jtag: linuxgpiod: drop extra parenthesis
[openocd.git] / src / target / arm11_dbgtap.c
1 /***************************************************************************
2 * Copyright (C) 2008 digenius technology GmbH. *
3 * Michael Bruck *
4 * *
5 * Copyright (C) 2008,2009 Oyvind Harboe oyvind.harboe@zylin.com *
6 * *
7 * This program is free software; you can redistribute it and/or modify *
8 * it under the terms of the GNU General Public License as published by *
9 * the Free Software Foundation; either version 2 of the License, or *
10 * (at your option) any later version. *
11 * *
12 * This program is distributed in the hope that it will be useful, *
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
15 * GNU General Public License for more details. *
16 * *
17 * You should have received a copy of the GNU General Public License *
18 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
19 ***************************************************************************/
20
21 #ifdef HAVE_CONFIG_H
22 #include "config.h"
23 #endif
24
25 #include "arm_jtag.h"
26 #include "arm11_dbgtap.h"
27
28 #include <helper/time_support.h>
29
30 #if 0
31 #define JTAG_DEBUG(expr ...) do { if (1) \
32 LOG_DEBUG(expr); } while (0)
33 #else
34 #define JTAG_DEBUG(expr ...) do { if (0) \
35 LOG_DEBUG(expr); } while (0)
36 #endif
37
38 /*
39 This pathmove goes from Pause-IR to Shift-IR while avoiding RTI. The
40 behavior of the FTDI driver IIRC was to go via RTI.
41
42 Conversely there may be other places in this code where the ARM11 code relies
43 on the driver to hit through RTI when coming from Update-?R.
44 */
45 static const tap_state_t arm11_move_pi_to_si_via_ci[] = {
46 TAP_IREXIT2, TAP_IRUPDATE, TAP_DRSELECT, TAP_IRSELECT, TAP_IRCAPTURE, TAP_IRSHIFT
47 };
48
49 /* REVISIT no error handling here! */
50 static void arm11_add_ir_scan_vc(struct jtag_tap *tap, struct scan_field *fields,
51 tap_state_t state)
52 {
53 if (cmd_queue_cur_state == TAP_IRPAUSE)
54 jtag_add_pathmove(ARRAY_SIZE(arm11_move_pi_to_si_via_ci),
55 arm11_move_pi_to_si_via_ci);
56
57 jtag_add_ir_scan(tap, fields, state);
58 }
59
60 static const tap_state_t arm11_move_pd_to_sd_via_cd[] = {
61 TAP_DREXIT2, TAP_DRUPDATE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
62 };
63
64 /* REVISIT no error handling here! */
65 void arm11_add_dr_scan_vc(struct jtag_tap *tap, int num_fields, struct scan_field *fields,
66 tap_state_t state)
67 {
68 if (cmd_queue_cur_state == TAP_DRPAUSE)
69 jtag_add_pathmove(ARRAY_SIZE(arm11_move_pd_to_sd_via_cd),
70 arm11_move_pd_to_sd_via_cd);
71
72 jtag_add_dr_scan(tap, num_fields, fields, state);
73 }
74
75
76 /** Code de-clutter: Construct struct scan_field to write out a value
77 *
78 * \param arm11 Target state variable.
79 * \param num_bits Length of the data field
80 * \param out_data pointer to the data that will be sent out
81 * <em > (data is read when it is added to the JTAG queue)</em>
82 * \param in_data pointer to the memory that will receive data that was clocked in
83 * <em > (data is written when the JTAG queue is executed)</em>
84 * \param field target data structure that will be initialized
85 */
86 void arm11_setup_field(struct arm11_common *arm11, int num_bits,
87 void *out_data, void *in_data, struct scan_field *field)
88 {
89 field->num_bits = num_bits;
90 field->out_value = out_data;
91 field->in_value = in_data;
92 }
93
94 static const char *arm11_ir_to_string(uint8_t ir)
95 {
96 const char *s = "unknown";
97
98 switch (ir) {
99 case ARM11_EXTEST:
100 s = "EXTEST";
101 break;
102 case ARM11_SCAN_N:
103 s = "SCAN_N";
104 break;
105 case ARM11_RESTART:
106 s = "RESTART";
107 break;
108 case ARM11_HALT:
109 s = "HALT";
110 break;
111 case ARM11_INTEST:
112 s = "INTEST";
113 break;
114 case ARM11_ITRSEL:
115 s = "ITRSEL";
116 break;
117 case ARM11_IDCODE:
118 s = "IDCODE";
119 break;
120 case ARM11_BYPASS:
121 s = "BYPASS";
122 break;
123 }
124 return s;
125 }
126
127 /** Write JTAG instruction register
128 *
129 * \param arm11 Target state variable.
130 * \param instr An ARM11 DBGTAP instruction. Use enum #arm11_instructions.
131 * \param state Pass the final TAP state or ARM11_TAP_DEFAULT for the default value (Pause-IR).
132 *
133 * \remarks This adds to the JTAG command queue but does \em not execute it.
