0b11e815d509eefb4691f38e90e6024c45713a6c
[openocd.git] / src / target / arm_adi_v5.c
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * Copyright (C) 2013 by Andreas Fritiofson *
14 * andreas.fritiofson@gmail.com *
15 * *
16 * Copyright (C) 2019-2021, Ampere Computing LLC *
17 * *
18 * This program is free software; you can redistribute it and/or modify *
19 * it under the terms of the GNU General Public License as published by *
20 * the Free Software Foundation; either version 2 of the License, or *
21 * (at your option) any later version. *
22 * *
23 * This program is distributed in the hope that it will be useful, *
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
26 * GNU General Public License for more details. *
27 * *
28 * You should have received a copy of the GNU General Public License *
29 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
30 ***************************************************************************/
31
32 /**
33 * @file
34 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
35 * debugging architecture. Compared with previous versions, this includes
36 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
37 * transport, and focuses on memory mapped resources as defined by the
38 * CoreSight architecture.
39 *
40 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
41 * basic components: a Debug Port (DP) transporting messages to and from a
42 * debugger, and an Access Port (AP) accessing resources. Three types of DP
43 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
44 * One uses only SWD for communication, and is called SW-DP. The third can
45 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
46 * is used to access memory mapped resources and is called a MEM-AP. Also a
47 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
48 *
49 * This programming interface allows DAP pipelined operations through a
50 * transaction queue. This primarily affects AP operations (such as using
51 * a MEM-AP to access memory or registers). If the current transaction has
52 * not finished by the time the next one must begin, and the ORUNDETECT bit
53 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
54 * further AP operations will fail. There are two basic methods to avoid
55 * such overrun errors. One involves polling for status instead of using
56 * transaction pipelining. The other involves adding delays to ensure the
57 * AP has enough time to complete one operation before starting the next
58 * one. (For JTAG these delays are controlled by memaccess_tck.)
59 */
60
61 /*
62 * Relevant specifications from ARM include:
63 *
64 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031E
65 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
66 *
67 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
68 * Cortex-M3(tm) TRM, ARM DDI 0337G
69 */
70
71 #ifdef HAVE_CONFIG_H
72 #include "config.h"
73 #endif
74
75 #include "jtag/interface.h"
76 #include "arm.h"
77 #include "arm_adi_v5.h"
78 #include "arm_coresight.h"
79 #include "jtag/swd.h"
80 #include "transport/transport.h"
81 #include <helper/align.h>
82 #include <helper/jep106.h>
83 #include <helper/time_support.h>
84 #include <helper/list.h>
85 #include <helper/jim-nvp.h>
86
87 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
88
89 /*
90 uint32_t tar_block_size(uint32_t address)
91 Return the largest block starting at address that does not cross a tar block size alignment boundary
92 */
93 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, target_addr_t address)
94 {
95 return tar_autoincr_block - ((tar_autoincr_block - 1) & address);
96 }
97
98 /***************************************************************************
99 * *
100 * DP and MEM-AP register access through APACC and DPACC *
101 * *
102 ***************************************************************************/
103
104 static int mem_ap_setup_csw(struct adiv5_ap *ap, uint32_t csw)
105 {
106 csw |= ap->csw_default;
107
108 if (csw != ap->csw_value) {
109 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
110 int retval = dap_queue_ap_write(ap, MEM_AP_REG_CSW, csw);
111 if (retval != ERROR_OK) {
112 ap->csw_value = 0;
113 return retval;
114 }
115 ap->csw_value = csw;
116 }
117 return ERROR_OK;
118 }
119
120 static int mem_ap_setup_tar(struct adiv5_ap *ap, target_addr_t tar)
121 {
122 if (!ap->tar_valid || tar != ap->tar_value) {
123 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
124 int retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR, (uint32_t)(tar & 0xffffffffUL));
125 if (retval == ERROR_OK && is_64bit_ap(ap)) {
126 /* See if bits 63:32 of tar is different from last setting */
127 if ((ap->tar_value >> 32) != (tar >> 32))
128 retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR64, (uint32_t)(tar >> 32));
129 }
130 if (retval != ERROR_OK) {
131 ap->tar_valid = false;
132 return retval;
133 }
134 ap->tar_value = tar;
135 ap->tar_valid = true;
136 }
137 return ERROR_OK;
138 }
139
140 static int mem_ap_read_tar(struct adiv5_ap *ap, target_addr_t *tar)
141 {
142 uint32_t lower;
143 uint32_t upper = 0;
144
145 int retval = dap_queue_ap_read(ap, MEM_AP_REG_TAR, &lower);
146 if (retval == ERROR_OK && is_64bit_ap(ap))
147 retval = dap_queue_ap_read(ap, MEM_AP_REG_TAR64, &upper);
148
149 if (retval != ERROR_OK) {
150 ap->tar_valid = false;
151 return retval;
152 }
153
154 retval = dap_run(ap->dap);
155 if (retval != ERROR_OK) {
156 ap->tar_valid = false;
157 return retval;
158 }
159
160 *tar = (((target_addr_t)upper) << 32) | (target_addr_t)lower;
161
162 ap->tar_value = *tar;
163 ap->tar_valid = true;
164 return ERROR_OK;
165 }
166
167 static uint32_t mem_ap_get_tar_increment(struct adiv5_ap *ap)
168 {
169 switch (ap->csw_value & CSW_ADDRINC_MASK) {
170 case CSW_ADDRINC_SINGLE:
171 switch (ap->csw_value & CSW_SIZE_MASK) {
172 case CSW_8BIT:
173 return 1;
174 case CSW_16BIT:
175 return 2;
176 case CSW_32BIT:
177 return 4;
178 default:
179 return 0;
180 }
181 case CSW_ADDRINC_PACKED:
182 return 4;
183 }
184 return 0;
185 }
186
187 /* mem_ap_update_tar_cache is called after an access to MEM_AP_REG_DRW
188 */
189 static void mem_ap_update_tar_cache(struct adiv5_ap *ap)
190 {
191 if (!ap->tar_valid)
192 return;
193
194 uint32_t inc = mem_ap_get_tar_increment(ap);
195 if (inc >= max_tar_block_size(ap->tar_autoincr_block, ap->tar_value))
196 ap->tar_valid = false;
197 else
198 ap->tar_value += inc;
199 }
200
201 /**
202 * Queue transactions setting up transfer parameters for the
203 * currently selected MEM-AP.
204 *
205 * Subsequent transfers using registers like MEM_AP_REG_DRW or MEM_AP_REG_BD2
206 * initiate data reads or writes using memory or peripheral addresses.
207 * If the CSW is configured for it, the TAR may be automatically
208 * incremented after each transfer.
209 *
210 * @param ap The MEM-AP.
211 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
212 * matches the cached value, the register is not changed.
213 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
214 * matches the cached address, the register is not changed.
215 *
216 * @return ERROR_OK if the transaction was properly queued, else a fault code.
217 */
218 static int mem_ap_setup_transfer(struct adiv5_ap *ap, uint32_t csw, target_addr_t tar)
219 {
220 int retval;
221 retval = mem_ap_setup_csw(ap, csw);
222 if (retval != ERROR_OK)
223 return retval;
224 retval = mem_ap_setup_tar(ap, tar);
225 if (retval != ERROR_OK)
226 return retval;
227 return ERROR_OK;
228 }
229
230 /**
231 * Asynchronous (queued) read of a word from memory or a system register.
232 *
233 * @param ap The MEM-AP to access.
234 * @param address Address of the 32-bit word to read; it must be
235 * readable by the currently selected MEM-AP.
236 * @param value points to where the word will be stored when the
237 * transaction queue is flushed (assuming no errors).
238 *
239 * @return ERROR_OK for success. Otherwise a fault code.
240 */
241 int mem_ap_read_u32(struct adiv5_ap *ap, target_addr_t address,
242 uint32_t *value)
243 {
244 int retval;
245
246 /* Use banked addressing (REG_BDx) to avoid some link traffic
247 * (updating TAR) when reading several consecutive addresses.
248 */
249 retval = mem_ap_setup_transfer(ap,
250 CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK),
251 address & 0xFFFFFFFFFFFFFFF0ull);
252 if (retval != ERROR_OK)
253 return retval;
254
255 return dap_queue_ap_read(ap, MEM_AP_REG_BD0 | (address & 0xC), value);
256 }
257
258 /**
259 * Synchronous read of a word from memory or a system register.
260 * As a side effect, this flushes any queued transactions.
261 *
262 * @param ap The MEM-AP to access.
263 * @param address Address of the 32-bit word to read; it must be
264 * readable by the currently selected MEM-AP.
265 * @param value points to where the result will be stored.
266 *
267 * @return ERROR_OK for success; *value holds the result.
268 * Otherwise a fault code.
269 */
270 int mem_ap_read_atomic_u32(struct adiv5_ap *ap, target_addr_t address,
271 uint32_t *value)
272 {
273 int retval;
274
275 retval = mem_ap_read_u32(ap, address, value);
276 if (retval != ERROR_OK)
277 return retval;
278
279 return dap_run(ap->dap);
280 }
281
282 /**
283 * Asynchronous (queued) write of a word to memory or a system register.
284 *
285 * @param ap The MEM-AP to access.
286 * @param address Address to be written; it must be writable by
287 * the currently selected MEM-AP.
288 * @param value Word that will be written to the address when transaction
289 * queue is flushed (assuming no errors).
290 *
291 * @return ERROR_OK for success. Otherwise a fault code.
292 */
293 int mem_ap_write_u32(struct adiv5_ap *ap, target_addr_t address,
294 uint32_t value)
295 {
296 int retval;
297
298 /* Use banked addressing (REG_BDx) to avoid some link traffic
299 * (updating TAR) when writing several consecutive addresses.
300 */
301 retval = mem_ap_setup_transfer(ap,
302 CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK),
303 address & 0xFFFFFFFFFFFFFFF0ull);
304 if (retval != ERROR_OK)
305 return retval;
306
307 return dap_queue_ap_write(ap, MEM_AP_REG_BD0 | (address & 0xC),
308 value);
309 }
310
311 /**
312 * Synchronous write of a word to memory or a system register.
313 * As a side effect, this flushes any queued transactions.
314 *
315 * @param ap The MEM-AP to access.
316 * @param address Address to be written; it must be writable by
317 * the currently selected MEM-AP.
318 * @param value Word that will be written.
319 *
320 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
321 */
322 int mem_ap_write_atomic_u32(struct adiv5_ap *ap, target_addr_t address,
323 uint32_t value)
324 {
325 int retval = mem_ap_write_u32(ap, address, value);
326
327 if (retval != ERROR_OK)
328 return retval;
329
330 return dap_run(ap->dap);
331 }
332
333 /**
334 * Synchronous write of a block of memory, using a specific access size.
335 *
336 * @param ap The MEM-AP to access.
337 * @param buffer The data buffer to write. No particular alignment is assumed.
338 * @param size Which access size to use, in bytes. 1, 2 or 4.
339 * @param count The number of writes to do (in size units, not bytes).
340 * @param address Address to be written; it must be writable by the currently selected MEM-AP.
341 * @param addrinc Whether the target address should be increased for each write or not. This
342 * should normally be true, except when writing to e.g. a FIFO.
343 * @return ERROR_OK on success, otherwise an error code.
344 */
345 static int mem_ap_write(struct adiv5_ap *ap, const uint8_t *buffer, uint32_t size, uint32_t count,
346 target_addr_t address, bool addrinc)
347 {
348 struct adiv5_dap *dap = ap->dap;
349 size_t nbytes = size * count;
350 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
351 uint32_t csw_size;
352 target_addr_t addr_xor;
353 int retval = ERROR_OK;
354
355 /* TI BE-32 Quirks mode:
356 * Writes on big-endian TMS570 behave very strangely. Observed behavior:
357 * size write address bytes written in order
358 * 4 TAR ^ 0 (val >> 24), (val >> 16), (val >> 8), (val)
359 * 2 TAR ^ 2 (val >> 8), (val)
360 * 1 TAR ^ 3 (val)
361 * For example, if you attempt to write a single byte to address 0, the processor
362 * will actually write a byte to address 3.
