60bd5466694f0e1a045a6eba77eba3594faee863
[openocd.git] / src / target / arm_adi_v5.c
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * Copyright (C) 2013 by Andreas Fritiofson *
14 * andreas.fritiofson@gmail.com *
15 * *
16 * Copyright (C) 2019-2021, Ampere Computing LLC *
17 * *
18 * This program is free software; you can redistribute it and/or modify *
19 * it under the terms of the GNU General Public License as published by *
20 * the Free Software Foundation; either version 2 of the License, or *
21 * (at your option) any later version. *
22 * *
23 * This program is distributed in the hope that it will be useful, *
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
26 * GNU General Public License for more details. *
27 * *
28 * You should have received a copy of the GNU General Public License *
29 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
30 ***************************************************************************/
31
32 /**
33 * @file
34 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
35 * debugging architecture. Compared with previous versions, this includes
36 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
37 * transport, and focuses on memory mapped resources as defined by the
38 * CoreSight architecture.
39 *
40 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
41 * basic components: a Debug Port (DP) transporting messages to and from a
42 * debugger, and an Access Port (AP) accessing resources. Three types of DP
43 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
44 * One uses only SWD for communication, and is called SW-DP. The third can
45 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
46 * is used to access memory mapped resources and is called a MEM-AP. Also a
47 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
48 *
49 * This programming interface allows DAP pipelined operations through a
50 * transaction queue. This primarily affects AP operations (such as using
51 * a MEM-AP to access memory or registers). If the current transaction has
52 * not finished by the time the next one must begin, and the ORUNDETECT bit
53 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
54 * further AP operations will fail. There are two basic methods to avoid
55 * such overrun errors. One involves polling for status instead of using
56 * transaction pipelining. The other involves adding delays to ensure the
57 * AP has enough time to complete one operation before starting the next
58 * one. (For JTAG these delays are controlled by memaccess_tck.)
59 */
60
61 /*
62 * Relevant specifications from ARM include:
63 *
64 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031E
65 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
66 *
67 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
68 * Cortex-M3(tm) TRM, ARM DDI 0337G
69 */
70
71 #ifdef HAVE_CONFIG_H
72 #include "config.h"
73 #endif
74
75 #include "jtag/interface.h"
76 #include "arm.h"
77 #include "arm_adi_v5.h"
78 #include "arm_coresight.h"
79 #include "jtag/swd.h"
80 #include "transport/transport.h"
81 #include <helper/align.h>
82 #include <helper/jep106.h>
83 #include <helper/time_support.h>
84 #include <helper/list.h>
85 #include <helper/jim-nvp.h>
86
87 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
88
89 /*
90 uint32_t tar_block_size(uint32_t address)
91 Return the largest block starting at address that does not cross a tar block size alignment boundary
92 */
93 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, target_addr_t address)
94 {
95 return tar_autoincr_block - ((tar_autoincr_block - 1) & address);
96 }
97
98 /***************************************************************************
99 * *
100 * DP and MEM-AP register access through APACC and DPACC *
101 * *
102 ***************************************************************************/
103
104 static int mem_ap_setup_csw(struct adiv5_ap *ap, uint32_t csw)
105 {
106 csw |= ap->csw_default;
107
108 if (csw != ap->csw_value) {
109 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
110 int retval = dap_queue_ap_write(ap, MEM_AP_REG_CSW, csw);
111 if (retval != ERROR_OK) {
112 ap->csw_value = 0;
113 return retval;
114 }
115 ap->csw_value = csw;
116 }
117 return ERROR_OK;
118 }
119
120 static int mem_ap_setup_tar(struct adiv5_ap *ap, target_addr_t tar)
121 {
122 if (!ap->tar_valid || tar != ap->tar_value) {
123 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
124 int retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR, (uint32_t)(tar & 0xffffffffUL));
125 if (retval == ERROR_OK && is_64bit_ap(ap)) {
126 /* See if bits 63:32 of tar is different from last setting */
127 if ((ap->tar_value >> 32) != (tar >> 32))
128 retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR64, (uint32_t)(tar >> 32));
129 }
130 if (retval != ERROR_OK) {
131 ap->tar_valid = false;
132 return retval;
133 }
134 ap->tar_value = tar;
135 ap->tar_valid = true;
136 }
137 return ERROR_OK;
138 }
139
140 static int mem_ap_read_tar(struct adiv5_ap *ap, target_addr_t *tar)
141 {
142 uint32_t lower;
143 uint32_t upper = 0;
144
145 int retval = dap_queue_ap_read(ap, MEM_AP_REG_TAR, &lower);
146 if (retval == ERROR_OK && is_64bit_ap(ap))
147 retval = dap_queue_ap_read(ap, MEM_AP_REG_TAR64, &upper);
148
149 if (retval != ERROR_OK) {
150 ap->tar_valid = false;
151 return retval;
152 }
153
154 retval = dap_run(ap->dap);
155 if (retval != ERROR_OK) {
156 ap->tar_valid = false;
157 return retval;
158 }
159
160 *tar = (((target_addr_t)upper) << 32) | (target_addr_t)lower;
161
162 ap->tar_value = *tar;
163 ap->tar_valid = true;
164 return ERROR_OK;
165 }
166
167 static uint32_t mem_ap_get_tar_increment(struct adiv5_ap *ap)
168 {
169 switch (ap->csw_value & CSW_ADDRINC_MASK) {
170 case CSW_ADDRINC_SINGLE:
171 switch (ap->csw_value & CSW_SIZE_MASK) {
172 case CSW_8BIT:
173 return 1;
174 case CSW_16BIT:
175 return 2;
176 case CSW_32BIT:
177 return 4;
178 default:
179 return 0;
180 }
181 case CSW_ADDRINC_PACKED:
182 return 4;
183 }
184 return 0;
185 }
186
187 /* mem_ap_update_tar_cache is called after an access to MEM_AP_REG_DRW
188 */
189 static void mem_ap_update_tar_cache(struct adiv5_ap *ap)
190 {
191 if (!ap->tar_valid)
192 return;
193
194 uint32_t inc = mem_ap_get_tar_increment(ap);
195 if (inc >= max_tar_block_size(ap->tar_autoincr_block, ap->tar_value))
196 ap->tar_valid = false;
197 else
198 ap->tar_value += inc;
199 }
200
201 /**
202 * Queue transactions setting up transfer parameters for the
203 * currently selected MEM-AP.
204 *
205 * Subsequent transfers using registers like MEM_AP_REG_DRW or MEM_AP_REG_BD2
206 * initiate data reads or writes using memory or peripheral addresses.
207 * If the CSW is configured for it, the TAR may be automatically
208 * incremented after each transfer.
209 *
210 * @param ap The MEM-AP.
211 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
212 * matches the cached value, the register is not changed.
213 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
214 * matches the cached address, the register is not changed.
215 *
216 * @return ERROR_OK if the transaction was properly queued, else a fault code.
217 */
218 static int mem_ap_setup_transfer(struct adiv5_ap *ap, uint32_t csw, target_addr_t tar)
219 {
220 int retval;
221 retval = mem_ap_setup_csw(ap, csw);
222 if (retval != ERROR_OK)
223 return retval;
224 retval = mem_ap_setup_tar(ap, tar);
225 if (retval != ERROR_OK)
226 return retval;
227 return ERROR_OK;
228 }
229
230 /**
231 * Asynchronous (queued) read of a word from memory or a system register.
232 *
233 * @param ap The MEM-AP to access.
234 * @param address Address of the 32-bit word to read; it must be
235 * readable by the currently selected MEM-AP.
236 * @param value points to where the word will be stored when the
237 * transaction queue is flushed (assuming no errors).
238 *
239 * @return ERROR_OK for success. Otherwise a fault code.
240 */
241 int mem_ap_read_u32(struct adiv5_ap *ap, target_addr_t address,
242 uint32_t *value)
243 {
244 int retval;
245
246 /* Use banked addressing (REG_BDx) to avoid some link traffic
247 * (updating TAR) when reading several consecutive addresses.
248 */
249 retval = mem_ap_setup_transfer(ap,
250 CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK),
251 address & 0xFFFFFFFFFFFFFFF0ull);
252 if (retval != ERROR_OK)
253 return retval;
254
255 return dap_queue_ap_read(ap, MEM_AP_REG_BD0 | (address & 0xC), value);
256 }
257
258 /**
259 * Synchronous read of a word from memory or a system register.
260 * As a side effect, this flushes any queued transactions.
261 *
262 * @param ap The MEM-AP to access.
263 * @param address Address of the 32-bit word to read; it must be
264 * readable by the currently selected MEM-AP.
265 * @param value points to where the result will be stored.
266 *
267 * @return ERROR_OK for success; *value holds the result.
268 * Otherwise a fault code.
269 */
270 int mem_ap_read_atomic_u32(struct adiv5_ap *ap, target_addr_t address,
271 uint32_t *value)
272 {
273 int retval;
274
275 retval = mem_ap_read_u32(ap, address, value);
276 if (retval != ERROR_OK)
277 return retval;
278
279 return dap_run(ap->dap);
280 }
281
282 /**
283 * Asynchronous (queued) write of a word to memory or a system register.
284 *
285 * @param ap The MEM-AP to access.
286 * @param address Address to be written; it must be writable by
287 * the currently selected MEM-AP.
288 * @param value Word that will be written to the address when transaction
289 * queue is flushed (assuming no errors).
290 *
291 * @return ERROR_OK for success. Otherwise a fault code.
292 */
293 int mem_ap_write_u32(struct adiv5_ap *ap, target_addr_t address,
294 uint32_t value)
295 {
296 int retval;
297
298 /* Use banked addressing (REG_BDx) to avoid some link traffic
299 * (updating TAR) when writing several consecutive addresses.
300 */
301 retval = mem_ap_setup_transfer(ap,
302 CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK),
303 address & 0xFFFFFFFFFFFFFFF0ull);
304 if (retval != ERROR_OK)
305 return retval;
306
307 return dap_queue_ap_write(ap, MEM_AP_REG_BD0 | (address & 0xC),
308 value);
309 }
310
311 /**
312 * Synchronous write of a word to memory or a system register.
313 * As a side effect, this flushes any queued transactions.
314 *
315 * @param ap The MEM-AP to access.
316 * @param address Address to be written; it must be writable by
317 * the currently selected MEM-AP.
318 * @param value Word that will be written.
319 *
320 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
321 */
322 int mem_ap_write_atomic_u32(struct adiv5_ap *ap, target_addr_t address,
323 uint32_t value)
324 {
325 int retval = mem_ap_write_u32(ap, address, value);
326
327 if (retval != ERROR_OK)
328 return retval;
329
330 return dap_run(ap->dap);
331 }
332
333 /**
334 * Synchronous write of a block of memory, using a specific access size.
335 *
336 * @param ap The MEM-AP to access.
337 * @param buffer The data buffer to write. No particular alignment is assumed.
338 * @param size Which access size to use, in bytes. 1, 2 or 4.
339 * @param count The number of writes to do (in size units, not bytes).
340 * @param address Address to be written; it must be writable by the currently selected MEM-AP.
341 * @param addrinc Whether the target address should be increased for each write or not. This
342 * should normally be true, except when writing to e.g. a FIFO.
343 * @return ERROR_OK on success, otherwise an error code.
344 */
345 static int mem_ap_write(struct adiv5_ap *ap, const uint8_t *buffer, uint32_t size, uint32_t count,
346 target_addr_t address, bool addrinc)
347 {
348 struct adiv5_dap *dap = ap->dap;
349 size_t nbytes = size * count;
350 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
351 uint32_t csw_size;
352 target_addr_t addr_xor;
353 int retval = ERROR_OK;
354
355 /* TI BE-32 Quirks mode:
356 * Writes on big-endian TMS570 behave very strangely. Observed behavior:
357 * size write address bytes written in order
358 * 4 TAR ^ 0 (val >> 24), (val >> 16), (val >> 8), (val)
359 * 2 TAR ^ 2 (val >> 8), (val)
360 * 1 TAR ^ 3 (val)
361 * For example, if you attempt to write a single byte to address 0, the processor
362 * will actually write a byte to address 3.