134 */
135 void arm11_add_ir(struct arm11_common *arm11, uint8_t instr, tap_state_t state)
136 {
137 struct jtag_tap *tap = arm11->arm.target->tap;
138
139 if (buf_get_u32(tap->cur_instr, 0, 5) == instr) {
140 JTAG_DEBUG("IR <= 0x%02x SKIPPED", instr);
141 return;
142 }
143
144 JTAG_DEBUG("IR <= %s (0x%02x)", arm11_ir_to_string(instr), instr);
145
146 struct scan_field field;
147
148 arm11_setup_field(arm11, 5, &instr, NULL, &field);
149
150 arm11_add_ir_scan_vc(arm11->arm.target->tap,
151 &field,
152 state == ARM11_TAP_DEFAULT ? TAP_IRPAUSE : state);
153 }
154
155 /** Verify data shifted out from Scan Chain Register (SCREG). */
156 static void arm11_in_handler_scan_n(uint8_t *in_value)
157 {
158 /* Don't expect JTAG layer to modify bits we didn't ask it to read */
159 uint8_t v = *in_value & 0x1F;
160
161 if (v != 0x10) {
162 LOG_ERROR("'arm11 target' JTAG error SCREG OUT 0x%02x", v);
163 jtag_set_error(ERROR_FAIL);
164 }
165 }
166
167 /** Select and write to Scan Chain Register (SCREG)
168 *
169 * This function sets the instruction register to SCAN_N and writes
170 * the data register with the selected chain number.
171 *
172 * http://infocenter.arm.com/help/topic/com.arm.doc.ddi0301f/Cacbjhfg.html
173 *
174 * \param arm11 Target state variable.
175 * \param chain Scan chain that will be selected.
176 * \param state Pass the final TAP state or ARM11_TAP_DEFAULT for the default
177 * value (Pause-DR).
178 *
179 * Changes the current scan chain if needed, transitions to the specified
180 * TAP state, and leaves the IR undefined.
181 *
182 * The chain takes effect when Update-DR is passed (usually when subsequently
183 * the INTEXT/EXTEST instructions are written).
184 *
185 * \warning (Obsolete) Using this twice in a row will \em fail. The first
186 * call will end in Pause-DR. The second call, due to the IR
187 * caching, will not go through Capture-DR when shifting in the
188 * new scan chain number. As a result the verification in
189 * arm11_in_handler_scan_n() must fail.
190 *
191 * \remarks This adds to the JTAG command queue but does \em not execute it.
192 */
193
194 int arm11_add_debug_scan_n(struct arm11_common *arm11,
195 uint8_t chain, tap_state_t state)
196 {
197 /* Don't needlessly switch the scan chain.
198 * NOTE: the ITRSEL instruction fakes SCREG changing;
199 * but leaves its actual value unchanged.
200 */
201 #if 0
202 /* FIX!!! the optimization below is broken because we do not */
203 /* invalidate the cur_scan_chain upon a TRST/TMS. See arm_jtag.c */
204 /* for example on how to invalidate cur_scan_chain. Tested patches gladly */
205 /* accepted! */
206 if (arm11->jtag_info.cur_scan_chain == chain) {
207 JTAG_DEBUG("SCREG <= %d SKIPPED", chain);
208 return jtag_add_statemove((state == ARM11_TAP_DEFAULT)
209 ? TAP_DRPAUSE : state);
210 }
211 #endif
212 JTAG_DEBUG("SCREG <= %d", chain);
213
214 arm11_add_ir(arm11, ARM11_SCAN_N, ARM11_TAP_DEFAULT);
215
216 struct scan_field field;
217
218 uint8_t tmp[1];
219 arm11_setup_field(arm11, 5, &chain, &tmp, &field);
220
221 arm11_add_dr_scan_vc(arm11->arm.target->tap,
222 1,
223 &field,
224 state == ARM11_TAP_DEFAULT ? TAP_DRPAUSE : state);
225
226 jtag_execute_queue_noclear();
227
228 arm11_in_handler_scan_n(tmp);
229
230 arm11->jtag_info.cur_scan_chain = chain;
231
232 return jtag_execute_queue();
233 }
234
235 /**
236 * Queue a DR scan of the ITR register. Caller must have selected
237 * scan chain 4 (ITR), possibly using ITRSEL.
238 *
239 * \param arm11 Target state variable.
240 * \param inst An ARM11 processor instruction/opcode.
241 * \param flag Optional parameter to retrieve the Ready flag;
242 * this address will be written when the JTAG chain is scanned.
243 * \param state The TAP state to enter after the DR scan.
244 *
245 * Going through the TAP_DRUPDATE state writes ITR only if Ready was
246 * previously set. Only the Ready flag is readable by the scan.
247 *
248 * An instruction loaded into ITR is executed when going through the
249 * TAP_IDLE state only if Ready was previously set and the debug state
250 * is properly set up. Depending on the instruction, you may also need
251 * to ensure that the rDTR is ready before that Run-Test/Idle state.
252 */
253 static void arm11_add_debug_inst(struct arm11_common *arm11,
254 uint32_t inst, uint8_t *flag, tap_state_t state)
255 {
256 JTAG_DEBUG("INST <= 0x%08x", (unsigned) inst);
257
258 struct scan_field itr[2];
259
260 arm11_setup_field(arm11, 32, &inst, NULL, itr + 0);
261 arm11_setup_field(arm11, 1, NULL, flag, itr + 1);
262
263 arm11_add_dr_scan_vc(arm11->arm.target->tap, ARRAY_SIZE(itr), itr, state);
264 }
265
266 /**
267 * Read and save the Debug Status and Control Register (DSCR).
268 *
269 * \param arm11 Target state variable.
270 * \return Error status; arm11->dscr is updated on success.
