Use C89/C99/C++ compliant boolean types
[openocd.git] / src / jtag / jtag.h
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * This program is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This program is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this program; if not, write to the *
20 * Free Software Foundation, Inc., *
21 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
22 ***************************************************************************/
23 #ifndef JTAG_H
24 #define JTAG_H
25
26 #include "types.h"
27 #include "binarybuffer.h"
28 #include "log.h"
29
30 #include "command.h"
31
32
33 #if 0
34 #define _DEBUG_JTAG_IO_
35 #endif
36
37 #ifndef DEBUG_JTAG_IOZ
38 #define DEBUG_JTAG_IOZ 64
39 #endif
40
41
42 /* 16 Tap States, from page 21 of ASSET InterTech, Inc.'s svf.pdf
43 */
44 enum tap_state {
45 TAP_RESET = 0, TAP_IDLE = 8,
46 TAP_DRSELECT = 1, TAP_DRCAPTURE = 2, TAP_DRSHIFT = 3, TAP_DREXIT1 = 4,
47 TAP_DRPAUSE = 5, TAP_DREXIT2 = 6, TAP_DRUPDATE = 7,
48 TAP_IRSELECT = 9, TAP_IRCAPTURE = 10, TAP_IRSHIFT = 11, TAP_IREXIT1 = 12,
49 TAP_IRPAUSE = 13, TAP_IREXIT2 = 14, TAP_IRUPDATE = 15
50 };
51
52 typedef enum tap_state tap_state_t;
53
54 typedef struct tap_transition_s
55 {
56 tap_state_t high;
57 tap_state_t low;
58 } tap_transition_t;
59
60 //extern tap_transition_t tap_transitions[16]; /* describe the TAP state diagram */
61
62
63 /*-----<Cable Helper API>-------------------------------------------*/
64
65 /* The "Cable Helper API" is what the cable drivers can use to help implement
66 * their "Cable API". So a Cable Helper API is a set of helper functions used by
67 * cable drivers, and this is different from a Cable API. A "Cable API" is what
68 * higher level code used to talk to a cable.
69 */
70
71
72 /** implementation of wrapper function tap_set_state() */
73 void tap_set_state_impl(tap_state_t new_state);
74
75 /**
76 * Function tap_set_state
77 * sets the state of a "state follower" which tracks the state of the TAPs connected to the
78 * cable. The state follower is hopefully always in the same state as the actual
79 * TAPs in the jtag chain, and will be so if there are no bugs in the tracking logic within that
80 * cable driver. All the cable drivers call this function to indicate the state they think
81 * the TAPs attached to their cables are in. Because this function can also log transitions,
82 * it will be helpful to call this function with every transition that the TAPs being manipulated
83 * are expected to traverse, not just end points of a multi-step state path.
84 * @param new_state is the state we think the TAPs are currently in or are about to enter.
85 */
86 #if defined(_DEBUG_JTAG_IO_)
87 #define tap_set_state(new_state) \
88 do { \
89 LOG_DEBUG( "tap_set_state(%s)", tap_state_name(new_state) ); \
90 tap_set_state_impl(new_state); \
91 } while (0)
92 #else
93 static inline void tap_set_state(tap_state_t new_state)
94 {
95 tap_set_state_impl(new_state);
96 }
97
98 #endif
99
100 /**
101 * Function tap_get_state
102 * gets the state of the "state follower" which tracks the state of the TAPs connected to
103 * the cable.
104 * @see tap_set_state
105 * @return tap_state_t - The state the TAPs are in now.
106 */
107 tap_state_t tap_get_state(void);
108
109 /**
110 * Function tap_set_end_state
111 * sets the state of an "end state follower" which tracks the state that any cable driver
112 * thinks will be the end (resultant) state of the current TAP SIR or SDR operation. At completion
113 * of that TAP operation this value is copied into the state follower via tap_set_state().
114 * @param new_end_state is that state the TAPs should enter at completion of a pending TAP operation.
115 */
116 void tap_set_end_state(tap_state_t new_end_state);
117
118 /**
119 * Function tap_get_end_state
120 * @see tap_set_end_state
121 * @return tap_state_t - The state the TAPs should be in at completion of the current TAP operation.