363 *
364 * To make writes of size < 4 work as expected, we xor a value with the address before
365 * setting the TAP, and we set the TAP after every transfer rather then relying on
366 * address increment. */
367
368 if (size == 4) {
369 csw_size = CSW_32BIT;
370 addr_xor = 0;
371 } else if (size == 2) {
372 csw_size = CSW_16BIT;
373 addr_xor = dap->ti_be_32_quirks ? 2 : 0;
374 } else if (size == 1) {
375 csw_size = CSW_8BIT;
376 addr_xor = dap->ti_be_32_quirks ? 3 : 0;
377 } else {
378 return ERROR_TARGET_UNALIGNED_ACCESS;
379 }
380
381 if (ap->unaligned_access_bad && (address % size != 0))
382 return ERROR_TARGET_UNALIGNED_ACCESS;
383
384 while (nbytes > 0) {
385 uint32_t this_size = size;
386
387 /* Select packed transfer if possible */
388 if (addrinc && ap->packed_transfers && nbytes >= 4
389 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
390 this_size = 4;
391 retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
392 } else {
393 retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
394 }
395
396 if (retval != ERROR_OK)
397 break;
398
399 retval = mem_ap_setup_tar(ap, address ^ addr_xor);
400 if (retval != ERROR_OK)
401 return retval;
402
403 /* How many source bytes each transfer will consume, and their location in the DRW,
404 * depends on the type of transfer and alignment. See ARM document IHI0031C. */
405 uint32_t outvalue = 0;
406 uint32_t drw_byte_idx = address;
407 if (dap->ti_be_32_quirks) {
408 switch (this_size) {
409 case 4:
410 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
411 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
412 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
413 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx & 3) ^ addr_xor);
414 break;
415 case 2:
416 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx++ & 3) ^ addr_xor);
417 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx & 3) ^ addr_xor);
418 break;
419 case 1:
420 outvalue |= (uint32_t)*buffer++ << 8 * (0 ^ (drw_byte_idx & 3) ^ addr_xor);
421 break;
422 }
423 } else {
424 switch (this_size) {
425 case 4:
426 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
427 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
428 /* fallthrough */
429 case 2:
430 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
431 /* fallthrough */
432 case 1:
433 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx & 3);
434 }
435 }
436
437 nbytes -= this_size;
438
439 retval = dap_queue_ap_write(ap, MEM_AP_REG_DRW, outvalue);
440 if (retval != ERROR_OK)
441 break;
442
443 mem_ap_update_tar_cache(ap);
444 if (addrinc)
445 address += this_size;
446 }
447
448 /* REVISIT: Might want to have a queued version of this function that does not run. */
449 if (retval == ERROR_OK)
450 retval = dap_run(dap);
451
452 if (retval != ERROR_OK) {
453 target_addr_t tar;
454 if (mem_ap_read_tar(ap, &tar) == ERROR_OK)
455 LOG_ERROR("Failed to write memory at " TARGET_ADDR_FMT, tar);
456 else
457 LOG_ERROR("Failed to write memory and, additionally, failed to find out where");
458 }
459
460 return retval;
461 }
462
463 /**
464 * Synchronous read of a block of memory, using a specific access size.
465 *
466 * @param ap The MEM-AP to access.
467 * @param buffer The data buffer to receive the data. No particular alignment is assumed.
468 * @param size Which access size to use, in bytes. 1, 2 or 4.
469 * @param count The number of reads to do (in size units, not bytes).
470 * @param adr Address to be read; it must be readable by the currently selected MEM-AP.
471 * @param addrinc Whether the target address should be increased after each read or not. This
472 * should normally be true, except when reading from e.g. a FIFO.
473 * @return ERROR_OK on success, otherwise an error code.
474 */
475 static int mem_ap_read(struct adiv5_ap *ap, uint8_t *buffer, uint32_t size, uint32_t count,
476 target_addr_t adr, bool addrinc)
477 {
478 struct adiv5_dap *dap = ap->dap;
479 size_t nbytes = size * count;
480 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
481 uint32_t csw_size;
482 target_addr_t address = adr;
483 int retval = ERROR_OK;
484
485 /* TI BE-32 Quirks mode:
486 * Reads on big-endian TMS570 behave strangely differently than writes.
487 * They read from the physical address requested, but with DRW byte-reversed.
488 * For example, a byte read from address 0 will place the result in the high bytes of DRW.
489 * Also, packed 8-bit and 16-bit transfers seem to sometimes return garbage in some bytes,
490 * so avoid them. */
491
492 if (size == 4)
493 csw_size = CSW_32BIT;
494 else if (size == 2)
495 csw_size = CSW_16BIT;
496 else if (size == 1)
497 csw_size = CSW_8BIT;
498 else
499 return ERROR_TARGET_UNALIGNED_ACCESS;
500
501 if (ap->unaligned_access_bad && (adr % size != 0))
502 return ERROR_TARGET_UNALIGNED_ACCESS;
503
504 /* Allocate buffer to hold the sequence of DRW reads that will be made. This is a significant
505 * over-allocation if packed transfers are going to be used, but determining the real need at
506 * this point would be messy. */
507 uint32_t *read_buf = calloc(count, sizeof(uint32_t));
508 /* Multiplication count * sizeof(uint32_t) may overflow, calloc() is safe */
509 uint32_t *read_ptr = read_buf;
510 if (!read_buf) {
511 LOG_ERROR("Failed to allocate read buffer");
512 return ERROR_FAIL;
513 }
514
515 /* Queue up all reads. Each read will store the entire DRW word in the read buffer. How many
516 * useful bytes it contains, and their location in the word, depends on the type of transfer
517 * and alignment. */
518 while (nbytes > 0) {
519 uint32_t this_size = size;
520
521 /* Select packed transfer if possible */
522 if (addrinc && ap->packed_transfers && nbytes >= 4
523 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
524 this_size = 4;
525 retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
526 } else {
527 retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
528 }
529 if (retval != ERROR_OK)
530 break;
531
532 retval = mem_ap_setup_tar(ap, address);
533 if (retval != ERROR_OK)
534 break;
535
536 retval = dap_queue_ap_read(ap, MEM_AP_REG_DRW, read_ptr++);
537 if (retval != ERROR_OK)
538 break;
539
540 nbytes -= this_size;
541 if (addrinc)
542 address += this_size;
543
544 mem_ap_update_tar_cache(ap);
545 }
546
547 if (retval == ERROR_OK)
548 retval = dap_run(dap);
549
550 /* Restore state */
551 address = adr;
552 nbytes = size * count;
553 read_ptr = read_buf;
554
555 /* If something failed, read TAR to find out how much data was successfully read, so we can
556 * at least give the caller what we have. */
557 if (retval != ERROR_OK) {
558 target_addr_t tar;
559 if (mem_ap_read_tar(ap, &tar) == ERROR_OK) {
560 /* TAR is incremented after failed transfer on some devices (eg Cortex-M4) */
561 LOG_ERROR("Failed to read memory at " TARGET_ADDR_FMT, tar);
562 if (nbytes > tar - address)
563 nbytes = tar - address;
564 } else {
565 LOG_ERROR("Failed to read memory and, additionally, failed to find out where");
566 nbytes = 0;
567 }
568 }
569
570 /* Replay loop to populate caller's buffer from the correct word and byte lane */
571 while (nbytes > 0) {
572 uint32_t this_size = size;
573
574 if (addrinc && ap->packed_transfers && nbytes >= 4
575 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
576 this_size = 4;
577 }
578
579 if (dap->ti_be_32_quirks) {
580 switch (this_size) {
581 case 4:
582 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
583 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
584 /* fallthrough */
585 case 2:
586 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
587 /* fallthrough */
588 case 1:
589 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
590 }
591 } else {
592 switch (this_size) {
593 case 4:
594 *buffer++ = *read_ptr >> 8 * (address++ & 3);
595 *buffer++ = *read_ptr >> 8 * (address++ & 3);
596 /* fallthrough */
597 case 2:
598 *buffer++ = *read_ptr >> 8 * (address++ & 3);
599 /* fallthrough */
600 case 1:
601 *buffer++ = *read_ptr >> 8 * (address++ & 3);
602 }
603 }
604
605 read_ptr++;
606 nbytes -= this_size;
607 }
608
609 free(read_buf);
610 return retval;
611 }
612
613 int mem_ap_read_buf(struct adiv5_ap *ap,
614 uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
615 {
616 return mem_ap_read(ap, buffer, size, count, address, true);
617 }
618
619 int mem_ap_write_buf(struct adiv5_ap *ap,
620 const uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
621 {
622 return mem_ap_write(ap, buffer, size, count, address, true);
623 }
624
625 int mem_ap_read_buf_noincr(struct adiv5_ap *ap,
626 uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
627 {
628 return mem_ap_read(ap, buffer, size, count, address, false);
629 }
630
631 int mem_ap_write_buf_noincr(struct adiv5_ap *ap,
632 const uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
633 {
634 return mem_ap_write(ap, buffer, size, count, address, false);
635 }
636
637 /*--------------------------------------------------------------------------*/
638
639
640 #define DAP_POWER_DOMAIN_TIMEOUT (10)
641
642 /*--------------------------------------------------------------------------*/
643
644 /**
645 * Invalidate cached DP select and cached TAR and CSW of all APs
646 */
647 void dap_invalidate_cache(struct adiv5_dap *dap)
648 {
649 dap->select = DP_SELECT_INVALID;
650 dap->last_read = NULL;
651
652 int i;
653 for (i = 0; i <= DP_APSEL_MAX; i++) {
654 /* force csw and tar write on the next mem-ap access */
655 dap->ap[i].tar_valid = false;
656 dap->ap[i].csw_value = 0;
657 }
658 }
659
660 /**
661 * Initialize a DAP. This sets up the power domains, prepares the DP
662 * for further use and activates overrun checking.
663 *
664 * @param dap The DAP being initialized.
665 */
666 int dap_dp_init(struct adiv5_dap *dap)
667 {
668 int retval;
669
670 LOG_DEBUG("%s", adiv5_dap_name(dap));
671
672 dap->do_reconnect = false;
673 dap_invalidate_cache(dap);
674
675 /*
676 * Early initialize dap->dp_ctrl_stat.
677 * In jtag mode only, if the following queue run (in dap_dp_poll_register)
678 * fails and sets the sticky error, it will trigger the clearing
679 * of the sticky. Without this initialization system and debug power
680 * would be disabled while clearing the sticky error bit.
681 */
682 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
683
684 /*
685 * This write operation clears the sticky error bit in jtag mode only and
686 * is ignored in swd mode. It also powers-up system and debug domains in
687 * both jtag and swd modes, if not done before.
688 */
689 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat | SSTICKYERR);
690 if (retval != ERROR_OK)
691 return retval;
692
693 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
694 if (retval != ERROR_OK)
695 return retval;
696
697 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
698 if (retval != ERROR_OK)
699 return retval;
700
701 /* Check that we have debug power domains activated */
702 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
703 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
704 CDBGPWRUPACK, CDBGPWRUPACK,
705 DAP_POWER_DOMAIN_TIMEOUT);
706 if (retval != ERROR_OK)
707 return retval;
708
709 if (!dap->ignore_syspwrupack) {
710 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
711 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
712 CSYSPWRUPACK, CSYSPWRUPACK,
713 DAP_POWER_DOMAIN_TIMEOUT);
714 if (retval != ERROR_OK)
715 return retval;
716 }
717
718 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
719 if (retval != ERROR_OK)
720 return retval;
721
722 /* With debug power on we can activate OVERRUN checking */
723 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
724 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
725 if (retval != ERROR_OK)
726 return retval;
727 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
728 if (retval != ERROR_OK)
729 return retval;
730
731 retval = dap_run(dap);
732 if (retval != ERROR_OK)
733 return retval;
734
735 return retval;
736 }
737
738 /**
739 * Initialize a DAP or do reconnect if DAP is not accessible.
