964
1965 for (unsigned int i = 0; i < bank->num_sectors; i++) {
1966 bank->sectors[i].offset = i * page_size_kb * 1024;
1967 /* in dual bank configuration, if there is a gap between banks
1968 * we fix up the sector offset to consider this gap */
1969 if (i >= stm32l4_info->bank1_sectors && stm32l4_info->hole_sectors)
1970 bank->sectors[i].offset += gap_size_kb * 1024;
1971 bank->sectors[i].size = page_size_kb * 1024;
1972 bank->sectors[i].is_erased = -1;
1973 bank->sectors[i].is_protected = 1;
1974 }
1975
1976 stm32l4_info->probed = true;
1977 return ERROR_OK;
1978 }
1979
1980 static int stm32l4_auto_probe(struct flash_bank *bank)
1981 {
1982 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1983 if (stm32l4_info->probed) {
1984 uint32_t optr_cur;
1985
1986 /* read flash option register and re-probe if optr value is changed */
1987 int retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_OPTR_INDEX, &optr_cur);
1988 if (retval != ERROR_OK)
1989 return retval;
1990
1991 if (stm32l4_info->optr == optr_cur)
1992 return ERROR_OK;
1993 }
1994
1995 return stm32l4_probe(bank);
1996 }
1997
1998 static int get_stm32l4_info(struct flash_bank *bank, struct command_invocation *cmd)
1999 {
2000 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2001 const struct stm32l4_part_info *part_info = stm32l4_info->part_info;
2002
2003 if (part_info) {
2004 const uint16_t rev_id = stm32l4_info->idcode >> 16;
2005 command_print_sameline(cmd, "%s - Rev %s : 0x%04x", part_info->device_str,
2006 get_stm32l4_rev_str(bank), rev_id);
2007 if (stm32l4_info->probed)
2008 command_print_sameline(cmd, " - %s-bank", get_stm32l4_bank_type_str(bank));
2009 } else {
2010 command_print_sameline(cmd, "Cannot identify target as an %s device", device_families);
2011 }
2012
2013 return ERROR_OK;
2014 }
2015
2016 static int stm32l4_mass_erase(struct flash_bank *bank)
2017 {
2018 int retval, retval2;
2019 struct target *target = bank->target;
2020 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2021
2022 if (stm32l4_is_otp(bank)) {
2023 LOG_ERROR("cannot erase OTP memory");
2024 return ERROR_FLASH_OPER_UNSUPPORTED;
2025 }
2026
2027 uint32_t action = FLASH_MER1;
2028
2029 if (stm32l4_info->part_info->flags & F_HAS_DUAL_BANK)
2030 action |= FLASH_MER2;
2031
2032 if (target->state != TARGET_HALTED) {
2033 LOG_ERROR("Target not halted");
2034 return ERROR_TARGET_NOT_HALTED;
2035 }
2036
2037 if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
2038 /* set all FLASH pages as secure */
2039 retval = stm32l4_set_secbb(bank, FLASH_SECBB_SECURE);
2040 if (retval != ERROR_OK) {
2041 /* restore all FLASH pages as non-secure */
2042 stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE); /* ignore the return value */
2043 return retval;
2044 }
2045 }
2046
2047 retval = stm32l4_unlock_reg(bank);
2048 if (retval != ERROR_OK)
2049 goto err_lock;
2050
2051 /* mass erase flash memory */
2052 retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT / 10);
2053 if (retval != ERROR_OK)
2054 goto err_lock;
2055
2056 retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, action);
2057 if (retval != ERROR_OK)
2058 goto err_lock;
2059
2060 retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, action | FLASH_STRT);
2061 if (retval != ERROR_OK)
2062 goto err_lock;
2063
2064 retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
2065
2066 err_lock:
2067 retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank), FLASH_LOCK);
2068