271 *
272 * \remarks This is a stand-alone function that executes the JTAG
273 * command queue. It does not require the ARM11 debug TAP to be
274 * in any particular state.
275 */
276 int arm11_read_dscr(struct arm11_common *arm11)
277 {
278 int retval;
279
280 retval = arm11_add_debug_scan_n(arm11, 0x01, ARM11_TAP_DEFAULT);
281 if (retval != ERROR_OK)
282 return retval;
283
284 arm11_add_ir(arm11, ARM11_INTEST, ARM11_TAP_DEFAULT);
285
286 uint32_t dscr;
287 struct scan_field chain1_field;
288
289 arm11_setup_field(arm11, 32, NULL, &dscr, &chain1_field);
290
291 arm11_add_dr_scan_vc(arm11->arm.target->tap, 1, &chain1_field, TAP_DRPAUSE);
292
293 CHECK_RETVAL(jtag_execute_queue());
294
295 if (arm11->dscr != dscr)
296 JTAG_DEBUG("DSCR = %08x (OLD %08x)",
297 (unsigned) dscr,
298 (unsigned) arm11->dscr);
299
300 arm11->dscr = dscr;
301
302 return ERROR_OK;
303 }
304
305 /** Write the Debug Status and Control Register (DSCR)
306 *
307 * same as CP14 c1
308 *
309 * \param arm11 Target state variable.
310 * \param dscr DSCR content
311 *
312 * \remarks This is a stand-alone function that executes the JTAG command queue.
313 */
314 int arm11_write_dscr(struct arm11_common *arm11, uint32_t dscr)
315 {
316 int retval;
317 retval = arm11_add_debug_scan_n(arm11, 0x01, ARM11_TAP_DEFAULT);
318 if (retval != ERROR_OK)
319 return retval;
320
321 arm11_add_ir(arm11, ARM11_EXTEST, ARM11_TAP_DEFAULT);
322
323 struct scan_field chain1_field;
324
325 arm11_setup_field(arm11, 32, &dscr, NULL, &chain1_field);
326
327 arm11_add_dr_scan_vc(arm11->arm.target->tap, 1, &chain1_field, TAP_DRPAUSE);
328
329 CHECK_RETVAL(jtag_execute_queue());
330
331 JTAG_DEBUG("DSCR <= %08x (OLD %08x)",
332 (unsigned) dscr,
333 (unsigned) arm11->dscr);
334
335 arm11->dscr = dscr;
336
337 return ERROR_OK;
338 }
339
340 /** Prepare the stage for ITR/DTR operations
341 * from the arm11_run_instr... group of functions.
342 *
343 * Put arm11_run_instr_data_prepare() and arm11_run_instr_data_finish()
344 * around a block of arm11_run_instr_... calls.
345 *
346 * Select scan chain 5 to allow quick access to DTR. When scan
347 * chain 4 is needed to put in a register the ITRSel instruction
348 * shortcut is used instead of actually changing the Scan_N
349 * register.
350 *
351 * \param arm11 Target state variable.
352 *
353 */
354 int arm11_run_instr_data_prepare(struct arm11_common *arm11)
355 {
356 return arm11_add_debug_scan_n(arm11, 0x05, ARM11_TAP_DEFAULT);
357 }
358
359 /** Cleanup after ITR/DTR operations
360 * from the arm11_run_instr... group of functions
361 *
362 * Put arm11_run_instr_data_prepare() and arm11_run_instr_data_finish()
363 * around a block of arm11_run_instr_... calls.
364 *
365 * Any IDLE can lead to an instruction execution when
366 * scan chains 4 or 5 are selected and the IR holds
367 * INTEST or EXTEST. So we must disable that before
368 * any following activities lead to an IDLE.
369 *
370 * \param arm11 Target state variable.
371 *
372 */
373 int arm11_run_instr_data_finish(struct arm11_common *arm11)
374 {
375 return arm11_add_debug_scan_n(arm11, 0x00, ARM11_TAP_DEFAULT);
376 }
377
378 /**
379 * Execute one or more instructions via ITR.
380 * Caller guarantees that processor is in debug state, that DSCR_ITR_EN
381 * is set, the ITR Ready flag is set (as seen on the previous entry to
382 * TAP_DRCAPTURE), and the DSCR sticky abort flag is clear.
383 *
384 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
385 *
386 * \param arm11 Target state variable.
387 * \param opcode Pointer to sequence of ARM opcodes
388 * \param count Number of opcodes to execute
389 *
390 */
391 static
392 int arm11_run_instr_no_data(struct arm11_common *arm11,
393 uint32_t *opcode, size_t count)
394 {
395 arm11_add_ir(arm11, ARM11_ITRSEL, ARM11_TAP_DEFAULT);
396
397 while (count--) {
398 arm11_add_debug_inst(arm11, *opcode++, NULL, TAP_IDLE);
399
400 int i = 0;
401 while (1) {
402 uint8_t flag;
403
404 arm11_add_debug_inst(arm11, 0, &flag, count ? TAP_IDLE : TAP_DRPAUSE);
405
406 CHECK_RETVAL(jtag_execute_queue());
407
408 if (flag)
409 break;
410
411 int64_t then = 0;
412
413 if (i == 1000)
414 then = timeval_ms();
415 if (i >= 1000) {
416 if ((timeval_ms()-then) > 1000) {
417 LOG_WARNING(
418 "Timeout (1000ms) waiting for instructions to complete");
419 return ERROR_FAIL;
420 }
421 }
422
423 i++;
424 }
425 }
426
427 return ERROR_OK;
428 }
429
430 /** Execute one instruction via ITR
431 *
432 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
433 *
434 * \param arm11 Target state variable.