740 *
741 * @param dap The DAP being initialized.
742 */
743 int dap_dp_init_or_reconnect(struct adiv5_dap *dap)
744 {
745 LOG_DEBUG("%s", adiv5_dap_name(dap));
746
747 /*
748 * Early initialize dap->dp_ctrl_stat.
749 * In jtag mode only, if the following atomic reads fail and set the
750 * sticky error, it will trigger the clearing of the sticky. Without this
751 * initialization system and debug power would be disabled while clearing
752 * the sticky error bit.
753 */
754 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
755
756 dap->do_reconnect = false;
757
758 dap_dp_read_atomic(dap, DP_CTRL_STAT, NULL);
759 if (dap->do_reconnect) {
760 /* dap connect calls dap_dp_init() after transport dependent initialization */
761 return dap->ops->connect(dap);
762 } else {
763 return dap_dp_init(dap);
764 }
765 }
766
767 /**
768 * Initialize a DAP. This sets up the power domains, prepares the DP
769 * for further use, and arranges to use AP #0 for all AP operations
770 * until dap_ap-select() changes that policy.
771 *
772 * @param ap The MEM-AP being initialized.
773 */
774 int mem_ap_init(struct adiv5_ap *ap)
775 {
776 /* check that we support packed transfers */
777 uint32_t csw, cfg;
778 int retval;
779 struct adiv5_dap *dap = ap->dap;
780
781 /* Set ap->cfg_reg before calling mem_ap_setup_transfer(). */
782 /* mem_ap_setup_transfer() needs to know if the MEM_AP supports LPAE. */
783 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &cfg);
784 if (retval != ERROR_OK)
785 return retval;
786
787 retval = dap_run(dap);
788 if (retval != ERROR_OK)
789 return retval;
790
791 ap->cfg_reg = cfg;
792 ap->tar_valid = false;
793 ap->csw_value = 0; /* force csw and tar write */
794 retval = mem_ap_setup_transfer(ap, CSW_8BIT | CSW_ADDRINC_PACKED, 0);
795 if (retval != ERROR_OK)
796 return retval;
797
798 retval = dap_queue_ap_read(ap, MEM_AP_REG_CSW, &csw);
799 if (retval != ERROR_OK)
800 return retval;
801
802 retval = dap_run(dap);
803 if (retval != ERROR_OK)
804 return retval;
805
806 if (csw & CSW_ADDRINC_PACKED)
807 ap->packed_transfers = true;
808 else
809 ap->packed_transfers = false;
810
811 /* Packed transfers on TI BE-32 processors do not work correctly in
812 * many cases. */
813 if (dap->ti_be_32_quirks)
814 ap->packed_transfers = false;
815
816 LOG_DEBUG("MEM_AP Packed Transfers: %s",
817 ap->packed_transfers ? "enabled" : "disabled");
818
819 /* The ARM ADI spec leaves implementation-defined whether unaligned
820 * memory accesses work, only work partially, or cause a sticky error.
821 * On TI BE-32 processors, reads seem to return garbage in some bytes
822 * and unaligned writes seem to cause a sticky error.
823 * TODO: it would be nice to have a way to detect whether unaligned
824 * operations are supported on other processors. */
825 ap->unaligned_access_bad = dap->ti_be_32_quirks;
826
827 LOG_DEBUG("MEM_AP CFG: large data %d, long address %d, big-endian %d",
828 !!(cfg & MEM_AP_REG_CFG_LD), !!(cfg & MEM_AP_REG_CFG_LA), !!(cfg & MEM_AP_REG_CFG_BE));
829
830 return ERROR_OK;
831 }
832
833 /**
834 * Put the debug link into SWD mode, if the target supports it.
835 * The link's initial mode may be either JTAG (for example,
836 * with SWJ-DP after reset) or SWD.
837 *
838 * Note that targets using the JTAG-DP do not support SWD, and that
839 * some targets which could otherwise support it may have been
840 * configured to disable SWD signaling
841 *
842 * @param dap The DAP used
843 * @return ERROR_OK or else a fault code.
844 */
845 int dap_to_swd(struct adiv5_dap *dap)
846 {
847 LOG_DEBUG("Enter SWD mode");
848
849 return dap_send_sequence(dap, JTAG_TO_SWD);
850 }
851
852 /**
853 * Put the debug link into JTAG mode, if the target supports it.
854 * The link's initial mode may be either SWD or JTAG.
855 *
856 * Note that targets implemented with SW-DP do not support JTAG, and
857 * that some targets which could otherwise support it may have been
858 * configured to disable JTAG signaling
859 *
860 * @param dap The DAP used
861 * @return ERROR_OK or else a fault code.
862 */
863 int dap_to_jtag(struct adiv5_dap *dap)
864 {
865 LOG_DEBUG("Enter JTAG mode");
866
867 return dap_send_sequence(dap, SWD_TO_JTAG);
868 }
869
870 /* CID interpretation -- see ARM IHI 0029E table B2-7
871 * and ARM IHI 0031E table D1-2.
872 *
873 * From 2009/11/25 commit 21378f58b604:
874 * "OptimoDE DESS" is ARM's semicustom DSPish stuff.
875 * Let's keep it as is, for the time being
876 */
877 static const char *class_description[16] = {
878 [0x0] = "Generic verification component",
879 [0x1] = "ROM table",
880 [0x2] = "Reserved",
881 [0x3] = "Reserved",
882 [0x4] = "Reserved",
883 [0x5] = "Reserved",
884 [0x6] = "Reserved",
885 [0x7] = "Reserved",
886 [0x8] = "Reserved",
887 [0x9] = "CoreSight component",
888 [0xA] = "Reserved",
889 [0xB] = "Peripheral Test Block",
890 [0xC] = "Reserved",
891 [0xD] = "OptimoDE DESS", /* see above */
892 [0xE] = "Generic IP component",
893 [0xF] = "CoreLink, PrimeCell or System component",
894 };
895
896 #define ARCH_ID(architect, archid) ( \
897 (((architect) << ARM_CS_C9_DEVARCH_ARCHITECT_SHIFT) & ARM_CS_C9_DEVARCH_ARCHITECT_MASK) | \
898 (((archid) << ARM_CS_C9_DEVARCH_ARCHID_SHIFT) & ARM_CS_C9_DEVARCH_ARCHID_MASK) \
899 )
900
901 static const struct {
902 uint32_t arch_id;
903 const char *description;
904 } class0x9_devarch[] = {
905 /* keep same unsorted order as in ARM IHI0029E */
906 { ARCH_ID(ARM_ID, 0x0A00), "RAS architecture" },
907 { ARCH_ID(ARM_ID, 0x1A01), "Instrumentation Trace Macrocell (ITM) architecture" },
908 { ARCH_ID(ARM_ID, 0x1A02), "DWT architecture" },
909 { ARCH_ID(ARM_ID, 0x1A03), "Flash Patch and Breakpoint unit (FPB) architecture" },
910 { ARCH_ID(ARM_ID, 0x2A04), "Processor debug architecture (ARMv8-M)" },
911 { ARCH_ID(ARM_ID, 0x6A05), "Processor debug architecture (ARMv8-R)" },
912 { ARCH_ID(ARM_ID, 0x0A10), "PC sample-based profiling" },
913 { ARCH_ID(ARM_ID, 0x4A13), "Embedded Trace Macrocell (ETM) architecture" },
914 { ARCH_ID(ARM_ID, 0x1A14), "Cross Trigger Interface (CTI) architecture" },
915 { ARCH_ID(ARM_ID, 0x6A15), "Processor debug architecture (v8.0-A)" },
916 { ARCH_ID(ARM_ID, 0x7A15), "Processor debug architecture (v8.1-A)" },
917 { ARCH_ID(ARM_ID, 0x8A15), "Processor debug architecture (v8.2-A)" },
918 { ARCH_ID(ARM_ID, 0x2A16), "Processor Performance Monitor (PMU) architecture" },
919 { ARCH_ID(ARM_ID, 0x0A17), "Memory Access Port v2 architecture" },
920 { ARCH_ID(ARM_ID, 0x0A27), "JTAG Access Port v2 architecture" },
921 { ARCH_ID(ARM_ID, 0x0A31), "Basic trace router" },
922 { ARCH_ID(ARM_ID, 0x0A37), "Power requestor" },
923 { ARCH_ID(ARM_ID, 0x0A47), "Unknown Access Port v2 architecture" },
924 { ARCH_ID(ARM_ID, 0x0A50), "HSSTP architecture" },
925 { ARCH_ID(ARM_ID, 0x0A63), "System Trace Macrocell (STM) architecture" },
926 { ARCH_ID(ARM_ID, 0x0A75), "CoreSight ELA architecture" },
927 { ARCH_ID(ARM_ID, 0x0AF7), "CoreSight ROM architecture" },
928 };
929
930 #define DEVARCH_ID_MASK (ARM_CS_C9_DEVARCH_ARCHITECT_MASK | ARM_CS_C9_DEVARCH_ARCHID_MASK)
931 #define DEVARCH_ROM_C_0X9 ARCH_ID(ARM_ID, 0x0AF7)
932
933 static const char *class0x9_devarch_description(uint32_t devarch)
934 {
935 if (!(devarch & ARM_CS_C9_DEVARCH_PRESENT))
936 return "not present";
937
938 for (unsigned int i = 0; i < ARRAY_SIZE(class0x9_devarch); i++)
939 if ((devarch & DEVARCH_ID_MASK) == class0x9_devarch[i].arch_id)
940 return class0x9_devarch[i].description;
941
942 return "unknown";
943 }
944
945 static const struct {
946 enum ap_type type;
947 const char *description;
948 } ap_types[] = {
949 { AP_TYPE_JTAG_AP, "JTAG-AP" },
950 { AP_TYPE_COM_AP, "COM-AP" },
951 { AP_TYPE_AHB3_AP, "MEM-AP AHB3" },
952 { AP_TYPE_APB_AP, "MEM-AP APB2 or APB3" },
953 { AP_TYPE_AXI_AP, "MEM-AP AXI3 or AXI4" },
954 { AP_TYPE_AHB5_AP, "MEM-AP AHB5" },
955 { AP_TYPE_APB4_AP, "MEM-AP APB4" },
956 { AP_TYPE_AXI5_AP, "MEM-AP AXI5" },
957 { AP_TYPE_AHB5H_AP, "MEM-AP AHB5 with enhanced HPROT" },
958 };
959
960 static const char *ap_type_to_description(enum ap_type type)
961 {
962 for (unsigned int i = 0; i < ARRAY_SIZE(ap_types); i++)
963 if (type == ap_types[i].type)
964 return ap_types[i].description;
965
966 return "Unknown";
967 }
968
969 /*
970 * This function checks the ID for each access port to find the requested Access Port type
971 */
972 int dap_find_ap(struct adiv5_dap *dap, enum ap_type type_to_find, struct adiv5_ap **ap_out)
973 {
974 int ap_num;
975
976 /* Maximum AP number is 255 since the SELECT register is 8 bits */
977 for (ap_num = 0; ap_num <= DP_APSEL_MAX; ap_num++) {
978
979 /* read the IDR register of the Access Port */
980 uint32_t id_val = 0;
981
982 int retval = dap_queue_ap_read(dap_ap(dap, ap_num), AP_REG_IDR, &id_val);
983 if (retval != ERROR_OK)
984 return retval;
985
986 retval = dap_run(dap);
987
988 /* Reading register for a non-existent AP should not cause an error,
989 * but just to be sure, try to continue searching if an error does happen.