122 */
123 tap_state_t tap_get_end_state(void);
124
125 /**
126 * Function tap_get_tms_path
127 * returns a 7 bit long "bit sequence" indicating what has to be done with TMS
128 * during a sequence of seven TAP clock cycles in order to get from
129 * state \a "from" to state \a "to".
130 * @param from is the starting state
131 * @param to is the resultant or final state
132 * @return int - a 7 bit sequence, with the first bit in the sequence at bit 0.
133 */
134 int tap_get_tms_path(tap_state_t from, tap_state_t to);
135
136 /**
137 * Function tap_move_ndx
138 * when given a stable state, returns an index from 0-5. The index corresponds to a
139 * sequence of stable states which are given in this order: <p>
140 * { TAP_RESET, TAP_IDLE, TAP_DRSHIFT, TAP_DRPAUSE, TAP_IRSHIFT, TAP_IRPAUSE }
141 * <p>
142 * This sequence corresponds to look up tables which are used in some of the
143 * cable drivers.
144 * @param astate is the stable state to find in the sequence. If a non stable
145 * state is passed, this may cause the program to output an error message
146 * and terminate.
147 * @return int - the array (or sequence) index as described above
148 */
149 int tap_move_ndx(tap_state_t astate);
150
151 /**
152 * Function tap_is_state_stable
153 * returns true if the \a astate is stable.
154 */
155 bool tap_is_state_stable(tap_state_t astate);
156
157 /**
158 * Function tap_state_transition
159 * takes a current TAP state and returns the next state according to the tms value.
160 * @param current_state is the state of a TAP currently.
161 * @param tms is either zero or non-zero, just like a real TMS line in a jtag interface.
162 * @return tap_state_t - the next state a TAP would enter.
163 */
164 tap_state_t tap_state_transition(tap_state_t current_state, bool tms);
165
166 /**
167 * Function tap_state_name
168 * Returns a string suitable for display representing the JTAG tap_state
169 */
170 const char* tap_state_name(tap_state_t state);
171
172 /*-----</Cable Helper API>------------------------------------------*/
173
174
175 extern tap_state_t cmd_queue_end_state; /* finish DR scans in dr_end_state */
176 extern tap_state_t cmd_queue_cur_state; /* current TAP state */
177
178 typedef void* error_handler_t; /* Later on we can delete error_handler_t, but keep it for now to make patches more readable */
179
180 struct scan_field_s;
181 typedef int (*in_handler_t)(u8* in_value, void* priv, struct scan_field_s* field);
182
183 typedef struct scan_field_s
184 {
185 jtag_tap_t* tap; /* tap pointer this instruction refers to */
186 int num_bits; /* number of bits this field specifies (up to 32) */
187 u8* out_value; /* value to be scanned into the device */
188 u8* out_mask; /* only masked bits care */
189 u8* in_value; /* pointer to a 32-bit memory location to take data scanned out */
190 /* in_check_value/mask, in_handler_error_handler, in_handler_priv can be used by the in handler, otherwise they contain garbage */
191 u8* in_check_value; /* used to validate scan results */
192 u8* in_check_mask; /* check specified bits against check_value */
193 in_handler_t in_handler; /* process received buffer using this handler */
194 void* in_handler_priv; /* additional information for the in_handler */
195 } scan_field_t;
196
197 enum scan_type {
198 /* IN: from device to host, OUT: from host to device */
199 SCAN_IN = 1, SCAN_OUT = 2, SCAN_IO = 3
200 };
201
202 typedef struct scan_command_s
203 {
204 int ir_scan; /* instruction/not data scan */
205 int num_fields; /* number of fields in *fields array */
206 scan_field_t* fields; /* pointer to an array of data scan fields */
207 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
208 } scan_command_t;
209
210 typedef struct statemove_command_s
211 {
212 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
213 } statemove_command_t;
214
215 typedef struct pathmove_command_s
216 {
217 int num_states; /* number of states in *path */