363 *
364 * To make writes of size < 4 work as expected, we xor a value with the address before
365 * setting the TAP, and we set the TAP after every transfer rather then relying on
366 * address increment. */
367
368 if (size == 4) {
369 csw_size = CSW_32BIT;
370 addr_xor = 0;
371 } else if (size == 2) {
372 csw_size = CSW_16BIT;
373 addr_xor = dap->ti_be_32_quirks ? 2 : 0;
374 } else if (size == 1) {
375 csw_size = CSW_8BIT;
376 addr_xor = dap->ti_be_32_quirks ? 3 : 0;
377 } else {
378 return ERROR_TARGET_UNALIGNED_ACCESS;
379 }
380
381 if (ap->unaligned_access_bad && (address % size != 0))
382 return ERROR_TARGET_UNALIGNED_ACCESS;
383
384 while (nbytes > 0) {
385 uint32_t this_size = size;
386
387 /* Select packed transfer if possible */
388 if (addrinc && ap->packed_transfers && nbytes >= 4
389 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
390 this_size = 4;
391 retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
392 } else {
393 retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
394 }
395
396 if (retval != ERROR_OK)
397 break;
398
399 retval = mem_ap_setup_tar(ap, address ^ addr_xor);
400 if (retval != ERROR_OK)
401 return retval;
402
403 /* How many source bytes each transfer will consume, and their location in the DRW,
404 * depends on the type of transfer and alignment. See ARM document IHI0031C. */
405 uint32_t outvalue = 0;
406 uint32_t drw_byte_idx = address;
407 if (dap->ti_be_32_quirks) {
408 switch (this_size) {
409 case 4:
410 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
411 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
412 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
413 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx & 3) ^ addr_xor);
414 break;
415 case 2:
416 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx++ & 3) ^ addr_xor);
417 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx & 3) ^ addr_xor);
418 break;
419 case 1:
420 outvalue |= (uint32_t)*buffer++ << 8 * (0 ^ (drw_byte_idx & 3) ^ addr_xor);
421 break;
422 }
423 } else {
424 switch (this_size) {
425 case 4:
426 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
427 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
428 /* fallthrough */
429 case 2:
430 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
431 /* fallthrough */
432 case 1:
433 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx & 3);
434 }
435 }
436
437 nbytes -= this_size;
438
439 retval = dap_queue_ap_write(ap, MEM_AP_REG_DRW, outvalue);
440 if (retval != ERROR_OK)
441 break;
442
443 mem_ap_update_tar_cache(ap);
444 if (addrinc)
445 address += this_size;
446 }
447
448 /* REVISIT: Might want to have a queued version of this function that does not run. */
449 if (retval == ERROR_OK)
450 retval = dap_run(dap);
451
452 if (retval != ERROR_OK) {
453 target_addr_t tar;
454 if (mem_ap_read_tar(ap, &tar) == ERROR_OK)
455 LOG_ERROR("Failed to write memory at " TARGET_ADDR_FMT, tar);
456 else
457 LOG_ERROR("Failed to write memory and, additionally, failed to find out where");
458 }
459
460 return retval;
461 }
462
463 /**
464 * Synchronous read of a block of memory, using a specific access size.
465 *
466 * @param ap The MEM-AP to access.
467 * @param buffer The data buffer to receive the data. No particular alignment is assumed.
468 * @param size Which access size to use, in bytes. 1, 2 or 4.
469 * @param count The number of reads to do (in size units, not bytes).
470 * @param adr Address to be read; it must be readable by the currently selected MEM-AP.
471 * @param addrinc Whether the target address should be increased after each read or not. This
472 * should normally be true, except when reading from e.g. a FIFO.
473 * @return ERROR_OK on success, otherwise an error code.
474 */
475 static int mem_ap_read(struct adiv5_ap *ap, uint8_t *buffer, uint32_t size, uint32_t count,
476 target_addr_t adr, bool addrinc)
477 {
478 struct adiv5_dap *dap = ap->dap;
479 size_t nbytes = size * count;
480 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
481 uint32_t csw_size;
482 target_addr_t address = adr;
483 int retval = ERROR_OK;
484
485 /* TI BE-32 Quirks mode:
486 * Reads on big-endian TMS570 behave strangely differently than writes.
487 * They read from the physical address requested, but with DRW byte-reversed.
488 * For example, a byte read from address 0 will place the result in the high bytes of DRW.
489 * Also, packed 8-bit and 16-bit transfers seem to sometimes return garbage in some bytes,
490 * so avoid them. */
491
492 if (size == 4)
493 csw_size = CSW_32BIT;
494 else if (size == 2)
495 csw_size = CSW_16BIT;
496 else if (size == 1)
497 csw_size = CSW_8BIT;
498 else
499 return ERROR_TARGET_UNALIGNED_ACCESS;
500
501 if (ap->unaligned_access_bad && (adr % size != 0))
502 return ERROR_TARGET_UNALIGNED_ACCESS;
503
504 /* Allocate buffer to hold the sequence of DRW reads that will be made. This is a significant
505 * over-allocation if packed transfers are going to be used, but determining the real need at
506 * this point would be messy. */
507 uint32_t *read_buf = calloc(count, sizeof(uint32_t));
508 /* Multiplication count * sizeof(uint32_t) may overflow, calloc() is safe */
509 uint32_t *read_ptr = read_buf;
510 if (!read_buf) {
511 LOG_ERROR("Failed to allocate read buffer");
512 return ERROR_FAIL;
513 }
514
515 /* Queue up all reads. Each read will store the entire DRW word in the read buffer. How many
516 * useful bytes it contains, and their location in the word, depends on the type of transfer
517 * and alignment. */
518 while (nbytes > 0) {
519 uint32_t this_size = size;
520
521 /* Select packed transfer if possible */
522 if (addrinc && ap->packed_transfers && nbytes >= 4
523 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
524 this_size = 4;
525 retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
526 } else {
527 retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
528 }
529 if (retval != ERROR_OK)
530 break;
531
532 retval = mem_ap_setup_tar(ap, address);
533 if (retval != ERROR_OK)
534 break;
535
536 retval = dap_queue_ap_read(ap, MEM_AP_REG_DRW, read_ptr++);
537 if (retval != ERROR_OK)
538 break;
539
540 nbytes -= this_size;
541 if (addrinc)
542 address += this_size;
543
544 mem_ap_update_tar_cache(ap);
545 }
546
547 if (retval == ERROR_OK)
548 retval = dap_run(dap);
549
550 /* Restore state */
551 address = adr;
552 nbytes = size * count;
553 read_ptr = read_buf;
554
555 /* If something failed, read TAR to find out how much data was successfully read, so we can
556 * at least give the caller what we have. */
557 if (retval != ERROR_OK) {
558 target_addr_t tar;
559 if (mem_ap_read_tar(ap, &tar) == ERROR_OK) {
560 /* TAR is incremented after failed transfer on some devices (eg Cortex-M4) */
561 LOG_ERROR("Failed to read memory at " TARGET_ADDR_FMT, tar);
562 if (nbytes > tar - address)
563 nbytes = tar - address;
564 } else {
565 LOG_ERROR("Failed to read memory and, additionally, failed to find out where");
566 nbytes = 0;
567 }
568 }
569
570 /* Replay loop to populate caller's buffer from the correct word and byte lane */
571 while (nbytes > 0) {
572 uint32_t this_size = size;
573
574 if (addrinc && ap->packed_transfers && nbytes >= 4
575 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
576 this_size = 4;
577 }
578
579 if (dap->ti_be_32_quirks) {
580 switch (this_size) {
581 case 4:
582 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
583 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
584 /* fallthrough */
585 case 2:
586 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
587 /* fallthrough */
588 case 1:
589 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
590 }
591 } else {
592 switch (this_size) {
593 case 4:
594 *buffer++ = *read_ptr >> 8 * (address++ & 3);
595 *buffer++ = *read_ptr >> 8 * (address++ & 3);
596 /* fallthrough */
597 case 2:
598 *buffer++ = *read_ptr >> 8 * (address++ & 3);
599 /* fallthrough */
600 case 1:
601 *buffer++ = *read_ptr >> 8 * (address++ & 3);
602 }
603 }
604
605 read_ptr++;
606 nbytes -= this_size;
607 }
608
609 free(read_buf);
610 return retval;
611 }
612
613 int mem_ap_read_buf(struct adiv5_ap *ap,
614 uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
615 {
616 return mem_ap_read(ap, buffer, size, count, address, true);
617 }
618
619 int mem_ap_write_buf(struct adiv5_ap *ap,
620 const uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
621 {
622 return mem_ap_write(ap, buffer, size, count, address, true);
623 }
624
625 int mem_ap_read_buf_noincr(struct adiv5_ap *ap,
626 uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
627 {
628 return mem_ap_read(ap, buffer, size, count, address, false);
629 }
630
631 int mem_ap_write_buf_noincr(struct adiv5_ap *ap,
632 const uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
633 {
634 return mem_ap_write(ap, buffer, size, count, address, false);
635 }
636
637 /*--------------------------------------------------------------------------*/
638
639
640 #define DAP_POWER_DOMAIN_TIMEOUT (10)
641
642 /*--------------------------------------------------------------------------*/
643
644 /**
645 * Invalidate cached DP select and cached TAR and CSW of all APs
646 */
647 void dap_invalidate_cache(struct adiv5_dap *dap)
648 {
649 dap->select = DP_SELECT_INVALID;
650 dap->last_read = NULL;
651
652 int i;
653 for (i = 0; i <= DP_APSEL_MAX; i++) {
654 /* force csw and tar write on the next mem-ap access */
655 dap->ap[i].tar_valid = false;
656 dap->ap[i].csw_value = 0;
657 }
658 }
659
660 /**
661 * Initialize a DAP. This sets up the power domains, prepares the DP
662 * for further use and activates overrun checking.
663 *
664 * @param dap The DAP being initialized.
665 */
666 int dap_dp_init(struct adiv5_dap *dap)
667 {
668 int retval;
669
670 LOG_DEBUG("%s", adiv5_dap_name(dap));
671
672 dap->do_reconnect = false;
673 dap_invalidate_cache(dap);
674
675 /*
676 * Early initialize dap->dp_ctrl_stat.
677 * In jtag mode only, if the following queue run (in dap_dp_poll_register)
678 * fails and sets the sticky error, it will trigger the clearing
679 * of the sticky. Without this initialization system and debug power
680 * would be disabled while clearing the sticky error bit.
681 */
682 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
683
684 /*
685 * This write operation clears the sticky error bit in jtag mode only and
686 * is ignored in swd mode. It also powers-up system and debug domains in
687 * both jtag and swd modes, if not done before.
688 */
689 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat | SSTICKYERR);
690 if (retval != ERROR_OK)
691 return retval;
692
693 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
694 if (retval != ERROR_OK)
695 return retval;
696
697 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
698 if (retval != ERROR_OK)
699 return retval;
700
701 /* Check that we have debug power domains activated */
702 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
703 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
704 CDBGPWRUPACK, CDBGPWRUPACK,
705 DAP_POWER_DOMAIN_TIMEOUT);
706 if (retval != ERROR_OK)
707 return retval;
708
709 if (!dap->ignore_syspwrupack) {
710 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
711 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
712 CSYSPWRUPACK, CSYSPWRUPACK,
713 DAP_POWER_DOMAIN_TIMEOUT);
714 if (retval != ERROR_OK)
715 return retval;
716 }
717
718 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
719 if (retval != ERROR_OK)
720 return retval;
721
722 /* With debug power on we can activate OVERRUN checking */
723 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
724 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
725 if (retval != ERROR_OK)
726 return retval;
727 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
728 if (retval != ERROR_OK)
729 return retval;
730
731 retval = dap_run(dap);
732 if (retval != ERROR_OK)
733 return retval;
734
735 return retval;
736 }
737
738 /**
739 * Initialize a DAP or do reconnect if DAP is not accessible.
740 *
741 * @param dap The DAP being initialized.
742 */
743 int dap_dp_init_or_reconnect(struct adiv5_dap *dap)
744 {
745 LOG_DEBUG("%s", adiv5_dap_name(dap));
746
747 /*
748 * Early initialize dap->dp_ctrl_stat.
749 * In jtag mode only, if the following atomic reads fail and set the
750 * sticky error, it will trigger the clearing of the sticky. Without this
751 * initialization system and debug power would be disabled while clearing
752 * the sticky error bit.
753 */
754 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
755
756 dap->do_reconnect = false;
757
758 dap_dp_read_atomic(dap, DP_CTRL_STAT, NULL);
759 if (dap->do_reconnect) {
760 /* dap connect calls dap_dp_init() after transport dependent initialization */
761 return dap->ops->connect(dap);
762 } else {
763 return dap_dp_init(dap);
764 }
765 }
766
767 /**
768 * Initialize a DAP. This sets up the power domains, prepares the DP
769 * for further use, and arranges to use AP #0 for all AP operations
770 * until dap_ap-select() changes that policy.
