arm_adi_v5: add arm Neoverse N2 part numbers
[openocd.git] / src / target / arm_adi_v5.c
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * Copyright (C) 2013 by Andreas Fritiofson *
14 * andreas.fritiofson@gmail.com *
15 * *
16 * Copyright (C) 2019-2021, Ampere Computing LLC *
17 * *
18 * This program is free software; you can redistribute it and/or modify *
19 * it under the terms of the GNU General Public License as published by *
20 * the Free Software Foundation; either version 2 of the License, or *
21 * (at your option) any later version. *
22 * *
23 * This program is distributed in the hope that it will be useful, *
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
26 * GNU General Public License for more details. *
27 * *
28 * You should have received a copy of the GNU General Public License *
29 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
30 ***************************************************************************/
31
32 /**
33 * @file
34 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
35 * debugging architecture. Compared with previous versions, this includes
36 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
37 * transport, and focuses on memory mapped resources as defined by the
38 * CoreSight architecture.
39 *
40 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
41 * basic components: a Debug Port (DP) transporting messages to and from a
42 * debugger, and an Access Port (AP) accessing resources. Three types of DP
43 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
44 * One uses only SWD for communication, and is called SW-DP. The third can
45 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
46 * is used to access memory mapped resources and is called a MEM-AP. Also a
47 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
48 *
49 * This programming interface allows DAP pipelined operations through a
50 * transaction queue. This primarily affects AP operations (such as using
51 * a MEM-AP to access memory or registers). If the current transaction has
52 * not finished by the time the next one must begin, and the ORUNDETECT bit
53 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
54 * further AP operations will fail. There are two basic methods to avoid
55 * such overrun errors. One involves polling for status instead of using
56 * transaction pipelining. The other involves adding delays to ensure the
57 * AP has enough time to complete one operation before starting the next
58 * one. (For JTAG these delays are controlled by memaccess_tck.)
59 */
60
61 /*
62 * Relevant specifications from ARM include:
63 *
64 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031E
65 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
66 *
67 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
68 * Cortex-M3(tm) TRM, ARM DDI 0337G
69 */
70
71 #ifdef HAVE_CONFIG_H
72 #include "config.h"
73 #endif
74
75 #include "jtag/interface.h"
76 #include "arm.h"
77 #include "arm_adi_v5.h"
78 #include "arm_coresight.h"
79 #include "jtag/swd.h"
80 #include "transport/transport.h"
81 #include <helper/align.h>
82 #include <helper/jep106.h>
83 #include <helper/time_support.h>
84 #include <helper/list.h>
85 #include <helper/jim-nvp.h>
86
87 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
88
89 /*
90 uint32_t tar_block_size(uint32_t address)
91 Return the largest block starting at address that does not cross a tar block size alignment boundary
92 */
93 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, target_addr_t address)
94 {
95 return tar_autoincr_block - ((tar_autoincr_block - 1) & address);
96 }
97
98 /***************************************************************************
99 * *
100 * DP and MEM-AP register access through APACC and DPACC *
101 * *
102 ***************************************************************************/
103
104 static int mem_ap_setup_csw(struct adiv5_ap *ap, uint32_t csw)
105 {
106 csw |= ap->csw_default;
107
108 if (csw != ap->csw_value) {
109 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
110 int retval = dap_queue_ap_write(ap, MEM_AP_REG_CSW, csw);
111 if (retval != ERROR_OK) {
112 ap->csw_value = 0;
113 return retval;
114 }
115 ap->csw_value = csw;
116 }
117 return ERROR_OK;
118 }
119
120 static int mem_ap_setup_tar(struct adiv5_ap *ap, target_addr_t tar)
121 {
122 if (!ap->tar_valid || tar != ap->tar_value) {
123 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
124 int retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR, (uint32_t)(tar & 0xffffffffUL));
125 if (retval == ERROR_OK && is_64bit_ap(ap)) {
126 /* See if bits 63:32 of tar is different from last setting */
127 if ((ap->tar_value >> 32) != (tar >> 32))
128 retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR64, (uint32_t)(tar >> 32));
129 }
130 if (retval != ERROR_OK) {
131 ap->tar_valid = false;
132 return retval;
133 }
134 ap->tar_value = tar;
135 ap->tar_valid = true;
136 }
137 return ERROR_OK;
138 }
139
140 static int mem_ap_read_tar(struct adiv5_ap *ap, target_addr_t *tar)
141 {
142 uint32_t lower;
143 uint32_t upper = 0;
144
145 int retval = dap_queue_ap_read(ap, MEM_AP_REG_TAR, &lower);
146 if (retval == ERROR_OK && is_64bit_ap(ap))
147 retval = dap_queue_ap_read(ap, MEM_AP_REG_TAR64, &upper);
148
149 if (retval != ERROR_OK) {
150 ap->tar_valid = false;
151 return retval;
152 }
153
154 retval = dap_run(ap->dap);
155 if (retval != ERROR_OK) {
156 ap->tar_valid = false;
157 return retval;
158 }
159
160 *tar = (((target_addr_t)upper) << 32) | (target_addr_t)lower;
161
162 ap->tar_value = *tar;
163 ap->tar_valid = true;
164 return ERROR_OK;
165 }
166
167 static uint32_t mem_ap_get_tar_increment(struct adiv5_ap *ap)
168 {
169 switch (ap->csw_value & CSW_ADDRINC_MASK) {
170 case CSW_ADDRINC_SINGLE:
171 switch (ap->csw_value & CSW_SIZE_MASK) {
172 case CSW_8BIT:
173 return 1;
174 case CSW_16BIT:
175 return 2;
176 case CSW_32BIT:
177 return 4;
178 default:
179 return 0;
180 }
181 case CSW_ADDRINC_PACKED:
182 return 4;
183 }
184 return 0;
185 }
186
187 /* mem_ap_update_tar_cache is called after an access to MEM_AP_REG_DRW
188 */
189 static void mem_ap_update_tar_cache(struct adiv5_ap *ap)
190 {
191 if (!ap->tar_valid)
192 return;
193
194 uint32_t inc = mem_ap_get_tar_increment(ap);
195 if (inc >= max_tar_block_size(ap->tar_autoincr_block, ap->tar_value))
196 ap->tar_valid = false;
197 else
198 ap->tar_value += inc;
199 }
200
201 /**
202 * Queue transactions setting up transfer parameters for the
203 * currently selected MEM-AP.
204 *
205 * Subsequent transfers using registers like MEM_AP_REG_DRW or MEM_AP_REG_BD2
206 * initiate data reads or writes using memory or peripheral addresses.
207 * If the CSW is configured for it, the TAR may be automatically
208 * incremented after each transfer.
209 *
210 * @param ap The MEM-AP.
211 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
212 * matches the cached value, the register is not changed.
213 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
214 * matches the cached address, the register is not changed.
215 *
216 * @return ERROR_OK if the transaction was properly queued, else a fault code.
217 */
218 static int mem_ap_setup_transfer(struct adiv5_ap *ap, uint32_t csw, target_addr_t tar)
219 {
220 int retval;
221 retval = mem_ap_setup_csw(ap, csw);
222 if (retval != ERROR_OK)
223 return retval;
224 retval = mem_ap_setup_tar(ap, tar);
225 if (retval != ERROR_OK)
226 return retval;
227 return ERROR_OK;
228 }
229
230 /**
231 * Asynchronous (queued) read of a word from memory or a system register.
232 *
233 * @param ap The MEM-AP to access.
234 * @param address Address of the 32-bit word to read; it must be
235 * readable by the currently selected MEM-AP.
236 * @param value points to where the word will be stored when the
237 * transaction queue is flushed (assuming no errors).
238 *
239 * @return ERROR_OK for success. Otherwise a fault code.
240 */
241 int mem_ap_read_u32(struct adiv5_ap *ap, target_addr_t address,
242 uint32_t *value)
243 {
244 int retval;
245
246 /* Use banked addressing (REG_BDx) to avoid some link traffic
247 * (updating TAR) when reading several consecutive addresses.
248 */
249 retval = mem_ap_setup_transfer(ap,
250 CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK),
251 address & 0xFFFFFFFFFFFFFFF0ull);
252 if (retval != ERROR_OK)
253 return retval;
254
255 return dap_queue_ap_read(ap, MEM_AP_REG_BD0 | (address & 0xC), value);
256 }
257
258 /**
259 * Synchronous read of a word from memory or a system register.
260 * As a side effect, this flushes any queued transactions.
261 *
262 * @param ap The MEM-AP to access.
263 * @param address Address of the 32-bit word to read; it must be
264 * readable by the currently selected MEM-AP.
265 * @param value points to where the result will be stored.
266 *
267 * @return ERROR_OK for success; *value holds the result.
268 * Otherwise a fault code.
269 */
270 int mem_ap_read_atomic_u32(struct adiv5_ap *ap, target_addr_t address,
271 uint32_t *value)
272 {
273 int retval;
274
275 retval = mem_ap_read_u32(ap, address, value);
276 if (retval != ERROR_OK)
277 return retval;
278
279 return dap_run(ap->dap);
280 }
281
282 /**
283 * Asynchronous (queued) write of a word to memory or a system register.
284 *
285 * @param ap The MEM-AP to access.
286 * @param address Address to be written; it must be writable by
287 * the currently selected MEM-AP.
288 * @param value Word that will be written to the address when transaction
289 * queue is flushed (assuming no errors).
290 *
291 * @return ERROR_OK for success. Otherwise a fault code.
292 */
293 int mem_ap_write_u32(struct adiv5_ap *ap, target_addr_t address,
294 uint32_t value)
295 {
296 int retval;
297
298 /* Use banked addressing (REG_BDx) to avoid some link traffic
299 * (updating TAR) when writing several consecutive addresses.
300 */
301 retval = mem_ap_setup_transfer(ap,
302 CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK),
303 address & 0xFFFFFFFFFFFFFFF0ull);
304 if (retval != ERROR_OK)
305 return retval;
306
307 return dap_queue_ap_write(ap, MEM_AP_REG_BD0 | (address & 0xC),
308 value);
309 }
310
311 /**
312 * Synchronous write of a word to memory or a system register.
313 * As a side effect, this flushes any queued transactions.
314 *
315 * @param ap The MEM-AP to access.
316 * @param address Address to be written; it must be writable by
317 * the currently selected MEM-AP.
318 * @param value Word that will be written.