990 */
991 if (retval == ERROR_OK && (id_val & AP_TYPE_MASK) == type_to_find) {
992 LOG_DEBUG("Found %s at AP index: %d (IDR=0x%08" PRIX32 ")",
993 ap_type_to_description(type_to_find),
994 ap_num, id_val);
995
996 *ap_out = &dap->ap[ap_num];
997 return ERROR_OK;
998 }
999 }
1000
1001 LOG_DEBUG("No %s found", ap_type_to_description(type_to_find));
1002 return ERROR_FAIL;
1003 }
1004
1005 int dap_get_debugbase(struct adiv5_ap *ap,
1006 target_addr_t *dbgbase, uint32_t *apid)
1007 {
1008 struct adiv5_dap *dap = ap->dap;
1009 int retval;
1010 uint32_t baseptr_upper, baseptr_lower;
1011
1012 if (ap->cfg_reg == MEM_AP_REG_CFG_INVALID) {
1013 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &ap->cfg_reg);
1014 if (retval != ERROR_OK)
1015 return retval;
1016 }
1017 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE, &baseptr_lower);
1018 if (retval != ERROR_OK)
1019 return retval;
1020 retval = dap_queue_ap_read(ap, AP_REG_IDR, apid);
1021 if (retval != ERROR_OK)
1022 return retval;
1023 /* MEM_AP_REG_BASE64 is defined as 'RES0'; can be read and then ignored on 32 bits AP */
1024 if (ap->cfg_reg == MEM_AP_REG_CFG_INVALID || is_64bit_ap(ap)) {
1025 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE64, &baseptr_upper);
1026 if (retval != ERROR_OK)
1027 return retval;
1028 }
1029
1030 retval = dap_run(dap);
1031 if (retval != ERROR_OK)
1032 return retval;
1033
1034 if (!is_64bit_ap(ap))
1035 baseptr_upper = 0;
1036 *dbgbase = (((target_addr_t)baseptr_upper) << 32) | baseptr_lower;
1037
1038 return ERROR_OK;
1039 }
1040
1041 int dap_lookup_cs_component(struct adiv5_ap *ap,
1042 target_addr_t dbgbase, uint8_t type, target_addr_t *addr, int32_t *idx)
1043 {
1044 uint32_t romentry, entry_offset = 0, devtype;
1045 target_addr_t component_base;
1046 int retval;
1047
1048 dbgbase &= 0xFFFFFFFFFFFFF000ull;
1049 *addr = 0;
1050
1051 do {
1052 retval = mem_ap_read_atomic_u32(ap, dbgbase |
1053 entry_offset, &romentry);
1054 if (retval != ERROR_OK)
1055 return retval;
1056
1057 component_base = dbgbase + (target_addr_t)(romentry & ARM_CS_ROMENTRY_OFFSET_MASK);
1058
1059 if (romentry & ARM_CS_ROMENTRY_PRESENT) {
1060 uint32_t c_cid1;
1061 retval = mem_ap_read_atomic_u32(ap, component_base + ARM_CS_CIDR1, &c_cid1);
1062 if (retval != ERROR_OK) {
1063 LOG_ERROR("Can't read component with base address " TARGET_ADDR_FMT
1064 ", the corresponding core might be turned off", component_base);
1065 return retval;
1066 }
1067 unsigned int class = (c_cid1 & ARM_CS_CIDR1_CLASS_MASK) >> ARM_CS_CIDR1_CLASS_SHIFT;
1068 if (class == ARM_CS_CLASS_0X1_ROM_TABLE) {
1069 retval = dap_lookup_cs_component(ap, component_base,
1070 type, addr, idx);
1071 if (retval == ERROR_OK)
1072 break;
1073 if (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1074 return retval;
1075 }
1076
1077 retval = mem_ap_read_atomic_u32(ap, component_base + ARM_CS_C9_DEVTYPE, &devtype);
1078 if (retval != ERROR_OK)
1079 return retval;
1080 if ((devtype & ARM_CS_C9_DEVTYPE_MASK) == type) {
1081 if (!*idx) {
1082 *addr = component_base;
1083 break;
1084 } else
1085 (*idx)--;
1086 }
1087 }
1088 entry_offset += 4;
1089 } while ((romentry > 0) && (entry_offset < 0xf00));
1090
1091 if (!*addr)
1092 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1093
1094 return ERROR_OK;
1095 }
1096
1097 /** Holds registers and coordinates of a CoreSight component */
1098 struct cs_component_vals {
1099 struct adiv5_ap *ap;
1100 target_addr_t component_base;
1101 uint64_t pid;
1102 uint32_t cid;
1103 uint32_t devarch;
1104 uint32_t devid;
1105 uint32_t devtype_memtype;
1106 };
1107
1108 /**
1109 * Read the CoreSight registers needed during ROM Table Parsing (RTP).
1110 *
1111 * @param ap Pointer to AP containing the component.
1112 * @param component_base On MEM-AP access method, base address of the component.
1113 * @param v Pointer to the struct holding the value of registers.
1114 *
1115 * @return ERROR_OK on success, else a fault code.
1116 */
1117 static int rtp_read_cs_regs(struct adiv5_ap *ap, target_addr_t component_base,
1118 struct cs_component_vals *v)
1119 {
1120 assert(IS_ALIGNED(component_base, ARM_CS_ALIGN));
1121 assert(ap && v);
1122
1123 uint32_t cid0, cid1, cid2, cid3;
1124 uint32_t pid0, pid1, pid2, pid3, pid4;
1125 int retval = ERROR_OK;
1126
1127 v->ap = ap;
1128 v->component_base = component_base;
1129
1130 /* sort by offset to gain speed */
1131
1132 /*
1133 * Registers DEVARCH, DEVID and DEVTYPE are valid on Class 0x9 devices
1134 * only, but are at offset above 0xf00, so can be read on any device
1135 * without triggering error. Read them for eventual use on Class 0x9.
1136 */
1137 if (retval == ERROR_OK)
1138 retval = mem_ap_read_u32(ap, component_base + ARM_CS_C9_DEVARCH, &v->devarch);
1139
1140 if (retval == ERROR_OK)
1141 retval = mem_ap_read_u32(ap, component_base + ARM_CS_C9_DEVID, &v->devid);
1142
1143 /* Same address as ARM_CS_C1_MEMTYPE */
1144 if (retval == ERROR_OK)
1145 retval = mem_ap_read_u32(ap, component_base + ARM_CS_C9_DEVTYPE, &v->devtype_memtype);
1146
1147 if (retval == ERROR_OK)
1148 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR4, &pid4);
1149
1150 if (retval == ERROR_OK)
1151 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR0, &pid0);
1152 if (retval == ERROR_OK)
1153 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR1, &pid1);
1154 if (retval == ERROR_OK)
1155 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR2, &pid2);
1156 if (retval == ERROR_OK)
1157 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR3, &pid3);
1158
1159 if (retval == ERROR_OK)
1160 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR0, &cid0);
1161 if (retval == ERROR_OK)
1162 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR1, &cid1);
1163 if (retval == ERROR_OK)
1164 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR2, &cid2);
1165 if (retval == ERROR_OK)
1166 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR3, &cid3);
1167
1168 if (retval == ERROR_OK)
1169 retval = dap_run(ap->dap);
1170 if (retval != ERROR_OK) {
1171 LOG_DEBUG("Failed read CoreSight registers");
1172 return retval;
1173 }
1174
1175 v->cid = (cid3 & 0xff) << 24
1176 | (cid2 & 0xff) << 16
1177 | (cid1 & 0xff) << 8
1178 | (cid0 & 0xff);
1179 v->pid = (uint64_t)(pid4 & 0xff) << 32
1180 | (pid3 & 0xff) << 24
1181 | (pid2 & 0xff) << 16
1182 | (pid1 & 0xff) << 8
1183 | (pid0 & 0xff);
1184
1185 return ERROR_OK;
1186 }
1187
1188 /* Part number interpretations are from Cortex
1189 * core specs, the CoreSight components TRM
1190 * (ARM DDI 0314H), CoreSight System Design
1191 * Guide (ARM DGI 0012D) and ETM specs; also
1192 * from chip observation (e.g. TI SDTI).
1193 */
1194
1195 static const struct dap_part_nums {
1196 uint16_t designer_id;
1197 uint16_t part_num;
1198 const char *type;
1199 const char *full;
1200 } dap_part_nums[] = {
1201 { ARM_ID, 0x000, "Cortex-M3 SCS", "(System Control Space)", },
1202 { ARM_ID, 0x001, "Cortex-M3 ITM", "(Instrumentation Trace Module)", },
1203 { ARM_ID, 0x002, "Cortex-M3 DWT", "(Data Watchpoint and Trace)", },
1204 { ARM_ID, 0x003, "Cortex-M3 FPB", "(Flash Patch and Breakpoint)", },
1205 { ARM_ID, 0x008, "Cortex-M0 SCS", "(System Control Space)", },
1206 { ARM_ID, 0x00a, "Cortex-M0 DWT", "(Data Watchpoint and Trace)", },
1207 { ARM_ID, 0x00b, "Cortex-M0 BPU", "(Breakpoint Unit)", },
1208 { ARM_ID, 0x00c, "Cortex-M4 SCS", "(System Control Space)", },
1209 { ARM_ID, 0x00d, "CoreSight ETM11", "(Embedded Trace)", },
1210 { ARM_ID, 0x00e, "Cortex-M7 FPB", "(Flash Patch and Breakpoint)", },
1211 { ARM_ID, 0x193, "SoC-600 TSGEN", "(Timestamp Generator)", },
1212 { ARM_ID, 0x470, "Cortex-M1 ROM", "(ROM Table)", },
1213 { ARM_ID, 0x471, "Cortex-M0 ROM", "(ROM Table)", },
1214 { ARM_ID, 0x490, "Cortex-A15 GIC", "(Generic Interrupt Controller)", },