218 tap_state_t* path; /* states that have to be passed */
219 } pathmove_command_t;
220
221 typedef struct runtest_command_s
222 {
223 int num_cycles; /* number of cycles that should be spent in Run-Test/Idle */
224 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
225 } runtest_command_t;
226
227
228 typedef struct stableclocks_command_s
229 {
230 int num_cycles; /* number of clock cycles that should be sent */
231 } stableclocks_command_t;
232
233
234 typedef struct reset_command_s
235 {
236 int trst; /* trst/srst 0: deassert, 1: assert, -1: don't change */
237 int srst;
238 } reset_command_t;
239
240 typedef struct end_state_command_s
241 {
242 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
243 } end_state_command_t;
244
245 typedef struct sleep_command_s
246 {
247 u32 us; /* number of microseconds to sleep */
248 } sleep_command_t;
249
250 typedef union jtag_command_container_u
251 {
252 scan_command_t* scan;
253 statemove_command_t* statemove;
254 pathmove_command_t* pathmove;
255 runtest_command_t* runtest;
256 stableclocks_command_t* stableclocks;
257 reset_command_t* reset;
258 end_state_command_t* end_state;
259 sleep_command_t* sleep;
260 } jtag_command_container_t;
261
262 enum jtag_command_type {
263 JTAG_SCAN = 1,
264 JTAG_STATEMOVE = 2,
265 JTAG_RUNTEST = 3,
266 JTAG_RESET = 4,
267 JTAG_END_STATE = 5,
268 JTAG_PATHMOVE = 6,
269 JTAG_SLEEP = 7,
270 JTAG_STABLECLOCKS = 8
271 };
272
273 typedef struct jtag_command_s
274 {
275 jtag_command_container_t cmd;
276 enum jtag_command_type type;
277 struct jtag_command_s* next;
278 } jtag_command_t;
279
280 extern jtag_command_t* jtag_command_queue;
281
282 /* forward declaration */
283 typedef struct jtag_tap_event_action_s jtag_tap_event_action_t;
284
285 /* this is really: typedef jtag_tap_t */
286 /* But - the typedef is done in "types.h" */
287 /* due to "forward decloration reasons" */
288 struct jtag_tap_s
289 {
290 const char* chip;
291 const char* tapname;
292 const char* dotted_name;
293 int abs_chain_position;
294 int enabled;
295 int ir_length; /* size of instruction register */
296 u32 ir_capture_value;
297 u8* expected; /* Capture-IR expected value */
298 u32 ir_capture_mask;
299 u8* expected_mask; /* Capture-IR expected mask */
300 u32 idcode; /* device identification code */
301 u32* expected_ids; /* Array of expected identification codes */
302 u8 expected_ids_cnt; /* Number of expected identification codes */
303 u8* cur_instr; /* current instruction */
304 int bypass; /* bypass register selected */
305
306 jtag_tap_event_action_t* event_action;
307
308 jtag_tap_t* next_tap;
309 };
310 extern jtag_tap_t* jtag_AllTaps(void);
311 extern jtag_tap_t* jtag_TapByPosition(int n);
312 extern jtag_tap_t* jtag_TapByPosition(int n);
313 extern jtag_tap_t* jtag_TapByString(const char* dotted_name);
314 extern jtag_tap_t* jtag_TapByJimObj(Jim_Interp* interp, Jim_Obj* obj);
315 extern jtag_tap_t* jtag_TapByAbsPosition(int abs_position);
316 extern int jtag_NumEnabledTaps(void);
317 extern int jtag_NumTotalTaps(void);
318
319 static __inline__ jtag_tap_t* jtag_NextEnabledTap(jtag_tap_t* p)
320 {
321 if (p == NULL)
322 {
323 /* start at the head of list */
324 p = jtag_AllTaps();
325 }
326 else
327 {
328 /* start *after* this one */
329 p = p->next_tap;
330 }
331 while (p)
332 {
333 if (p->enabled)
334 {
335 break;
336 }
337 else
338 {
339 p = p->next_tap;
340 }
341 }
342
343 return p;
344 }
345
346
347 enum reset_line_mode {
348 LINE_OPEN_DRAIN = 0x0,
349 LINE_PUSH_PULL = 0x1,
350 };
351
352 typedef struct jtag_interface_s
353 {
354 char* name;
355
356 /* queued command execution
357 */
358 int (*execute_queue)(void);
359
360 /* interface initalization
361 */
362 int (*speed)(int speed);
363 int (*register_commands)(struct command_context_s* cmd_ctx);
364 int (*init)(void);
365 int (*quit)(void);
366
367 /* returns JTAG maxium speed for KHz. 0=RTCK. The function returns
368 * a failure if it can't support the KHz/RTCK.