319 *
320 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
321 */
322 int mem_ap_write_atomic_u32(struct adiv5_ap *ap, target_addr_t address,
323 uint32_t value)
324 {
325 int retval = mem_ap_write_u32(ap, address, value);
326
327 if (retval != ERROR_OK)
328 return retval;
329
330 return dap_run(ap->dap);
331 }
332
333 /**
334 * Synchronous write of a block of memory, using a specific access size.
335 *
336 * @param ap The MEM-AP to access.
337 * @param buffer The data buffer to write. No particular alignment is assumed.
338 * @param size Which access size to use, in bytes. 1, 2 or 4.
339 * @param count The number of writes to do (in size units, not bytes).
340 * @param address Address to be written; it must be writable by the currently selected MEM-AP.
341 * @param addrinc Whether the target address should be increased for each write or not. This
342 * should normally be true, except when writing to e.g. a FIFO.
343 * @return ERROR_OK on success, otherwise an error code.
344 */
345 static int mem_ap_write(struct adiv5_ap *ap, const uint8_t *buffer, uint32_t size, uint32_t count,
346 target_addr_t address, bool addrinc)
347 {
348 struct adiv5_dap *dap = ap->dap;
349 size_t nbytes = size * count;
350 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
351 uint32_t csw_size;
352 target_addr_t addr_xor;
353 int retval = ERROR_OK;
354
355 /* TI BE-32 Quirks mode:
356 * Writes on big-endian TMS570 behave very strangely. Observed behavior:
357 * size write address bytes written in order
358 * 4 TAR ^ 0 (val >> 24), (val >> 16), (val >> 8), (val)
359 * 2 TAR ^ 2 (val >> 8), (val)
360 * 1 TAR ^ 3 (val)
361 * For example, if you attempt to write a single byte to address 0, the processor
362 * will actually write a byte to address 3.
363 *
364 * To make writes of size < 4 work as expected, we xor a value with the address before
365 * setting the TAP, and we set the TAP after every transfer rather then relying on
366 * address increment. */
367
368 if (size == 4) {
369 csw_size = CSW_32BIT;
370 addr_xor = 0;
371 } else if (size == 2) {
372 csw_size = CSW_16BIT;
373 addr_xor = dap->ti_be_32_quirks ? 2 : 0;
374 } else if (size == 1) {
375 csw_size = CSW_8BIT;
376 addr_xor = dap->ti_be_32_quirks ? 3 : 0;
377 } else {
378 return ERROR_TARGET_UNALIGNED_ACCESS;
379 }
380
381 if (ap->unaligned_access_bad && (address % size != 0))
382 return ERROR_TARGET_UNALIGNED_ACCESS;
383
384 while (nbytes > 0) {
385 uint32_t this_size = size;
386
387 /* Select packed transfer if possible */
388 if (addrinc && ap->packed_transfers && nbytes >= 4
389 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
390 this_size = 4;
391 retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
392 } else {
393 retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
394 }
395
396 if (retval != ERROR_OK)
397 break;
398
399 retval = mem_ap_setup_tar(ap, address ^ addr_xor);
400 if (retval != ERROR_OK)
401 return retval;
402
403 /* How many source bytes each transfer will consume, and their location in the DRW,
404 * depends on the type of transfer and alignment. See ARM document IHI0031C. */
405 uint32_t outvalue = 0;
406 uint32_t drw_byte_idx = address;
407 if (dap->ti_be_32_quirks) {
408 switch (this_size) {
409 case 4:
410 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
411 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
412 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
413 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx & 3) ^ addr_xor);
414 break;
415 case 2:
416 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx++ & 3) ^ addr_xor);
417 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx & 3) ^ addr_xor);
418 break;
419 case 1:
420 outvalue |= (uint32_t)*buffer++ << 8 * (0 ^ (drw_byte_idx & 3) ^ addr_xor);
421 break;
422 }
423 } else {
424 switch (this_size) {
425 case 4:
426 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
427 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
428 /* fallthrough */
429 case 2:
430 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
431 /* fallthrough */
432 case 1:
433 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx & 3);
434 }
435 }
436
437 nbytes -= this_size;
438
439 retval = dap_queue_ap_write(ap, MEM_AP_REG_DRW, outvalue);
440 if (retval != ERROR_OK)
441 break;
442
443 mem_ap_update_tar_cache(ap);
444 if (addrinc)
445 address += this_size;
446 }
447
448 /* REVISIT: Might want to have a queued version of this function that does not run. */
449 if (retval == ERROR_OK)
450 retval = dap_run(dap);
451
452 if (retval != ERROR_OK) {
453 target_addr_t tar;
454 if (mem_ap_read_tar(ap, &tar) == ERROR_OK)
455 LOG_ERROR("Failed to write memory at " TARGET_ADDR_FMT, tar);
456 else
457 LOG_ERROR("Failed to write memory and, additionally, failed to find out where");
458 }
459
460 return retval;
461 }
462
463 /**
464 * Synchronous read of a block of memory, using a specific access size.
465 *
466 * @param ap The MEM-AP to access.
467 * @param buffer The data buffer to receive the data. No particular alignment is assumed.
468 * @param size Which access size to use, in bytes. 1, 2 or 4.
469 * @param count The number of reads to do (in size units, not bytes).
470 * @param adr Address to be read; it must be readable by the currently selected MEM-AP.
471 * @param addrinc Whether the target address should be increased after each read or not. This
472 * should normally be true, except when reading from e.g. a FIFO.
473 * @return ERROR_OK on success, otherwise an error code.
474 */
475 static int mem_ap_read(struct adiv5_ap *ap, uint8_t *buffer, uint32_t size, uint32_t count,
476 target_addr_t adr, bool addrinc)
477 {
478 struct adiv5_dap *dap = ap->dap;
479 size_t nbytes = size * count;
480 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
481 uint32_t csw_size;
482 target_addr_t address = adr;
483 int retval = ERROR_OK;
484
485 /* TI BE-32 Quirks mode:
486 * Reads on big-endian TMS570 behave strangely differently than writes.
487 * They read from the physical address requested, but with DRW byte-reversed.
488 * For example, a byte read from address 0 will place the result in the high bytes of DRW.
489 * Also, packed 8-bit and 16-bit transfers seem to sometimes return garbage in some bytes,
490 * so avoid them. */
491
492 if (size == 4)
493 csw_size = CSW_32BIT;
494 else if (size == 2)
495 csw_size = CSW_16BIT;
496 else if (size == 1)
497 csw_size = CSW_8BIT;
498 else
499 return ERROR_TARGET_UNALIGNED_ACCESS;
500
501 if (ap->unaligned_access_bad && (adr % size != 0))
502 return ERROR_TARGET_UNALIGNED_ACCESS;
503
504 /* Allocate buffer to hold the sequence of DRW reads that will be made. This is a significant
505 * over-allocation if packed transfers are going to be used, but determining the real need at
506 * this point would be messy. */
507 uint32_t *read_buf = calloc(count, sizeof(uint32_t));
508 /* Multiplication count * sizeof(uint32_t) may overflow, calloc() is safe */
509 uint32_t *read_ptr = read_buf;
510 if (!read_buf) {
511 LOG_ERROR("Failed to allocate read buffer");
512 return ERROR_FAIL;
513 }
514
515 /* Queue up all reads. Each read will store the entire DRW word in the read buffer. How many
516 * useful bytes it contains, and their location in the word, depends on the type of transfer
517 * and alignment. */
518 while (nbytes > 0) {
519 uint32_t this_size = size;
520
521 /* Select packed transfer if possible */
522 if (addrinc && ap->packed_transfers && nbytes >= 4
523 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
524 this_size = 4;
525 retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
526 } else {
527 retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
528 }
529 if (retval != ERROR_OK)
530 break;
531
532 retval = mem_ap_setup_tar(ap, address);
533 if (retval != ERROR_OK)
534 break;
535
536 retval = dap_queue_ap_read(ap, MEM_AP_REG_DRW, read_ptr++);
537 if (retval != ERROR_OK)
538 break;
539
540 nbytes -= this_size;
541 if (addrinc)
542 address += this_size;
543
544 mem_ap_update_tar_cache(ap);
545 }
546
547 if (retval == ERROR_OK)
548 retval = dap_run(dap);
549
550 /* Restore state */
551 address = adr;
552 nbytes = size * count;
553 read_ptr = read_buf;
554
555 /* If something failed, read TAR to find out how much data was successfully read, so we can
556 * at least give the caller what we have. */
557 if (retval != ERROR_OK) {
558 target_addr_t tar;
559 if (mem_ap_read_tar(ap, &tar) == ERROR_OK) {
560 /* TAR is incremented after failed transfer on some devices (eg Cortex-M4) */
561 LOG_ERROR("Failed to read memory at " TARGET_ADDR_FMT, tar);
562 if (nbytes > tar - address)
563 nbytes = tar - address;
564 } else {
565 LOG_ERROR("Failed to read memory and, additionally, failed to find out where");
566 nbytes = 0;
567 }
568 }
569
570 /* Replay loop to populate caller's buffer from the correct word and byte lane */
571 while (nbytes > 0) {
572 uint32_t this_size = size;
573
574 if (addrinc && ap->packed_transfers && nbytes >= 4
575 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
576 this_size = 4;
577 }
578
579 if (dap->ti_be_32_quirks) {
580 switch (this_size) {
581 case 4:
582 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
583 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
584 /* fallthrough */
585 case 2:
586 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
587 /* fallthrough */
588 case 1:
589 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
590 }
591 } else {
592 switch (this_size) {
593 case 4:
594 *buffer++ = *read_ptr >> 8 * (address++ & 3);
595 *buffer++ = *read_ptr >> 8 * (address++ & 3);
596 /* fallthrough */
597 case 2:
598 *buffer++ = *read_ptr >> 8 * (address++ & 3);
599 /* fallthrough */
600 case 1:
601 *buffer++ = *read_ptr >> 8 * (address++ & 3);
602 }
603 }
604
605 read_ptr++;
606 nbytes -= this_size;
607 }
608
609 free(read_buf);
610 return retval;
611 }
612
613 int mem_ap_read_buf(struct adiv5_ap *ap,
614 uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
615 {
616 return mem_ap_read(ap, buffer, size, count, address, true);
617 }
618
619 int mem_ap_write_buf(struct adiv5_ap *ap,
620 const uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
621 {
622 return mem_ap_write(ap, buffer, size, count, address, true);
623 }
624
625 int mem_ap_read_buf_noincr(struct adiv5_ap *ap,
626 uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
627 {
628 return mem_ap_read(ap, buffer, size, count, address, false);
629 }
630
631 int mem_ap_write_buf_noincr(struct adiv5_ap *ap,
632 const uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
633 {
634 return mem_ap_write(ap, buffer, size, count, address, false);
635 }
636
637 /*--------------------------------------------------------------------------*/
638
639
640 #define DAP_POWER_DOMAIN_TIMEOUT (10)
641
642 /*--------------------------------------------------------------------------*/
643
644 /**
645 * Invalidate cached DP select and cached TAR and CSW of all APs
646 */
647 void dap_invalidate_cache(struct adiv5_dap *dap)
648 {
649 dap->select = DP_SELECT_INVALID;
650 dap->last_read = NULL;
651
652 int i;
653 for (i = 0; i <= DP_APSEL_MAX; i++) {
654 /* force csw and tar write on the next mem-ap access */
655 dap->ap[i].tar_valid = false;
656 dap->ap[i].csw_value = 0;
657 }
658 }
659
660 /**
661 * Initialize a DAP. This sets up the power domains, prepares the DP
662 * for further use and activates overrun checking.