435 * \param opcode ARM opcode
436 *
437 */
438 int arm11_run_instr_no_data1(struct arm11_common *arm11, uint32_t opcode)
439 {
440 return arm11_run_instr_no_data(arm11, &opcode, 1);
441 }
442
443
444 /** Execute one instruction via ITR repeatedly while
445 * passing data to the core via DTR on each execution.
446 *
447 * Caller guarantees that processor is in debug state, that DSCR_ITR_EN
448 * is set, the ITR Ready flag is set (as seen on the previous entry to
449 * TAP_DRCAPTURE), and the DSCR sticky abort flag is clear.
450 *
451 * The executed instruction \em must read data from DTR.
452 *
453 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
454 *
455 * \param arm11 Target state variable.
456 * \param opcode ARM opcode
457 * \param data Pointer to the data words to be passed to the core
458 * \param count Number of data words and instruction repetitions
459 *
460 */
461 int arm11_run_instr_data_to_core(struct arm11_common *arm11,
462 uint32_t opcode,
463 uint32_t *data,
464 size_t count)
465 {
466 arm11_add_ir(arm11, ARM11_ITRSEL, ARM11_TAP_DEFAULT);
467
468 arm11_add_debug_inst(arm11, opcode, NULL, TAP_DRPAUSE);
469
470 arm11_add_ir(arm11, ARM11_EXTEST, ARM11_TAP_DEFAULT);
471
472 struct scan_field chain5_fields[3];
473
474 uint32_t _data;
475 uint8_t ready;
476 uint8_t n_retry;
477
478 arm11_setup_field(arm11, 32, &_data, NULL, chain5_fields + 0);
479 arm11_setup_field(arm11, 1, NULL, &ready, chain5_fields + 1);
480 arm11_setup_field(arm11, 1, NULL, &n_retry, chain5_fields + 2);
481
482 while (count--) {
483 int i = 0;
484 do {
485 _data = *data;
486
487 arm11_add_dr_scan_vc(arm11->arm.target->tap, ARRAY_SIZE(
488 chain5_fields), chain5_fields, TAP_IDLE);
489
490 CHECK_RETVAL(jtag_execute_queue());
491
492 JTAG_DEBUG("DTR ready %d n_retry %d", ready, n_retry);
493
494 int64_t then = 0;
495
496 if (i == 1000)
497 then = timeval_ms();
498 if (i >= 1000) {
499 if ((timeval_ms()-then) > 1000) {
500 LOG_WARNING(
501 "Timeout (1000ms) waiting for instructions to complete");
502 return ERROR_FAIL;
503 }
504 }
505
506 i++;
507 } while (!ready);
508
509 data++;
510 }
511
512 arm11_add_ir(arm11, ARM11_INTEST, ARM11_TAP_DEFAULT);
513
514 int i = 0;
515 do {
516 _data = 0;
517
518 arm11_add_dr_scan_vc(arm11->arm.target->tap, ARRAY_SIZE(
519 chain5_fields), chain5_fields, TAP_DRPAUSE);
520
521 CHECK_RETVAL(jtag_execute_queue());
522
523 JTAG_DEBUG("DTR _data %08x ready %d n_retry %d",
524 (unsigned) _data, ready, n_retry);
525
526 int64_t then = 0;
527
528 if (i == 1000)
529 then = timeval_ms();
530 if (i >= 1000) {
531 if ((timeval_ms()-then) > 1000) {
532 LOG_WARNING("Timeout (1000ms) waiting for instructions to complete");
533 return ERROR_FAIL;
534 }
535 }
536
537 i++;
538 } while (!ready);
539
540 return ERROR_OK;
541 }
542
543 /** JTAG path for arm11_run_instr_data_to_core_noack
544 *
545 * The repeated TAP_IDLE's do not cause a repeated execution
546 * if passed without leaving the state.
547 *
548 * Since this is more than 7 bits (adjustable via adding more
549 * TAP_IDLE's) it produces an artificial delay in the lower
550 * layer (FT2232) that is long enough to finish execution on
551 * the core but still shorter than any manually inducible delays.
552 *
553 * To disable this code, try "memwrite burst false"
554 *
555 * FIX!!! should we use multiple TAP_IDLE here or not???