2069 if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
2070 /* restore all FLASH pages as non-secure */
2071 int retval3 = stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE);
2072 if (retval3 != ERROR_OK)
2073 return retval3;
2074 }
2075
2076 if (retval != ERROR_OK)
2077 return retval;
2078
2079 return retval2;
2080 }
2081
2082 COMMAND_HANDLER(stm32l4_handle_mass_erase_command)
2083 {
2084 if (CMD_ARGC < 1) {
2085 command_print(CMD, "stm32l4x mass_erase <STM32L4 bank>");
2086 return ERROR_COMMAND_SYNTAX_ERROR;
2087 }
2088
2089 struct flash_bank *bank;
2090 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2091 if (retval != ERROR_OK)
2092 return retval;
2093
2094 retval = stm32l4_mass_erase(bank);
2095 if (retval == ERROR_OK)
2096 command_print(CMD, "stm32l4x mass erase complete");
2097 else
2098 command_print(CMD, "stm32l4x mass erase failed");
2099
2100 return retval;
2101 }
2102
2103 COMMAND_HANDLER(stm32l4_handle_option_read_command)
2104 {
2105 if (CMD_ARGC < 2) {
2106 command_print(CMD, "stm32l4x option_read <STM32L4 bank> <option_reg offset>");
2107 return ERROR_COMMAND_SYNTAX_ERROR;
2108 }
2109
2110 struct flash_bank *bank;
2111 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2112 if (retval != ERROR_OK)
2113 return retval;
2114
2115 uint32_t reg_offset, reg_addr;
2116 uint32_t value = 0;
2117
2118 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg_offset);
2119 reg_addr = stm32l4_get_flash_reg(bank, reg_offset);
2120
2121 retval = stm32l4_read_flash_reg(bank, reg_offset, &value);
2122 if (retval != ERROR_OK)
2123 return retval;
2124
2125 command_print(CMD, "Option Register: <0x%" PRIx32 "> = 0x%" PRIx32 "", reg_addr, value);
2126
2127 return retval;
2128 }
2129
2130 COMMAND_HANDLER(stm32l4_handle_option_write_command)
2131 {
2132 if (CMD_ARGC < 3) {
2133 command_print(CMD, "stm32l4x option_write <STM32L4 bank> <option_reg offset> <value> [mask]");
2134 return ERROR_COMMAND_SYNTAX_ERROR;
2135 }
2136
2137 struct flash_bank *bank;
2138 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2139 if (retval != ERROR_OK)
2140 return retval;
2141
2142 uint32_t reg_offset;
2143 uint32_t value = 0;
2144 uint32_t mask = 0xFFFFFFFF;
2145
2146 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg_offset);
2147 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
2148
2149 if (CMD_ARGC > 3)
2150 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], mask);
2151
2152 command_print(CMD, "%s Option written.\n"
2153 "INFO: a reset or power cycle is required "
2154 "for the new settings to take effect.", bank->driver->name);
2155
2156 retval = stm32l4_write_option(bank, reg_offset, value, mask);
2157 return retval;
2158 }
2159
2160 COMMAND_HANDLER(stm32l4_handle_trustzone_command)
2161 {
2162 if (CMD_ARGC < 1 || CMD_ARGC > 2)
2163 return ERROR_COMMAND_SYNTAX_ERROR;
2164
2165 struct flash_bank *bank;
2166 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2167 if (retval != ERROR_OK)
2168 return retval;
2169
2170 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2171 if (!(stm32l4_info->part_info->flags & F_HAS_TZ)) {
2172 LOG_ERROR("This device does not have a TrustZone");
2173 return ERROR_FAIL;
2174 }
2175
2176 retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_OPTR_INDEX, &stm32l4_info->optr);
2177 if (retval != ERROR_OK)
2178 return retval;
2179
2180 stm32l4_sync_rdp_tzen(bank);
2181
2182 if (CMD_ARGC == 1) {
2183 /* only display the TZEN value */
2184 LOG_INFO("Global TrustZone Security is %s", stm32l4_info->tzen ? "enabled" : "disabled");