369 *
370 * WARNING!!!! if RTCK is *slow* then think carefully about
371 * whether you actually want to support this in the driver.
372 * Many target scripts are written to handle the absence of RTCK
373 * and use a fallback kHz TCK.
374 */
375 int (*khz)(int khz, int* jtag_speed);
376
377 /* returns the KHz for the provided JTAG speed. 0=RTCK. The function returns
378 * a failure if it can't support the KHz/RTCK. */
379 int (*speed_div)(int speed, int* khz);
380
381 /* Read and clear the power dropout flag. Note that a power dropout
382 * can be transitionary, easily much less than a ms.
383 *
384 * So to find out if the power is *currently* on, you must invoke
385 * this method twice. Once to clear the power dropout flag and a
386 * second time to read the current state.
387 *
388 * Currently the default implementation is never to detect power dropout.
389 */
390 int (*power_dropout)(int* power_dropout);
391
392 /* Read and clear the srst asserted detection flag.
393 *
394 * NB!!!! like power_dropout this does *not* read the current
395 * state. srst assertion is transitionary and *can* be much
396 * less than 1ms.
397 */
398 int (*srst_asserted)(int* srst_asserted);
399 } jtag_interface_t;
400
401 enum jtag_event {
402 JTAG_TRST_ASSERTED
403 };
404
405 extern char* jtag_event_strings[];
406
407 enum jtag_tap_event {
408 JTAG_TAP_EVENT_ENABLE,
409 JTAG_TAP_EVENT_DISABLE
410 };
411
412 extern const Jim_Nvp nvp_jtag_tap_event[];
413
414 struct jtag_tap_event_action_s
415 {
416 enum jtag_tap_event event;
417 Jim_Obj* body;
418 jtag_tap_event_action_t* next;
419 };
420
421 extern int jtag_trst;
422 extern int jtag_srst;
423
424 typedef struct jtag_event_callback_s
425 {
426 int (*callback)(enum jtag_event event, void* priv);
427 void* priv;
428 struct jtag_event_callback_s* next;
429 } jtag_event_callback_t;
430
431 extern jtag_event_callback_t* jtag_event_callbacks;
432
433 extern jtag_interface_t* jtag; /* global pointer to configured JTAG interface */
434
435 extern int jtag_speed;
436 extern int jtag_speed_post_reset;
437
438 enum reset_types {
439 RESET_NONE = 0x0,
440 RESET_HAS_TRST = 0x1,
441 RESET_HAS_SRST = 0x2,
442 RESET_TRST_AND_SRST = 0x3,
443 RESET_SRST_PULLS_TRST = 0x4,
444 RESET_TRST_PULLS_SRST = 0x8,
445 RESET_TRST_OPEN_DRAIN = 0x10,
446 RESET_SRST_PUSH_PULL = 0x20,
447 };
448
449 extern enum reset_types jtag_reset_config;
450
451 /* initialize interface upon startup. A successful no-op
452 * upon subsequent invocations
453 */
454 extern int jtag_interface_init(struct command_context_s* cmd_ctx);
455
456 /* initialize JTAG chain using only a RESET reset. If init fails,
457 * try reset + init.
458 */
459 extern int jtag_init(struct command_context_s* cmd_ctx);
460
461 /* reset, then initialize JTAG chain */
462 extern int jtag_init_reset(struct command_context_s* cmd_ctx);
463 extern int jtag_register_commands(struct command_context_s* cmd_ctx);
464
465 /* JTAG interface, can be implemented with a software or hardware fifo
466 *
467 * TAP_DRSHIFT and TAP_IRSHIFT are illegal end states. TAP_DRSHIFT/IRSHIFT as end states
468 * can be emulated by using a larger scan.
469 *
470 * Code that is relatively insensitive to the path(as long
471 * as it is JTAG compliant) taken through state machine can use
472 * endstate for jtag_add_xxx_scan(). Otherwise the pause state must be
473 * specified as end state and a subsequent jtag_add_pathmove() must
474 * be issued.
475 *
476 */
477 extern void jtag_add_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
478 extern int interface_jtag_add_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
479 extern void jtag_add_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
480 extern int interface_jtag_add_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
481 extern void jtag_add_plain_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
482 extern int interface_jtag_add_plain_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
483 extern void jtag_add_plain_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
484 extern int interface_jtag_add_plain_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
485
486 /* run a TAP_RESET reset. End state is TAP_RESET, regardless
487 * of start state.