556 *
557 * https://lists.berlios.de/pipermail/openocd-development/2009-July/009698.html
558 * https://lists.berlios.de/pipermail/openocd-development/2009-August/009865.html
559 */
560 static const tap_state_t arm11_move_drpause_idle_drpause_with_delay[] = {
561 TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE,
562 TAP_DRSHIFT
563 };
564
565 static int arm11_run_instr_data_to_core_noack_inner(struct jtag_tap *tap,
566 uint32_t opcode,
567 uint32_t *data,
568 size_t count)
569 {
570 struct scan_field chain5_fields[3];
571
572 chain5_fields[0].num_bits = 32;
573 chain5_fields[0].out_value = NULL; /*&Data*/
574 chain5_fields[0].in_value = NULL;
575
576 chain5_fields[1].num_bits = 1;
577 chain5_fields[1].out_value = NULL;
578 chain5_fields[1].in_value = NULL; /*&Ready*/
579
580 chain5_fields[2].num_bits = 1;
581 chain5_fields[2].out_value = NULL;
582 chain5_fields[2].in_value = NULL;
583
584 uint8_t *readies;
585 unsigned readies_num = count;
586 unsigned bytes = sizeof(*readies)*readies_num;
587
588 readies = malloc(bytes);
589 if (!readies) {
590 LOG_ERROR("Out of memory allocating %u bytes", bytes);
591 return ERROR_FAIL;
592 }
593
594 uint8_t *ready_pos = readies;
595 while (count--) {
596 chain5_fields[0].out_value = (uint8_t *)(data++);
597 chain5_fields[1].in_value = ready_pos++;
598
599 if (count > 0) {
600 jtag_add_dr_scan(tap, ARRAY_SIZE(chain5_fields), chain5_fields,
601 TAP_DRPAUSE);
602 jtag_add_pathmove(ARRAY_SIZE(arm11_move_drpause_idle_drpause_with_delay),
603 arm11_move_drpause_idle_drpause_with_delay);
604 } else
605 jtag_add_dr_scan(tap, ARRAY_SIZE(chain5_fields), chain5_fields, TAP_IDLE);
606 }
607
608 int retval = jtag_execute_queue();
609 if (retval == ERROR_OK) {
610 unsigned error_count = 0;
611
612 for (size_t i = 0; i < readies_num; i++) {
613 if (readies[i] != 1)
614 error_count++;
615 }
616
617 if (error_count > 0) {
618 LOG_ERROR("%u words out of %u not transferred",
619 error_count, readies_num);
620 retval = ERROR_FAIL;
621 }
622 }
623 free(readies);
624
625 return retval;
626 }
627
628 /** Execute one instruction via ITR repeatedly while
629 * passing data to the core via DTR on each execution.
630 *
631 * Caller guarantees that processor is in debug state, that DSCR_ITR_EN
632 * is set, the ITR Ready flag is set (as seen on the previous entry to
633 * TAP_DRCAPTURE), and the DSCR sticky abort flag is clear.
634 *
635 * No Ready check during transmission.
636 *
637 * The executed instruction \em must read data from DTR.
638 *
639 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
640 *
641 * \param arm11 Target state variable.
642 * \param opcode ARM opcode
643 * \param data Pointer to the data words to be passed to the core
644 * \param count Number of data words and instruction repetitions
645 *
646 */
647 int arm11_run_instr_data_to_core_noack(struct arm11_common *arm11,
648 uint32_t opcode,
649 uint32_t *data,
650 size_t count)
651 {
652 arm11_add_ir(arm11, ARM11_ITRSEL, ARM11_TAP_DEFAULT);
653
654 arm11_add_debug_inst(arm11, opcode, NULL, TAP_DRPAUSE);
655
656 arm11_add_ir(arm11, ARM11_EXTEST, ARM11_TAP_DEFAULT);
657
658 int retval = arm11_run_instr_data_to_core_noack_inner(arm11->arm.target->tap,
659 opcode,
660 data,
661 count);
662
663 if (retval != ERROR_OK)
664 return retval;
665
666 arm11_add_ir(arm11, ARM11_INTEST, ARM11_TAP_DEFAULT);
667
668 struct scan_field chain5_fields[3];
669
670 arm11_setup_field(arm11,
671 32,
672 NULL /*&Data*/,
673 NULL,
674 chain5_fields + 0);
675 arm11_setup_field(arm11,
676 1,
677 NULL,
678 NULL /*&Ready*/,
679 chain5_fields + 1);
680 arm11_setup_field(arm11,
681 1,
682 NULL,
683 NULL,
684 chain5_fields + 2);
685
686 uint8_t ready_flag;
687 chain5_fields[1].in_value = &ready_flag;
688
689 arm11_add_dr_scan_vc(arm11->arm.target->tap, ARRAY_SIZE(
690 chain5_fields), chain5_fields, TAP_DRPAUSE);
691
692 retval = jtag_execute_queue();
693 if (retval == ERROR_OK) {
694 if (ready_flag != 1) {
695 LOG_ERROR("last word not transferred");
696 retval = ERROR_FAIL;
697 }
698 }
699
700 return retval;
701 }
702
703
704 /** Execute an instruction via ITR while handing data into the core via DTR.
705 *
706 * The executed instruction \em must read data from DTR.
707 *
708 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
709 *
710 * \param arm11 Target state variable.
711 * \param opcode ARM opcode
712 * \param data Data word to be passed to the core via DTR
713 *
714 */
715 int arm11_run_instr_data_to_core1(struct arm11_common *arm11, uint32_t opcode, uint32_t data)
716 {
717 return arm11_run_instr_data_to_core(arm11, opcode, &data, 1);
718 }
719
720
721 /** Execute one instruction via ITR repeatedly while
722 * reading data from the core via DTR on each execution.
723 *
724 * Caller guarantees that processor is in debug state, that DSCR_ITR_EN
725 * is set, the ITR Ready flag is set (as seen on the previous entry to
726 * TAP_DRCAPTURE), and the DSCR sticky abort flag is clear.
727 *
728 * The executed instruction \em must write data to DTR.
729 *
730 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
731 *
732 * \param arm11 Target state variable.