1215 { ARM_ID, 0x492, "Cortex-R52 GICD", "(Distributor)", },
1216 { ARM_ID, 0x493, "Cortex-R52 GICR", "(Redistributor)", },
1217 { ARM_ID, 0x4a1, "Cortex-A53 ROM", "(v8 Memory Map ROM Table)", },
1218 { ARM_ID, 0x4a2, "Cortex-A57 ROM", "(ROM Table)", },
1219 { ARM_ID, 0x4a3, "Cortex-A53 ROM", "(v7 Memory Map ROM Table)", },
1220 { ARM_ID, 0x4a4, "Cortex-A72 ROM", "(ROM Table)", },
1221 { ARM_ID, 0x4a9, "Cortex-A9 ROM", "(ROM Table)", },
1222 { ARM_ID, 0x4aa, "Cortex-A35 ROM", "(v8 Memory Map ROM Table)", },
1223 { ARM_ID, 0x4af, "Cortex-A15 ROM", "(ROM Table)", },
1224 { ARM_ID, 0x4b5, "Cortex-R5 ROM", "(ROM Table)", },
1225 { ARM_ID, 0x4b8, "Cortex-R52 ROM", "(ROM Table)", },
1226 { ARM_ID, 0x4c0, "Cortex-M0+ ROM", "(ROM Table)", },
1227 { ARM_ID, 0x4c3, "Cortex-M3 ROM", "(ROM Table)", },
1228 { ARM_ID, 0x4c4, "Cortex-M4 ROM", "(ROM Table)", },
1229 { ARM_ID, 0x4c7, "Cortex-M7 PPB ROM", "(Private Peripheral Bus ROM Table)", },
1230 { ARM_ID, 0x4c8, "Cortex-M7 ROM", "(ROM Table)", },
1231 { ARM_ID, 0x4e0, "Cortex-A35 ROM", "(v7 Memory Map ROM Table)", },
1232 { ARM_ID, 0x4e4, "Cortex-A76 ROM", "(ROM Table)", },
1233 { ARM_ID, 0x906, "CoreSight CTI", "(Cross Trigger)", },
1234 { ARM_ID, 0x907, "CoreSight ETB", "(Trace Buffer)", },
1235 { ARM_ID, 0x908, "CoreSight CSTF", "(Trace Funnel)", },
1236 { ARM_ID, 0x909, "CoreSight ATBR", "(Advanced Trace Bus Replicator)", },
1237 { ARM_ID, 0x910, "CoreSight ETM9", "(Embedded Trace)", },
1238 { ARM_ID, 0x912, "CoreSight TPIU", "(Trace Port Interface Unit)", },
1239 { ARM_ID, 0x913, "CoreSight ITM", "(Instrumentation Trace Macrocell)", },
1240 { ARM_ID, 0x914, "CoreSight SWO", "(Single Wire Output)", },
1241 { ARM_ID, 0x917, "CoreSight HTM", "(AHB Trace Macrocell)", },
1242 { ARM_ID, 0x920, "CoreSight ETM11", "(Embedded Trace)", },
1243 { ARM_ID, 0x921, "Cortex-A8 ETM", "(Embedded Trace)", },
1244 { ARM_ID, 0x922, "Cortex-A8 CTI", "(Cross Trigger)", },
1245 { ARM_ID, 0x923, "Cortex-M3 TPIU", "(Trace Port Interface Unit)", },
1246 { ARM_ID, 0x924, "Cortex-M3 ETM", "(Embedded Trace)", },
1247 { ARM_ID, 0x925, "Cortex-M4 ETM", "(Embedded Trace)", },
1248 { ARM_ID, 0x930, "Cortex-R4 ETM", "(Embedded Trace)", },
1249 { ARM_ID, 0x931, "Cortex-R5 ETM", "(Embedded Trace)", },
1250 { ARM_ID, 0x932, "CoreSight MTB-M0+", "(Micro Trace Buffer)", },
1251 { ARM_ID, 0x941, "CoreSight TPIU-Lite", "(Trace Port Interface Unit)", },
1252 { ARM_ID, 0x950, "Cortex-A9 PTM", "(Program Trace Macrocell)", },
1253 { ARM_ID, 0x955, "Cortex-A5 ETM", "(Embedded Trace)", },
1254 { ARM_ID, 0x95a, "Cortex-A72 ETM", "(Embedded Trace)", },
1255 { ARM_ID, 0x95b, "Cortex-A17 PTM", "(Program Trace Macrocell)", },
1256 { ARM_ID, 0x95d, "Cortex-A53 ETM", "(Embedded Trace)", },
1257 { ARM_ID, 0x95e, "Cortex-A57 ETM", "(Embedded Trace)", },
1258 { ARM_ID, 0x95f, "Cortex-A15 PTM", "(Program Trace Macrocell)", },
1259 { ARM_ID, 0x961, "CoreSight TMC", "(Trace Memory Controller)", },
1260 { ARM_ID, 0x962, "CoreSight STM", "(System Trace Macrocell)", },
1261 { ARM_ID, 0x975, "Cortex-M7 ETM", "(Embedded Trace)", },
1262 { ARM_ID, 0x9a0, "CoreSight PMU", "(Performance Monitoring Unit)", },
1263 { ARM_ID, 0x9a1, "Cortex-M4 TPIU", "(Trace Port Interface Unit)", },
1264 { ARM_ID, 0x9a4, "CoreSight GPR", "(Granular Power Requester)", },
1265 { ARM_ID, 0x9a5, "Cortex-A5 PMU", "(Performance Monitor Unit)", },
1266 { ARM_ID, 0x9a7, "Cortex-A7 PMU", "(Performance Monitor Unit)", },
1267 { ARM_ID, 0x9a8, "Cortex-A53 CTI", "(Cross Trigger)", },
1268 { ARM_ID, 0x9a9, "Cortex-M7 TPIU", "(Trace Port Interface Unit)", },
1269 { ARM_ID, 0x9ae, "Cortex-A17 PMU", "(Performance Monitor Unit)", },
1270 { ARM_ID, 0x9af, "Cortex-A15 PMU", "(Performance Monitor Unit)", },
1271 { ARM_ID, 0x9b6, "Cortex-R52 PMU/CTI/ETM", "(Performance Monitor Unit/Cross Trigger/ETM)", },
1272 { ARM_ID, 0x9b7, "Cortex-R7 PMU", "(Performance Monitor Unit)", },
1273 { ARM_ID, 0x9d3, "Cortex-A53 PMU", "(Performance Monitor Unit)", },
1274 { ARM_ID, 0x9d7, "Cortex-A57 PMU", "(Performance Monitor Unit)", },
1275 { ARM_ID, 0x9d8, "Cortex-A72 PMU", "(Performance Monitor Unit)", },
1276 { ARM_ID, 0x9da, "Cortex-A35 PMU/CTI/ETM", "(Performance Monitor Unit/Cross Trigger/ETM)", },
1277 { ARM_ID, 0x9e2, "SoC-600 APB-AP", "(APB4 Memory Access Port)", },
1278 { ARM_ID, 0x9e3, "SoC-600 AHB-AP", "(AHB5 Memory Access Port)", },
1279 { ARM_ID, 0x9e4, "SoC-600 AXI-AP", "(AXI Memory Access Port)", },
1280 { ARM_ID, 0x9e5, "SoC-600 APv1 Adapter", "(Access Port v1 Adapter)", },
1281 { ARM_ID, 0x9e6, "SoC-600 JTAG-AP", "(JTAG Access Port)", },
1282 { ARM_ID, 0x9e7, "SoC-600 TPIU", "(Trace Port Interface Unit)", },
1283 { ARM_ID, 0x9e8, "SoC-600 TMC ETR/ETS", "(Embedded Trace Router/Streamer)", },
1284 { ARM_ID, 0x9e9, "SoC-600 TMC ETB", "(Embedded Trace Buffer)", },
1285 { ARM_ID, 0x9ea, "SoC-600 TMC ETF", "(Embedded Trace FIFO)", },
1286 { ARM_ID, 0x9eb, "SoC-600 ATB Funnel", "(Trace Funnel)", },
1287 { ARM_ID, 0x9ec, "SoC-600 ATB Replicator", "(Trace Replicator)", },
1288 { ARM_ID, 0x9ed, "SoC-600 CTI", "(Cross Trigger)", },
1289 { ARM_ID, 0x9ee, "SoC-600 CATU", "(Address Translation Unit)", },
1290 { ARM_ID, 0xc05, "Cortex-A5 Debug", "(Debug Unit)", },
1291 { ARM_ID, 0xc07, "Cortex-A7 Debug", "(Debug Unit)", },
1292 { ARM_ID, 0xc08, "Cortex-A8 Debug", "(Debug Unit)", },
1293 { ARM_ID, 0xc09, "Cortex-A9 Debug", "(Debug Unit)", },
1294 { ARM_ID, 0xc0e, "Cortex-A17 Debug", "(Debug Unit)", },
1295 { ARM_ID, 0xc0f, "Cortex-A15 Debug", "(Debug Unit)", },
1296 { ARM_ID, 0xc14, "Cortex-R4 Debug", "(Debug Unit)", },
1297 { ARM_ID, 0xc15, "Cortex-R5 Debug", "(Debug Unit)", },
1298 { ARM_ID, 0xc17, "Cortex-R7 Debug", "(Debug Unit)", },
1299 { ARM_ID, 0xd03, "Cortex-A53 Debug", "(Debug Unit)", },
1300 { ARM_ID, 0xd04, "Cortex-A35 Debug", "(Debug Unit)", },
1301 { ARM_ID, 0xd07, "Cortex-A57 Debug", "(Debug Unit)", },
1302 { ARM_ID, 0xd08, "Cortex-A72 Debug", "(Debug Unit)", },
1303 { ARM_ID, 0xd0b, "Cortex-A76 Debug", "(Debug Unit)", },
1304 { ARM_ID, 0xd0c, "Neoverse N1", "(Debug Unit)", },
1305 { ARM_ID, 0xd13, "Cortex-R52 Debug", "(Debug Unit)", },
1306 { ARM_ID, 0xd49, "Neoverse N2", "(Debug Unit)", },
1307 { 0x017, 0x120, "TI SDTI", "(System Debug Trace Interface)", }, /* from OMAP3 memmap */
1308 { 0x017, 0x343, "TI DAPCTL", "", }, /* from OMAP3 memmap */
1309 { 0x017, 0x9af, "MSP432 ROM", "(ROM Table)" },
1310 { 0x01f, 0xcd0, "Atmel CPU with DSU", "(CPU)" },
1311 { 0x041, 0x1db, "XMC4500 ROM", "(ROM Table)" },
1312 { 0x041, 0x1df, "XMC4700/4800 ROM", "(ROM Table)" },
1313 { 0x041, 0x1ed, "XMC1000 ROM", "(ROM Table)" },
1314 { 0x065, 0x000, "SHARC+/Blackfin+", "", },
1315 { 0x070, 0x440, "Qualcomm QDSS Component v1", "(Qualcomm Designed CoreSight Component v1)", },
1316 { 0x0bf, 0x100, "Brahma-B53 Debug", "(Debug Unit)", },
1317 { 0x0bf, 0x9d3, "Brahma-B53 PMU", "(Performance Monitor Unit)", },
1318 { 0x0bf, 0x4a1, "Brahma-B53 ROM", "(ROM Table)", },
1319 { 0x0bf, 0x721, "Brahma-B53 ROM", "(ROM Table)", },
1320 { 0x1eb, 0x181, "Tegra 186 ROM", "(ROM Table)", },
1321 { 0x1eb, 0x202, "Denver ETM", "(Denver Embedded Trace)", },
1322 { 0x1eb, 0x211, "Tegra 210 ROM", "(ROM Table)", },
1323 { 0x1eb, 0x302, "Denver Debug", "(Debug Unit)", },
1324 { 0x1eb, 0x402, "Denver PMU", "(Performance Monitor Unit)", },
1325 };
1326
1327 static const struct dap_part_nums *pidr_to_part_num(unsigned int designer_id, unsigned int part_num)
1328 {
1329 static const struct dap_part_nums unknown = {
1330 .type = "Unrecognized",
1331 .full = "",
1332 };
1333
1334 for (unsigned int i = 0; i < ARRAY_SIZE(dap_part_nums); i++)
1335 if (dap_part_nums[i].designer_id == designer_id && dap_part_nums[i].part_num == part_num)
1336 return &dap_part_nums[i];
1337
1338 return &unknown;
1339 }
1340
1341 static int dap_devtype_display(struct command_invocation *cmd, uint32_t devtype)