663 *
664 * @param dap The DAP being initialized.
665 */
666 int dap_dp_init(struct adiv5_dap *dap)
667 {
668 int retval;
669
670 LOG_DEBUG("%s", adiv5_dap_name(dap));
671
672 dap->do_reconnect = false;
673 dap_invalidate_cache(dap);
674
675 /*
676 * Early initialize dap->dp_ctrl_stat.
677 * In jtag mode only, if the following queue run (in dap_dp_poll_register)
678 * fails and sets the sticky error, it will trigger the clearing
679 * of the sticky. Without this initialization system and debug power
680 * would be disabled while clearing the sticky error bit.
681 */
682 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
683
684 /*
685 * This write operation clears the sticky error bit in jtag mode only and
686 * is ignored in swd mode. It also powers-up system and debug domains in
687 * both jtag and swd modes, if not done before.
688 */
689 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat | SSTICKYERR);
690 if (retval != ERROR_OK)
691 return retval;
692
693 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
694 if (retval != ERROR_OK)
695 return retval;
696
697 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
698 if (retval != ERROR_OK)
699 return retval;
700
701 /* Check that we have debug power domains activated */
702 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
703 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
704 CDBGPWRUPACK, CDBGPWRUPACK,
705 DAP_POWER_DOMAIN_TIMEOUT);
706 if (retval != ERROR_OK)
707 return retval;
708
709 if (!dap->ignore_syspwrupack) {
710 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
711 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
712 CSYSPWRUPACK, CSYSPWRUPACK,
713 DAP_POWER_DOMAIN_TIMEOUT);
714 if (retval != ERROR_OK)
715 return retval;
716 }
717
718 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
719 if (retval != ERROR_OK)
720 return retval;
721
722 /* With debug power on we can activate OVERRUN checking */
723 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
724 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
725 if (retval != ERROR_OK)
726 return retval;
727 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
728 if (retval != ERROR_OK)
729 return retval;
730
731 retval = dap_run(dap);
732 if (retval != ERROR_OK)
733 return retval;
734
735 return retval;
736 }
737
738 /**
739 * Initialize a DAP or do reconnect if DAP is not accessible.
740 *
741 * @param dap The DAP being initialized.
742 */
743 int dap_dp_init_or_reconnect(struct adiv5_dap *dap)
744 {
745 LOG_DEBUG("%s", adiv5_dap_name(dap));
746
747 /*
748 * Early initialize dap->dp_ctrl_stat.
749 * In jtag mode only, if the following atomic reads fail and set the
750 * sticky error, it will trigger the clearing of the sticky. Without this
751 * initialization system and debug power would be disabled while clearing
752 * the sticky error bit.
753 */
754 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
755
756 dap->do_reconnect = false;
757
758 dap_dp_read_atomic(dap, DP_CTRL_STAT, NULL);
759 if (dap->do_reconnect) {
760 /* dap connect calls dap_dp_init() after transport dependent initialization */
761 return dap->ops->connect(dap);
762 } else {
763 return dap_dp_init(dap);
764 }
765 }
766
767 /**
768 * Initialize a DAP. This sets up the power domains, prepares the DP
769 * for further use, and arranges to use AP #0 for all AP operations
770 * until dap_ap-select() changes that policy.
771 *
772 * @param ap The MEM-AP being initialized.
773 */
774 int mem_ap_init(struct adiv5_ap *ap)
775 {
776 /* check that we support packed transfers */
777 uint32_t csw, cfg;
778 int retval;
779 struct adiv5_dap *dap = ap->dap;
780
781 /* Set ap->cfg_reg before calling mem_ap_setup_transfer(). */
782 /* mem_ap_setup_transfer() needs to know if the MEM_AP supports LPAE. */
783 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &cfg);
784 if (retval != ERROR_OK)
785 return retval;
786
787 retval = dap_run(dap);
788 if (retval != ERROR_OK)
789 return retval;
790
791 ap->cfg_reg = cfg;
792 ap->tar_valid = false;
793 ap->csw_value = 0; /* force csw and tar write */
794 retval = mem_ap_setup_transfer(ap, CSW_8BIT | CSW_ADDRINC_PACKED, 0);
795 if (retval != ERROR_OK)
796 return retval;
797
798 retval = dap_queue_ap_read(ap, MEM_AP_REG_CSW, &csw);
799 if (retval != ERROR_OK)
800 return retval;
801
802 retval = dap_run(dap);
803 if (retval != ERROR_OK)
804 return retval;
805
806 if (csw & CSW_ADDRINC_PACKED)
807 ap->packed_transfers = true;
808 else
809 ap->packed_transfers = false;
810
811 /* Packed transfers on TI BE-32 processors do not work correctly in
812 * many cases. */
813 if (dap->ti_be_32_quirks)
814 ap->packed_transfers = false;
815
816 LOG_DEBUG("MEM_AP Packed Transfers: %s",
817 ap->packed_transfers ? "enabled" : "disabled");
818
819 /* The ARM ADI spec leaves implementation-defined whether unaligned
820 * memory accesses work, only work partially, or cause a sticky error.
821 * On TI BE-32 processors, reads seem to return garbage in some bytes
822 * and unaligned writes seem to cause a sticky error.
823 * TODO: it would be nice to have a way to detect whether unaligned
824 * operations are supported on other processors. */
825 ap->unaligned_access_bad = dap->ti_be_32_quirks;
826
827 LOG_DEBUG("MEM_AP CFG: large data %d, long address %d, big-endian %d",
828 !!(cfg & MEM_AP_REG_CFG_LD), !!(cfg & MEM_AP_REG_CFG_LA), !!(cfg & MEM_AP_REG_CFG_BE));
829
830 return ERROR_OK;
831 }
832
833 /**
834 * Put the debug link into SWD mode, if the target supports it.
835 * The link's initial mode may be either JTAG (for example,
836 * with SWJ-DP after reset) or SWD.
837 *
838 * Note that targets using the JTAG-DP do not support SWD, and that
839 * some targets which could otherwise support it may have been
840 * configured to disable SWD signaling
841 *
842 * @param dap The DAP used
843 * @return ERROR_OK or else a fault code.
844 */
845 int dap_to_swd(struct adiv5_dap *dap)
846 {
847 LOG_DEBUG("Enter SWD mode");
848
849 return dap_send_sequence(dap, JTAG_TO_SWD);
850 }
851
852 /**
853 * Put the debug link into JTAG mode, if the target supports it.
854 * The link's initial mode may be either SWD or JTAG.
855 *
856 * Note that targets implemented with SW-DP do not support JTAG, and
857 * that some targets which could otherwise support it may have been
858 * configured to disable JTAG signaling
859 *
860 * @param dap The DAP used
861 * @return ERROR_OK or else a fault code.
862 */
863 int dap_to_jtag(struct adiv5_dap *dap)
864 {
865 LOG_DEBUG("Enter JTAG mode");
866
867 return dap_send_sequence(dap, SWD_TO_JTAG);
868 }
869
870 /* CID interpretation -- see ARM IHI 0029E table B2-7
871 * and ARM IHI 0031E table D1-2.
872 *
873 * From 2009/11/25 commit 21378f58b604:
874 * "OptimoDE DESS" is ARM's semicustom DSPish stuff.
875 * Let's keep it as is, for the time being
876 */
877 static const char *class_description[16] = {
878 [0x0] = "Generic verification component",
879 [0x1] = "ROM table",
880 [0x2] = "Reserved",
881 [0x3] = "Reserved",
882 [0x4] = "Reserved",
883 [0x5] = "Reserved",
884 [0x6] = "Reserved",
885 [0x7] = "Reserved",
886 [0x8] = "Reserved",
887 [0x9] = "CoreSight component",
888 [0xA] = "Reserved",
889 [0xB] = "Peripheral Test Block",
890 [0xC] = "Reserved",
891 [0xD] = "OptimoDE DESS", /* see above */
892 [0xE] = "Generic IP component",
893 [0xF] = "CoreLink, PrimeCell or System component",
894 };
895
896 static const struct {
897 enum ap_type type;
898 const char *description;
899 } ap_types[] = {
900 { AP_TYPE_JTAG_AP, "JTAG-AP" },
901 { AP_TYPE_COM_AP, "COM-AP" },
902 { AP_TYPE_AHB3_AP, "MEM-AP AHB3" },
903 { AP_TYPE_APB_AP, "MEM-AP APB2 or APB3" },
904 { AP_TYPE_AXI_AP, "MEM-AP AXI3 or AXI4" },
905 { AP_TYPE_AHB5_AP, "MEM-AP AHB5" },
906 { AP_TYPE_APB4_AP, "MEM-AP APB4" },
907 { AP_TYPE_AXI5_AP, "MEM-AP AXI5" },
908 { AP_TYPE_AHB5H_AP, "MEM-AP AHB5 with enhanced HPROT" },
909 };
910
911 static const char *ap_type_to_description(enum ap_type type)
912 {
913 for (unsigned int i = 0; i < ARRAY_SIZE(ap_types); i++)
914 if (type == ap_types[i].type)
915 return ap_types[i].description;
916
917 return "Unknown";
918 }
919
920 /*
921 * This function checks the ID for each access port to find the requested Access Port type
922 */
923 int dap_find_ap(struct adiv5_dap *dap, enum ap_type type_to_find, struct adiv5_ap **ap_out)
924 {
925 int ap_num;
926
927 /* Maximum AP number is 255 since the SELECT register is 8 bits */
928 for (ap_num = 0; ap_num <= DP_APSEL_MAX; ap_num++) {
929
930 /* read the IDR register of the Access Port */
931 uint32_t id_val = 0;
932
933 int retval = dap_queue_ap_read(dap_ap(dap, ap_num), AP_REG_IDR, &id_val);
934 if (retval != ERROR_OK)
935 return retval;
936
937 retval = dap_run(dap);
938
939 /* Reading register for a non-existent AP should not cause an error,
940 * but just to be sure, try to continue searching if an error does happen.