733 * \param opcode ARM opcode
734 * \param data Pointer to an array that receives the data words from the core
735 * \param count Number of data words and instruction repetitions
736 *
737 */
738 int arm11_run_instr_data_from_core(struct arm11_common *arm11,
739 uint32_t opcode,
740 uint32_t *data,
741 size_t count)
742 {
743 arm11_add_ir(arm11, ARM11_ITRSEL, ARM11_TAP_DEFAULT);
744
745 arm11_add_debug_inst(arm11, opcode, NULL, TAP_IDLE);
746
747 arm11_add_ir(arm11, ARM11_INTEST, ARM11_TAP_DEFAULT);
748
749 struct scan_field chain5_fields[3];
750
751 uint32_t _data;
752 uint8_t ready;
753 uint8_t n_retry;
754
755 arm11_setup_field(arm11, 32, NULL, &_data, chain5_fields + 0);
756 arm11_setup_field(arm11, 1, NULL, &ready, chain5_fields + 1);
757 arm11_setup_field(arm11, 1, NULL, &n_retry, chain5_fields + 2);
758
759 while (count--) {
760 int i = 0;
761 do {
762 arm11_add_dr_scan_vc(arm11->arm.target->tap, ARRAY_SIZE(
763 chain5_fields), chain5_fields,
764 count ? TAP_IDLE : TAP_DRPAUSE);
765
766 CHECK_RETVAL(jtag_execute_queue());
767
768 JTAG_DEBUG("DTR _data %08x ready %d n_retry %d",
769 (unsigned) _data, ready, n_retry);
770
771 int64_t then = 0;
772
773 if (i == 1000)
774 then = timeval_ms();
775 if (i >= 1000) {
776 if ((timeval_ms()-then) > 1000) {
777 LOG_WARNING(
778 "Timeout (1000ms) waiting for instructions to complete");
779 return ERROR_FAIL;
780 }
781 }
782
783 i++;
784 } while (!ready);
785
786 *data++ = _data;
787 }
788
789 return ERROR_OK;
790 }
791
792 /** Execute one instruction via ITR
793 * then load r0 into DTR and read DTR from core.
794 *
795 * The first executed instruction (\p opcode) should write data to r0.
796 *
797 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
798 *
799 * \param arm11 Target state variable.
800 * \param opcode ARM opcode to write r0 with the value of interest
801 * \param data Pointer to a data word that receives the value from r0 after \p opcode was executed.
802 *
803 */
804 int arm11_run_instr_data_from_core_via_r0(struct arm11_common *arm11,
805 uint32_t opcode,
806 uint32_t *data)
807 {
808 int retval;
809 retval = arm11_run_instr_no_data1(arm11, opcode);
810 if (retval != ERROR_OK)
811 return retval;
812
813 /* MCR p14,0,R0,c0,c5,0 (move r0 -> wDTR -> local var) */
814 arm11_run_instr_data_from_core(arm11, 0xEE000E15, data, 1);
815
816 return ERROR_OK;
817 }
818
819 /** Load data into core via DTR then move it to r0 then
820 * execute one instruction via ITR
821 *
822 * The final executed instruction (\p opcode) should read data from r0.
823 *
824 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
825 *
826 * \param arm11 Target state variable.
827 * \param opcode ARM opcode to read r0 act upon it
828 * \param data Data word that will be written to r0 before \p opcode is executed
829 *
830 */
831 int arm11_run_instr_data_to_core_via_r0(struct arm11_common *arm11, uint32_t opcode, uint32_t data)
832 {
833 int retval;
834 /* MRC p14,0,r0,c0,c5,0 */
835 retval = arm11_run_instr_data_to_core1(arm11, 0xEE100E15, data);
836 if (retval != ERROR_OK)
837 return retval;
838
839 retval = arm11_run_instr_no_data1(arm11, opcode);
840 if (retval != ERROR_OK)
841 return retval;
842
843 return ERROR_OK;
844 }
845
846 /** Apply reads and writes to scan chain 7
847 *
848 * \see struct arm11_sc7_action
849 *
850 * \param arm11 Target state variable.
851 * \param actions A list of read and/or write instructions
852 * \param count Number of instructions in the list.