488 */
489 extern void jtag_add_tlr(void);
490 extern int interface_jtag_add_tlr(void);
491
492 /* Do not use jtag_add_pathmove() unless you need to, but do use it
493 * if you have to.
494 *
495 * DANGER! If the target is dependent upon a particular sequence
496 * of transitions for things to work correctly(e.g. as a workaround
497 * for an errata that contradicts the JTAG standard), then pathmove
498 * must be used, even if some jtag interfaces happen to use the
499 * desired path. Worse, the jtag interface used for testing a
500 * particular implementation, could happen to use the "desired"
501 * path when transitioning to/from end
502 * state.
503 *
504 * A list of unambigious single clock state transitions, not
505 * all drivers can support this, but it is required for e.g.
506 * XScale and Xilinx support
507 *
508 * Note! TAP_RESET must not be used in the path!
509 *
510 * Note that the first on the list must be reachable
511 * via a single transition from the current state.
512 *
513 * All drivers are required to implement jtag_add_pathmove().
514 * However, if the pathmove sequence can not be precisely
515 * executed, an interface_jtag_add_pathmove() or jtag_execute_queue()
516 * must return an error. It is legal, but not recommended, that
517 * a driver returns an error in all cases for a pathmove if it
518 * can only implement a few transitions and therefore
519 * a partial implementation of pathmove would have little practical
520 * application.
521 */
522 extern void jtag_add_pathmove(int num_states, tap_state_t* path);
523 extern int interface_jtag_add_pathmove(int num_states, tap_state_t* path);
524
525 /* go to TAP_IDLE, if we're not already there and cycle
526 * precisely num_cycles in the TAP_IDLE after which move
527 * to the end state, if it is != TAP_IDLE
528 *
529 * nb! num_cycles can be 0, in which case the fn will navigate
530 * to endstate via TAP_IDLE
531 */
532 extern void jtag_add_runtest(int num_cycles, tap_state_t endstate);
533 extern int interface_jtag_add_runtest(int num_cycles, tap_state_t endstate);
534
535 /* A reset of the TAP state machine can be requested.
536 *
537 * Whether tms or trst reset is used depends on the capabilities of
538 * the target and jtag interface(reset_config command configures this).
539 *
540 * srst can driver a reset of the TAP state machine and vice
541 * versa
542 *
543 * Application code may need to examine value of jtag_reset_config
544 * to determine the proper codepath
545 *
546 * DANGER! Even though srst drives trst, trst might not be connected to
547 * the interface, and it might actually be *harmful* to assert trst in this case.
548 *
549 * This is why combinations such as "reset_config srst_only srst_pulls_trst"
550 * are supported.
551 *
552 * only req_tlr_or_trst and srst can have a transition for a
553 * call as the effects of transitioning both at the "same time"
554 * are undefined, but when srst_pulls_trst or vice versa,
555 * then trst & srst *must* be asserted together.
556 */
557 extern void jtag_add_reset(int req_tlr_or_trst, int srst);
558
559 /* this drives the actual srst and trst pins. srst will always be 0
560 * if jtag_reset_config & RESET_SRST_PULLS_TRST != 0 and ditto for
561 * trst.
562 *
563 * the higher level jtag_add_reset will invoke jtag_add_tlr() if
564 * approperiate
565 */
566 extern int interface_jtag_add_reset(int trst, int srst);
567 extern void jtag_add_end_state(tap_state_t endstate);
568 extern int interface_jtag_add_end_state(tap_state_t endstate);
569 extern void jtag_add_sleep(u32 us);
570 extern int interface_jtag_add_sleep(u32 us);
571
572
573 /**
574 * Function jtag_add_stable_clocks
575 * first checks that the state in which the clocks are to be issued is
576 * stable, then queues up clock_count clocks for transmission.
577 */
578 void jtag_add_clocks(int num_cycles);
579 int interface_jtag_add_clocks(int num_cycles);
580
581
582 /*
583 * For software FIFO implementations, the queued commands can be executed
584 * during this call or earlier. A sw queue might decide to push out
585 * some of the jtag_add_xxx() operations once the queue is "big enough".