771 *
772 * @param ap The MEM-AP being initialized.
773 */
774 int mem_ap_init(struct adiv5_ap *ap)
775 {
776 /* check that we support packed transfers */
777 uint32_t csw, cfg;
778 int retval;
779 struct adiv5_dap *dap = ap->dap;
780
781 /* Set ap->cfg_reg before calling mem_ap_setup_transfer(). */
782 /* mem_ap_setup_transfer() needs to know if the MEM_AP supports LPAE. */
783 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &cfg);
784 if (retval != ERROR_OK)
785 return retval;
786
787 retval = dap_run(dap);
788 if (retval != ERROR_OK)
789 return retval;
790
791 ap->cfg_reg = cfg;
792 ap->tar_valid = false;
793 ap->csw_value = 0; /* force csw and tar write */
794 retval = mem_ap_setup_transfer(ap, CSW_8BIT | CSW_ADDRINC_PACKED, 0);
795 if (retval != ERROR_OK)
796 return retval;
797
798 retval = dap_queue_ap_read(ap, MEM_AP_REG_CSW, &csw);
799 if (retval != ERROR_OK)
800 return retval;
801
802 retval = dap_run(dap);
803 if (retval != ERROR_OK)
804 return retval;
805
806 if (csw & CSW_ADDRINC_PACKED)
807 ap->packed_transfers = true;
808 else
809 ap->packed_transfers = false;
810
811 /* Packed transfers on TI BE-32 processors do not work correctly in
812 * many cases. */
813 if (dap->ti_be_32_quirks)
814 ap->packed_transfers = false;
815
816 LOG_DEBUG("MEM_AP Packed Transfers: %s",
817 ap->packed_transfers ? "enabled" : "disabled");
818
819 /* The ARM ADI spec leaves implementation-defined whether unaligned
820 * memory accesses work, only work partially, or cause a sticky error.
821 * On TI BE-32 processors, reads seem to return garbage in some bytes
822 * and unaligned writes seem to cause a sticky error.
823 * TODO: it would be nice to have a way to detect whether unaligned
824 * operations are supported on other processors. */
825 ap->unaligned_access_bad = dap->ti_be_32_quirks;
826
827 LOG_DEBUG("MEM_AP CFG: large data %d, long address %d, big-endian %d",
828 !!(cfg & MEM_AP_REG_CFG_LD), !!(cfg & MEM_AP_REG_CFG_LA), !!(cfg & MEM_AP_REG_CFG_BE));
829
830 return ERROR_OK;
831 }
832
833 /**
834 * Put the debug link into SWD mode, if the target supports it.
835 * The link's initial mode may be either JTAG (for example,
836 * with SWJ-DP after reset) or SWD.
837 *
838 * Note that targets using the JTAG-DP do not support SWD, and that
839 * some targets which could otherwise support it may have been
840 * configured to disable SWD signaling
841 *
842 * @param dap The DAP used
843 * @return ERROR_OK or else a fault code.
844 */
845 int dap_to_swd(struct adiv5_dap *dap)
846 {
847 LOG_DEBUG("Enter SWD mode");
848
849 return dap_send_sequence(dap, JTAG_TO_SWD);
850 }
851
852 /**
853 * Put the debug link into JTAG mode, if the target supports it.
854 * The link's initial mode may be either SWD or JTAG.
855 *
856 * Note that targets implemented with SW-DP do not support JTAG, and
857 * that some targets which could otherwise support it may have been
858 * configured to disable JTAG signaling
859 *
860 * @param dap The DAP used
861 * @return ERROR_OK or else a fault code.
862 */
863 int dap_to_jtag(struct adiv5_dap *dap)
864 {
865 LOG_DEBUG("Enter JTAG mode");
866
867 return dap_send_sequence(dap, SWD_TO_JTAG);
868 }
869
870 /* CID interpretation -- see ARM IHI 0029E table B2-7
871 * and ARM IHI 0031E table D1-2.
872 *
873 * From 2009/11/25 commit 21378f58b604:
874 * "OptimoDE DESS" is ARM's semicustom DSPish stuff.
875 * Let's keep it as is, for the time being
876 */
877 static const char *class_description[16] = {
878 [0x0] = "Generic verification component",
879 [0x1] = "ROM table",
880 [0x2] = "Reserved",
881 [0x3] = "Reserved",
882 [0x4] = "Reserved",
883 [0x5] = "Reserved",
884 [0x6] = "Reserved",
885 [0x7] = "Reserved",
886 [0x8] = "Reserved",
887 [0x9] = "CoreSight component",
888 [0xA] = "Reserved",
889 [0xB] = "Peripheral Test Block",
890 [0xC] = "Reserved",
891 [0xD] = "OptimoDE DESS", /* see above */
892 [0xE] = "Generic IP component",
893 [0xF] = "CoreLink, PrimeCell or System component",
894 };
895
896 #define ARCH_ID(architect, archid) ( \
897 (((architect) << ARM_CS_C9_DEVARCH_ARCHITECT_SHIFT) & ARM_CS_C9_DEVARCH_ARCHITECT_MASK) | \
898 (((archid) << ARM_CS_C9_DEVARCH_ARCHID_SHIFT) & ARM_CS_C9_DEVARCH_ARCHID_MASK) \
899 )
900
901 static const struct {
902 uint32_t arch_id;
903 const char *description;
904 } class0x9_devarch[] = {
905 /* keep same unsorted order as in ARM IHI0029E */
906 { ARCH_ID(ARM_ID, 0x0A00), "RAS architecture" },
907 { ARCH_ID(ARM_ID, 0x1A01), "Instrumentation Trace Macrocell (ITM) architecture" },
908 { ARCH_ID(ARM_ID, 0x1A02), "DWT architecture" },
909 { ARCH_ID(ARM_ID, 0x1A03), "Flash Patch and Breakpoint unit (FPB) architecture" },
910 { ARCH_ID(ARM_ID, 0x2A04), "Processor debug architecture (ARMv8-M)" },
911 { ARCH_ID(ARM_ID, 0x6A05), "Processor debug architecture (ARMv8-R)" },
912 { ARCH_ID(ARM_ID, 0x0A10), "PC sample-based profiling" },
913 { ARCH_ID(ARM_ID, 0x4A13), "Embedded Trace Macrocell (ETM) architecture" },
914 { ARCH_ID(ARM_ID, 0x1A14), "Cross Trigger Interface (CTI) architecture" },
915 { ARCH_ID(ARM_ID, 0x6A15), "Processor debug architecture (v8.0-A)" },
916 { ARCH_ID(ARM_ID, 0x7A15), "Processor debug architecture (v8.1-A)" },
917 { ARCH_ID(ARM_ID, 0x8A15), "Processor debug architecture (v8.2-A)" },
918 { ARCH_ID(ARM_ID, 0x2A16), "Processor Performance Monitor (PMU) architecture" },
919 { ARCH_ID(ARM_ID, 0x0A17), "Memory Access Port v2 architecture" },
920 { ARCH_ID(ARM_ID, 0x0A27), "JTAG Access Port v2 architecture" },
921 { ARCH_ID(ARM_ID, 0x0A31), "Basic trace router" },
922 { ARCH_ID(ARM_ID, 0x0A37), "Power requestor" },
923 { ARCH_ID(ARM_ID, 0x0A47), "Unknown Access Port v2 architecture" },
924 { ARCH_ID(ARM_ID, 0x0A50), "HSSTP architecture" },
925 { ARCH_ID(ARM_ID, 0x0A63), "System Trace Macrocell (STM) architecture" },
926 { ARCH_ID(ARM_ID, 0x0A75), "CoreSight ELA architecture" },
927 { ARCH_ID(ARM_ID, 0x0AF7), "CoreSight ROM architecture" },
928 };
929
930 #define DEVARCH_ID_MASK (ARM_CS_C9_DEVARCH_ARCHITECT_MASK | ARM_CS_C9_DEVARCH_ARCHID_MASK)
931 #define DEVARCH_ROM_C_0X9 ARCH_ID(ARM_ID, 0x0AF7)
932
933 static const char *class0x9_devarch_description(uint32_t devarch)
934 {
935 if (!(devarch & ARM_CS_C9_DEVARCH_PRESENT))
936 return "not present";
937
938 for (unsigned int i = 0; i < ARRAY_SIZE(class0x9_devarch); i++)
939 if ((devarch & DEVARCH_ID_MASK) == class0x9_devarch[i].arch_id)
940 return class0x9_devarch[i].description;
941
942 return "unknown";
943 }
944
945 static const struct {
946 enum ap_type type;
947 const char *description;
948 } ap_types[] = {
949 { AP_TYPE_JTAG_AP, "JTAG-AP" },
950 { AP_TYPE_COM_AP, "COM-AP" },
951 { AP_TYPE_AHB3_AP, "MEM-AP AHB3" },
952 { AP_TYPE_APB_AP, "MEM-AP APB2 or APB3" },
953 { AP_TYPE_AXI_AP, "MEM-AP AXI3 or AXI4" },
954 { AP_TYPE_AHB5_AP, "MEM-AP AHB5" },
955 { AP_TYPE_APB4_AP, "MEM-AP APB4" },
956 { AP_TYPE_AXI5_AP, "MEM-AP AXI5" },
957 { AP_TYPE_AHB5H_AP, "MEM-AP AHB5 with enhanced HPROT" },
958 };
959
960 static const char *ap_type_to_description(enum ap_type type)
961 {
962 for (unsigned int i = 0; i < ARRAY_SIZE(ap_types); i++)
963 if (type == ap_types[i].type)
964 return ap_types[i].description;
965
966 return "Unknown";
967 }
968
969 /*
970 * This function checks the ID for each access port to find the requested Access Port type
971 */
972 int dap_find_ap(struct adiv5_dap *dap, enum ap_type type_to_find, struct adiv5_ap **ap_out)
973 {
974 int ap_num;
975
976 /* Maximum AP number is 255 since the SELECT register is 8 bits */
977 for (ap_num = 0; ap_num <= DP_APSEL_MAX; ap_num++) {
978
979 /* read the IDR register of the Access Port */
980 uint32_t id_val = 0;
981
982 int retval = dap_queue_ap_read(dap_ap(dap, ap_num), AP_REG_IDR, &id_val);
983 if (retval != ERROR_OK)
984 return retval;
985
986 retval = dap_run(dap);
987
988 /* Reading register for a non-existent AP should not cause an error,
989 * but just to be sure, try to continue searching if an error does happen.
990 */
991 if (retval == ERROR_OK && (id_val & AP_TYPE_MASK) == type_to_find) {
992 LOG_DEBUG("Found %s at AP index: %d (IDR=0x%08" PRIX32 ")",
993 ap_type_to_description(type_to_find),
994 ap_num, id_val);
995
996 *ap_out = &dap->ap[ap_num];
997 return ERROR_OK;
998 }
999 }
1000
1001 LOG_DEBUG("No %s found", ap_type_to_description(type_to_find));
1002 return ERROR_FAIL;
1003 }
1004
1005 static int dap_get_debugbase(struct adiv5_ap *ap,
1006 target_addr_t *dbgbase, uint32_t *apid)
1007 {
1008 struct adiv5_dap *dap = ap->dap;
1009 int retval;
1010 uint32_t baseptr_upper, baseptr_lower;
1011
1012 if (ap->cfg_reg == MEM_AP_REG_CFG_INVALID) {
1013 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &ap->cfg_reg);
1014 if (retval != ERROR_OK)
1015 return retval;
1016 }
1017 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE, &baseptr_lower);
1018 if (retval != ERROR_OK)
1019 return retval;
1020 retval = dap_queue_ap_read(ap, AP_REG_IDR, apid);
1021 if (retval != ERROR_OK)
1022 return retval;
1023 /* MEM_AP_REG_BASE64 is defined as 'RES0'; can be read and then ignored on 32 bits AP */
1024 if (ap->cfg_reg == MEM_AP_REG_CFG_INVALID || is_64bit_ap(ap)) {
1025 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE64, &baseptr_upper);
1026 if (retval != ERROR_OK)
1027 return retval;
1028 }
1029
1030 retval = dap_run(dap);
1031 if (retval != ERROR_OK)
1032 return retval;
1033
1034 if (!is_64bit_ap(ap))
1035 baseptr_upper = 0;
1036 *dbgbase = (((target_addr_t)baseptr_upper) << 32) | baseptr_lower;
1037
1038 return ERROR_OK;
1039 }
1040
1041 /** Holds registers and coordinates of a CoreSight component */
1042 struct cs_component_vals {
1043 struct adiv5_ap *ap;
1044 target_addr_t component_base;
1045 uint64_t pid;
1046 uint32_t cid;
1047 uint32_t devarch;
1048 uint32_t devid;
1049 uint32_t devtype_memtype;
1050 };
1051
1052 /**
1053 * Read the CoreSight registers needed during ROM Table Parsing (RTP).