941 */
942 if (retval == ERROR_OK && (id_val & AP_TYPE_MASK) == type_to_find) {
943 LOG_DEBUG("Found %s at AP index: %d (IDR=0x%08" PRIX32 ")",
944 ap_type_to_description(type_to_find),
945 ap_num, id_val);
946
947 *ap_out = &dap->ap[ap_num];
948 return ERROR_OK;
949 }
950 }
951
952 LOG_DEBUG("No %s found", ap_type_to_description(type_to_find));
953 return ERROR_FAIL;
954 }
955
956 int dap_get_debugbase(struct adiv5_ap *ap,
957 target_addr_t *dbgbase, uint32_t *apid)
958 {
959 struct adiv5_dap *dap = ap->dap;
960 int retval;
961 uint32_t baseptr_upper, baseptr_lower;
962
963 if (ap->cfg_reg == MEM_AP_REG_CFG_INVALID) {
964 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &ap->cfg_reg);
965 if (retval != ERROR_OK)
966 return retval;
967 }
968 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE, &baseptr_lower);
969 if (retval != ERROR_OK)
970 return retval;
971 retval = dap_queue_ap_read(ap, AP_REG_IDR, apid);
972 if (retval != ERROR_OK)
973 return retval;
974 /* MEM_AP_REG_BASE64 is defined as 'RES0'; can be read and then ignored on 32 bits AP */
975 if (ap->cfg_reg == MEM_AP_REG_CFG_INVALID || is_64bit_ap(ap)) {
976 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE64, &baseptr_upper);
977 if (retval != ERROR_OK)
978 return retval;
979 }
980
981 retval = dap_run(dap);
982 if (retval != ERROR_OK)
983 return retval;
984
985 if (!is_64bit_ap(ap))
986 baseptr_upper = 0;
987 *dbgbase = (((target_addr_t)baseptr_upper) << 32) | baseptr_lower;
988
989 return ERROR_OK;
990 }
991
992 int dap_lookup_cs_component(struct adiv5_ap *ap,
993 target_addr_t dbgbase, uint8_t type, target_addr_t *addr, int32_t *idx)
994 {
995 uint32_t romentry, entry_offset = 0, devtype;
996 target_addr_t component_base;
997 int retval;
998
999 dbgbase &= 0xFFFFFFFFFFFFF000ull;
1000 *addr = 0;
1001
1002 do {
1003 retval = mem_ap_read_atomic_u32(ap, dbgbase |
1004 entry_offset, &romentry);
1005 if (retval != ERROR_OK)
1006 return retval;
1007
1008 component_base = dbgbase + (target_addr_t)(romentry & ARM_CS_ROMENTRY_OFFSET_MASK);
1009
1010 if (romentry & ARM_CS_ROMENTRY_PRESENT) {
1011 uint32_t c_cid1;
1012 retval = mem_ap_read_atomic_u32(ap, component_base + ARM_CS_CIDR1, &c_cid1);
1013 if (retval != ERROR_OK) {
1014 LOG_ERROR("Can't read component with base address " TARGET_ADDR_FMT
1015 ", the corresponding core might be turned off", component_base);
1016 return retval;
1017 }
1018 unsigned int class = (c_cid1 & ARM_CS_CIDR1_CLASS_MASK) >> ARM_CS_CIDR1_CLASS_SHIFT;
1019 if (class == ARM_CS_CLASS_0X1_ROM_TABLE) {
1020 retval = dap_lookup_cs_component(ap, component_base,
1021 type, addr, idx);
1022 if (retval == ERROR_OK)
1023 break;
1024 if (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1025 return retval;
1026 }
1027
1028 retval = mem_ap_read_atomic_u32(ap, component_base + ARM_CS_C9_DEVTYPE, &devtype);
1029 if (retval != ERROR_OK)
1030 return retval;
1031 if ((devtype & ARM_CS_C9_DEVTYPE_MASK) == type) {
1032 if (!*idx) {
1033 *addr = component_base;
1034 break;
1035 } else
1036 (*idx)--;
1037 }
1038 }
1039 entry_offset += 4;
1040 } while ((romentry > 0) && (entry_offset < 0xf00));
1041
1042 if (!*addr)
1043 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1044
1045 return ERROR_OK;
1046 }
1047
1048 static int dap_read_part_id(struct adiv5_ap *ap, target_addr_t component_base, uint32_t *cid, uint64_t *pid)
1049 {
1050 assert(IS_ALIGNED(component_base, ARM_CS_ALIGN));
1051 assert(ap && cid && pid);
1052
1053 uint32_t cid0, cid1, cid2, cid3;
1054 uint32_t pid0, pid1, pid2, pid3, pid4;
1055 int retval;
1056
1057 /* IDs are in last 4K section */
1058 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR0, &pid0);
1059 if (retval != ERROR_OK)
1060 return retval;
1061 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR1, &pid1);
1062 if (retval != ERROR_OK)
1063 return retval;
1064 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR2, &pid2);
1065 if (retval != ERROR_OK)
1066 return retval;
1067 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR3, &pid3);
1068 if (retval != ERROR_OK)
1069 return retval;
1070 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR4, &pid4);
1071 if (retval != ERROR_OK)
1072 return retval;
1073 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR0, &cid0);
1074 if (retval != ERROR_OK)
1075 return retval;
1076 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR1, &cid1);
1077 if (retval != ERROR_OK)
1078 return retval;
1079 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR2, &cid2);
1080 if (retval != ERROR_OK)
1081 return retval;
1082 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR3, &cid3);
1083 if (retval != ERROR_OK)
1084 return retval;
1085
1086 retval = dap_run(ap->dap);
1087 if (retval != ERROR_OK)
1088 return retval;
1089
1090 *cid = (cid3 & 0xff) << 24
1091 | (cid2 & 0xff) << 16
1092 | (cid1 & 0xff) << 8
1093 | (cid0 & 0xff);
1094 *pid = (uint64_t)(pid4 & 0xff) << 32
1095 | (pid3 & 0xff) << 24
1096 | (pid2 & 0xff) << 16
1097 | (pid1 & 0xff) << 8
1098 | (pid0 & 0xff);
1099
1100 return ERROR_OK;
1101 }
1102
1103 /* Part number interpretations are from Cortex
1104 * core specs, the CoreSight components TRM
1105 * (ARM DDI 0314H), CoreSight System Design
1106 * Guide (ARM DGI 0012D) and ETM specs; also
1107 * from chip observation (e.g. TI SDTI).
1108 */
1109
1110 /* The legacy code only used the part number field to identify CoreSight peripherals.
1111 * This meant that the same part number from two different manufacturers looked the same.
1112 * It is desirable for all future additions to identify with both part number and JEP106.
1113 * "ANY_ID" is a wildcard (any JEP106) only to preserve legacy behavior for legacy entries.
1114 */
1115
1116 #define ANY_ID 0x1000
1117
1118 static const struct dap_part_nums {
1119 uint16_t designer_id;
1120 uint16_t part_num;
1121 const char *type;
1122 const char *full;
1123 } dap_part_nums[] = {
1124 { ARM_ID, 0x000, "Cortex-M3 SCS", "(System Control Space)", },
1125 { ARM_ID, 0x001, "Cortex-M3 ITM", "(Instrumentation Trace Module)", },
1126 { ARM_ID, 0x002, "Cortex-M3 DWT", "(Data Watchpoint and Trace)", },
1127 { ARM_ID, 0x003, "Cortex-M3 FPB", "(Flash Patch and Breakpoint)", },
1128 { ARM_ID, 0x008, "Cortex-M0 SCS", "(System Control Space)", },
1129 { ARM_ID, 0x00a, "Cortex-M0 DWT", "(Data Watchpoint and Trace)", },
1130 { ARM_ID, 0x00b, "Cortex-M0 BPU", "(Breakpoint Unit)", },
1131 { ARM_ID, 0x00c, "Cortex-M4 SCS", "(System Control Space)", },
1132 { ARM_ID, 0x00d, "CoreSight ETM11", "(Embedded Trace)", },
1133 { ARM_ID, 0x00e, "Cortex-M7 FPB", "(Flash Patch and Breakpoint)", },
1134 { ARM_ID, 0x193, "SoC-600 TSGEN", "(Timestamp Generator)", },
1135 { ARM_ID, 0x470, "Cortex-M1 ROM", "(ROM Table)", },
1136 { ARM_ID, 0x471, "Cortex-M0 ROM", "(ROM Table)", },
1137 { ARM_ID, 0x490, "Cortex-A15 GIC", "(Generic Interrupt Controller)", },
1138 { ARM_ID, 0x492, "Cortex-R52 GICD", "(Distributor)", },
1139 { ARM_ID, 0x493, "Cortex-R52 GICR", "(Redistributor)", },
1140 { ARM_ID, 0x4a1, "Cortex-A53 ROM", "(v8 Memory Map ROM Table)", },
1141 { ARM_ID, 0x4a2, "Cortex-A57 ROM", "(ROM Table)", },
1142 { ARM_ID, 0x4a3, "Cortex-A53 ROM", "(v7 Memory Map ROM Table)", },
1143 { ARM_ID, 0x4a4, "Cortex-A72 ROM", "(ROM Table)", },
1144 { ARM_ID, 0x4a9, "Cortex-A9 ROM", "(ROM Table)", },
1145 { ARM_ID, 0x4aa, "Cortex-A35 ROM", "(v8 Memory Map ROM Table)", },