2185 return ERROR_OK;
2186 }
2187
2188 bool new_tzen;
2189 COMMAND_PARSE_ENABLE(CMD_ARGV[1], new_tzen);
2190
2191 if (new_tzen == stm32l4_info->tzen) {
2192 LOG_INFO("The requested TZEN is already programmed");
2193 return ERROR_OK;
2194 }
2195
2196 if (new_tzen) {
2197 if (stm32l4_info->rdp != RDP_LEVEL_0) {
2198 LOG_ERROR("TZEN can be set only when RDP level is 0");
2199 return ERROR_FAIL;
2200 }
2201 retval = stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_OPTR_INDEX],
2202 FLASH_TZEN, FLASH_TZEN);
2203 } else {
2204 /* Deactivation of TZEN (from 1 to 0) is only possible when the RDP is
2205 * changing to level 0 (from level 1 to level 0 or from level 0.5 to level 0). */
2206 if (stm32l4_info->rdp != RDP_LEVEL_1 && stm32l4_info->rdp != RDP_LEVEL_0_5) {
2207 LOG_ERROR("Deactivation of TZEN is only possible when the RDP is changing to level 0");
2208 return ERROR_FAIL;
2209 }
2210
2211 retval = stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_OPTR_INDEX],
2212 RDP_LEVEL_0, FLASH_RDP_MASK | FLASH_TZEN);
2213 }
2214
2215 if (retval != ERROR_OK)
2216 return retval;
2217
2218 return stm32l4_perform_obl_launch(bank);
2219 }
2220
2221 COMMAND_HANDLER(stm32l4_handle_flashloader_command)
2222 {
2223 if (CMD_ARGC < 1 || CMD_ARGC > 2)
2224 return ERROR_COMMAND_SYNTAX_ERROR;
2225
2226 struct flash_bank *bank;
2227 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2228 if (retval != ERROR_OK)
2229 return retval;
2230
2231 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2232
2233 if (CMD_ARGC == 2)
2234 COMMAND_PARSE_ENABLE(CMD_ARGV[1], stm32l4_info->use_flashloader);
2235
2236 command_print(CMD, "FlashLoader usage is %s", stm32l4_info->use_flashloader ? "enabled" : "disabled");
2237
2238 return ERROR_OK;
2239 }
2240
2241 COMMAND_HANDLER(stm32l4_handle_option_load_command)
2242 {
2243 if (CMD_ARGC != 1)
2244 return ERROR_COMMAND_SYNTAX_ERROR;
2245
2246 struct flash_bank *bank;
2247 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2248 if (retval != ERROR_OK)
2249 return retval;
2250
2251 retval = stm32l4_perform_obl_launch(bank);
2252 if (retval != ERROR_OK) {
2253 command_print(CMD, "stm32l4x option load failed");
2254 return retval;
2255 }
2256
2257
2258 command_print(CMD, "stm32l4x option load completed. Power-on reset might be required");
2259
2260 return ERROR_OK;
2261 }
2262
2263 COMMAND_HANDLER(stm32l4_handle_lock_command)
2264 {
2265 struct target *target = NULL;
2266
2267 if (CMD_ARGC < 1)
2268 return ERROR_COMMAND_SYNTAX_ERROR;
2269
2270 struct flash_bank *bank;
2271 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2272 if (retval != ERROR_OK)
2273 return retval;
2274
2275 if (stm32l4_is_otp(bank)) {
2276 LOG_ERROR("cannot lock/unlock OTP memory");
2277 return ERROR_FLASH_OPER_UNSUPPORTED;
2278 }
2279
2280 target = bank->target;
2281
2282 if (target->state != TARGET_HALTED) {
2283 LOG_ERROR("Target not halted");
2284 return ERROR_TARGET_NOT_HALTED;
2285 }
2286
2287 /* set readout protection level 1 by erasing the RDP option byte */
2288 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2289 if (stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_OPTR_INDEX],
2290 RDP_LEVEL_1, FLASH_RDP_MASK) != ERROR_OK) {
2291 command_print(CMD, "%s failed to lock device", bank->driver->name);
2292 return ERROR_OK;
2293 }
2294
2295 return ERROR_OK;
2296 }
2297
2298 COMMAND_HANDLER(stm32l4_handle_unlock_command)
2299 {
2300 struct target *target = NULL;
2301
2302 if (CMD_ARGC < 1)