1054 *
1055 * @param ap Pointer to AP containing the component.
1056 * @param component_base On MEM-AP access method, base address of the component.
1057 * @param v Pointer to the struct holding the value of registers.
1058 *
1059 * @return ERROR_OK on success, else a fault code.
1060 */
1061 static int rtp_read_cs_regs(struct adiv5_ap *ap, target_addr_t component_base,
1062 struct cs_component_vals *v)
1063 {
1064 assert(IS_ALIGNED(component_base, ARM_CS_ALIGN));
1065 assert(ap && v);
1066
1067 uint32_t cid0, cid1, cid2, cid3;
1068 uint32_t pid0, pid1, pid2, pid3, pid4;
1069 int retval = ERROR_OK;
1070
1071 v->ap = ap;
1072 v->component_base = component_base;
1073
1074 /* sort by offset to gain speed */
1075
1076 /*
1077 * Registers DEVARCH, DEVID and DEVTYPE are valid on Class 0x9 devices
1078 * only, but are at offset above 0xf00, so can be read on any device
1079 * without triggering error. Read them for eventual use on Class 0x9.
1080 */
1081 if (retval == ERROR_OK)
1082 retval = mem_ap_read_u32(ap, component_base + ARM_CS_C9_DEVARCH, &v->devarch);
1083
1084 if (retval == ERROR_OK)
1085 retval = mem_ap_read_u32(ap, component_base + ARM_CS_C9_DEVID, &v->devid);
1086
1087 /* Same address as ARM_CS_C1_MEMTYPE */
1088 if (retval == ERROR_OK)
1089 retval = mem_ap_read_u32(ap, component_base + ARM_CS_C9_DEVTYPE, &v->devtype_memtype);
1090
1091 if (retval == ERROR_OK)
1092 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR4, &pid4);
1093
1094 if (retval == ERROR_OK)
1095 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR0, &pid0);
1096 if (retval == ERROR_OK)
1097 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR1, &pid1);
1098 if (retval == ERROR_OK)
1099 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR2, &pid2);
1100 if (retval == ERROR_OK)
1101 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR3, &pid3);
1102
1103 if (retval == ERROR_OK)
1104 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR0, &cid0);
1105 if (retval == ERROR_OK)
1106 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR1, &cid1);
1107 if (retval == ERROR_OK)
1108 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR2, &cid2);
1109 if (retval == ERROR_OK)
1110 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR3, &cid3);
1111
1112 if (retval == ERROR_OK)
1113 retval = dap_run(ap->dap);
1114 if (retval != ERROR_OK) {
1115 LOG_DEBUG("Failed read CoreSight registers");
1116 return retval;
1117 }
1118
1119 v->cid = (cid3 & 0xff) << 24
1120 | (cid2 & 0xff) << 16
1121 | (cid1 & 0xff) << 8
1122 | (cid0 & 0xff);
1123 v->pid = (uint64_t)(pid4 & 0xff) << 32
1124 | (pid3 & 0xff) << 24
1125 | (pid2 & 0xff) << 16
1126 | (pid1 & 0xff) << 8
1127 | (pid0 & 0xff);
1128
1129 return ERROR_OK;
1130 }
1131
1132 /* Part number interpretations are from Cortex
1133 * core specs, the CoreSight components TRM
1134 * (ARM DDI 0314H), CoreSight System Design
1135 * Guide (ARM DGI 0012D) and ETM specs; also
1136 * from chip observation (e.g. TI SDTI).
1137 */
1138
1139 static const struct dap_part_nums {
1140 uint16_t designer_id;
1141 uint16_t part_num;
1142 const char *type;
1143 const char *full;
1144 } dap_part_nums[] = {
1145 { ARM_ID, 0x000, "Cortex-M3 SCS", "(System Control Space)", },
1146 { ARM_ID, 0x001, "Cortex-M3 ITM", "(Instrumentation Trace Module)", },
1147 { ARM_ID, 0x002, "Cortex-M3 DWT", "(Data Watchpoint and Trace)", },
1148 { ARM_ID, 0x003, "Cortex-M3 FPB", "(Flash Patch and Breakpoint)", },
1149 { ARM_ID, 0x008, "Cortex-M0 SCS", "(System Control Space)", },
1150 { ARM_ID, 0x00a, "Cortex-M0 DWT", "(Data Watchpoint and Trace)", },
1151 { ARM_ID, 0x00b, "Cortex-M0 BPU", "(Breakpoint Unit)", },
1152 { ARM_ID, 0x00c, "Cortex-M4 SCS", "(System Control Space)", },
1153 { ARM_ID, 0x00d, "CoreSight ETM11", "(Embedded Trace)", },
1154 { ARM_ID, 0x00e, "Cortex-M7 FPB", "(Flash Patch and Breakpoint)", },
1155 { ARM_ID, 0x193, "SoC-600 TSGEN", "(Timestamp Generator)", },
1156 { ARM_ID, 0x470, "Cortex-M1 ROM", "(ROM Table)", },
1157 { ARM_ID, 0x471, "Cortex-M0 ROM", "(ROM Table)", },
1158 { ARM_ID, 0x490, "Cortex-A15 GIC", "(Generic Interrupt Controller)", },
1159 { ARM_ID, 0x492, "Cortex-R52 GICD", "(Distributor)", },
1160 { ARM_ID, 0x493, "Cortex-R52 GICR", "(Redistributor)", },
1161 { ARM_ID, 0x4a1, "Cortex-A53 ROM", "(v8 Memory Map ROM Table)", },
1162 { ARM_ID, 0x4a2, "Cortex-A57 ROM", "(ROM Table)", },
1163 { ARM_ID, 0x4a3, "Cortex-A53 ROM", "(v7 Memory Map ROM Table)", },
1164 { ARM_ID, 0x4a4, "Cortex-A72 ROM", "(ROM Table)", },
1165 { ARM_ID, 0x4a9, "Cortex-A9 ROM", "(ROM Table)", },
1166 { ARM_ID, 0x4aa, "Cortex-A35 ROM", "(v8 Memory Map ROM Table)", },
1167 { ARM_ID, 0x4af, "Cortex-A15 ROM", "(ROM Table)", },
1168 { ARM_ID, 0x4b5, "Cortex-R5 ROM", "(ROM Table)", },
1169 { ARM_ID, 0x4b8, "Cortex-R52 ROM", "(ROM Table)", },
1170 { ARM_ID, 0x4c0, "Cortex-M0+ ROM", "(ROM Table)", },
1171 { ARM_ID, 0x4c3, "Cortex-M3 ROM", "(ROM Table)", },
1172 { ARM_ID, 0x4c4, "Cortex-M4 ROM", "(ROM Table)", },
1173 { ARM_ID, 0x4c7, "Cortex-M7 PPB ROM", "(Private Peripheral Bus ROM Table)", },
1174 { ARM_ID, 0x4c8, "Cortex-M7 ROM", "(ROM Table)", },
1175 { ARM_ID, 0x4e0, "Cortex-A35 ROM", "(v7 Memory Map ROM Table)", },
1176 { ARM_ID, 0x4e4, "Cortex-A76 ROM", "(ROM Table)", },
1177 { ARM_ID, 0x906, "CoreSight CTI", "(Cross Trigger)", },
1178 { ARM_ID, 0x907, "CoreSight ETB", "(Trace Buffer)", },
1179 { ARM_ID, 0x908, "CoreSight CSTF", "(Trace Funnel)", },
1180 { ARM_ID, 0x909, "CoreSight ATBR", "(Advanced Trace Bus Replicator)", },
1181 { ARM_ID, 0x910, "CoreSight ETM9", "(Embedded Trace)", },
1182 { ARM_ID, 0x912, "CoreSight TPIU", "(Trace Port Interface Unit)", },
1183 { ARM_ID, 0x913, "CoreSight ITM", "(Instrumentation Trace Macrocell)", },
1184 { ARM_ID, 0x914, "CoreSight SWO", "(Single Wire Output)", },
1185 { ARM_ID, 0x917, "CoreSight HTM", "(AHB Trace Macrocell)", },
1186 { ARM_ID, 0x920, "CoreSight ETM11", "(Embedded Trace)", },
1187 { ARM_ID, 0x921, "Cortex-A8 ETM", "(Embedded Trace)", },
1188 { ARM_ID, 0x922, "Cortex-A8 CTI", "(Cross Trigger)", },
1189 { ARM_ID, 0x923, "Cortex-M3 TPIU", "(Trace Port Interface Unit)", },
1190 { ARM_ID, 0x924, "Cortex-M3 ETM", "(Embedded Trace)", },
1191 { ARM_ID, 0x925, "Cortex-M4 ETM", "(Embedded Trace)", },
1192 { ARM_ID, 0x930, "Cortex-R4 ETM", "(Embedded Trace)", },
1193 { ARM_ID, 0x931, "Cortex-R5 ETM", "(Embedded Trace)", },
1194 { ARM_ID, 0x932, "CoreSight MTB-M0+", "(Micro Trace Buffer)", },
1195 { ARM_ID, 0x941, "CoreSight TPIU-Lite", "(Trace Port Interface Unit)", },
1196 { ARM_ID, 0x950, "Cortex-A9 PTM", "(Program Trace Macrocell)", },
1197 { ARM_ID, 0x955, "Cortex-A5 ETM", "(Embedded Trace)", },
1198 { ARM_ID, 0x95a, "Cortex-A72 ETM", "(Embedded Trace)", },
1199 { ARM_ID, 0x95b, "Cortex-A17 PTM", "(Program Trace Macrocell)", },
1200 { ARM_ID, 0x95d, "Cortex-A53 ETM", "(Embedded Trace)", },
1201 { ARM_ID, 0x95e, "Cortex-A57 ETM", "(Embedded Trace)", },
1202 { ARM_ID, 0x95f, "Cortex-A15 PTM", "(Program Trace Macrocell)", },
1203 { ARM_ID, 0x961, "CoreSight TMC", "(Trace Memory Controller)", },
1204 { ARM_ID, 0x962, "CoreSight STM", "(System Trace Macrocell)", },
1205 { ARM_ID, 0x975, "Cortex-M7 ETM", "(Embedded Trace)", },
1206 { ARM_ID, 0x9a0, "CoreSight PMU", "(Performance Monitoring Unit)", },
1207 { ARM_ID, 0x9a1, "Cortex-M4 TPIU", "(Trace Port Interface Unit)", },
1208 { ARM_ID, 0x9a4, "CoreSight GPR", "(Granular Power Requester)", },
1209 { ARM_ID, 0x9a5, "Cortex-A5 PMU", "(Performance Monitor Unit)", },
1210 { ARM_ID, 0x9a7, "Cortex-A7 PMU", "(Performance Monitor Unit)", },
1211 { ARM_ID, 0x9a8, "Cortex-A53 CTI", "(Cross Trigger)", },
1212 { ARM_ID, 0x9a9, "Cortex-M7 TPIU", "(Trace Port Interface Unit)", },
1213 { ARM_ID, 0x9ae, "Cortex-A17 PMU", "(Performance Monitor Unit)", },
1214 { ARM_ID, 0x9af, "Cortex-A15 PMU", "(Performance Monitor Unit)", },
1215 { ARM_ID, 0x9b6, "Cortex-R52 PMU/CTI/ETM", "(Performance Monitor Unit/Cross Trigger/ETM)", },
1216 { ARM_ID, 0x9b7, "Cortex-R7 PMU", "(Performance Monitor Unit)", },
1217 { ARM_ID, 0x9d3, "Cortex-A53 PMU", "(Performance Monitor Unit)", },
1218 { ARM_ID, 0x9d7, "Cortex-A57 PMU", "(Performance Monitor Unit)", },
1219 { ARM_ID, 0x9d8, "Cortex-A72 PMU", "(Performance Monitor Unit)", },
1220 { ARM_ID, 0x9da, "Cortex-A35 PMU/CTI/ETM", "(Performance Monitor Unit/Cross Trigger/ETM)", },
1221 { ARM_ID, 0x9e2, "SoC-600 APB-AP", "(APB4 Memory Access Port)", },
1222 { ARM_ID, 0x9e3, "SoC-600 AHB-AP", "(AHB5 Memory Access Port)", },
1223 { ARM_ID, 0x9e4, "SoC-600 AXI-AP", "(AXI Memory Access Port)", },
1224 { ARM_ID, 0x9e5, "SoC-600 APv1 Adapter", "(Access Port v1 Adapter)", },
1225 { ARM_ID, 0x9e6, "SoC-600 JTAG-AP", "(JTAG Access Port)", },
1226 { ARM_ID, 0x9e7, "SoC-600 TPIU", "(Trace Port Interface Unit)", },