1342 {
1343 const char *major = "Reserved", *subtype = "Reserved";
1344 const unsigned int minor = (devtype & ARM_CS_C9_DEVTYPE_SUB_MASK) >> ARM_CS_C9_DEVTYPE_SUB_SHIFT;
1345 const unsigned int devtype_major = (devtype & ARM_CS_C9_DEVTYPE_MAJOR_MASK) >> ARM_CS_C9_DEVTYPE_MAJOR_SHIFT;
1346 switch (devtype_major) {
1347 case 0:
1348 major = "Miscellaneous";
1349 switch (minor) {
1350 case 0:
1351 subtype = "other";
1352 break;
1353 case 4:
1354 subtype = "Validation component";
1355 break;
1356 }
1357 break;
1358 case 1:
1359 major = "Trace Sink";
1360 switch (minor) {
1361 case 0:
1362 subtype = "other";
1363 break;
1364 case 1:
1365 subtype = "Port";
1366 break;
1367 case 2:
1368 subtype = "Buffer";
1369 break;
1370 case 3:
1371 subtype = "Router";
1372 break;
1373 }
1374 break;
1375 case 2:
1376 major = "Trace Link";
1377 switch (minor) {
1378 case 0:
1379 subtype = "other";
1380 break;
1381 case 1:
1382 subtype = "Funnel, router";
1383 break;
1384 case 2:
1385 subtype = "Filter";
1386 break;
1387 case 3:
1388 subtype = "FIFO, buffer";
1389 break;
1390 }
1391 break;
1392 case 3:
1393 major = "Trace Source";
1394 switch (minor) {
1395 case 0:
1396 subtype = "other";
1397 break;
1398 case 1:
1399 subtype = "Processor";
1400 break;
1401 case 2:
1402 subtype = "DSP";
1403 break;
1404 case 3:
1405 subtype = "Engine/Coprocessor";
1406 break;
1407 case 4:
1408 subtype = "Bus";
1409 break;
1410 case 6:
1411 subtype = "Software";
1412 break;
1413 }
1414 break;
1415 case 4:
1416 major = "Debug Control";
1417 switch (minor) {
1418 case 0:
1419 subtype = "other";
1420 break;
1421 case 1:
1422 subtype = "Trigger Matrix";
1423 break;
1424 case 2:
1425 subtype = "Debug Auth";
1426 break;
1427 case 3:
1428 subtype = "Power Requestor";
1429 break;
1430 }
1431 break;
1432 case 5:
1433 major = "Debug Logic";
1434 switch (minor) {
1435 case 0:
1436 subtype = "other";
1437 break;
1438 case 1:
1439 subtype = "Processor";
1440 break;
1441 case 2:
1442 subtype = "DSP";
1443 break;
1444 case 3:
1445 subtype = "Engine/Coprocessor";
1446 break;
1447 case 4:
1448 subtype = "Bus";
1449 break;
1450 case 5:
1451 subtype = "Memory";
1452 break;
1453 }
1454 break;
1455 case 6:
1456 major = "Performance Monitor";
1457 switch (minor) {
1458 case 0:
1459 subtype = "other";
1460 break;
1461 case 1:
1462 subtype = "Processor";
1463 break;
1464 case 2:
1465 subtype = "DSP";
1466 break;
1467 case 3:
1468 subtype = "Engine/Coprocessor";
1469 break;
1470 case 4:
1471 subtype = "Bus";
1472 break;
1473 case 5:
1474 subtype = "Memory";
1475 break;
1476 }
1477 break;
1478 }
1479 command_print(cmd, "\t\tType is 0x%02x, %s, %s",
1480 devtype & ARM_CS_C9_DEVTYPE_MASK,
1481 major, subtype);
1482 return ERROR_OK;
1483 }
1484
1485 /* Broken ROM tables can have circular references. Stop after a while */
1486 #define ROM_TABLE_MAX_DEPTH (16)
1487
1488 /* TODO: these prototypes will be removed in a following patch */
1489 static int dap_info_mem_ap_header(struct command_invocation *cmd,
1490 int retval, struct adiv5_ap *ap,
1491 target_addr_t dbgbase, uint32_t apid);
1492 static int dap_info_cs_component(struct command_invocation *cmd,
1493 int retval, struct cs_component_vals *v, int depth);
1494 static int dap_info_rom_table_entry(struct command_invocation *cmd,
1495 int retval, int depth,
1496 unsigned int offset, uint32_t romentry);
1497
1498 static int rtp_cs_component(struct command_invocation *cmd,
1499 struct adiv5_ap *ap, target_addr_t dbgbase, int depth);
1500
1501 static int rtp_rom_loop(struct command_invocation *cmd,
1502 struct adiv5_ap *ap, target_addr_t base_address, int depth,
1503 unsigned int max_entries)
1504 {
1505 assert(IS_ALIGNED(base_address, ARM_CS_ALIGN));
1506
1507 unsigned int offset = 0;
1508 while (max_entries--) {
1509 uint32_t romentry;
1510 unsigned int saved_offset = offset;
1511
1512 int retval = mem_ap_read_atomic_u32(ap, base_address + offset, &romentry);
1513 offset += 4;
1514 if (retval != ERROR_OK)
1515 LOG_DEBUG("Failed read ROM table entry");
1516
1517 retval = dap_info_rom_table_entry(cmd, retval, depth, saved_offset, romentry);
1518 if (retval != ERROR_OK)
1519 return retval;
1520
1521 if (romentry == 0) {
1522 /* End of ROM table */
1523 break;
1524 }
1525
1526 if (!(romentry & ARM_CS_ROMENTRY_PRESENT))
1527 continue;
1528
1529 /* Recurse. "romentry" is signed */
1530 target_addr_t component_base = base_address + (int32_t)(romentry & ARM_CS_ROMENTRY_OFFSET_MASK);
1531 retval = rtp_cs_component(cmd, ap, component_base, depth + 1);
1532 if (retval != ERROR_OK) {
1533 /* TODO: do we need to send an ABORT before continuing? */
1534 LOG_DEBUG("Ignore error parsing CoreSight component");
1535 continue;
1536 }
1537 }
1538
1539 return ERROR_OK;
1540 }
1541
1542 static int rtp_cs_component(struct command_invocation *cmd,
1543 struct adiv5_ap *ap, target_addr_t base_address, int depth)
1544 {
1545 struct cs_component_vals v;
1546 int retval;
1547
1548 assert(IS_ALIGNED(base_address, ARM_CS_ALIGN));
1549
1550 if (depth > ROM_TABLE_MAX_DEPTH)
1551 retval = ERROR_FAIL;
1552 else
1553 retval = rtp_read_cs_regs(ap, base_address, &v);
1554
1555 retval = dap_info_cs_component(cmd, retval, &v, depth);
1556 if (retval != ERROR_OK)
1557 return ERROR_OK; /* Don't abort recursion */
1558
1559 if (!is_valid_arm_cs_cidr(v.cid))
1560 return ERROR_OK; /* Don't abort recursion */
1561
1562 const unsigned int class = ARM_CS_CIDR_CLASS(v.cid);
1563
1564 if (class == ARM_CS_CLASS_0X1_ROM_TABLE)
1565 return rtp_rom_loop(cmd, ap, base_address, depth, 960);
1566
1567 if (class == ARM_CS_CLASS_0X9_CS_COMPONENT) {
1568 if ((v.devarch & ARM_CS_C9_DEVARCH_PRESENT) == 0)
1569 return ERROR_OK;
1570
1571 /* quit if not ROM table */
1572 if ((v.devarch & DEVARCH_ID_MASK) != DEVARCH_ROM_C_0X9)
1573 return ERROR_OK;
1574
1575 return rtp_rom_loop(cmd, ap, base_address, depth, 512);
1576 }
1577
1578 /* Class other than 0x1 and 0x9 */
1579 return ERROR_OK;
1580 }
1581
1582 int dap_info_command(struct command_invocation *cmd,
1583 struct adiv5_ap *ap)
1584 {
1585 int retval;
1586 uint32_t apid;
1587 target_addr_t dbgbase;
1588 target_addr_t invalid_entry;
1589
1590 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1591 retval = dap_get_debugbase(ap, &dbgbase, &apid);
1592 retval = dap_info_mem_ap_header(cmd, retval, ap, dbgbase, apid);
1593 if (retval != ERROR_OK)
1594 return retval;
1595
1596 if (apid == 0)
1597 return ERROR_FAIL;
1598
1599 /* NOTE: a MEM-AP may have a single CoreSight component that's
1600 * not a ROM table ... or have no such components at all.
1601 */
1602 const unsigned int class = (apid & AP_REG_IDR_CLASS_MASK) >> AP_REG_IDR_CLASS_SHIFT;
1603
1604 if (class == AP_REG_IDR_CLASS_MEM_AP) {
1605 if (is_64bit_ap(ap))
1606 invalid_entry = 0xFFFFFFFFFFFFFFFFull;
1607 else
1608 invalid_entry = 0xFFFFFFFFul;
1609
1610 if (dbgbase != invalid_entry && (dbgbase & 0x3) != 0x2)
1611 rtp_cs_component(cmd, ap, dbgbase & 0xFFFFFFFFFFFFF000ull, 0);
1612 }
1613
1614 return ERROR_OK;
1615 }
1616
1617 /* Actions for command "dap info" */
1618
1619 static int dap_info_mem_ap_header(struct command_invocation *cmd,
1620 int retval, struct adiv5_ap *ap,
1621 target_addr_t dbgbase, uint32_t apid)
1622 {
1623 target_addr_t invalid_entry;
1624
1625 if (retval != ERROR_OK) {
1626 command_print(cmd, "\t\tCan't read MEM-AP, the corresponding core might be turned off");
1627 return retval;
1628 }
1629
1630 command_print(cmd, "AP ID register 0x%8.8" PRIx32, apid);
1631 if (apid == 0) {
1632 command_print(cmd, "No AP found at this ap 0x%x", ap->ap_num);
1633 return ERROR_FAIL;
1634 }
1635
1636 command_print(cmd, "\tType is %s", ap_type_to_description(apid & AP_TYPE_MASK));
1637
1638 /* NOTE: a MEM-AP may have a single CoreSight component that's
1639 * not a ROM table ... or have no such components at all.
