adiv6: re-organize mem_ap registers definition
[openocd.git] / src / target / arm_adi_v5.c
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * Copyright (C) 2013 by Andreas Fritiofson *
14 * andreas.fritiofson@gmail.com *
15 * *
16 * Copyright (C) 2019-2021, Ampere Computing LLC *
17 * *
18 * This program is free software; you can redistribute it and/or modify *
19 * it under the terms of the GNU General Public License as published by *
20 * the Free Software Foundation; either version 2 of the License, or *
21 * (at your option) any later version. *
22 * *
23 * This program is distributed in the hope that it will be useful, *
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
26 * GNU General Public License for more details. *
27 * *
28 * You should have received a copy of the GNU General Public License *
29 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
30 ***************************************************************************/
31
32 /**
33 * @file
34 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
35 * debugging architecture. Compared with previous versions, this includes
36 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
37 * transport, and focuses on memory mapped resources as defined by the
38 * CoreSight architecture.
39 *
40 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
41 * basic components: a Debug Port (DP) transporting messages to and from a
42 * debugger, and an Access Port (AP) accessing resources. Three types of DP
43 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
44 * One uses only SWD for communication, and is called SW-DP. The third can
45 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
46 * is used to access memory mapped resources and is called a MEM-AP. Also a
47 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
48 *
49 * This programming interface allows DAP pipelined operations through a
50 * transaction queue. This primarily affects AP operations (such as using
51 * a MEM-AP to access memory or registers). If the current transaction has
52 * not finished by the time the next one must begin, and the ORUNDETECT bit
53 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
54 * further AP operations will fail. There are two basic methods to avoid
55 * such overrun errors. One involves polling for status instead of using
56 * transaction pipelining. The other involves adding delays to ensure the
57 * AP has enough time to complete one operation before starting the next
58 * one. (For JTAG these delays are controlled by memaccess_tck.)
59 */
60
61 /*
62 * Relevant specifications from ARM include:
63 *
64 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031E
65 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
66 *
67 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
68 * Cortex-M3(tm) TRM, ARM DDI 0337G
69 */
70
71 #ifdef HAVE_CONFIG_H
72 #include "config.h"
73 #endif
74
75 #include "jtag/interface.h"
76 #include "arm.h"
77 #include "arm_adi_v5.h"
78 #include "arm_coresight.h"
79 #include "jtag/swd.h"
80 #include "transport/transport.h"
81 #include <helper/align.h>
82 #include <helper/jep106.h>
83 #include <helper/time_support.h>
84 #include <helper/list.h>
85 #include <helper/jim-nvp.h>
86
87 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
88
89 /*
90 uint32_t tar_block_size(uint32_t address)
91 Return the largest block starting at address that does not cross a tar block size alignment boundary
92 */
93 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, target_addr_t address)
94 {
95 return tar_autoincr_block - ((tar_autoincr_block - 1) & address);
96 }
97
98 /***************************************************************************
99 * *
100 * DP and MEM-AP register access through APACC and DPACC *
101 * *
102 ***************************************************************************/
103
104 static int mem_ap_setup_csw(struct adiv5_ap *ap, uint32_t csw)
105 {
106 csw |= ap->csw_default;
107