2303 return ERROR_COMMAND_SYNTAX_ERROR;
2304
2305 struct flash_bank *bank;
2306 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2307 if (retval != ERROR_OK)
2308 return retval;
2309
2310 if (stm32l4_is_otp(bank)) {
2311 LOG_ERROR("cannot lock/unlock OTP memory");
2312 return ERROR_FLASH_OPER_UNSUPPORTED;
2313 }
2314
2315 target = bank->target;
2316
2317 if (target->state != TARGET_HALTED) {
2318 LOG_ERROR("Target not halted");
2319 return ERROR_TARGET_NOT_HALTED;
2320 }
2321
2322 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2323 if (stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_OPTR_INDEX],
2324 RDP_LEVEL_0, FLASH_RDP_MASK) != ERROR_OK) {
2325 command_print(CMD, "%s failed to unlock device", bank->driver->name);
2326 return ERROR_OK;
2327 }
2328
2329 return ERROR_OK;
2330 }
2331
2332 COMMAND_HANDLER(stm32l4_handle_wrp_info_command)
2333 {
2334 if (CMD_ARGC < 1 || CMD_ARGC > 2)
2335 return ERROR_COMMAND_SYNTAX_ERROR;
2336
2337 struct flash_bank *bank;
2338 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2339 if (retval != ERROR_OK)
2340 return retval;
2341
2342 if (stm32l4_is_otp(bank)) {
2343 LOG_ERROR("OTP memory does not have write protection areas");
2344 return ERROR_FLASH_OPER_UNSUPPORTED;
2345 }
2346
2347 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2348 enum stm32_bank_id dev_bank_id = STM32_ALL_BANKS;
2349 if (CMD_ARGC == 2) {
2350 if (strcmp(CMD_ARGV[1], "bank1") == 0)
2351 dev_bank_id = STM32_BANK1;
2352 else if (strcmp(CMD_ARGV[1], "bank2") == 0)
2353 dev_bank_id = STM32_BANK2;
2354 else
2355 return ERROR_COMMAND_ARGUMENT_INVALID;
2356 }
2357
2358 if (dev_bank_id == STM32_BANK2) {
2359 if (!(stm32l4_info->part_info->flags & F_HAS_DUAL_BANK)) {
2360 LOG_ERROR("this device has no second bank");
2361 return ERROR_FAIL;
2362 } else if (!stm32l4_info->dual_bank_mode) {
2363 LOG_ERROR("this device is configured in single bank mode");
2364 return ERROR_FAIL;
2365 }
2366 }
2367
2368 int ret;
2369 unsigned int n_wrp, i;
2370 struct stm32l4_wrp wrpxy[4];
2371
2372 ret = stm32l4_get_all_wrpxy(bank, dev_bank_id, wrpxy, &n_wrp);
2373 if (ret != ERROR_OK)
2374 return ret;
2375
2376 /* use bitmap and range helpers to better describe protected areas */
2377 DECLARE_BITMAP(pages, bank->num_sectors);
2378 bitmap_zero(pages, bank->num_sectors);
2379
2380 for (i = 0; i < n_wrp; i++) {
2381 if (wrpxy[i].used) {
2382 for (int p = wrpxy[i].first; p <= wrpxy[i].last; p++)
2383 set_bit(p, pages);
2384 }
2385 }
2386
2387 /* we have at most 'n_wrp' WRP areas */
2388 struct range ranges[n_wrp];
2389 unsigned int ranges_count = 0;
2390
2391 bitmap_to_ranges(pages, bank->num_sectors, ranges, &ranges_count);
2392
2393 if (ranges_count > 0) {
2394 /* pretty-print the protected ranges */
2395 char *ranges_str = range_print_alloc(ranges, ranges_count);
2396 command_print(CMD, "protected areas: %s", ranges_str);
2397 free(ranges_str);
2398 } else
2399 command_print(CMD, "no protected areas");
2400
2401 return ERROR_OK;
2402 }
2403
2404 COMMAND_HANDLER(stm32l4_handle_otp_command)
2405 {
2406 if (CMD_ARGC < 2)
2407 return ERROR_COMMAND_SYNTAX_ERROR;
2408
2409 struct flash_bank *bank;
2410 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2411 if (retval != ERROR_OK)
2412 return retval;
2413
2414 if (!stm32l4_is_otp(bank)) {
2415 command_print(CMD, "the specified bank is not an OTP memory");
2416 return ERROR_FAIL;
2417 }
2418 if (strcmp(CMD_ARGV[1], "enable") == 0)
2419 stm32l4_otp_enable(bank, true);