1227 { ARM_ID, 0x9e8, "SoC-600 TMC ETR/ETS", "(Embedded Trace Router/Streamer)", },
1228 { ARM_ID, 0x9e9, "SoC-600 TMC ETB", "(Embedded Trace Buffer)", },
1229 { ARM_ID, 0x9ea, "SoC-600 TMC ETF", "(Embedded Trace FIFO)", },
1230 { ARM_ID, 0x9eb, "SoC-600 ATB Funnel", "(Trace Funnel)", },
1231 { ARM_ID, 0x9ec, "SoC-600 ATB Replicator", "(Trace Replicator)", },
1232 { ARM_ID, 0x9ed, "SoC-600 CTI", "(Cross Trigger)", },
1233 { ARM_ID, 0x9ee, "SoC-600 CATU", "(Address Translation Unit)", },
1234 { ARM_ID, 0xc05, "Cortex-A5 Debug", "(Debug Unit)", },
1235 { ARM_ID, 0xc07, "Cortex-A7 Debug", "(Debug Unit)", },
1236 { ARM_ID, 0xc08, "Cortex-A8 Debug", "(Debug Unit)", },
1237 { ARM_ID, 0xc09, "Cortex-A9 Debug", "(Debug Unit)", },
1238 { ARM_ID, 0xc0e, "Cortex-A17 Debug", "(Debug Unit)", },
1239 { ARM_ID, 0xc0f, "Cortex-A15 Debug", "(Debug Unit)", },
1240 { ARM_ID, 0xc14, "Cortex-R4 Debug", "(Debug Unit)", },
1241 { ARM_ID, 0xc15, "Cortex-R5 Debug", "(Debug Unit)", },
1242 { ARM_ID, 0xc17, "Cortex-R7 Debug", "(Debug Unit)", },
1243 { ARM_ID, 0xd03, "Cortex-A53 Debug", "(Debug Unit)", },
1244 { ARM_ID, 0xd04, "Cortex-A35 Debug", "(Debug Unit)", },
1245 { ARM_ID, 0xd07, "Cortex-A57 Debug", "(Debug Unit)", },
1246 { ARM_ID, 0xd08, "Cortex-A72 Debug", "(Debug Unit)", },
1247 { ARM_ID, 0xd0b, "Cortex-A76 Debug", "(Debug Unit)", },
1248 { ARM_ID, 0xd0c, "Neoverse N1", "(Debug Unit)", },
1249 { ARM_ID, 0xd13, "Cortex-R52 Debug", "(Debug Unit)", },
1250 { ARM_ID, 0xd49, "Neoverse N2", "(Debug Unit)", },
1251 { 0x017, 0x120, "TI SDTI", "(System Debug Trace Interface)", }, /* from OMAP3 memmap */
1252 { 0x017, 0x343, "TI DAPCTL", "", }, /* from OMAP3 memmap */
1253 { 0x017, 0x9af, "MSP432 ROM", "(ROM Table)" },
1254 { 0x01f, 0xcd0, "Atmel CPU with DSU", "(CPU)" },
1255 { 0x041, 0x1db, "XMC4500 ROM", "(ROM Table)" },
1256 { 0x041, 0x1df, "XMC4700/4800 ROM", "(ROM Table)" },
1257 { 0x041, 0x1ed, "XMC1000 ROM", "(ROM Table)" },
1258 { 0x065, 0x000, "SHARC+/Blackfin+", "", },
1259 { 0x070, 0x440, "Qualcomm QDSS Component v1", "(Qualcomm Designed CoreSight Component v1)", },
1260 { 0x0bf, 0x100, "Brahma-B53 Debug", "(Debug Unit)", },
1261 { 0x0bf, 0x9d3, "Brahma-B53 PMU", "(Performance Monitor Unit)", },
1262 { 0x0bf, 0x4a1, "Brahma-B53 ROM", "(ROM Table)", },
1263 { 0x0bf, 0x721, "Brahma-B53 ROM", "(ROM Table)", },
1264 { 0x1eb, 0x181, "Tegra 186 ROM", "(ROM Table)", },
1265 { 0x1eb, 0x202, "Denver ETM", "(Denver Embedded Trace)", },
1266 { 0x1eb, 0x211, "Tegra 210 ROM", "(ROM Table)", },
1267 { 0x1eb, 0x302, "Denver Debug", "(Debug Unit)", },
1268 { 0x1eb, 0x402, "Denver PMU", "(Performance Monitor Unit)", },
1269 };
1270
1271 static const struct dap_part_nums *pidr_to_part_num(unsigned int designer_id, unsigned int part_num)
1272 {
1273 static const struct dap_part_nums unknown = {
1274 .type = "Unrecognized",
1275 .full = "",
1276 };
1277
1278 for (unsigned int i = 0; i < ARRAY_SIZE(dap_part_nums); i++)
1279 if (dap_part_nums[i].designer_id == designer_id && dap_part_nums[i].part_num == part_num)
1280 return &dap_part_nums[i];
1281
1282 return &unknown;
1283 }
1284
1285 static int dap_devtype_display(struct command_invocation *cmd, uint32_t devtype)
1286 {
1287 const char *major = "Reserved", *subtype = "Reserved";
1288 const unsigned int minor = (devtype & ARM_CS_C9_DEVTYPE_SUB_MASK) >> ARM_CS_C9_DEVTYPE_SUB_SHIFT;
1289 const unsigned int devtype_major = (devtype & ARM_CS_C9_DEVTYPE_MAJOR_MASK) >> ARM_CS_C9_DEVTYPE_MAJOR_SHIFT;
1290 switch (devtype_major) {
1291 case 0:
1292 major = "Miscellaneous";
1293 switch (minor) {
1294 case 0:
1295 subtype = "other";
1296 break;
1297 case 4:
1298 subtype = "Validation component";
1299 break;
1300 }
1301 break;
1302 case 1:
1303 major = "Trace Sink";
1304 switch (minor) {
1305 case 0:
1306 subtype = "other";
1307 break;
1308 case 1:
1309 subtype = "Port";
1310 break;
1311 case 2:
1312 subtype = "Buffer";
1313 break;
1314 case 3:
1315 subtype = "Router";
1316 break;
1317 }
1318 break;
1319 case 2:
1320 major = "Trace Link";
1321 switch (minor) {
1322 case 0:
1323 subtype = "other";
1324 break;
1325 case 1:
1326 subtype = "Funnel, router";
1327 break;
1328 case 2:
1329 subtype = "Filter";
1330 break;
1331 case 3:
1332 subtype = "FIFO, buffer";
1333 break;
1334 }
1335 break;
1336 case 3:
1337 major = "Trace Source";
1338 switch (minor) {
1339 case 0:
1340 subtype = "other";
1341 break;
1342 case 1:
1343 subtype = "Processor";
1344 break;
1345 case 2:
1346 subtype = "DSP";
1347 break;
1348 case 3:
1349 subtype = "Engine/Coprocessor";
1350 break;
1351 case 4:
1352 subtype = "Bus";
1353 break;
1354 case 6:
1355 subtype = "Software";
1356 break;
1357 }
1358 break;
1359 case 4:
1360 major = "Debug Control";
1361 switch (minor) {
1362 case 0:
1363 subtype = "other";
1364 break;
1365 case 1:
1366 subtype = "Trigger Matrix";
1367 break;
1368 case 2:
1369 subtype = "Debug Auth";
1370 break;
1371 case 3:
1372 subtype = "Power Requestor";
1373 break;
1374 }
1375 break;
1376 case 5:
1377 major = "Debug Logic";
1378 switch (minor) {
1379 case 0:
1380 subtype = "other";
1381 break;
1382 case 1:
1383 subtype = "Processor";
1384 break;
1385 case 2:
1386 subtype = "DSP";
1387 break;
1388 case 3:
1389 subtype = "Engine/Coprocessor";
1390 break;
1391 case 4:
1392 subtype = "Bus";
1393 break;
1394 case 5:
1395 subtype = "Memory";
1396 break;
1397 }
1398 break;
1399 case 6:
1400 major = "Performance Monitor";
1401 switch (minor) {
1402 case 0:
1403 subtype = "other";
1404 break;
1405 case 1:
1406 subtype = "Processor";
1407 break;
1408 case 2:
1409 subtype = "DSP";
1410 break;
1411 case 3:
1412 subtype = "Engine/Coprocessor";
1413 break;
1414 case 4:
1415 subtype = "Bus";
1416 break;
1417 case 5:
1418 subtype = "Memory";
1419 break;
1420 }
1421 break;
1422 }
1423 command_print(cmd, "\t\tType is 0x%02x, %s, %s",
1424 devtype & ARM_CS_C9_DEVTYPE_MASK,
1425 major, subtype);
1426 return ERROR_OK;
1427 }
1428
1429 /**
1430 * Actions/operations to be executed while parsing ROM tables.
1431 */
1432 struct rtp_ops {
1433 /**
1434 * Executed at the start of a new MEM-AP, typically to print the MEM-AP header.
1435 * @param retval Error encountered while reading AP.
1436 * @param ap Pointer to AP.
1437 * @param dbgbase Value of MEM-AP Debug Base Address register.
1438 * @param apid Value of MEM-AP IDR Identification Register.
1439 * @param priv Pointer to private data.
1440 * @return ERROR_OK on success, else a fault code.
1441 */
1442 int (*mem_ap_header)(int retval, struct adiv5_ap *ap, uint64_t dbgbase,
1443 uint32_t apid, void *priv);
1444 /**
1445 * Executed when a CoreSight component is parsed, typically to print
1446 * information on the component.
1447 * @param retval Error encountered while reading component's registers.
1448 * @param v Pointer to a container of the component's registers.
1449 * @param depth The current depth level of ROM table.
1450 * @param priv Pointer to private data.
1451 * @return ERROR_OK on success, else a fault code.
1452 */
1453 int (*cs_component)(int retval, struct cs_component_vals *v, int depth, void *priv);
1454 /**
1455 * Executed for each entry of a ROM table, typically to print the entry
1456 * and information about validity or end-of-table mark.
1457 * @param retval Error encountered while reading the ROM table entry.
1458 * @param depth The current depth level of ROM table.
1459 * @param offset The offset of the entry in the ROM table.
1460 * @param romentry The value of the ROM table entry.
1461 * @param priv Pointer to private data.
1462 * @return ERROR_OK on success, else a fault code.
1463 */
1464 int (*rom_table_entry)(int retval, int depth, unsigned int offset, uint64_t romentry,
1465 void *priv);
1466 /**
1467 * Private data
1468 */
1469 void *priv;
1470 };
1471
1472 /**
1473 * Wrapper around struct rtp_ops::mem_ap_header.
1474 * Input parameter @a retval is propagated.
1475 */
1476 static int rtp_ops_mem_ap_header(const struct rtp_ops *ops,
1477 int retval, struct adiv5_ap *ap, uint64_t dbgbase, uint32_t apid)
1478 {
1479 if (!ops->mem_ap_header)
1480 return retval;
1481
1482 int retval1 = ops->mem_ap_header(retval, ap, dbgbase, apid, ops->priv);
1483 if (retval != ERROR_OK)
1484 return retval;
1485 return retval1;
1486 }
1487
1488 /**
1489 * Wrapper around struct rtp_ops::cs_component.
1490 * Input parameter @a retval is propagated.
1491 */
1492 static int rtp_ops_cs_component(const struct rtp_ops *ops,
1493 int retval, struct cs_component_vals *v, int depth)
1494 {
1495 if (!ops->cs_component)
1496 return retval;
1497
1498 int retval1 = ops->cs_component(retval, v, depth, ops->priv);
1499 if (retval != ERROR_OK)
1500 return retval;
1501 return retval1;
1502 }
1503
1504 /**
1505 * Wrapper around struct rtp_ops::rom_table_entry.
1506 * Input parameter @a retval is propagated.