1146 { ARM_ID, 0x4af, "Cortex-A15 ROM", "(ROM Table)", },
1147 { ARM_ID, 0x4b5, "Cortex-R5 ROM", "(ROM Table)", },
1148 { ARM_ID, 0x4b8, "Cortex-R52 ROM", "(ROM Table)", },
1149 { ARM_ID, 0x4c0, "Cortex-M0+ ROM", "(ROM Table)", },
1150 { ARM_ID, 0x4c3, "Cortex-M3 ROM", "(ROM Table)", },
1151 { ARM_ID, 0x4c4, "Cortex-M4 ROM", "(ROM Table)", },
1152 { ARM_ID, 0x4c7, "Cortex-M7 PPB ROM", "(Private Peripheral Bus ROM Table)", },
1153 { ARM_ID, 0x4c8, "Cortex-M7 ROM", "(ROM Table)", },
1154 { ARM_ID, 0x4e0, "Cortex-A35 ROM", "(v7 Memory Map ROM Table)", },
1155 { ARM_ID, 0x4e4, "Cortex-A76 ROM", "(ROM Table)", },
1156 { ARM_ID, 0x906, "CoreSight CTI", "(Cross Trigger)", },
1157 { ARM_ID, 0x907, "CoreSight ETB", "(Trace Buffer)", },
1158 { ARM_ID, 0x908, "CoreSight CSTF", "(Trace Funnel)", },
1159 { ARM_ID, 0x909, "CoreSight ATBR", "(Advanced Trace Bus Replicator)", },
1160 { ARM_ID, 0x910, "CoreSight ETM9", "(Embedded Trace)", },
1161 { ARM_ID, 0x912, "CoreSight TPIU", "(Trace Port Interface Unit)", },
1162 { ARM_ID, 0x913, "CoreSight ITM", "(Instrumentation Trace Macrocell)", },
1163 { ARM_ID, 0x914, "CoreSight SWO", "(Single Wire Output)", },
1164 { ARM_ID, 0x917, "CoreSight HTM", "(AHB Trace Macrocell)", },
1165 { ARM_ID, 0x920, "CoreSight ETM11", "(Embedded Trace)", },
1166 { ARM_ID, 0x921, "Cortex-A8 ETM", "(Embedded Trace)", },
1167 { ARM_ID, 0x922, "Cortex-A8 CTI", "(Cross Trigger)", },
1168 { ARM_ID, 0x923, "Cortex-M3 TPIU", "(Trace Port Interface Unit)", },
1169 { ARM_ID, 0x924, "Cortex-M3 ETM", "(Embedded Trace)", },
1170 { ARM_ID, 0x925, "Cortex-M4 ETM", "(Embedded Trace)", },
1171 { ARM_ID, 0x930, "Cortex-R4 ETM", "(Embedded Trace)", },
1172 { ARM_ID, 0x931, "Cortex-R5 ETM", "(Embedded Trace)", },
1173 { ARM_ID, 0x932, "CoreSight MTB-M0+", "(Micro Trace Buffer)", },
1174 { ARM_ID, 0x941, "CoreSight TPIU-Lite", "(Trace Port Interface Unit)", },
1175 { ARM_ID, 0x950, "Cortex-A9 PTM", "(Program Trace Macrocell)", },
1176 { ARM_ID, 0x955, "Cortex-A5 ETM", "(Embedded Trace)", },
1177 { ARM_ID, 0x95a, "Cortex-A72 ETM", "(Embedded Trace)", },
1178 { ARM_ID, 0x95b, "Cortex-A17 PTM", "(Program Trace Macrocell)", },
1179 { ARM_ID, 0x95d, "Cortex-A53 ETM", "(Embedded Trace)", },
1180 { ARM_ID, 0x95e, "Cortex-A57 ETM", "(Embedded Trace)", },
1181 { ARM_ID, 0x95f, "Cortex-A15 PTM", "(Program Trace Macrocell)", },
1182 { ARM_ID, 0x961, "CoreSight TMC", "(Trace Memory Controller)", },
1183 { ARM_ID, 0x962, "CoreSight STM", "(System Trace Macrocell)", },
1184 { ARM_ID, 0x975, "Cortex-M7 ETM", "(Embedded Trace)", },
1185 { ARM_ID, 0x9a0, "CoreSight PMU", "(Performance Monitoring Unit)", },
1186 { ARM_ID, 0x9a1, "Cortex-M4 TPIU", "(Trace Port Interface Unit)", },
1187 { ARM_ID, 0x9a4, "CoreSight GPR", "(Granular Power Requester)", },
1188 { ARM_ID, 0x9a5, "Cortex-A5 PMU", "(Performance Monitor Unit)", },
1189 { ARM_ID, 0x9a7, "Cortex-A7 PMU", "(Performance Monitor Unit)", },
1190 { ARM_ID, 0x9a8, "Cortex-A53 CTI", "(Cross Trigger)", },
1191 { ARM_ID, 0x9a9, "Cortex-M7 TPIU", "(Trace Port Interface Unit)", },
1192 { ARM_ID, 0x9ae, "Cortex-A17 PMU", "(Performance Monitor Unit)", },
1193 { ARM_ID, 0x9af, "Cortex-A15 PMU", "(Performance Monitor Unit)", },
1194 { ARM_ID, 0x9b6, "Cortex-R52 PMU/CTI/ETM", "(Performance Monitor Unit/Cross Trigger/ETM)", },
1195 { ARM_ID, 0x9b7, "Cortex-R7 PMU", "(Performance Monitor Unit)", },
1196 { ARM_ID, 0x9d3, "Cortex-A53 PMU", "(Performance Monitor Unit)", },
1197 { ARM_ID, 0x9d7, "Cortex-A57 PMU", "(Performance Monitor Unit)", },
1198 { ARM_ID, 0x9d8, "Cortex-A72 PMU", "(Performance Monitor Unit)", },
1199 { ARM_ID, 0x9da, "Cortex-A35 PMU/CTI/ETM", "(Performance Monitor Unit/Cross Trigger/ETM)", },
1200 { ARM_ID, 0x9e2, "SoC-600 APB-AP", "(APB4 Memory Access Port)", },
1201 { ARM_ID, 0x9e3, "SoC-600 AHB-AP", "(AHB5 Memory Access Port)", },
1202 { ARM_ID, 0x9e4, "SoC-600 AXI-AP", "(AXI Memory Access Port)", },
1203 { ARM_ID, 0x9e5, "SoC-600 APv1 Adapter", "(Access Port v1 Adapter)", },
1204 { ARM_ID, 0x9e6, "SoC-600 JTAG-AP", "(JTAG Access Port)", },
1205 { ARM_ID, 0x9e7, "SoC-600 TPIU", "(Trace Port Interface Unit)", },
1206 { ARM_ID, 0x9e8, "SoC-600 TMC ETR/ETS", "(Embedded Trace Router/Streamer)", },
1207 { ARM_ID, 0x9e9, "SoC-600 TMC ETB", "(Embedded Trace Buffer)", },
1208 { ARM_ID, 0x9ea, "SoC-600 TMC ETF", "(Embedded Trace FIFO)", },
1209 { ARM_ID, 0x9eb, "SoC-600 ATB Funnel", "(Trace Funnel)", },
1210 { ARM_ID, 0x9ec, "SoC-600 ATB Replicator", "(Trace Replicator)", },
1211 { ARM_ID, 0x9ed, "SoC-600 CTI", "(Cross Trigger)", },
1212 { ARM_ID, 0x9ee, "SoC-600 CATU", "(Address Translation Unit)", },
1213 { ARM_ID, 0xc05, "Cortex-A5 Debug", "(Debug Unit)", },
1214 { ARM_ID, 0xc07, "Cortex-A7 Debug", "(Debug Unit)", },
1215 { ARM_ID, 0xc08, "Cortex-A8 Debug", "(Debug Unit)", },
1216 { ARM_ID, 0xc09, "Cortex-A9 Debug", "(Debug Unit)", },
1217 { ARM_ID, 0xc0e, "Cortex-A17 Debug", "(Debug Unit)", },
1218 { ARM_ID, 0xc0f, "Cortex-A15 Debug", "(Debug Unit)", },
1219 { ARM_ID, 0xc14, "Cortex-R4 Debug", "(Debug Unit)", },
1220 { ARM_ID, 0xc15, "Cortex-R5 Debug", "(Debug Unit)", },
1221 { ARM_ID, 0xc17, "Cortex-R7 Debug", "(Debug Unit)", },
1222 { ARM_ID, 0xd03, "Cortex-A53 Debug", "(Debug Unit)", },
1223 { ARM_ID, 0xd04, "Cortex-A35 Debug", "(Debug Unit)", },
1224 { ARM_ID, 0xd07, "Cortex-A57 Debug", "(Debug Unit)", },
1225 { ARM_ID, 0xd08, "Cortex-A72 Debug", "(Debug Unit)", },
1226 { ARM_ID, 0xd0b, "Cortex-A76 Debug", "(Debug Unit)", },
1227 { ARM_ID, 0xd0c, "Neoverse N1", "(Debug Unit)", },
1228 { ARM_ID, 0xd13, "Cortex-R52 Debug", "(Debug Unit)", },
1229 { ARM_ID, 0xd49, "Neoverse N2", "(Debug Unit)", },
1230 { 0x017, 0x9af, "MSP432 ROM", "(ROM Table)" },
1231 { 0x01f, 0xcd0, "Atmel CPU with DSU", "(CPU)" },
1232 { 0x041, 0x1db, "XMC4500 ROM", "(ROM Table)" },
1233 { 0x041, 0x1df, "XMC4700/4800 ROM", "(ROM Table)" },
1234 { 0x041, 0x1ed, "XMC1000 ROM", "(ROM Table)" },
1235 { 0x065, 0x000, "SHARC+/Blackfin+", "", },
1236 { 0x070, 0x440, "Qualcomm QDSS Component v1", "(Qualcomm Designed CoreSight Component v1)", },
1237 { 0x0bf, 0x100, "Brahma-B53 Debug", "(Debug Unit)", },
1238 { 0x0bf, 0x9d3, "Brahma-B53 PMU", "(Performance Monitor Unit)", },
1239 { 0x0bf, 0x4a1, "Brahma-B53 ROM", "(ROM Table)", },
1240 { 0x0bf, 0x721, "Brahma-B53 ROM", "(ROM Table)", },
1241 { 0x1eb, 0x181, "Tegra 186 ROM", "(ROM Table)", },
1242 { 0x1eb, 0x202, "Denver ETM", "(Denver Embedded Trace)", },
1243 { 0x1eb, 0x211, "Tegra 210 ROM", "(ROM Table)", },
1244 { 0x1eb, 0x302, "Denver Debug", "(Debug Unit)", },
1245 { 0x1eb, 0x402, "Denver PMU", "(Performance Monitor Unit)", },
1246 /* legacy comment: 0x113: what? */
1247 { ANY_ID, 0x120, "TI SDTI", "(System Debug Trace Interface)", }, /* from OMAP3 memmap */
1248 { ANY_ID, 0x343, "TI DAPCTL", "", }, /* from OMAP3 memmap */
1249 };
1250
1251 static const struct dap_part_nums *pidr_to_part_num(unsigned int designer_id, unsigned int part_num)
1252 {
1253 static const struct dap_part_nums unknown = {
1254 .type = "Unrecognized",
1255 .full = "",
1256 };
1257
1258 for (unsigned int i = 0; i < ARRAY_SIZE(dap_part_nums); i++) {
1259 if (dap_part_nums[i].designer_id != designer_id && dap_part_nums[i].designer_id != ANY_ID)
1260 continue;
1261 if (dap_part_nums[i].part_num == part_num)
1262 return &dap_part_nums[i];
1263 }
1264 return &unknown;
1265 }
1266