2420 else if (strcmp(CMD_ARGV[1], "disable") == 0)
2421 stm32l4_otp_enable(bank, false);
2422 else if (strcmp(CMD_ARGV[1], "show") == 0)
2423 command_print(CMD, "OTP memory bank #%d is %s for write commands.",
2424 bank->bank_number, stm32l4_otp_is_enabled(bank) ? "enabled" : "disabled");
2425 else
2426 return ERROR_COMMAND_SYNTAX_ERROR;
2427
2428 return ERROR_OK;
2429 }
2430
2431 static const struct command_registration stm32l4_exec_command_handlers[] = {
2432 {
2433 .name = "lock",
2434 .handler = stm32l4_handle_lock_command,
2435 .mode = COMMAND_EXEC,
2436 .usage = "bank_id",
2437 .help = "Lock entire flash device.",
2438 },
2439 {
2440 .name = "unlock",
2441 .handler = stm32l4_handle_unlock_command,
2442 .mode = COMMAND_EXEC,
2443 .usage = "bank_id",
2444 .help = "Unlock entire protected flash device.",
2445 },
2446 {
2447 .name = "flashloader",
2448 .handler = stm32l4_handle_flashloader_command,
2449 .mode = COMMAND_EXEC,
2450 .usage = "<bank_id> [enable|disable]",
2451 .help = "Configure the flashloader usage",
2452 },
2453 {
2454 .name = "mass_erase",
2455 .handler = stm32l4_handle_mass_erase_command,
2456 .mode = COMMAND_EXEC,
2457 .usage = "bank_id",
2458 .help = "Erase entire flash device.",
2459 },
2460 {
2461 .name = "option_read",
2462 .handler = stm32l4_handle_option_read_command,
2463 .mode = COMMAND_EXEC,
2464 .usage = "bank_id reg_offset",
2465 .help = "Read & Display device option bytes.",
2466 },
2467 {
2468 .name = "option_write",
2469 .handler = stm32l4_handle_option_write_command,
2470 .mode = COMMAND_EXEC,
2471 .usage = "bank_id reg_offset value mask",
2472 .help = "Write device option bit fields with provided value.",
2473 },
2474 {
2475 .name = "trustzone",
2476 .handler = stm32l4_handle_trustzone_command,
2477 .mode = COMMAND_EXEC,
2478 .usage = "<bank_id> [enable|disable]",
2479 .help = "Configure TrustZone security",
2480 },
2481 {
2482 .name = "wrp_info",
2483 .handler = stm32l4_handle_wrp_info_command,
2484 .mode = COMMAND_EXEC,
2485 .usage = "bank_id [bank1|bank2]",
2486 .help = "list the protected areas using WRP",
2487 },
2488 {
2489 .name = "option_load",
2490 .handler = stm32l4_handle_option_load_command,
2491 .mode = COMMAND_EXEC,
2492 .usage = "bank_id",
2493 .help = "Force re-load of device options (will cause device reset).",
2494 },
2495 {
2496 .name = "otp",
2497 .handler = stm32l4_handle_otp_command,
2498 .mode = COMMAND_EXEC,
2499 .usage = "<bank_id> <enable|disable|show>",
2500 .help = "OTP (One Time Programmable) memory write enable/disable",
2501 },
2502 COMMAND_REGISTRATION_DONE
2503 };
2504
2505 static const struct command_registration stm32l4_command_handlers[] = {
2506 {
2507 .name = "stm32l4x",
2508 .mode = COMMAND_ANY,
2509 .help = "stm32l4x flash command group",
2510 .usage = "",
2511 .chain = stm32l4_exec_command_handlers,
2512 },
2513 COMMAND_REGISTRATION_DONE
2514 };
2515
2516 const struct flash_driver stm32l4x_flash = {
2517 .name = "stm32l4x",
2518 .commands = stm32l4_command_handlers,
2519 .flash_bank_command = stm32l4_flash_bank_command,
2520 .erase = stm32l4_erase,
2521 .protect = stm32l4_protect,
2522 .write = stm32l4_write,
2523 .read = default_flash_read,
2524 .probe = stm32l4_probe,
2525 .auto_probe = stm32l4_auto_probe,
2526 .erase_check = default_flash_blank_check,
2527 .protect_check = stm32l4_protect_check,
2528 .info = get_stm32l4_info,
2529 .free_driver_priv = default_flash_free_driver_priv,
2530 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)