1507 */
1508 static int rtp_ops_rom_table_entry(const struct rtp_ops *ops,
1509 int retval, int depth, unsigned int offset, uint64_t romentry)
1510 {
1511 if (!ops->rom_table_entry)
1512 return retval;
1513
1514 int retval1 = ops->rom_table_entry(retval, depth, offset, romentry, ops->priv);
1515 if (retval != ERROR_OK)
1516 return retval;
1517 return retval1;
1518 }
1519
1520 /* Broken ROM tables can have circular references. Stop after a while */
1521 #define ROM_TABLE_MAX_DEPTH (16)
1522
1523 /**
1524 * Value used only during lookup of a CoreSight component in ROM table.
1525 * Return CORESIGHT_COMPONENT_FOUND when component is found.
1526 * Return ERROR_OK when component is not found yet.
1527 * Return any other ERROR_* in case of error.
1528 */
1529 #define CORESIGHT_COMPONENT_FOUND (1)
1530
1531 static int rtp_cs_component(const struct rtp_ops *ops,
1532 struct adiv5_ap *ap, target_addr_t dbgbase, int depth);
1533
1534 static int rtp_rom_loop(const struct rtp_ops *ops,
1535 struct adiv5_ap *ap, target_addr_t base_address, int depth,
1536 unsigned int width, unsigned int max_entries)
1537 {
1538 assert(IS_ALIGNED(base_address, ARM_CS_ALIGN));
1539
1540 unsigned int offset = 0;
1541 while (max_entries--) {
1542 uint64_t romentry;
1543 uint32_t romentry_low, romentry_high;
1544 target_addr_t component_base;
1545 unsigned int saved_offset = offset;
1546
1547 int retval = mem_ap_read_u32(ap, base_address + offset, &romentry_low);
1548 offset += 4;
1549 if (retval == ERROR_OK && width == 64) {
1550 retval = mem_ap_read_u32(ap, base_address + offset, &romentry_high);
1551 offset += 4;
1552 }
1553 if (retval == ERROR_OK)
1554 retval = dap_run(ap->dap);
1555 if (retval != ERROR_OK) {
1556 LOG_DEBUG("Failed read ROM table entry");
1557 return retval;
1558 }
1559
1560 if (width == 64) {
1561 romentry = (((uint64_t)romentry_high) << 32) | romentry_low;
1562 component_base = base_address +
1563 ((((uint64_t)romentry_high) << 32) | (romentry_low & ARM_CS_ROMENTRY_OFFSET_MASK));
1564 } else {
1565 romentry = romentry_low;
1566 /* "romentry" is signed */
1567 component_base = base_address + (int32_t)(romentry_low & ARM_CS_ROMENTRY_OFFSET_MASK);
1568 if (!is_64bit_ap(ap))
1569 component_base = (uint32_t)component_base;
1570 }
1571 retval = rtp_ops_rom_table_entry(ops, retval, depth, saved_offset, romentry);
1572 if (retval != ERROR_OK)
1573 return retval;
1574
1575 if (romentry == 0) {
1576 /* End of ROM table */
1577 break;
1578 }
1579
1580 if (!(romentry & ARM_CS_ROMENTRY_PRESENT))
1581 continue;
1582
1583 /* Recurse */
1584 retval = rtp_cs_component(ops, ap, component_base, depth + 1);
1585 if (retval == CORESIGHT_COMPONENT_FOUND)
1586 return CORESIGHT_COMPONENT_FOUND;
1587 if (retval != ERROR_OK) {
1588 /* TODO: do we need to send an ABORT before continuing? */
1589 LOG_DEBUG("Ignore error parsing CoreSight component");
1590 continue;
1591 }
1592 }
1593
1594 return ERROR_OK;
1595 }
1596
1597 static int rtp_cs_component(const struct rtp_ops *ops,
1598 struct adiv5_ap *ap, target_addr_t base_address, int depth)
1599 {
1600 struct cs_component_vals v;
1601 int retval;
1602
1603 assert(IS_ALIGNED(base_address, ARM_CS_ALIGN));
1604
1605 if (depth > ROM_TABLE_MAX_DEPTH)
1606 retval = ERROR_FAIL;
1607 else
1608 retval = rtp_read_cs_regs(ap, base_address, &v);
1609
1610 retval = rtp_ops_cs_component(ops, retval, &v, depth);
1611 if (retval == CORESIGHT_COMPONENT_FOUND)
1612 return CORESIGHT_COMPONENT_FOUND;
1613 if (retval != ERROR_OK)
1614 return ERROR_OK; /* Don't abort recursion */
1615
1616 if (!is_valid_arm_cs_cidr(v.cid))
1617 return ERROR_OK; /* Don't abort recursion */
1618
1619 const unsigned int class = ARM_CS_CIDR_CLASS(v.cid);
1620
1621 if (class == ARM_CS_CLASS_0X1_ROM_TABLE)
1622 return rtp_rom_loop(ops, ap, base_address, depth, 32, 960);
1623
1624 if (class == ARM_CS_CLASS_0X9_CS_COMPONENT) {
1625 if ((v.devarch & ARM_CS_C9_DEVARCH_PRESENT) == 0)
1626 return ERROR_OK;
1627
1628 /* quit if not ROM table */
1629 if ((v.devarch & DEVARCH_ID_MASK) != DEVARCH_ROM_C_0X9)
1630 return ERROR_OK;
1631
1632 if ((v.devid & ARM_CS_C9_DEVID_FORMAT_MASK) == ARM_CS_C9_DEVID_FORMAT_64BIT)
1633 return rtp_rom_loop(ops, ap, base_address, depth, 64, 256);
1634 else
1635 return rtp_rom_loop(ops, ap, base_address, depth, 32, 512);
1636 }
1637
1638 /* Class other than 0x1 and 0x9 */
1639 return ERROR_OK;
1640 }
1641
1642 static int rtp_ap(const struct rtp_ops *ops, struct adiv5_ap *ap)
1643 {
1644 int retval;
1645 uint32_t apid;
1646 target_addr_t dbgbase, invalid_entry;
1647
1648 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1649 retval = dap_get_debugbase(ap, &dbgbase, &apid);
1650 if (retval != ERROR_OK)
1651 return retval;
1652 retval = rtp_ops_mem_ap_header(ops, retval, ap, dbgbase, apid);
1653 if (retval != ERROR_OK)
1654 return retval;
1655
1656 if (apid == 0)
1657 return ERROR_FAIL;
1658
1659 /* NOTE: a MEM-AP may have a single CoreSight component that's
1660 * not a ROM table ... or have no such components at all.
1661 */
1662 const unsigned int class = (apid & AP_REG_IDR_CLASS_MASK) >> AP_REG_IDR_CLASS_SHIFT;
1663
1664 if (class == AP_REG_IDR_CLASS_MEM_AP) {
1665 if (is_64bit_ap(ap))
1666 invalid_entry = 0xFFFFFFFFFFFFFFFFull;
1667 else
1668 invalid_entry = 0xFFFFFFFFul;
1669
1670 if (dbgbase != invalid_entry && (dbgbase & 0x3) != 0x2) {
1671 retval = rtp_cs_component(ops, ap, dbgbase & 0xFFFFFFFFFFFFF000ull, 0);
1672 if (retval == CORESIGHT_COMPONENT_FOUND)
1673 return CORESIGHT_COMPONENT_FOUND;
1674 }
1675 }
1676
1677 return ERROR_OK;
1678 }
1679
1680 /* Actions for command "dap info" */
1681
1682 static int dap_info_mem_ap_header(int retval, struct adiv5_ap *ap,
1683 target_addr_t dbgbase, uint32_t apid, void *priv)
1684 {
1685 struct command_invocation *cmd = priv;
1686 target_addr_t invalid_entry;
1687
1688 if (retval != ERROR_OK) {
1689 command_print(cmd, "\t\tCan't read MEM-AP, the corresponding core might be turned off");
1690 return retval;
1691 }
1692
1693 command_print(cmd, "AP ID register 0x%8.8" PRIx32, apid);
1694 if (apid == 0) {
1695 command_print(cmd, "No AP found at this ap 0x%x", ap->ap_num);
1696 return ERROR_FAIL;
1697 }
1698
1699 command_print(cmd, "\tType is %s", ap_type_to_description(apid & AP_TYPE_MASK));
1700
1701 /* NOTE: a MEM-AP may have a single CoreSight component that's
1702 * not a ROM table ... or have no such components at all.
1703 */
1704 const unsigned int class = (apid & AP_REG_IDR_CLASS_MASK) >> AP_REG_IDR_CLASS_SHIFT;
1705
1706 if (class == AP_REG_IDR_CLASS_MEM_AP) {
1707 if (is_64bit_ap(ap))
1708 invalid_entry = 0xFFFFFFFFFFFFFFFFull;
1709 else
1710 invalid_entry = 0xFFFFFFFFul;
1711
1712 command_print(cmd, "MEM-AP BASE " TARGET_ADDR_FMT, dbgbase);
1713
1714 if (dbgbase == invalid_entry || (dbgbase & 0x3) == 0x2) {
1715 command_print(cmd, "\tNo ROM table present");
1716 } else {
1717 if (dbgbase & 0x01)
1718 command_print(cmd, "\tValid ROM table present");
1719 else
1720 command_print(cmd, "\tROM table in legacy format");
1721 }
1722 }
1723
1724 return ERROR_OK;
1725 }
1726
1727 static int dap_info_cs_component(int retval, struct cs_component_vals *v, int depth, void *priv)
1728 {
1729 struct command_invocation *cmd = priv;
1730
1731 if (depth > ROM_TABLE_MAX_DEPTH) {
1732 command_print(cmd, "\tTables too deep");
1733 return ERROR_FAIL;
1734 }
1735
1736 command_print(cmd, "\t\tComponent base address " TARGET_ADDR_FMT, v->component_base);
1737
1738 if (retval != ERROR_OK) {
1739 command_print(cmd, "\t\tCan't read component, the corresponding core might be turned off");
1740 return retval;
1741 }
1742
1743 if (!is_valid_arm_cs_cidr(v->cid)) {
1744 command_print(cmd, "\t\tInvalid CID 0x%08" PRIx32, v->cid);
1745 return ERROR_OK; /* Don't abort recursion */
1746 }
1747
1748 /* component may take multiple 4K pages */
1749 uint32_t size = ARM_CS_PIDR_SIZE(v->pid);
1750 if (size > 0)
1751 command_print(cmd, "\t\tStart address " TARGET_ADDR_FMT, v->component_base - 0x1000 * size);
1752
1753 command_print(cmd, "\t\tPeripheral ID 0x%010" PRIx64, v->pid);
1754
1755 const unsigned int part_num = ARM_CS_PIDR_PART(v->pid);
1756 unsigned int designer_id = ARM_CS_PIDR_DESIGNER(v->pid);
1757
1758 if (v->pid & ARM_CS_PIDR_JEDEC) {
1759 /* JEP106 code */
1760 command_print(cmd, "\t\tDesigner is 0x%03x, %s",
1761 designer_id, jep106_manufacturer(designer_id));
1762 } else {
1763 /* Legacy ASCII ID, clear invalid bits */
1764 designer_id &= 0x7f;
1765 command_print(cmd, "\t\tDesigner ASCII code 0x%02x, %s",
1766 designer_id, designer_id == 0x41 ? "ARM" : "<unknown>");
1767 }
1768
1769 const struct dap_part_nums *partnum = pidr_to_part_num(designer_id, part_num);
1770 command_print(cmd, "\t\tPart is 0x%03x, %s %s", part_num, partnum->type, partnum->full);
1771
1772 const unsigned int class = ARM_CS_CIDR_CLASS(v->cid);
1773 command_print(cmd, "\t\tComponent class is 0x%x, %s", class, class_description[class]);
1774
1775 if (class == ARM_CS_CLASS_0X1_ROM_TABLE) {
1776 if (v->devtype_memtype & ARM_CS_C1_MEMTYPE_SYSMEM_MASK)
1777 command_print(cmd, "\t\tMEMTYPE system memory present on bus");
1778 else
1779 command_print(cmd, "\t\tMEMTYPE system memory not present: dedicated debug bus");
1780 return ERROR_OK;
1781 }
1782
1783 if (class == ARM_CS_CLASS_0X9_CS_COMPONENT) {
1784 dap_devtype_display(cmd, v->devtype_memtype);
1785
1786 /* REVISIT also show ARM_CS_C9_DEVID */
1787
1788 if ((v->devarch & ARM_CS_C9_DEVARCH_PRESENT) == 0)
1789 return ERROR_OK;
1790
1791 unsigned int architect_id = ARM_CS_C9_DEVARCH_ARCHITECT(v->devarch);
1792 unsigned int revision = ARM_CS_C9_DEVARCH_REVISION(v->devarch);
1793 command_print(cmd, "\t\tDev Arch is 0x%08" PRIx32 ", %s \"%s\" rev.%u", v->devarch,