853 *
854 */
855 int arm11_sc7_run(struct arm11_common *arm11, struct arm11_sc7_action *actions, size_t count)
856 {
857 int retval;
858
859 retval = arm11_add_debug_scan_n(arm11, 0x07, ARM11_TAP_DEFAULT);
860 if (retval != ERROR_OK)
861 return retval;
862
863 arm11_add_ir(arm11, ARM11_EXTEST, ARM11_TAP_DEFAULT);
864
865 struct scan_field chain7_fields[3];
866
867 uint8_t n_rw;
868 uint32_t data_out;
869 uint8_t address_out;
870 uint8_t ready;
871 uint32_t data_in;
872 uint8_t address_in;
873
874 arm11_setup_field(arm11, 1, &n_rw, &ready, chain7_fields + 0);
875 arm11_setup_field(arm11, 32, &data_out, &data_in, chain7_fields + 1);
876 arm11_setup_field(arm11, 7, &address_out, &address_in, chain7_fields + 2);
877
878 for (size_t i = 0; i < count + 1; i++) {
879 if (i < count) {
880 n_rw = actions[i].write ? 1 : 0;
881 data_out = actions[i].value;
882 address_out = actions[i].address;
883 } else {
884 n_rw = 1;
885 data_out = 0;
886 address_out = 0;
887 }
888
889 /* Timeout here so we don't get stuck. */
890 int i_n = 0;
891 while (1) {
892 JTAG_DEBUG("SC7 <= c%-3d Data %08x %s",
893 (unsigned) address_out,
894 (unsigned) data_out,
895 n_rw ? "write" : "read");
896
897 arm11_add_dr_scan_vc(arm11->arm.target->tap, ARRAY_SIZE(chain7_fields),
898 chain7_fields, TAP_DRPAUSE);
899
900 CHECK_RETVAL(jtag_execute_queue());
901
902 /* 'n_rw' is 'ready' on read out */
903 if (ready)
904 break;
905
906 int64_t then = 0;
907
908 if (i_n == 1000)
909 then = timeval_ms();
910 if (i_n >= 1000) {
911 if ((timeval_ms()-then) > 1000) {
912 LOG_WARNING(
913 "Timeout (1000ms) waiting for instructions to complete");
914 return ERROR_FAIL;
915 }
916 }
917
918 i_n++;
919 }
920
921 if (!n_rw)
922 JTAG_DEBUG("SC7 => Data %08x", (unsigned) data_in);
923
924 if (i > 0) {
925 if (actions[i - 1].address != address_in)
926 LOG_WARNING("Scan chain 7 shifted out unexpected address");
927
928 if (!actions[i - 1].write)
929 actions[i - 1].value = data_in;
930 else {
931 if (actions[i - 1].value != data_in)
932 LOG_WARNING("Scan chain 7 shifted out unexpected data");
933 }
934 }
935 }
936 return ERROR_OK;
937 }
938
939 /** Clear VCR and all breakpoints and watchpoints via scan chain 7
940 *
941 * \param arm11 Target state variable.
942 *
943 */
944 int arm11_sc7_clear_vbw(struct arm11_common *arm11)
945 {
946 size_t clear_bw_size = arm11->brp + 1;
947 struct arm11_sc7_action *clear_bw = malloc(sizeof(struct arm11_sc7_action) * clear_bw_size);
948 struct arm11_sc7_action *pos = clear_bw;
949
950 for (size_t i = 0; i < clear_bw_size; i++) {
951 clear_bw[i].write = true;
952 clear_bw[i].value = 0;
953 }
954
955 for (size_t i = 0; i < arm11->brp; i++)
956 (pos++)->address = ARM11_SC7_BCR0 + i;
957
958 (pos++)->address = ARM11_SC7_VCR;
959
960 int retval;
961 retval = arm11_sc7_run(arm11, clear_bw, clear_bw_size);
962
963 free(clear_bw);
964
965 return retval;
966 }
967
968 /** Write VCR register
969 *
970 * \param arm11 Target state variable.
971 * \param value Value to be written
972 */
973 int arm11_sc7_set_vcr(struct arm11_common *arm11, uint32_t value)
974 {
975 struct arm11_sc7_action set_vcr;
976
977 set_vcr.write = true;
978 set_vcr.address = ARM11_SC7_VCR;
979 set_vcr.value = value;
980
981 return arm11_sc7_run(arm11, &set_vcr, 1);
982 }
983
984 /** Read word from address
985 *
986 * \param arm11 Target state variable.
987 * \param address Memory address to be read
988 * \param result Pointer where to store result
989 *
990 */
991 int arm11_read_memory_word(struct arm11_common *arm11, uint32_t address, uint32_t *result)
992 {
993 int retval;
994 retval = arm11_run_instr_data_prepare(arm11);
995 if (retval != ERROR_OK)
996 return retval;
997
998 /* MRC p14,0,r0,c0,c5,0 (r0 = address) */
999 CHECK_RETVAL(arm11_run_instr_data_to_core1(arm11, 0xee100e15, address));
1000
1001 /* LDC p14,c5,[R0],#4 (DTR = [r0]) */
1002 CHECK_RETVAL(arm11_run_instr_data_from_core(arm11, 0xecb05e01, result, 1));
1003
1004 return arm11_run_instr_data_finish(arm11);
1005 }
1006
1007 /************************************************************************/
1008
1009 /*
1010 * ARM11 provider for the OpenOCD implementation of the standard
1011 * architectural ARM v6/v7 "Debug Programmer's Model" (DPM).
1012 */
1013
1014 static inline struct arm11_common *dpm_to_arm11(struct arm_dpm *dpm)
1015 {
1016 return container_of(dpm, struct arm11_common, dpm);
1017 }
1018
1019 static int arm11_dpm_prepare(struct arm_dpm *dpm)
1020 {
1021 return arm11_run_instr_data_prepare(dpm_to_arm11(dpm));
1022 }
1023
1024 static int arm11_dpm_finish(struct arm_dpm *dpm)
1025 {
1026 return arm11_run_instr_data_finish(dpm_to_arm11(dpm));
1027 }
1028
1029 static int arm11_dpm_instr_write_data_dcc(struct arm_dpm *dpm,
1030 uint32_t opcode, uint32_t data)
1031 {
1032 return arm11_run_instr_data_to_core(dpm_to_arm11(dpm),
1033 opcode, &data, 1);
1034 }
1035
1036 static int arm11_dpm_instr_write_data_r0(struct arm_dpm *dpm,
1037 uint32_t opcode, uint32_t data)
1038 {
1039 return arm11_run_instr_data_to_core_via_r0(dpm_to_arm11(dpm),
1040 opcode, data);
1041 }
1042
1043 static int arm11_dpm_instr_read_data_dcc(struct arm_dpm *dpm,
1044 uint32_t opcode, uint32_t *data)
1045 {
1046 return arm11_run_instr_data_from_core(dpm_to_arm11(dpm),
1047 opcode, data, 1);
1048 }
1049
1050 static int arm11_dpm_instr_read_data_r0(struct arm_dpm *dpm,
1051 uint32_t opcode, uint32_t *data)
1052 {
1053 return arm11_run_instr_data_from_core_via_r0(dpm_to_arm11(dpm),
1054 opcode, data);
1055 }
1056
1057 /* Because arm11_sc7_run() takes a vector of actions, we batch breakpoint
1058 * and watchpoint operations instead of running them right away. Since we
1059 * pre-allocated our vector, we don't need to worry about space.