108 if (csw != ap->csw_value) {
109 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
110 int retval = dap_queue_ap_write(ap, MEM_AP_REG_CSW(ap->dap), csw);
111 if (retval != ERROR_OK) {
112 ap->csw_value = 0;
113 return retval;
114 }
115 ap->csw_value = csw;
116 }
117 return ERROR_OK;
118 }
119
120 static int mem_ap_setup_tar(struct adiv5_ap *ap, target_addr_t tar)
121 {
122 if (!ap->tar_valid || tar != ap->tar_value) {
123 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
124 int retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR(ap->dap), (uint32_t)(tar & 0xffffffffUL));
125 if (retval == ERROR_OK && is_64bit_ap(ap)) {
126 /* See if bits 63:32 of tar is different from last setting */
127 if ((ap->tar_value >> 32) != (tar >> 32))
128 retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR64(ap->dap), (uint32_t)(tar >> 32));
129 }
130 if (retval != ERROR_OK) {
131 ap->tar_valid = false;
132 return retval;
133 }
134 ap->tar_value = tar;
135 ap->tar_valid = true;
136 }
137 return ERROR_OK;
138 }
139
140 static int mem_ap_read_tar(struct adiv5_ap *ap, target_addr_t *tar)
141 {
142 uint32_t lower;
143 uint32_t upper = 0;
144
145 int retval = dap_queue_ap_read(ap, MEM_AP_REG_TAR(ap->dap), &lower);
146 if (retval == ERROR_OK && is_64bit_ap(ap))
147 retval = dap_queue_ap_read(ap, MEM_AP_REG_TAR64(ap->dap), &upper);
148
149 if (retval != ERROR_OK) {
150 ap->tar_valid = false;
151 return retval;
152 }
153
154 retval = dap_run(ap->dap);
155 if (retval != ERROR_OK) {
156 ap->tar_valid = false;
157 return retval;
158 }
159
160 *tar = (((target_addr_t)upper) << 32) | (target_addr_t)lower;
161
162 ap->tar_value = *tar;
163 ap->tar_valid = true;
164 return ERROR_OK;
165 }
166
167 static uint32_t mem_ap_get_tar_increment(struct adiv5_ap *ap)
168 {
169 switch (ap->csw_value & CSW_ADDRINC_MASK) {
170 case CSW_ADDRINC_SINGLE:
171 switch (ap->csw_value & CSW_SIZE_MASK) {
172 case CSW_8BIT:
173 return 1;
174 case CSW_16BIT:
175 return 2;
176 case CSW_32BIT:
177 return 4;
178 default:
179 return 0;
180 }
181 case CSW_ADDRINC_PACKED:
182 return 4;
183 }
184 return 0;
185 }
186
187 /* mem_ap_update_tar_cache is called after an access to MEM_AP_REG_DRW
188 */
189 static void mem_ap_update_tar_cache(struct adiv5_ap *ap)
190 {
191 if (!ap->tar_valid)
192 return;
193
194 uint32_t inc = mem_ap_get_tar_increment(ap);
195 if (inc >= max_tar_block_size(ap->tar_autoincr_block, ap->tar_value))
196 ap->tar_valid = false;
197 else
198 ap->tar_value += inc;
199 }
200
201 /**
202 * Queue transactions setting up transfer parameters for the
203 * currently selected MEM-AP.
204 *
205 * Subsequent transfers using registers like MEM_AP_REG_DRW or MEM_AP_REG_BD2
206 * initiate data reads or writes using memory or peripheral addresses.
207 * If the CSW is configured for it, the TAR may be automatically
208 * incremented after each transfer.
209 *
210 * @param ap The MEM-AP.
211 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
212 * matches the cached value, the register is not changed.
213 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
214 * matches the cached address, the register is not changed.
215 *
216 * @return ERROR_OK if the transaction was properly queued, else a fault code.
217 */
218 static int mem_ap_setup_transfer(struct adiv5_ap *ap, uint32_t csw, target_addr_t tar)
219 {
220 int retval;
221 retval = mem_ap_setup_csw(ap, csw);
222 if (retval != ERROR_OK)
223 return retval;
224 retval = mem_ap_setup_tar(ap, tar);
225 if (retval != ERROR_OK)
226 return retval;
227 return ERROR_OK;
228 }
229
230 /**
231 * Asynchronous (queued) read of a word from memory or a system register.
232 *
233 * @param ap The MEM-AP to access.
234 * @param address Address of the 32-bit word to read; it must be
235 * readable by the currently selected MEM-AP.
236 * @param value points to where the word will be stored when the
237 * transaction queue is flushed (assuming no errors).
238 *
239 * @return ERROR_OK for success. Otherwise a fault code.