1640 */
1641 const unsigned int class = (apid & AP_REG_IDR_CLASS_MASK) >> AP_REG_IDR_CLASS_SHIFT;
1642
1643 if (class == AP_REG_IDR_CLASS_MEM_AP) {
1644 if (is_64bit_ap(ap))
1645 invalid_entry = 0xFFFFFFFFFFFFFFFFull;
1646 else
1647 invalid_entry = 0xFFFFFFFFul;
1648
1649 command_print(cmd, "MEM-AP BASE " TARGET_ADDR_FMT, dbgbase);
1650
1651 if (dbgbase == invalid_entry || (dbgbase & 0x3) == 0x2) {
1652 command_print(cmd, "\tNo ROM table present");
1653 } else {
1654 if (dbgbase & 0x01)
1655 command_print(cmd, "\tValid ROM table present");
1656 else
1657 command_print(cmd, "\tROM table in legacy format");
1658 }
1659 }
1660
1661 return ERROR_OK;
1662 }
1663
1664 static int dap_info_cs_component(struct command_invocation *cmd,
1665 int retval, struct cs_component_vals *v, int depth)
1666 {
1667 if (depth > ROM_TABLE_MAX_DEPTH) {
1668 command_print(cmd, "\tTables too deep");
1669 return ERROR_FAIL;
1670 }
1671
1672 command_print(cmd, "\t\tComponent base address " TARGET_ADDR_FMT, v->component_base);
1673
1674 if (retval != ERROR_OK) {
1675 command_print(cmd, "\t\tCan't read component, the corresponding core might be turned off");
1676 return retval;
1677 }
1678
1679 if (!is_valid_arm_cs_cidr(v->cid)) {
1680 command_print(cmd, "\t\tInvalid CID 0x%08" PRIx32, v->cid);
1681 return ERROR_OK; /* Don't abort recursion */
1682 }
1683
1684 /* component may take multiple 4K pages */
1685 uint32_t size = ARM_CS_PIDR_SIZE(v->pid);
1686 if (size > 0)
1687 command_print(cmd, "\t\tStart address " TARGET_ADDR_FMT, v->component_base - 0x1000 * size);
1688
1689 command_print(cmd, "\t\tPeripheral ID 0x%010" PRIx64, v->pid);
1690
1691 const unsigned int part_num = ARM_CS_PIDR_PART(v->pid);
1692 unsigned int designer_id = ARM_CS_PIDR_DESIGNER(v->pid);
1693
1694 if (v->pid & ARM_CS_PIDR_JEDEC) {
1695 /* JEP106 code */
1696 command_print(cmd, "\t\tDesigner is 0x%03x, %s",
1697 designer_id, jep106_manufacturer(designer_id));
1698 } else {
1699 /* Legacy ASCII ID, clear invalid bits */
1700 designer_id &= 0x7f;
1701 command_print(cmd, "\t\tDesigner ASCII code 0x%02x, %s",
1702 designer_id, designer_id == 0x41 ? "ARM" : "<unknown>");
1703 }
1704
1705 const struct dap_part_nums *partnum = pidr_to_part_num(designer_id, part_num);
1706 command_print(cmd, "\t\tPart is 0x%03x, %s %s", part_num, partnum->type, partnum->full);
1707
1708 const unsigned int class = ARM_CS_CIDR_CLASS(v->cid);
1709 command_print(cmd, "\t\tComponent class is 0x%x, %s", class, class_description[class]);
1710
1711 if (class == ARM_CS_CLASS_0X1_ROM_TABLE) {
1712 if (v->devtype_memtype & ARM_CS_C1_MEMTYPE_SYSMEM_MASK)
1713 command_print(cmd, "\t\tMEMTYPE system memory present on bus");
1714 else
1715 command_print(cmd, "\t\tMEMTYPE system memory not present: dedicated debug bus");
1716 return ERROR_OK;
1717 }
1718
1719 if (class == ARM_CS_CLASS_0X9_CS_COMPONENT) {
1720 dap_devtype_display(cmd, v->devtype_memtype);
1721
1722 /* REVISIT also show ARM_CS_C9_DEVID */
1723
1724 if ((v->devarch & ARM_CS_C9_DEVARCH_PRESENT) == 0)
1725 return ERROR_OK;
1726
1727 unsigned int architect_id = ARM_CS_C9_DEVARCH_ARCHITECT(v->devarch);
1728 unsigned int revision = ARM_CS_C9_DEVARCH_REVISION(v->devarch);
1729 command_print(cmd, "\t\tDev Arch is 0x%08" PRIx32 ", %s \"%s\" rev.%u", v->devarch,
1730 jep106_manufacturer(architect_id), class0x9_devarch_description(v->devarch),
1731 revision);
1732
1733 if ((v->devarch & DEVARCH_ID_MASK) == DEVARCH_ROM_C_0X9) {
1734 command_print(cmd, "\t\tType is ROM table");
1735
1736 if (v->devid & ARM_CS_C9_DEVID_SYSMEM_MASK)
1737 command_print(cmd, "\t\tMEMTYPE system memory present on bus");
1738 else
1739 command_print(cmd, "\t\tMEMTYPE system memory not present: dedicated debug bus");
1740 }
1741 return ERROR_OK;
1742 }
1743
1744 /* Class other than 0x1 and 0x9 */
1745 return ERROR_OK;
1746 }
1747
1748 static int dap_info_rom_table_entry(struct command_invocation *cmd,
1749 int retval, int depth,
1750 unsigned int offset, uint32_t romentry)
1751 {
1752 char tabs[16] = "";
1753
1754 if (depth)
1755 snprintf(tabs, sizeof(tabs), "[L%02d] ", depth);
1756
1757 if (retval != ERROR_OK) {
1758 command_print(cmd, "\t%sROMTABLE[0x%x] Read error", tabs, offset);
1759 command_print(cmd, "\t\tUnable to continue");
1760 command_print(cmd, "\t%s\tStop parsing of ROM table", tabs);
1761 return retval;
1762 }
1763
1764 command_print(cmd, "\t%sROMTABLE[0x%x] = 0x%08" PRIx32,
1765 tabs, offset, romentry);
1766
1767 if (romentry == 0) {
1768 command_print(cmd, "\t%s\tEnd of ROM table", tabs);
1769 return ERROR_OK;
1770 }
1771
1772 if (!(romentry & ARM_CS_ROMENTRY_PRESENT)) {
1773 command_print(cmd, "\t\tComponent not present");
1774 return ERROR_OK;
1775 }
1776
1777 return ERROR_OK;
1778 }
1779
1780 enum adiv5_cfg_param {
1781 CFG_DAP,
1782 CFG_AP_NUM,
1783 CFG_BASEADDR,
1784 CFG_CTIBASE, /* DEPRECATED */
1785 };
1786
1787 static const struct jim_nvp nvp_config_opts[] = {
1788 { .name = "-dap", .value = CFG_DAP },
1789 { .name = "-ap-num", .value = CFG_AP_NUM },
1790 { .name = "-baseaddr", .value = CFG_BASEADDR },
1791 { .name = "-ctibase", .value = CFG_CTIBASE }, /* DEPRECATED */
1792 { .name = NULL, .value = -1 }
1793 };
1794
1795 static int adiv5_jim_spot_configure(struct jim_getopt_info *goi,
1796 struct adiv5_dap **dap_p, int *ap_num_p, uint32_t *base_p)
1797 {
1798 if (!goi->argc)
1799 return JIM_OK;
1800
1801 Jim_SetEmptyResult(goi->interp);
1802
1803 struct jim_nvp *n;
1804 int e = jim_nvp_name2value_obj(goi->interp, nvp_config_opts,
1805 goi->argv[0], &n);
1806 if (e != JIM_OK)
1807 return JIM_CONTINUE;
1808
1809 /* base_p can be NULL, then '-baseaddr' option is treated as unknown */
1810 if (!base_p && (n->value == CFG_BASEADDR || n->value == CFG_CTIBASE))
1811 return JIM_CONTINUE;
1812
1813 e = jim_getopt_obj(goi, NULL);
1814 if (e != JIM_OK)
1815 return e;
1816
1817 switch (n->value) {
1818 case CFG_DAP:
1819 if (goi->isconfigure) {
1820 Jim_Obj *o_t;
1821 struct adiv5_dap *dap;
1822 e = jim_getopt_obj(goi, &o_t);
1823 if (e != JIM_OK)
1824 return e;
1825 dap = dap_instance_by_jim_obj(goi->interp, o_t);
1826 if (!dap) {
1827 Jim_SetResultString(goi->interp, "DAP name invalid!", -1);
1828 return JIM_ERR;
1829 }
1830 if (*dap_p && *dap_p != dap) {
1831 Jim_SetResultString(goi->interp,
1832 "DAP assignment cannot be changed!", -1);
1833 return JIM_ERR;
1834 }
1835 *dap_p = dap;
1836 } else {
1837 if (goi->argc)
1838 goto err_no_param;
1839 if (!*dap_p) {
1840 Jim_SetResultString(goi->interp, "DAP not configured", -1);
1841 return JIM_ERR;
1842 }
1843 Jim_SetResultString(goi->interp, adiv5_dap_name(*dap_p), -1);
1844 }
1845 break;
1846
1847 case CFG_AP_NUM:
1848 if (goi->isconfigure) {
1849 jim_wide ap_num;
1850 e = jim_getopt_wide(goi, &ap_num);
1851 if (e != JIM_OK)
1852 return e;
1853 if (ap_num < 0 || ap_num > DP_APSEL_MAX) {
1854 Jim_SetResultString(goi->interp, "Invalid AP number!", -1);
1855 return JIM_ERR;
1856 }
1857 *ap_num_p = ap_num;
1858 } else {
1859 if (goi->argc)
1860 goto err_no_param;
1861 if (*ap_num_p == DP_APSEL_INVALID) {
1862 Jim_SetResultString(goi->interp, "AP number not configured", -1);
1863 return JIM_ERR;
1864 }
1865 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, *ap_num_p));
1866 }
1867 break;
1868
1869 case CFG_CTIBASE:
1870 LOG_WARNING("DEPRECATED! use \'-baseaddr' not \'-ctibase\'");
1871 /* fall through */
1872 case CFG_BASEADDR:
1873 if (goi->isconfigure) {
1874 jim_wide base;
1875 e = jim_getopt_wide(goi, &base);
1876 if (e != JIM_OK)
1877 return e;
1878 *base_p = (uint32_t)base;
1879 } else {
1880 if (goi->argc)
1881 goto err_no_param;
1882 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, *base_p));
1883 }
1884 break;
1885 };
1886
1887 return JIM_OK;
1888
1889 err_no_param:
1890 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "NO PARAMS");
1891 return JIM_ERR;
1892 }
1893
1894 int adiv5_jim_configure(struct target *target, struct jim_getopt_info *goi)
1895 {
1896 struct adiv5_private_config *pc;
1897 int e;
1898
1899 pc = (struct adiv5_private_config *)target->private_config;
1900 if (!pc) {
1901 pc = calloc(1, sizeof(struct adiv5_private_config));
1902 pc->ap_num = DP_APSEL_INVALID;
1903 target->private_config = pc;
1904 }
1905
1906 target->has_dap = true;
1907
1908 e = adiv5_jim_spot_configure(goi, &pc->dap, &pc->ap_num, NULL);
1909 if (e != JIM_OK)
1910 return e;
1911
1912 if (pc->dap && !target->dap_configured) {
1913 if (target->tap_configured) {
1914 pc->dap = NULL;
1915 Jim_SetResultString(goi->interp,
1916 "-chain-position and -dap configparams are mutually exclusive!", -1);
1917 return JIM_ERR;
1918 }
1919 target->tap = pc->dap->tap;
1920 target->dap_configured = true;
1921 }
1922
1923 return JIM_OK;
1924 }
1925
1926 int adiv5_verify_config(struct adiv5_private_config *pc)
1927 {
1928 if (!pc)
1929 return ERROR_FAIL;
1930
1931 if (!pc->dap)
1932 return ERROR_FAIL;
1933
1934 return ERROR_OK;
1935 }
1936
1937 int adiv5_jim_mem_ap_spot_configure(struct adiv5_mem_ap_spot *cfg,
1938 struct jim_getopt_info *goi)
1939 {
1940 return adiv5_jim_spot_configure(goi, &cfg->dap, &cfg->ap_num, &cfg->base);
1941 }
1942
1943 int adiv5_mem_ap_spot_init(struct adiv5_mem_ap_spot *p)
1944 {
1945 p->dap = NULL;
1946 p->ap_num = DP_APSEL_INVALID;
1947 p->base = 0;
1948 return ERROR_OK;
1949 }
1950
1951 COMMAND_HANDLER(handle_dap_info_command)
1952 {
1953 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1954 uint32_t apsel;
1955
1956 switch (CMD_ARGC) {
1957 case 0:
1958 apsel = dap->apsel;
1959 break;
1960 case 1:
1961 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1962 if (apsel > DP_APSEL_MAX) {
1963 command_print(CMD, "Invalid AP number");
1964 return ERROR_COMMAND_ARGUMENT_INVALID;
1965 }
1966 break;
1967 default:
1968 return ERROR_COMMAND_SYNTAX_ERROR;
1969 }
1970
1971 return dap_info_command(CMD, &dap->ap[apsel]);
1972 }
1973
1974 COMMAND_HANDLER(dap_baseaddr_command)
1975 {
1976 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1977 uint32_t apsel, baseaddr_lower, baseaddr_upper;
1978 struct adiv5_ap *ap;
1979 target_addr_t baseaddr;
1980 int retval;
1981
1982 baseaddr_upper = 0;
1983
1984 switch (CMD_ARGC) {
1985 case 0:
1986 apsel = dap->apsel;
1987 break;
1988 case 1:
1989 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1990 /* AP address is in bits 31:24 of DP_SELECT */
1991 if (apsel > DP_APSEL_MAX) {
1992 command_print(CMD, "Invalid AP number");
1993 return ERROR_COMMAND_ARGUMENT_INVALID;
1994 }
1995 break;
1996 default:
1997 return ERROR_COMMAND_SYNTAX_ERROR;
1998 }
1999
2000 /* NOTE: assumes we're talking to a MEM-AP, which
2001 * has a base address. There are other kinds of AP,
2002 * though they're not common for now. This should
2003 * use the ID register to verify it's a MEM-AP.