1060 */
1061 static int arm11_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
1062 uint32_t addr, uint32_t control)
1063 {
1064 struct arm11_common *arm11 = dpm_to_arm11(dpm);
1065 struct arm11_sc7_action *action;
1066
1067 action = arm11->bpwp_actions + arm11->bpwp_n;
1068
1069 /* Invariant: this bp/wp is disabled.
1070 * It also happens that the core is halted here, but for
1071 * DPM-based cores we don't actually care about that.
1072 */
1073
1074 action[0].write = action[1].write = true;
1075
1076 action[0].value = addr;
1077 action[1].value = control;
1078
1079 switch (index_t) {
1080 case 0 ... 15:
1081 action[0].address = ARM11_SC7_BVR0 + index_t;
1082 action[1].address = ARM11_SC7_BCR0 + index_t;
1083 break;
1084 case 16 ... 32:
1085 index_t -= 16;
1086 action[0].address = ARM11_SC7_WVR0 + index_t;
1087 action[1].address = ARM11_SC7_WCR0 + index_t;
1088 break;
1089 default:
1090 return ERROR_FAIL;
1091 }
1092
1093 arm11->bpwp_n += 2;
1094
1095 return ERROR_OK;
1096 }
1097
1098 static int arm11_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
1099 {
1100 struct arm11_common *arm11 = dpm_to_arm11(dpm);
1101 struct arm11_sc7_action *action;
1102
1103 action = arm11->bpwp_actions + arm11->bpwp_n;
1104
1105 action[0].write = true;
1106 action[0].value = 0;
1107
1108 switch (index_t) {
1109 case 0 ... 15:
1110 action[0].address = ARM11_SC7_BCR0 + index_t;
1111 break;
1112 case 16 ... 32:
1113 index_t -= 16;
1114 action[0].address = ARM11_SC7_WCR0 + index_t;
1115 break;
1116 default:
1117 return ERROR_FAIL;
1118 }
1119
1120 arm11->bpwp_n += 1;
1121
1122 return ERROR_OK;
1123 }
1124
1125 /** Flush any pending breakpoint and watchpoint updates. */
1126 int arm11_bpwp_flush(struct arm11_common *arm11)
1127 {
1128 int retval;
1129
1130 if (!arm11->bpwp_n)
1131 return ERROR_OK;
1132
1133 retval = arm11_sc7_run(arm11, arm11->bpwp_actions, arm11->bpwp_n);
1134 arm11->bpwp_n = 0;
1135
1136 return retval;
1137 }
1138
1139 /** Set up high-level debug module utilities */
1140 int arm11_dpm_init(struct arm11_common *arm11, uint32_t didr)
1141 {
1142 struct arm_dpm *dpm = &arm11->dpm;
1143 int retval;
1144
1145 dpm->arm = &arm11->arm;
1146
1147 dpm->didr = didr;
1148
1149 dpm->prepare = arm11_dpm_prepare;
1150 dpm->finish = arm11_dpm_finish;
1151
1152 dpm->instr_write_data_dcc = arm11_dpm_instr_write_data_dcc;
1153 dpm->instr_write_data_r0 = arm11_dpm_instr_write_data_r0;
1154
1155 dpm->instr_read_data_dcc = arm11_dpm_instr_read_data_dcc;
1156 dpm->instr_read_data_r0 = arm11_dpm_instr_read_data_r0;
1157
1158 dpm->bpwp_enable = arm11_bpwp_enable;
1159 dpm->bpwp_disable = arm11_bpwp_disable;
1160
1161 retval = arm_dpm_setup(dpm);
1162 if (retval != ERROR_OK)
1163 return retval;
1164
1165 /* alloc enough to enable all breakpoints and watchpoints at once */
1166 arm11->bpwp_actions = calloc(2 * (dpm->nbp + dpm->nwp),
1167 sizeof(*arm11->bpwp_actions));
1168 if (!arm11->bpwp_actions)
1169 return ERROR_FAIL;
1170
1171 retval = arm_dpm_initialize(dpm);
1172 if (retval != ERROR_OK)
1173 return retval;
1174
1175 return arm11_bpwp_flush(arm11);
1176 }
1177
1178 void arm11_dpm_deinit(struct arm11_common *arm11)
1179 {
1180 struct arm_dpm *dpm = &arm11->dpm;
1181
1182 free(arm11->bpwp_actions);
1183 arm_free_reg_cache(dpm->arm);
1184 free(dpm->dbp);
1185 free(dpm->dwp);
1186 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)