1794 jep106_manufacturer(architect_id), class0x9_devarch_description(v->devarch),
1795 revision);
1796
1797 if ((v->devarch & DEVARCH_ID_MASK) == DEVARCH_ROM_C_0X9) {
1798 command_print(cmd, "\t\tType is ROM table");
1799
1800 if (v->devid & ARM_CS_C9_DEVID_SYSMEM_MASK)
1801 command_print(cmd, "\t\tMEMTYPE system memory present on bus");
1802 else
1803 command_print(cmd, "\t\tMEMTYPE system memory not present: dedicated debug bus");
1804 }
1805 return ERROR_OK;
1806 }
1807
1808 /* Class other than 0x1 and 0x9 */
1809 return ERROR_OK;
1810 }
1811
1812 static int dap_info_rom_table_entry(int retval, int depth,
1813 unsigned int offset, uint64_t romentry, void *priv)
1814 {
1815 struct command_invocation *cmd = priv;
1816 char tabs[16] = "";
1817
1818 if (depth)
1819 snprintf(tabs, sizeof(tabs), "[L%02d] ", depth);
1820
1821 if (retval != ERROR_OK) {
1822 command_print(cmd, "\t%sROMTABLE[0x%x] Read error", tabs, offset);
1823 command_print(cmd, "\t\tUnable to continue");
1824 command_print(cmd, "\t%s\tStop parsing of ROM table", tabs);
1825 return retval;
1826 }
1827
1828 command_print(cmd, "\t%sROMTABLE[0x%x] = 0x%08" PRIx64,
1829 tabs, offset, romentry);
1830
1831 if (romentry == 0) {
1832 command_print(cmd, "\t%s\tEnd of ROM table", tabs);
1833 return ERROR_OK;
1834 }
1835
1836 if (!(romentry & ARM_CS_ROMENTRY_PRESENT)) {
1837 command_print(cmd, "\t\tComponent not present");
1838 return ERROR_OK;
1839 }
1840
1841 return ERROR_OK;
1842 }
1843
1844 int dap_info_command(struct command_invocation *cmd, struct adiv5_ap *ap)
1845 {
1846 struct rtp_ops dap_info_ops = {
1847 .mem_ap_header = dap_info_mem_ap_header,
1848 .cs_component = dap_info_cs_component,
1849 .rom_table_entry = dap_info_rom_table_entry,
1850 .priv = cmd,
1851 };
1852
1853 return rtp_ap(&dap_info_ops, ap);
1854 }
1855
1856 /* Actions for dap_lookup_cs_component() */
1857
1858 struct dap_lookup_data {
1859 /* input */
1860 unsigned int idx;
1861 unsigned int type;
1862 /* output */
1863 uint64_t component_base;
1864 };
1865
1866 static int dap_lookup_cs_component_cs_component(int retval,
1867 struct cs_component_vals *v, int depth, void *priv)
1868 {
1869 struct dap_lookup_data *lookup = priv;
1870
1871 if (retval != ERROR_OK)
1872 return retval;
1873
1874 if (!is_valid_arm_cs_cidr(v->cid))
1875 return ERROR_OK;
1876
1877 const unsigned int class = ARM_CS_CIDR_CLASS(v->cid);
1878 if (class != ARM_CS_CLASS_0X9_CS_COMPONENT)
1879 return ERROR_OK;
1880
1881 if ((v->devtype_memtype & ARM_CS_C9_DEVTYPE_MASK) != lookup->type)
1882 return ERROR_OK;
1883
1884 if (lookup->idx) {
1885 /* search for next one */
1886 --lookup->idx;
1887 return ERROR_OK;
1888 }
1889
1890 /* Found! */
1891 lookup->component_base = v->component_base;
1892 return CORESIGHT_COMPONENT_FOUND;
1893 }
1894
1895 int dap_lookup_cs_component(struct adiv5_ap *ap, uint8_t type,
1896 target_addr_t *addr, int32_t core_id)
1897 {
1898 struct dap_lookup_data lookup = {
1899 .type = type,
1900 .idx = core_id,
1901 };
1902 struct rtp_ops dap_lookup_cs_component_ops = {
1903 .mem_ap_header = NULL,
1904 .cs_component = dap_lookup_cs_component_cs_component,
1905 .rom_table_entry = NULL,
1906 .priv = &lookup,
1907 };
1908
1909 int retval = rtp_ap(&dap_lookup_cs_component_ops, ap);
1910 if (retval == CORESIGHT_COMPONENT_FOUND) {
1911 LOG_DEBUG("CS lookup found at 0x%" PRIx64, lookup.component_base);
1912 *addr = lookup.component_base;
1913 return ERROR_OK;
1914 }
1915 if (retval != ERROR_OK) {
1916 LOG_DEBUG("CS lookup error %d", retval);
1917 return retval;
1918 }
1919 LOG_DEBUG("CS lookup not found");
1920 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1921 }
1922
1923 enum adiv5_cfg_param {
1924 CFG_DAP,
1925 CFG_AP_NUM,
1926 CFG_BASEADDR,
1927 CFG_CTIBASE, /* DEPRECATED */
1928 };
1929
1930 static const struct jim_nvp nvp_config_opts[] = {
1931 { .name = "-dap", .value = CFG_DAP },
1932 { .name = "-ap-num", .value = CFG_AP_NUM },
1933 { .name = "-baseaddr", .value = CFG_BASEADDR },
1934 { .name = "-ctibase", .value = CFG_CTIBASE }, /* DEPRECATED */
1935 { .name = NULL, .value = -1 }
1936 };
1937
1938 static int adiv5_jim_spot_configure(struct jim_getopt_info *goi,
1939 struct adiv5_dap **dap_p, int *ap_num_p, uint32_t *base_p)
1940 {
1941 if (!goi->argc)
1942 return JIM_OK;
1943
1944 Jim_SetEmptyResult(goi->interp);
1945
1946 struct jim_nvp *n;
1947 int e = jim_nvp_name2value_obj(goi->interp, nvp_config_opts,
1948 goi->argv[0], &n);
1949 if (e != JIM_OK)
1950 return JIM_CONTINUE;
1951
1952 /* base_p can be NULL, then '-baseaddr' option is treated as unknown */
1953 if (!base_p && (n->value == CFG_BASEADDR || n->value == CFG_CTIBASE))
1954 return JIM_CONTINUE;
1955
1956 e = jim_getopt_obj(goi, NULL);
1957 if (e != JIM_OK)
1958 return e;
1959
1960 switch (n->value) {
1961 case CFG_DAP:
1962 if (goi->isconfigure) {
1963 Jim_Obj *o_t;
1964 struct adiv5_dap *dap;
1965 e = jim_getopt_obj(goi, &o_t);
1966 if (e != JIM_OK)
1967 return e;
1968 dap = dap_instance_by_jim_obj(goi->interp, o_t);
1969 if (!dap) {
1970 Jim_SetResultString(goi->interp, "DAP name invalid!", -1);
1971 return JIM_ERR;
1972 }
1973 if (*dap_p && *dap_p != dap) {
1974 Jim_SetResultString(goi->interp,
1975 "DAP assignment cannot be changed!", -1);
1976 return JIM_ERR;
1977 }
1978 *dap_p = dap;
1979 } else {
1980 if (goi->argc)
1981 goto err_no_param;
1982 if (!*dap_p) {
1983 Jim_SetResultString(goi->interp, "DAP not configured", -1);
1984 return JIM_ERR;
1985 }
1986 Jim_SetResultString(goi->interp, adiv5_dap_name(*dap_p), -1);
1987 }
1988 break;
1989
1990 case CFG_AP_NUM:
1991 if (goi->isconfigure) {
1992 jim_wide ap_num;
1993 e = jim_getopt_wide(goi, &ap_num);
1994 if (e != JIM_OK)
1995 return e;
1996 if (ap_num < 0 || ap_num > DP_APSEL_MAX) {
1997 Jim_SetResultString(goi->interp, "Invalid AP number!", -1);
1998 return JIM_ERR;
1999 }
2000 *ap_num_p = ap_num;
2001 } else {
2002 if (goi->argc)
2003 goto err_no_param;
2004 if (*ap_num_p == DP_APSEL_INVALID) {
2005 Jim_SetResultString(goi->interp, "AP number not configured", -1);
2006 return JIM_ERR;
2007 }
2008 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, *ap_num_p));
2009 }
2010 break;
2011
2012 case CFG_CTIBASE:
2013 LOG_WARNING("DEPRECATED! use \'-baseaddr' not \'-ctibase\'");
2014 /* fall through */
2015 case CFG_BASEADDR:
2016 if (goi->isconfigure) {
2017 jim_wide base;
2018 e = jim_getopt_wide(goi, &base);
2019 if (e != JIM_OK)
2020 return e;
2021 *base_p = (uint32_t)base;
2022 } else {
2023 if (goi->argc)
2024 goto err_no_param;
2025 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, *base_p));
2026 }
2027 break;
2028 };
2029
2030 return JIM_OK;
2031
2032 err_no_param:
2033 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "NO PARAMS");
2034 return JIM_ERR;
2035 }
2036
2037 int adiv5_jim_configure(struct target *target, struct jim_getopt_info *goi)
2038 {
2039 struct adiv5_private_config *pc;
2040 int e;
2041
2042 pc = (struct adiv5_private_config *)target->private_config;
2043 if (!pc) {
2044 pc = calloc(1, sizeof(struct adiv5_private_config));
2045 pc->ap_num = DP_APSEL_INVALID;
2046 target->private_config = pc;
2047 }
2048
2049 target->has_dap = true;
2050
2051 e = adiv5_jim_spot_configure(goi, &pc->dap, &pc->ap_num, NULL);
2052 if (e != JIM_OK)
2053 return e;
2054
2055 if (pc->dap && !target->dap_configured) {
2056 if (target->tap_configured) {
2057 pc->dap = NULL;
2058 Jim_SetResultString(goi->interp,
2059 "-chain-position and -dap configparams are mutually exclusive!", -1);
2060 return JIM_ERR;
2061 }
2062 target->tap = pc->dap->tap;
2063 target->dap_configured = true;
2064 }
2065
2066 return JIM_OK;
2067 }
2068
2069 int adiv5_verify_config(struct adiv5_private_config *pc)
2070 {
2071 if (!pc)
2072 return ERROR_FAIL;
2073
2074 if (!pc->dap)
2075 return ERROR_FAIL;
2076
2077 return ERROR_OK;
2078 }
2079
2080 int adiv5_jim_mem_ap_spot_configure(struct adiv5_mem_ap_spot *cfg,
2081 struct jim_getopt_info *goi)
2082 {
2083 return adiv5_jim_spot_configure(goi, &cfg->dap, &cfg->ap_num, &cfg->base);
2084 }
2085
2086 int adiv5_mem_ap_spot_init(struct adiv5_mem_ap_spot *p)
2087 {
2088 p->dap = NULL;
2089 p->ap_num = DP_APSEL_INVALID;
2090 p->base = 0;
2091 return ERROR_OK;
2092 }
2093
2094 COMMAND_HANDLER(handle_dap_info_command)
2095 {
2096 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2097 uint32_t apsel;
2098
2099 switch (CMD_ARGC) {
2100 case 0:
2101 apsel = dap->apsel;
2102 break;
2103 case 1:
2104 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
2105 if (apsel > DP_APSEL_MAX) {
2106 command_print(CMD, "Invalid AP number");
2107 return ERROR_COMMAND_ARGUMENT_INVALID;
2108 }
2109 break;
2110 default:
2111 return ERROR_COMMAND_SYNTAX_ERROR;
2112 }
2113
2114 return dap_info_command(CMD, &dap->ap[apsel]);
2115 }
2116
2117 COMMAND_HANDLER(dap_baseaddr_command)
2118 {
2119 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2120 uint32_t apsel, baseaddr_lower, baseaddr_upper;
2121 struct adiv5_ap *ap;
2122 target_addr_t baseaddr;
2123 int retval;
2124
2125 baseaddr_upper = 0;
2126
2127 switch (CMD_ARGC) {
2128 case 0:
2129 apsel = dap->apsel;
2130 break;
2131 case 1:
2132 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
2133 /* AP address is in bits 31:24 of DP_SELECT */
2134 if (apsel > DP_APSEL_MAX) {
2135 command_print(CMD, "Invalid AP number");
2136 return ERROR_COMMAND_ARGUMENT_INVALID;
2137 }
2138 break;
2139 default:
2140 return ERROR_COMMAND_SYNTAX_ERROR;
2141 }
2142
2143 /* NOTE: assumes we're talking to a MEM-AP, which
2144 * has a base address. There are other kinds of AP,
2145 * though they're not common for now. This should
2146 * use the ID register to verify it's a MEM-AP.