1267 static int dap_devtype_display(struct command_invocation *cmd, uint32_t devtype)
1268 {
1269 const char *major = "Reserved", *subtype = "Reserved";
1270 const unsigned int minor = (devtype & ARM_CS_C9_DEVTYPE_SUB_MASK) >> ARM_CS_C9_DEVTYPE_SUB_SHIFT;
1271 const unsigned int devtype_major = (devtype & ARM_CS_C9_DEVTYPE_MAJOR_MASK) >> ARM_CS_C9_DEVTYPE_MAJOR_SHIFT;
1272 switch (devtype_major) {
1273 case 0:
1274 major = "Miscellaneous";
1275 switch (minor) {
1276 case 0:
1277 subtype = "other";
1278 break;
1279 case 4:
1280 subtype = "Validation component";
1281 break;
1282 }
1283 break;
1284 case 1:
1285 major = "Trace Sink";
1286 switch (minor) {
1287 case 0:
1288 subtype = "other";
1289 break;
1290 case 1:
1291 subtype = "Port";
1292 break;
1293 case 2:
1294 subtype = "Buffer";
1295 break;
1296 case 3:
1297 subtype = "Router";
1298 break;
1299 }
1300 break;
1301 case 2:
1302 major = "Trace Link";
1303 switch (minor) {
1304 case 0:
1305 subtype = "other";
1306 break;
1307 case 1:
1308 subtype = "Funnel, router";
1309 break;
1310 case 2:
1311 subtype = "Filter";
1312 break;
1313 case 3:
1314 subtype = "FIFO, buffer";
1315 break;
1316 }
1317 break;
1318 case 3:
1319 major = "Trace Source";
1320 switch (minor) {
1321 case 0:
1322 subtype = "other";
1323 break;
1324 case 1:
1325 subtype = "Processor";
1326 break;
1327 case 2:
1328 subtype = "DSP";
1329 break;
1330 case 3:
1331 subtype = "Engine/Coprocessor";
1332 break;
1333 case 4:
1334 subtype = "Bus";
1335 break;
1336 case 6:
1337 subtype = "Software";
1338 break;
1339 }
1340 break;
1341 case 4:
1342 major = "Debug Control";
1343 switch (minor) {
1344 case 0:
1345 subtype = "other";
1346 break;
1347 case 1:
1348 subtype = "Trigger Matrix";
1349 break;
1350 case 2:
1351 subtype = "Debug Auth";
1352 break;
1353 case 3:
1354 subtype = "Power Requestor";
1355 break;
1356 }
1357 break;
1358 case 5:
1359 major = "Debug Logic";
1360 switch (minor) {
1361 case 0:
1362 subtype = "other";
1363 break;
1364 case 1:
1365 subtype = "Processor";
1366 break;
1367 case 2:
1368 subtype = "DSP";
1369 break;
1370 case 3:
1371 subtype = "Engine/Coprocessor";
1372 break;
1373 case 4:
1374 subtype = "Bus";
1375 break;
1376 case 5:
1377 subtype = "Memory";
1378 break;
1379 }
1380 break;
1381 case 6:
1382 major = "Performance Monitor";
1383 switch (minor) {
1384 case 0:
1385 subtype = "other";
1386 break;
1387 case 1:
1388 subtype = "Processor";
1389 break;
1390 case 2:
1391 subtype = "DSP";
1392 break;
1393 case 3:
1394 subtype = "Engine/Coprocessor";
1395 break;
1396 case 4:
1397 subtype = "Bus";
1398 break;
1399 case 5:
1400 subtype = "Memory";
1401 break;
1402 }
1403 break;
1404 }
1405 command_print(cmd, "\t\tType is 0x%02x, %s, %s",
1406 devtype & ARM_CS_C9_DEVTYPE_MASK,
1407 major, subtype);
1408 return ERROR_OK;
1409 }
1410
1411 static int dap_rom_display(struct command_invocation *cmd,
1412 struct adiv5_ap *ap, target_addr_t dbgbase, int depth)
1413 {
1414 int retval;
1415 uint64_t pid;
1416 uint32_t cid;
1417 char tabs[16] = "";
1418
1419 if (depth > 16) {
1420 command_print(cmd, "\tTables too deep");
1421 return ERROR_FAIL;
1422 }
1423
1424 if (depth)
1425 snprintf(tabs, sizeof(tabs), "[L%02d] ", depth);
1426
1427 target_addr_t base_addr = dbgbase & 0xFFFFFFFFFFFFF000ull;
1428 command_print(cmd, "\t\tComponent base address " TARGET_ADDR_FMT, base_addr);
1429
1430 retval = dap_read_part_id(ap, base_addr, &cid, &pid);
1431 if (retval != ERROR_OK) {
1432 command_print(cmd, "\t\tCan't read component, the corresponding core might be turned off");
1433 return ERROR_OK; /* Don't abort recursion */
1434 }
1435
1436 if (!is_valid_arm_cs_cidr(cid)) {
1437 command_print(cmd, "\t\tInvalid CID 0x%08" PRIx32, cid);
1438 return ERROR_OK; /* Don't abort recursion */
1439 }
1440
1441 /* component may take multiple 4K pages */
1442 uint32_t size = ARM_CS_PIDR_SIZE(pid);
1443 if (size > 0)
1444 command_print(cmd, "\t\tStart address " TARGET_ADDR_FMT, base_addr - 0x1000 * size);
1445
1446 command_print(cmd, "\t\tPeripheral ID 0x%010" PRIx64, pid);
1447
1448 const unsigned int class = (cid & ARM_CS_CIDR_CLASS_MASK) >> ARM_CS_CIDR_CLASS_SHIFT;
1449 const unsigned int part_num = ARM_CS_PIDR_PART(pid);
1450 unsigned int designer_id = ARM_CS_PIDR_DESIGNER(pid);
1451
1452 if (pid & ARM_CS_PIDR_JEDEC) {
1453 /* JEP106 code */
1454 command_print(cmd, "\t\tDesigner is 0x%03x, %s",
1455 designer_id, jep106_manufacturer(designer_id));
1456 } else {
1457 /* Legacy ASCII ID, clear invalid bits */
1458 designer_id &= 0x7f;
1459 command_print(cmd, "\t\tDesigner ASCII code 0x%02x, %s",
1460 designer_id, designer_id == 0x41 ? "ARM" : "<unknown>");
1461 }
1462
1463 const struct dap_part_nums *partnum = pidr_to_part_num(designer_id, part_num);
1464 command_print(cmd, "\t\tPart is 0x%03x, %s %s", part_num, partnum->type, partnum->full);
1465 command_print(cmd, "\t\tComponent class is 0x%x, %s", class, class_description[class]);
1466
1467 if (class == ARM_CS_CLASS_0X1_ROM_TABLE) {
1468 uint32_t memtype;
1469 retval = mem_ap_read_atomic_u32(ap, base_addr + ARM_CS_C1_MEMTYPE, &memtype);
1470 if (retval != ERROR_OK)
1471 return retval;
1472
1473 if (memtype & ARM_CS_C1_MEMTYPE_SYSMEM_MASK)
1474 command_print(cmd, "\t\tMEMTYPE system memory present on bus");
1475 else
1476 command_print(cmd, "\t\tMEMTYPE system memory not present: dedicated debug bus");
1477
1478 /* Read ROM table entries from base address until we get 0x00000000 or reach the reserved area */
1479 for (uint16_t entry_offset = 0; entry_offset < 0xF00; entry_offset += 4) {
1480 uint32_t romentry;
1481 retval = mem_ap_read_atomic_u32(ap, base_addr | entry_offset, &romentry);
1482 if (retval != ERROR_OK)
1483 return retval;
1484 command_print(cmd, "\t%sROMTABLE[0x%x] = 0x%" PRIx32 "",
1485 tabs, entry_offset, romentry);
1486 if (romentry & ARM_CS_ROMENTRY_PRESENT) {
1487 /* Recurse. "romentry" is signed */
1488 retval = dap_rom_display(cmd, ap, base_addr + (int32_t)(romentry & ARM_CS_ROMENTRY_OFFSET_MASK),
1489 depth + 1);
1490 if (retval != ERROR_OK)
1491 return retval;
1492 } else if (romentry != 0) {
1493 command_print(cmd, "\t\tComponent not present");
1494 } else {
1495 command_print(cmd, "\t%s\tEnd of ROM table", tabs);
1496 break;
1497 }
1498 }
1499 } else if (class == ARM_CS_CLASS_0X9_CS_COMPONENT) {
1500 uint32_t devtype;
1501 retval = mem_ap_read_atomic_u32(ap, base_addr + ARM_CS_C9_DEVTYPE, &devtype);
1502 if (retval != ERROR_OK)
1503 return retval;
1504
1505 retval = dap_devtype_display(cmd, devtype);
1506 if (retval != ERROR_OK)
1507 return retval;
1508
1509 /* REVISIT also show ARM_CS_C9_DEVID */
1510 }
1511
1512 return ERROR_OK;
1513 }
1514
1515 int dap_info_command(struct command_invocation *cmd,
1516 struct adiv5_ap *ap)
1517 {
1518 int retval;
1519 uint32_t apid;
1520 target_addr_t dbgbase;
1521 target_addr_t dbgaddr;
1522
1523 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1524 retval = dap_get_debugbase(ap, &dbgbase, &apid);
1525 if (retval != ERROR_OK)
1526 return retval;
1527
1528 command_print(cmd, "AP ID register 0x%8.8" PRIx32, apid);
1529 if (apid == 0) {
1530 command_print(cmd, "No AP found at this ap 0x%x", ap->ap_num);
1531 return ERROR_FAIL;
1532 }
1533
1534 command_print(cmd, "\tType is %s", ap_type_to_description(apid & AP_TYPE_MASK));
1535
1536 /* NOTE: a MEM-AP may have a single CoreSight component that's
1537 * not a ROM table ... or have no such components at all.