2004 */
2005
2006 ap = dap_ap(dap, apsel);
2007 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE, &baseaddr_lower);
2008
2009 if (retval == ERROR_OK && ap->cfg_reg == MEM_AP_REG_CFG_INVALID)
2010 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &ap->cfg_reg);
2011
2012 if (retval == ERROR_OK && (ap->cfg_reg == MEM_AP_REG_CFG_INVALID || is_64bit_ap(ap))) {
2013 /* MEM_AP_REG_BASE64 is defined as 'RES0'; can be read and then ignored on 32 bits AP */
2014 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE64, &baseaddr_upper);
2015 }
2016
2017 if (retval == ERROR_OK)
2018 retval = dap_run(dap);
2019 if (retval != ERROR_OK)
2020 return retval;
2021
2022 if (is_64bit_ap(ap)) {
2023 baseaddr = (((target_addr_t)baseaddr_upper) << 32) | baseaddr_lower;
2024 command_print(CMD, "0x%016" PRIx64, baseaddr);
2025 } else
2026 command_print(CMD, "0x%08" PRIx32, baseaddr_lower);
2027
2028 return ERROR_OK;
2029 }
2030
2031 COMMAND_HANDLER(dap_memaccess_command)
2032 {
2033 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2034 uint32_t memaccess_tck;
2035
2036 switch (CMD_ARGC) {
2037 case 0:
2038 memaccess_tck = dap->ap[dap->apsel].memaccess_tck;
2039 break;
2040 case 1:
2041 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
2042 break;
2043 default:
2044 return ERROR_COMMAND_SYNTAX_ERROR;
2045 }
2046 dap->ap[dap->apsel].memaccess_tck = memaccess_tck;
2047
2048 command_print(CMD, "memory bus access delay set to %" PRIu32 " tck",
2049 dap->ap[dap->apsel].memaccess_tck);
2050
2051 return ERROR_OK;
2052 }
2053
2054 COMMAND_HANDLER(dap_apsel_command)
2055 {
2056 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2057 uint32_t apsel;
2058
2059 switch (CMD_ARGC) {
2060 case 0:
2061 command_print(CMD, "%" PRIu32, dap->apsel);
2062 return ERROR_OK;
2063 case 1:
2064 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
2065 /* AP address is in bits 31:24 of DP_SELECT */
2066 if (apsel > DP_APSEL_MAX) {
2067 command_print(CMD, "Invalid AP number");
2068 return ERROR_COMMAND_ARGUMENT_INVALID;
2069 }
2070 break;
2071 default:
2072 return ERROR_COMMAND_SYNTAX_ERROR;
2073 }
2074
2075 dap->apsel = apsel;
2076 return ERROR_OK;
2077 }
2078
2079 COMMAND_HANDLER(dap_apcsw_command)
2080 {
2081 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2082 uint32_t apcsw = dap->ap[dap->apsel].csw_default;
2083 uint32_t csw_val, csw_mask;
2084
2085 switch (CMD_ARGC) {
2086 case 0:
2087 command_print(CMD, "ap %" PRIu32 " selected, csw 0x%8.8" PRIx32,
2088 dap->apsel, apcsw);
2089 return ERROR_OK;
2090 case 1:
2091 if (strcmp(CMD_ARGV[0], "default") == 0)
2092 csw_val = CSW_AHB_DEFAULT;
2093 else
2094 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], csw_val);
2095
2096 if (csw_val & (CSW_SIZE_MASK | CSW_ADDRINC_MASK)) {
2097 LOG_ERROR("CSW value cannot include 'Size' and 'AddrInc' bit-fields");
2098 return ERROR_COMMAND_ARGUMENT_INVALID;
2099 }
2100 apcsw = csw_val;
2101 break;
2102 case 2:
2103 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], csw_val);
2104 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], csw_mask);
2105 if (csw_mask & (CSW_SIZE_MASK | CSW_ADDRINC_MASK)) {
2106 LOG_ERROR("CSW mask cannot include 'Size' and 'AddrInc' bit-fields");
2107 return ERROR_COMMAND_ARGUMENT_INVALID;
2108 }
2109 apcsw = (apcsw & ~csw_mask) | (csw_val & csw_mask);
2110 break;
2111 default:
2112 return ERROR_COMMAND_SYNTAX_ERROR;
2113 }
2114 dap->ap[dap->apsel].csw_default = apcsw;
2115
2116 return 0;
2117 }
2118
2119
2120
2121 COMMAND_HANDLER(dap_apid_command)
2122 {
2123 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2124 uint32_t apsel, apid;
2125 int retval;
2126
2127 switch (CMD_ARGC) {
2128 case 0:
2129 apsel = dap->apsel;
2130 break;
2131 case 1:
2132 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
2133 /* AP address is in bits 31:24 of DP_SELECT */
2134 if (apsel > DP_APSEL_MAX) {
2135 command_print(CMD, "Invalid AP number");
2136 return ERROR_COMMAND_ARGUMENT_INVALID;
2137 }
2138 break;
2139 default:
2140 return ERROR_COMMAND_SYNTAX_ERROR;
2141 }
2142
2143 retval = dap_queue_ap_read(dap_ap(dap, apsel), AP_REG_IDR, &apid);
2144 if (retval != ERROR_OK)
2145 return retval;
2146 retval = dap_run(dap);
2147 if (retval != ERROR_OK)
2148 return retval;
2149
2150 command_print(CMD, "0x%8.8" PRIx32, apid);
2151
2152 return retval;
2153 }
2154
2155 COMMAND_HANDLER(dap_apreg_command)
2156 {
2157 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2158 uint32_t apsel, reg, value;
2159 struct adiv5_ap *ap;
2160 int retval;
2161
2162 if (CMD_ARGC < 2 || CMD_ARGC > 3)
2163 return ERROR_COMMAND_SYNTAX_ERROR;
2164
2165 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
2166 /* AP address is in bits 31:24 of DP_SELECT */
2167 if (apsel > DP_APSEL_MAX) {
2168 command_print(CMD, "Invalid AP number");
2169 return ERROR_COMMAND_ARGUMENT_INVALID;
2170 }
2171
2172 ap = dap_ap(dap, apsel);
2173
2174 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg);
2175 if (reg >= 256 || (reg & 3)) {
2176 command_print(CMD, "Invalid reg value (should be less than 256 and 4 bytes aligned)");
2177 return ERROR_COMMAND_ARGUMENT_INVALID;
2178 }
2179
2180 if (CMD_ARGC == 3) {
2181 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
2182 switch (reg) {
2183 case MEM_AP_REG_CSW:
2184 ap->csw_value = 0; /* invalid, in case write fails */
2185 retval = dap_queue_ap_write(ap, reg, value);
2186 if (retval == ERROR_OK)
2187 ap->csw_value = value;
2188 break;
2189 case MEM_AP_REG_TAR:
2190 retval = dap_queue_ap_write(ap, reg, value);
2191 if (retval == ERROR_OK)
2192 ap->tar_value = (ap->tar_value & ~0xFFFFFFFFull) | value;
2193 else {
2194 /* To track independent writes to TAR and TAR64, two tar_valid flags */
2195 /* should be used. To keep it simple, tar_valid is only invalidated on a */
2196 /* write fail. This approach causes a later re-write of the TAR and TAR64 */
2197 /* if tar_valid is false. */
2198 ap->tar_valid = false;
2199 }
2200 break;
2201 case MEM_AP_REG_TAR64:
2202 retval = dap_queue_ap_write(ap, reg, value);
2203 if (retval == ERROR_OK)
2204 ap->tar_value = (ap->tar_value & 0xFFFFFFFFull) | (((target_addr_t)value) << 32);
2205 else {
2206 /* See above comment for the MEM_AP_REG_TAR failed write case */
2207 ap->tar_valid = false;
2208 }
2209 break;
2210 default:
2211 retval = dap_queue_ap_write(ap, reg, value);
2212 break;
2213 }
2214 } else {
2215 retval = dap_queue_ap_read(ap, reg, &value);
2216 }
2217 if (retval == ERROR_OK)
2218 retval = dap_run(dap);
2219
2220 if (retval != ERROR_OK)
2221 return retval;
2222
2223 if (CMD_ARGC == 2)
2224 command_print(CMD, "0x%08" PRIx32, value);
2225
2226 return retval;
2227 }
2228
2229 COMMAND_HANDLER(dap_dpreg_command)
2230 {
2231 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2232 uint32_t reg, value;
2233 int retval;
2234
2235 if (CMD_ARGC < 1 || CMD_ARGC > 2)
2236 return ERROR_COMMAND_SYNTAX_ERROR;
2237
2238 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], reg);
2239 if (reg >= 256 || (reg & 3)) {
2240 command_print(CMD, "Invalid reg value (should be less than 256 and 4 bytes aligned)");
2241 return ERROR_COMMAND_ARGUMENT_INVALID;
2242 }
2243
2244 if (CMD_ARGC == 2) {
2245 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2246 retval = dap_queue_dp_write(dap, reg, value);
2247 } else {
2248 retval = dap_queue_dp_read(dap, reg, &value);
2249 }
2250 if (retval == ERROR_OK)
2251 retval = dap_run(dap);
2252
2253 if (retval != ERROR_OK)
2254 return retval;
2255
2256 if (CMD_ARGC == 1)
2257 command_print(CMD, "0x%08" PRIx32, value);
2258
2259 return retval;
2260 }
2261
2262 COMMAND_HANDLER(dap_ti_be_32_quirks_command)
2263 {
2264 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2265 return CALL_COMMAND_HANDLER(handle_command_parse_bool, &dap->ti_be_32_quirks,
2266 "TI BE-32 quirks mode");
2267 }
2268
2269 const struct command_registration dap_instance_commands[] = {
2270 {
2271 .name = "info",
2272 .handler = handle_dap_info_command,
2273 .mode = COMMAND_EXEC,
2274 .help = "display ROM table for MEM-AP "
2275 "(default currently selected AP)",
2276 .usage = "[ap_num]",
2277 },
2278 {
2279 .name = "apsel",
2280 .handler = dap_apsel_command,
2281 .mode = COMMAND_ANY,
2282 .help = "Set the currently selected AP (default 0) "
2283 "and display the result",
2284 .usage = "[ap_num]",
2285 },
2286 {
2287 .name = "apcsw",
2288 .handler = dap_apcsw_command,
2289 .mode = COMMAND_ANY,
2290 .help = "Set CSW default bits",
2291 .usage = "[value [mask]]",
2292 },
2293
2294 {
2295 .name = "apid",
2296 .handler = dap_apid_command,
2297 .mode = COMMAND_EXEC,
2298 .help = "return ID register from AP "
2299 "(default currently selected AP)",
2300 .usage = "[ap_num]",
2301 },
2302 {
2303 .name = "apreg",
2304 .handler = dap_apreg_command,
2305 .mode = COMMAND_EXEC,
2306 .help = "read/write a register from AP "
2307 "(reg is byte address of a word register, like 0 4 8...)",
2308 .usage = "ap_num reg [value]",
2309 },
2310 {
2311 .name = "dpreg",
2312 .handler = dap_dpreg_command,
2313 .mode = COMMAND_EXEC,
2314 .help = "read/write a register from DP "
2315 "(reg is byte address (bank << 4 | reg) of a word register, like 0 4 8...)",
2316 .usage = "reg [value]",
2317 },
2318 {
2319 .name = "baseaddr",
2320 .handler = dap_baseaddr_command,
2321 .mode = COMMAND_EXEC,
2322 .help = "return debug base address from MEM-AP "
2323 "(default currently selected AP)",
2324 .usage = "[ap_num]",
2325 },
2326 {
2327 .name = "memaccess",
2328 .handler = dap_memaccess_command,
2329 .mode = COMMAND_EXEC,
2330 .help = "set/get number of extra tck for MEM-AP memory "
2331 "bus access [0-255]",
2332 .usage = "[cycles]",
2333 },
2334 {
2335 .name = "ti_be_32_quirks",
2336 .handler = dap_ti_be_32_quirks_command,
2337 .mode = COMMAND_CONFIG,
2338 .help = "set/get quirks mode for TI TMS450/TMS570 processors",
2339 .usage = "[enable]",
2340 },
2341 COMMAND_REGISTRATION_DONE
2342 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)