2147 */
2148
2149 ap = dap_ap(dap, apsel);
2150 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE, &baseaddr_lower);
2151
2152 if (retval == ERROR_OK && ap->cfg_reg == MEM_AP_REG_CFG_INVALID)
2153 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &ap->cfg_reg);
2154
2155 if (retval == ERROR_OK && (ap->cfg_reg == MEM_AP_REG_CFG_INVALID || is_64bit_ap(ap))) {
2156 /* MEM_AP_REG_BASE64 is defined as 'RES0'; can be read and then ignored on 32 bits AP */
2157 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE64, &baseaddr_upper);
2158 }
2159
2160 if (retval == ERROR_OK)
2161 retval = dap_run(dap);
2162 if (retval != ERROR_OK)
2163 return retval;
2164
2165 if (is_64bit_ap(ap)) {
2166 baseaddr = (((target_addr_t)baseaddr_upper) << 32) | baseaddr_lower;
2167 command_print(CMD, "0x%016" PRIx64, baseaddr);
2168 } else
2169 command_print(CMD, "0x%08" PRIx32, baseaddr_lower);
2170
2171 return ERROR_OK;
2172 }
2173
2174 COMMAND_HANDLER(dap_memaccess_command)
2175 {
2176 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2177 uint32_t memaccess_tck;
2178
2179 switch (CMD_ARGC) {
2180 case 0:
2181 memaccess_tck = dap->ap[dap->apsel].memaccess_tck;
2182 break;
2183 case 1:
2184 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
2185 break;
2186 default:
2187 return ERROR_COMMAND_SYNTAX_ERROR;
2188 }
2189 dap->ap[dap->apsel].memaccess_tck = memaccess_tck;
2190
2191 command_print(CMD, "memory bus access delay set to %" PRIu32 " tck",
2192 dap->ap[dap->apsel].memaccess_tck);
2193
2194 return ERROR_OK;
2195 }
2196
2197 COMMAND_HANDLER(dap_apsel_command)
2198 {
2199 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2200 uint32_t apsel;
2201
2202 switch (CMD_ARGC) {
2203 case 0:
2204 command_print(CMD, "%" PRIu32, dap->apsel);
2205 return ERROR_OK;
2206 case 1:
2207 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
2208 /* AP address is in bits 31:24 of DP_SELECT */
2209 if (apsel > DP_APSEL_MAX) {
2210 command_print(CMD, "Invalid AP number");
2211 return ERROR_COMMAND_ARGUMENT_INVALID;
2212 }
2213 break;
2214 default:
2215 return ERROR_COMMAND_SYNTAX_ERROR;
2216 }
2217
2218 dap->apsel = apsel;
2219 return ERROR_OK;
2220 }
2221
2222 COMMAND_HANDLER(dap_apcsw_command)
2223 {
2224 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2225 uint32_t apcsw = dap->ap[dap->apsel].csw_default;
2226 uint32_t csw_val, csw_mask;
2227
2228 switch (CMD_ARGC) {
2229 case 0:
2230 command_print(CMD, "ap %" PRIu32 " selected, csw 0x%8.8" PRIx32,
2231 dap->apsel, apcsw);
2232 return ERROR_OK;
2233 case 1:
2234 if (strcmp(CMD_ARGV[0], "default") == 0)
2235 csw_val = CSW_AHB_DEFAULT;
2236 else
2237 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], csw_val);
2238
2239 if (csw_val & (CSW_SIZE_MASK | CSW_ADDRINC_MASK)) {
2240 LOG_ERROR("CSW value cannot include 'Size' and 'AddrInc' bit-fields");
2241 return ERROR_COMMAND_ARGUMENT_INVALID;
2242 }
2243 apcsw = csw_val;
2244 break;
2245 case 2:
2246 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], csw_val);
2247 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], csw_mask);
2248 if (csw_mask & (CSW_SIZE_MASK | CSW_ADDRINC_MASK)) {
2249 LOG_ERROR("CSW mask cannot include 'Size' and 'AddrInc' bit-fields");
2250 return ERROR_COMMAND_ARGUMENT_INVALID;
2251 }
2252 apcsw = (apcsw & ~csw_mask) | (csw_val & csw_mask);
2253 break;
2254 default:
2255 return ERROR_COMMAND_SYNTAX_ERROR;
2256 }
2257 dap->ap[dap->apsel].csw_default = apcsw;
2258
2259 return 0;
2260 }
2261
2262
2263
2264 COMMAND_HANDLER(dap_apid_command)
2265 {
2266 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2267 uint32_t apsel, apid;
2268 int retval;
2269
2270 switch (CMD_ARGC) {
2271 case 0:
2272 apsel = dap->apsel;
2273 break;
2274 case 1:
2275 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
2276 /* AP address is in bits 31:24 of DP_SELECT */
2277 if (apsel > DP_APSEL_MAX) {
2278 command_print(CMD, "Invalid AP number");
2279 return ERROR_COMMAND_ARGUMENT_INVALID;
2280 }
2281 break;
2282 default:
2283 return ERROR_COMMAND_SYNTAX_ERROR;
2284 }
2285
2286 retval = dap_queue_ap_read(dap_ap(dap, apsel), AP_REG_IDR, &apid);
2287 if (retval != ERROR_OK)
2288 return retval;
2289 retval = dap_run(dap);
2290 if (retval != ERROR_OK)
2291 return retval;
2292
2293 command_print(CMD, "0x%8.8" PRIx32, apid);
2294
2295 return retval;
2296 }
2297
2298 COMMAND_HANDLER(dap_apreg_command)
2299 {
2300 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2301 uint32_t apsel, reg, value;
2302 struct adiv5_ap *ap;
2303 int retval;
2304
2305 if (CMD_ARGC < 2 || CMD_ARGC > 3)
2306 return ERROR_COMMAND_SYNTAX_ERROR;
2307
2308 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
2309 /* AP address is in bits 31:24 of DP_SELECT */
2310 if (apsel > DP_APSEL_MAX) {
2311 command_print(CMD, "Invalid AP number");
2312 return ERROR_COMMAND_ARGUMENT_INVALID;
2313 }
2314
2315 ap = dap_ap(dap, apsel);
2316
2317 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg);
2318 if (reg >= 256 || (reg & 3)) {
2319 command_print(CMD, "Invalid reg value (should be less than 256 and 4 bytes aligned)");
2320 return ERROR_COMMAND_ARGUMENT_INVALID;
2321 }
2322
2323 if (CMD_ARGC == 3) {
2324 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
2325 switch (reg) {
2326 case MEM_AP_REG_CSW:
2327 ap->csw_value = 0; /* invalid, in case write fails */
2328 retval = dap_queue_ap_write(ap, reg, value);
2329 if (retval == ERROR_OK)
2330 ap->csw_value = value;
2331 break;
2332 case MEM_AP_REG_TAR:
2333 retval = dap_queue_ap_write(ap, reg, value);
2334 if (retval == ERROR_OK)
2335 ap->tar_value = (ap->tar_value & ~0xFFFFFFFFull) | value;
2336 else {
2337 /* To track independent writes to TAR and TAR64, two tar_valid flags */
2338 /* should be used. To keep it simple, tar_valid is only invalidated on a */
2339 /* write fail. This approach causes a later re-write of the TAR and TAR64 */
2340 /* if tar_valid is false. */
2341 ap->tar_valid = false;
2342 }
2343 break;
2344 case MEM_AP_REG_TAR64:
2345 retval = dap_queue_ap_write(ap, reg, value);
2346 if (retval == ERROR_OK)
2347 ap->tar_value = (ap->tar_value & 0xFFFFFFFFull) | (((target_addr_t)value) << 32);
2348 else {
2349 /* See above comment for the MEM_AP_REG_TAR failed write case */
2350 ap->tar_valid = false;
2351 }
2352 break;
2353 default:
2354 retval = dap_queue_ap_write(ap, reg, value);
2355 break;
2356 }
2357 } else {
2358 retval = dap_queue_ap_read(ap, reg, &value);
2359 }
2360 if (retval == ERROR_OK)
2361 retval = dap_run(dap);
2362
2363 if (retval != ERROR_OK)
2364 return retval;
2365
2366 if (CMD_ARGC == 2)
2367 command_print(CMD, "0x%08" PRIx32, value);
2368
2369 return retval;
2370 }
2371
2372 COMMAND_HANDLER(dap_dpreg_command)
2373 {
2374 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2375 uint32_t reg, value;
2376 int retval;
2377
2378 if (CMD_ARGC < 1 || CMD_ARGC > 2)
2379 return ERROR_COMMAND_SYNTAX_ERROR;
2380
2381 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], reg);
2382 if (reg >= 256 || (reg & 3)) {
2383 command_print(CMD, "Invalid reg value (should be less than 256 and 4 bytes aligned)");
2384 return ERROR_COMMAND_ARGUMENT_INVALID;
2385 }
2386
2387 if (CMD_ARGC == 2) {
2388 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2389 retval = dap_queue_dp_write(dap, reg, value);
2390 } else {
2391 retval = dap_queue_dp_read(dap, reg, &value);
2392 }
2393 if (retval == ERROR_OK)
2394 retval = dap_run(dap);
2395
2396 if (retval != ERROR_OK)
2397 return retval;
2398
2399 if (CMD_ARGC == 1)
2400 command_print(CMD, "0x%08" PRIx32, value);
2401
2402 return retval;
2403 }
2404
2405 COMMAND_HANDLER(dap_ti_be_32_quirks_command)
2406 {
2407 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2408 return CALL_COMMAND_HANDLER(handle_command_parse_bool, &dap->ti_be_32_quirks,
2409 "TI BE-32 quirks mode");
2410 }
2411
2412 const struct command_registration dap_instance_commands[] = {
2413 {
2414 .name = "info",
2415 .handler = handle_dap_info_command,
2416 .mode = COMMAND_EXEC,
2417 .help = "display ROM table for MEM-AP "
2418 "(default currently selected AP)",
2419 .usage = "[ap_num]",
2420 },
2421 {
2422 .name = "apsel",
2423 .handler = dap_apsel_command,
2424 .mode = COMMAND_ANY,
2425 .help = "Set the currently selected AP (default 0) "
2426 "and display the result",
2427 .usage = "[ap_num]",
2428 },
2429 {
2430 .name = "apcsw",
2431 .handler = dap_apcsw_command,
2432 .mode = COMMAND_ANY,
2433 .help = "Set CSW default bits",
2434 .usage = "[value [mask]]",
2435 },
2436
2437 {
2438 .name = "apid",
2439 .handler = dap_apid_command,
2440 .mode = COMMAND_EXEC,
2441 .help = "return ID register from AP "
2442 "(default currently selected AP)",
2443 .usage = "[ap_num]",
2444 },
2445 {
2446 .name = "apreg",
2447 .handler = dap_apreg_command,
2448 .mode = COMMAND_EXEC,
2449 .help = "read/write a register from AP "
2450 "(reg is byte address of a word register, like 0 4 8...)",
2451 .usage = "ap_num reg [value]",
2452 },
2453 {
2454 .name = "dpreg",
2455 .handler = dap_dpreg_command,
2456 .mode = COMMAND_EXEC,
2457 .help = "read/write a register from DP "
2458 "(reg is byte address (bank << 4 | reg) of a word register, like 0 4 8...)",
2459 .usage = "reg [value]",
2460 },
2461 {
2462 .name = "baseaddr",
2463 .handler = dap_baseaddr_command,
2464 .mode = COMMAND_EXEC,
2465 .help = "return debug base address from MEM-AP "
2466 "(default currently selected AP)",
2467 .usage = "[ap_num]",
2468 },
2469 {
2470 .name = "memaccess",
2471 .handler = dap_memaccess_command,
2472 .mode = COMMAND_EXEC,
2473 .help = "set/get number of extra tck for MEM-AP memory "
2474 "bus access [0-255]",
2475 .usage = "[cycles]",
2476 },
2477 {
2478 .name = "ti_be_32_quirks",
2479 .handler = dap_ti_be_32_quirks_command,
2480 .mode = COMMAND_CONFIG,
2481 .help = "set/get quirks mode for TI TMS450/TMS570 processors",
2482 .usage = "[enable]",
2483 },
2484 COMMAND_REGISTRATION_DONE
2485 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)