1538 */
1539 const unsigned int class = (apid & AP_REG_IDR_CLASS_MASK) >> AP_REG_IDR_CLASS_SHIFT;
1540
1541 if (class == AP_REG_IDR_CLASS_MEM_AP) {
1542 if (is_64bit_ap(ap))
1543 dbgaddr = 0xFFFFFFFFFFFFFFFFull;
1544 else
1545 dbgaddr = 0xFFFFFFFFul;
1546
1547 command_print(cmd, "MEM-AP BASE " TARGET_ADDR_FMT, dbgbase);
1548
1549 if (dbgbase == dbgaddr || (dbgbase & 0x3) == 0x2) {
1550 command_print(cmd, "\tNo ROM table present");
1551 } else {
1552 if (dbgbase & 0x01)
1553 command_print(cmd, "\tValid ROM table present");
1554 else
1555 command_print(cmd, "\tROM table in legacy format");
1556
1557 dap_rom_display(cmd, ap, dbgbase & 0xFFFFFFFFFFFFF000ull, 0);
1558 }
1559 }
1560
1561 return ERROR_OK;
1562 }
1563
1564 enum adiv5_cfg_param {
1565 CFG_DAP,
1566 CFG_AP_NUM,
1567 CFG_BASEADDR,
1568 CFG_CTIBASE, /* DEPRECATED */
1569 };
1570
1571 static const struct jim_nvp nvp_config_opts[] = {
1572 { .name = "-dap", .value = CFG_DAP },
1573 { .name = "-ap-num", .value = CFG_AP_NUM },
1574 { .name = "-baseaddr", .value = CFG_BASEADDR },
1575 { .name = "-ctibase", .value = CFG_CTIBASE }, /* DEPRECATED */
1576 { .name = NULL, .value = -1 }
1577 };
1578
1579 static int adiv5_jim_spot_configure(struct jim_getopt_info *goi,
1580 struct adiv5_dap **dap_p, int *ap_num_p, uint32_t *base_p)
1581 {
1582 if (!goi->argc)
1583 return JIM_OK;
1584
1585 Jim_SetEmptyResult(goi->interp);
1586
1587 struct jim_nvp *n;
1588 int e = jim_nvp_name2value_obj(goi->interp, nvp_config_opts,
1589 goi->argv[0], &n);
1590 if (e != JIM_OK)
1591 return JIM_CONTINUE;
1592
1593 /* base_p can be NULL, then '-baseaddr' option is treated as unknown */
1594 if (!base_p && (n->value == CFG_BASEADDR || n->value == CFG_CTIBASE))
1595 return JIM_CONTINUE;
1596
1597 e = jim_getopt_obj(goi, NULL);
1598 if (e != JIM_OK)
1599 return e;
1600
1601 switch (n->value) {
1602 case CFG_DAP:
1603 if (goi->isconfigure) {
1604 Jim_Obj *o_t;
1605 struct adiv5_dap *dap;
1606 e = jim_getopt_obj(goi, &o_t);
1607 if (e != JIM_OK)
1608 return e;
1609 dap = dap_instance_by_jim_obj(goi->interp, o_t);
1610 if (!dap) {
1611 Jim_SetResultString(goi->interp, "DAP name invalid!", -1);
1612 return JIM_ERR;
1613 }
1614 if (*dap_p && *dap_p != dap) {
1615 Jim_SetResultString(goi->interp,
1616 "DAP assignment cannot be changed!", -1);
1617 return JIM_ERR;
1618 }
1619 *dap_p = dap;
1620 } else {
1621 if (goi->argc)
1622 goto err_no_param;
1623 if (!*dap_p) {
1624 Jim_SetResultString(goi->interp, "DAP not configured", -1);
1625 return JIM_ERR;
1626 }
1627 Jim_SetResultString(goi->interp, adiv5_dap_name(*dap_p), -1);
1628 }
1629 break;
1630
1631 case CFG_AP_NUM:
1632 if (goi->isconfigure) {
1633 jim_wide ap_num;
1634 e = jim_getopt_wide(goi, &ap_num);
1635 if (e != JIM_OK)
1636 return e;
1637 if (ap_num < 0 || ap_num > DP_APSEL_MAX) {
1638 Jim_SetResultString(goi->interp, "Invalid AP number!", -1);
1639 return JIM_ERR;
1640 }
1641 *ap_num_p = ap_num;
1642 } else {
1643 if (goi->argc)
1644 goto err_no_param;
1645 if (*ap_num_p == DP_APSEL_INVALID) {
1646 Jim_SetResultString(goi->interp, "AP number not configured", -1);
1647 return JIM_ERR;
1648 }
1649 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, *ap_num_p));
1650 }
1651 break;
1652
1653 case CFG_CTIBASE:
1654 LOG_WARNING("DEPRECATED! use \'-baseaddr' not \'-ctibase\'");
1655 /* fall through */
1656 case CFG_BASEADDR:
1657 if (goi->isconfigure) {
1658 jim_wide base;
1659 e = jim_getopt_wide(goi, &base);
1660 if (e != JIM_OK)
1661 return e;
1662 *base_p = (uint32_t)base;
1663 } else {
1664 if (goi->argc)
1665 goto err_no_param;
1666 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, *base_p));
1667 }
1668 break;
1669 };
1670
1671 return JIM_OK;
1672
1673 err_no_param:
1674 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "NO PARAMS");
1675 return JIM_ERR;
1676 }
1677
1678 int adiv5_jim_configure(struct target *target, struct jim_getopt_info *goi)
1679 {
1680 struct adiv5_private_config *pc;
1681 int e;
1682
1683 pc = (struct adiv5_private_config *)target->private_config;
1684 if (!pc) {
1685 pc = calloc(1, sizeof(struct adiv5_private_config));
1686 pc->ap_num = DP_APSEL_INVALID;
1687 target->private_config = pc;
1688 }
1689
1690 target->has_dap = true;
1691
1692 e = adiv5_jim_spot_configure(goi, &pc->dap, &pc->ap_num, NULL);
1693 if (e != JIM_OK)
1694 return e;
1695
1696 if (pc->dap && !target->dap_configured) {
1697 if (target->tap_configured) {
1698 pc->dap = NULL;
1699 Jim_SetResultString(goi->interp,
1700 "-chain-position and -dap configparams are mutually exclusive!", -1);
1701 return JIM_ERR;
1702 }
1703 target->tap = pc->dap->tap;
1704 target->dap_configured = true;
1705 }
1706
1707 return JIM_OK;
1708 }
1709
1710 int adiv5_verify_config(struct adiv5_private_config *pc)
1711 {
1712 if (!pc)
1713 return ERROR_FAIL;
1714
1715 if (!pc->dap)
1716 return ERROR_FAIL;
1717
1718 return ERROR_OK;
1719 }
1720
1721 int adiv5_jim_mem_ap_spot_configure(struct adiv5_mem_ap_spot *cfg,
1722 struct jim_getopt_info *goi)
1723 {
1724 return adiv5_jim_spot_configure(goi, &cfg->dap, &cfg->ap_num, &cfg->base);
1725 }
1726
1727 int adiv5_mem_ap_spot_init(struct adiv5_mem_ap_spot *p)
1728 {
1729 p->dap = NULL;
1730 p->ap_num = DP_APSEL_INVALID;
1731 p->base = 0;
1732 return ERROR_OK;
1733 }
1734
1735 COMMAND_HANDLER(handle_dap_info_command)
1736 {
1737 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1738 uint32_t apsel;
1739
1740 switch (CMD_ARGC) {
1741 case 0:
1742 apsel = dap->apsel;
1743 break;
1744 case 1:
1745 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1746 if (apsel > DP_APSEL_MAX) {
1747 command_print(CMD, "Invalid AP number");
1748 return ERROR_COMMAND_ARGUMENT_INVALID;
1749 }
1750 break;
1751 default:
1752 return ERROR_COMMAND_SYNTAX_ERROR;
1753 }
1754
1755 return dap_info_command(CMD, &dap->ap[apsel]);
1756 }
1757
1758 COMMAND_HANDLER(dap_baseaddr_command)
1759 {
1760 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1761 uint32_t apsel, baseaddr_lower, baseaddr_upper;
1762 struct adiv5_ap *ap;
1763 target_addr_t baseaddr;
1764 int retval;
1765
1766 baseaddr_upper = 0;
1767
1768 switch (CMD_ARGC) {
1769 case 0:
1770 apsel = dap->apsel;
1771 break;
1772 case 1:
1773 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1774 /* AP address is in bits 31:24 of DP_SELECT */
1775 if (apsel > DP_APSEL_MAX) {
1776 command_print(CMD, "Invalid AP number");
1777 return ERROR_COMMAND_ARGUMENT_INVALID;
1778 }
1779 break;
1780 default:
1781 return ERROR_COMMAND_SYNTAX_ERROR;
1782 }
1783
1784 /* NOTE: assumes we're talking to a MEM-AP, which
1785 * has a base address. There are other kinds of AP,
1786 * though they're not common for now. This should
1787 * use the ID register to verify it's a MEM-AP.