586 *
587 * This fn will return an error code if any of the prior jtag_add_xxx()
588 * calls caused a failure, e.g. check failure. Note that it does not
589 * matter if the operation was executed *before* jtag_execute_queue(),
590 * jtag_execute_queue() will still return an error code.
591 *
592 * All jtag_add_xxx() calls that have in_handler!=NULL will have been
593 * executed when this fn returns, but if what has been queued only
594 * clocks data out, without reading anything back, then JTAG could
595 * be running *after* jtag_execute_queue() returns. The API does
596 * not define a way to flush a hw FIFO that runs *after*
597 * jtag_execute_queue() returns.
598 *
599 * jtag_add_xxx() commands can either be executed immediately or
600 * at some time between the jtag_add_xxx() fn call and jtag_execute_queue().
601 */
602 extern int jtag_execute_queue(void);
603
604 /* can be implemented by hw+sw */
605 extern int interface_jtag_execute_queue(void);
606 extern int jtag_power_dropout(int* dropout);
607 extern int jtag_srst_asserted(int* srst_asserted);
608
609 /* JTAG support functions */
610 extern void jtag_set_check_value(scan_field_t* field, u8* value, u8* mask, error_handler_t* in_error_handler);
611 extern enum scan_type jtag_scan_type(scan_command_t* cmd);
612 extern int jtag_scan_size(scan_command_t* cmd);
613 extern int jtag_read_buffer(u8* buffer, scan_command_t* cmd);
614 extern int jtag_build_buffer(scan_command_t* cmd, u8** buffer);
615
616 extern void jtag_sleep(u32 us);
617 extern int jtag_call_event_callbacks(enum jtag_event event);
618 extern int jtag_register_event_callback(int (* callback)(enum jtag_event event, void* priv), void* priv);
619
620 extern int jtag_verify_capture_ir;
621
622 void jtag_tap_handle_event(jtag_tap_t* tap, enum jtag_tap_event e);
623
624 /* error codes
625 * JTAG subsystem uses codes between -100 and -199 */
626
627 #define ERROR_JTAG_INIT_FAILED (-100)
628 #define ERROR_JTAG_INVALID_INTERFACE (-101)
629 #define ERROR_JTAG_NOT_IMPLEMENTED (-102)
630 #define ERROR_JTAG_TRST_ASSERTED (-103)
631 #define ERROR_JTAG_QUEUE_FAILED (-104)
632 #define ERROR_JTAG_NOT_STABLE_STATE (-105)
633 #define ERROR_JTAG_DEVICE_ERROR (-107)
634
635
636 /* this allows JTAG devices to implement the entire jtag_xxx() layer in hw/sw */
637 #ifdef HAVE_JTAG_MINIDRIVER_H
638 /* Here a #define MINIDRIVER() and an inline version of hw fifo interface_jtag_add_dr_out can be defined */
639 #include "jtag_minidriver.h"
640 #define MINIDRIVER(a) notused ## a
641 #else
642 #define MINIDRIVER(a) a
643
644 /* jtag_add_dr_out() is a faster version of jtag_add_dr_scan()
645 *
646 * Current or end_state can not be TAP_RESET. end_state can be -1
647 *
648 * num_bits[i] is the number of bits to clock out from value[i] LSB first.
649 *
650 * If the device is in bypass, then that is an error condition in
651 * the caller code that is not detected by this fn, whereas jtag_add_dr_scan()
652 * does detect it. Similarly if the device is not in bypass, data must
653 * be passed to it.
654 *
655 * If anything fails, then jtag_error will be set and jtag_execute() will
656 * return an error. There is no way to determine if there was a failure
657 * during this function call.
658 *
659 * Note that this jtag_add_dr_out can be defined as an inline function.
660 */
661 extern void interface_jtag_add_dr_out(jtag_tap_t* tap, int num_fields, const int* num_bits, const u32* value,
662 tap_state_t end_state);
663
664 #endif
665
666 static __inline__ void jtag_add_dr_out(jtag_tap_t* tap, int num_fields, const int* num_bits, const u32* value,
667 tap_state_t end_state)
668 {
669 if (end_state != -1)
670 cmd_queue_end_state = end_state;
671 cmd_queue_cur_state = cmd_queue_end_state;
672 interface_jtag_add_dr_out(tap, num_fields, num_bits, value, cmd_queue_end_state);
673 }
674
675
676 #endif /* JTAG_H */

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)