1788 */
1789
1790 ap = dap_ap(dap, apsel);
1791 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE, &baseaddr_lower);
1792
1793 if (retval == ERROR_OK && ap->cfg_reg == MEM_AP_REG_CFG_INVALID)
1794 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &ap->cfg_reg);
1795
1796 if (retval == ERROR_OK && (ap->cfg_reg == MEM_AP_REG_CFG_INVALID || is_64bit_ap(ap))) {
1797 /* MEM_AP_REG_BASE64 is defined as 'RES0'; can be read and then ignored on 32 bits AP */
1798 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE64, &baseaddr_upper);
1799 }
1800
1801 if (retval == ERROR_OK)
1802 retval = dap_run(dap);
1803 if (retval != ERROR_OK)
1804 return retval;
1805
1806 if (is_64bit_ap(ap)) {
1807 baseaddr = (((target_addr_t)baseaddr_upper) << 32) | baseaddr_lower;
1808 command_print(CMD, "0x%016" PRIx64, baseaddr);
1809 } else
1810 command_print(CMD, "0x%08" PRIx32, baseaddr_lower);
1811
1812 return ERROR_OK;
1813 }
1814
1815 COMMAND_HANDLER(dap_memaccess_command)
1816 {
1817 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1818 uint32_t memaccess_tck;
1819
1820 switch (CMD_ARGC) {
1821 case 0:
1822 memaccess_tck = dap->ap[dap->apsel].memaccess_tck;
1823 break;
1824 case 1:
1825 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1826 break;
1827 default:
1828 return ERROR_COMMAND_SYNTAX_ERROR;
1829 }
1830 dap->ap[dap->apsel].memaccess_tck = memaccess_tck;
1831
1832 command_print(CMD, "memory bus access delay set to %" PRIu32 " tck",
1833 dap->ap[dap->apsel].memaccess_tck);
1834
1835 return ERROR_OK;
1836 }
1837
1838 COMMAND_HANDLER(dap_apsel_command)
1839 {
1840 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1841 uint32_t apsel;
1842
1843 switch (CMD_ARGC) {
1844 case 0:
1845 command_print(CMD, "%" PRIu32, dap->apsel);
1846 return ERROR_OK;
1847 case 1:
1848 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1849 /* AP address is in bits 31:24 of DP_SELECT */
1850 if (apsel > DP_APSEL_MAX) {
1851 command_print(CMD, "Invalid AP number");
1852 return ERROR_COMMAND_ARGUMENT_INVALID;
1853 }
1854 break;
1855 default:
1856 return ERROR_COMMAND_SYNTAX_ERROR;
1857 }
1858
1859 dap->apsel = apsel;
1860 return ERROR_OK;
1861 }
1862
1863 COMMAND_HANDLER(dap_apcsw_command)
1864 {
1865 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1866 uint32_t apcsw = dap->ap[dap->apsel].csw_default;
1867 uint32_t csw_val, csw_mask;
1868
1869 switch (CMD_ARGC) {
1870 case 0:
1871 command_print(CMD, "ap %" PRIu32 " selected, csw 0x%8.8" PRIx32,
1872 dap->apsel, apcsw);
1873 return ERROR_OK;
1874 case 1:
1875 if (strcmp(CMD_ARGV[0], "default") == 0)
1876 csw_val = CSW_AHB_DEFAULT;
1877 else
1878 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], csw_val);
1879
1880 if (csw_val & (CSW_SIZE_MASK | CSW_ADDRINC_MASK)) {
1881 LOG_ERROR("CSW value cannot include 'Size' and 'AddrInc' bit-fields");
1882 return ERROR_COMMAND_ARGUMENT_INVALID;
1883 }
1884 apcsw = csw_val;
1885 break;
1886 case 2:
1887 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], csw_val);
1888 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], csw_mask);
1889 if (csw_mask & (CSW_SIZE_MASK | CSW_ADDRINC_MASK)) {
1890 LOG_ERROR("CSW mask cannot include 'Size' and 'AddrInc' bit-fields");
1891 return ERROR_COMMAND_ARGUMENT_INVALID;
1892 }
1893 apcsw = (apcsw & ~csw_mask) | (csw_val & csw_mask);
1894 break;
1895 default:
1896 return ERROR_COMMAND_SYNTAX_ERROR;
1897 }
1898 dap->ap[dap->apsel].csw_default = apcsw;
1899
1900 return 0;
1901 }
1902
1903
1904
1905 COMMAND_HANDLER(dap_apid_command)
1906 {
1907 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1908 uint32_t apsel, apid;
1909 int retval;
1910
1911 switch (CMD_ARGC) {
1912 case 0:
1913 apsel = dap->apsel;
1914 break;
1915 case 1:
1916 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1917 /* AP address is in bits 31:24 of DP_SELECT */
1918 if (apsel > DP_APSEL_MAX) {
1919 command_print(CMD, "Invalid AP number");
1920 return ERROR_COMMAND_ARGUMENT_INVALID;
1921 }
1922 break;
1923 default:
1924 return ERROR_COMMAND_SYNTAX_ERROR;
1925 }
1926
1927 retval = dap_queue_ap_read(dap_ap(dap, apsel), AP_REG_IDR, &apid);
1928 if (retval != ERROR_OK)
1929 return retval;
1930 retval = dap_run(dap);
1931 if (retval != ERROR_OK)
1932 return retval;
1933
1934 command_print(CMD, "0x%8.8" PRIx32, apid);
1935
1936 return retval;
1937 }
1938
1939 COMMAND_HANDLER(dap_apreg_command)
1940 {
1941 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1942 uint32_t apsel, reg, value;
1943 struct adiv5_ap *ap;
1944 int retval;
1945
1946 if (CMD_ARGC < 2 || CMD_ARGC > 3)
1947 return ERROR_COMMAND_SYNTAX_ERROR;
1948
1949 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1950 /* AP address is in bits 31:24 of DP_SELECT */
1951 if (apsel > DP_APSEL_MAX) {
1952 command_print(CMD, "Invalid AP number");
1953 return ERROR_COMMAND_ARGUMENT_INVALID;
1954 }
1955
1956 ap = dap_ap(dap, apsel);
1957
1958 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg);
1959 if (reg >= 256 || (reg & 3)) {
1960 command_print(CMD, "Invalid reg value (should be less than 256 and 4 bytes aligned)");
1961 return ERROR_COMMAND_ARGUMENT_INVALID;
1962 }
1963
1964 if (CMD_ARGC == 3) {
1965 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
1966 switch (reg) {
1967 case MEM_AP_REG_CSW:
1968 ap->csw_value = 0; /* invalid, in case write fails */
1969 retval = dap_queue_ap_write(ap, reg, value);
1970 if (retval == ERROR_OK)
1971 ap->csw_value = value;
1972 break;
1973 case MEM_AP_REG_TAR:
1974 retval = dap_queue_ap_write(ap, reg, value);
1975 if (retval == ERROR_OK)
1976 ap->tar_value = (ap->tar_value & ~0xFFFFFFFFull) | value;
1977 else {
1978 /* To track independent writes to TAR and TAR64, two tar_valid flags */
1979 /* should be used. To keep it simple, tar_valid is only invalidated on a */
1980 /* write fail. This approach causes a later re-write of the TAR and TAR64 */
1981 /* if tar_valid is false. */
1982 ap->tar_valid = false;
1983 }
1984 break;
1985 case MEM_AP_REG_TAR64:
1986 retval = dap_queue_ap_write(ap, reg, value);
1987 if (retval == ERROR_OK)
1988 ap->tar_value = (ap->tar_value & 0xFFFFFFFFull) | (((target_addr_t)value) << 32);
1989 else {
1990 /* See above comment for the MEM_AP_REG_TAR failed write case */
1991 ap->tar_valid = false;
1992 }
1993 break;
1994 default:
1995 retval = dap_queue_ap_write(ap, reg, value);
1996 break;
1997 }
1998 } else {
1999 retval = dap_queue_ap_read(ap, reg, &value);
2000 }
2001 if (retval == ERROR_OK)
2002 retval = dap_run(dap);
2003
2004 if (retval != ERROR_OK)
2005 return retval;
2006
2007 if (CMD_ARGC == 2)
2008 command_print(CMD, "0x%08" PRIx32, value);
2009
2010 return retval;
2011 }
2012
2013 COMMAND_HANDLER(dap_dpreg_command)
2014 {
2015 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2016 uint32_t reg, value;
2017 int retval;
2018
2019 if (CMD_ARGC < 1 || CMD_ARGC > 2)
2020 return ERROR_COMMAND_SYNTAX_ERROR;
2021
2022 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], reg);
2023 if (reg >= 256 || (reg & 3)) {
2024 command_print(CMD, "Invalid reg value (should be less than 256 and 4 bytes aligned)");
2025 return ERROR_COMMAND_ARGUMENT_INVALID;
2026 }
2027
2028 if (CMD_ARGC == 2) {
2029 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2030 retval = dap_queue_dp_write(dap, reg, value);
2031 } else {
2032 retval = dap_queue_dp_read(dap, reg, &value);
2033 }
2034 if (retval == ERROR_OK)
2035 retval = dap_run(dap);
2036
2037 if (retval != ERROR_OK)
2038 return retval;
2039
2040 if (CMD_ARGC == 1)
2041 command_print(CMD, "0x%08" PRIx32, value);
2042
2043 return retval;
2044 }
2045
2046 COMMAND_HANDLER(dap_ti_be_32_quirks_command)
2047 {
2048 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2049 return CALL_COMMAND_HANDLER(handle_command_parse_bool, &dap->ti_be_32_quirks,
2050 "TI BE-32 quirks mode");
2051 }
2052
2053 const struct command_registration dap_instance_commands[] = {
2054 {
2055 .name = "info",
2056 .handler = handle_dap_info_command,
2057 .mode = COMMAND_EXEC,
2058 .help = "display ROM table for MEM-AP "
2059 "(default currently selected AP)",
2060 .usage = "[ap_num]",
2061 },
2062 {
2063 .name = "apsel",
2064 .handler = dap_apsel_command,
2065 .mode = COMMAND_ANY,
2066 .help = "Set the currently selected AP (default 0) "
2067 "and display the result",
2068 .usage = "[ap_num]",
2069 },
2070 {
2071 .name = "apcsw",
2072 .handler = dap_apcsw_command,
2073 .mode = COMMAND_ANY,
2074 .help = "Set CSW default bits",
2075 .usage = "[value [mask]]",
2076 },
2077
2078 {
2079 .name = "apid",
2080 .handler = dap_apid_command,
2081 .mode = COMMAND_EXEC,
2082 .help = "return ID register from AP "
2083 "(default currently selected AP)",
2084 .usage = "[ap_num]",
2085 },
2086 {
2087 .name = "apreg",
2088 .handler = dap_apreg_command,
2089 .mode = COMMAND_EXEC,
2090 .help = "read/write a register from AP "
2091 "(reg is byte address of a word register, like 0 4 8...)",
2092 .usage = "ap_num reg [value]",
2093 },
2094 {
2095 .name = "dpreg",
2096 .handler = dap_dpreg_command,
2097 .mode = COMMAND_EXEC,
2098 .help = "read/write a register from DP "
2099 "(reg is byte address (bank << 4 | reg) of a word register, like 0 4 8...)",
2100 .usage = "reg [value]",
2101 },
2102 {
2103 .name = "baseaddr",
2104 .handler = dap_baseaddr_command,
2105 .mode = COMMAND_EXEC,
2106 .help = "return debug base address from MEM-AP "
2107 "(default currently selected AP)",
2108 .usage = "[ap_num]",
2109 },
2110 {
2111 .name = "memaccess",
2112 .handler = dap_memaccess_command,
2113 .mode = COMMAND_EXEC,
2114 .help = "set/get number of extra tck for MEM-AP memory "
2115 "bus access [0-255]",
2116 .usage = "[cycles]",
2117 },
2118 {
2119 .name = "ti_be_32_quirks",
2120 .handler = dap_ti_be_32_quirks_command,
2121 .mode = COMMAND_CONFIG,
2122 .help = "set/get quirks mode for TI TMS450/TMS570 processors",
2123 .usage = "[enable]",
2124 },
2125 COMMAND_REGISTRATION_DONE
2126 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)