240 */
241 int mem_ap_read_u32(struct adiv5_ap *ap, target_addr_t address,
242 uint32_t *value)
243 {
244 int retval;
245
246 /* Use banked addressing (REG_BDx) to avoid some link traffic
247 * (updating TAR) when reading several consecutive addresses.
248 */
249 retval = mem_ap_setup_transfer(ap,
250 CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK),
251 address & 0xFFFFFFFFFFFFFFF0ull);
252 if (retval != ERROR_OK)
253 return retval;
254
255 return dap_queue_ap_read(ap, MEM_AP_REG_BD0(ap->dap) | (address & 0xC), value);
256 }
257
258 /**
259 * Synchronous read of a word from memory or a system register.
260 * As a side effect, this flushes any queued transactions.
261 *
262 * @param ap The MEM-AP to access.
263 * @param address Address of the 32-bit word to read; it must be
264 * readable by the currently selected MEM-AP.
265 * @param value points to where the result will be stored.
266 *
267 * @return ERROR_OK for success; *value holds the result.
268 * Otherwise a fault code.
269 */
270 int mem_ap_read_atomic_u32(struct adiv5_ap *ap, target_addr_t address,
271 uint32_t *value)
272 {
273 int retval;
274
275 retval = mem_ap_read_u32(ap, address, value);
276 if (retval != ERROR_OK)
277 return retval;
278
279 return dap_run(ap->dap);
280 }
281
282 /**
283 * Asynchronous (queued) write of a word to memory or a system register.
284 *
285 * @param ap The MEM-AP to access.
286 * @param address Address to be written; it must be writable by
287 * the currently selected MEM-AP.
288 * @param value Word that will be written to the address when transaction
289 * queue is flushed (assuming no errors).
290 *
291 * @return ERROR_OK for success. Otherwise a fault code.
292 */
293 int mem_ap_write_u32(struct adiv5_ap *ap, target_addr_t address,
294 uint32_t value)
295 {
296 int retval;
297
298 /* Use banked addressing (REG_BDx) to avoid some link traffic
299 * (updating TAR) when writing several consecutive addresses.
300 */
301 retval = mem_ap_setup_transfer(ap,
302 CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK),
303 address & 0xFFFFFFFFFFFFFFF0ull);
304 if (retval != ERROR_OK)
305 return retval;
306
307 return dap_queue_ap_write(ap, MEM_AP_REG_BD0(ap->dap) | (address & 0xC),
308 value);
309 }
310
311 /**
312 * Synchronous write of a word to memory or a system register.
313 * As a side effect, this flushes any queued transactions.
314 *
315 * @param ap The MEM-AP to access.
316 * @param address Address to be written; it must be writable by
317 * the currently selected MEM-AP.
318 * @param value Word that will be written.
319 *
320 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
321 */
322 int mem_ap_write_atomic_u32(struct adiv5_ap *ap, target_addr_t address,
323 uint32_t value)
324 {
325 int retval = mem_ap_write_u32(ap, address, value);
326
327 if (retval != ERROR_OK)
328 return retval;
329
330 return dap_run(ap->dap);
331 }
332
333 /**
334 * Synchronous write of a block of memory, using a specific access size.
335 *
336 * @param ap The MEM-AP to access.
337 * @param buffer The data buffer to write. No particular alignment is assumed.
338 * @param size Which access size to use, in bytes. 1, 2 or 4.
339 * @param count The number of writes to do (in size units, not bytes).
340 * @param address Address to be written; it must be writable by the currently selected MEM-AP.
341 * @param addrinc Whether the target address should be increased for each write or not. This
342 * should normally be true, except when writing to e.g. a FIFO.
343 * @return ERROR_OK on success, otherwise an error code.
344 */
345 static int mem_ap_write(struct adiv5_ap *ap, const uint8_t *buffer, uint32_t size, uint32_t count,
346 target_addr_t address, bool addrinc)
347 {
348 struct adiv5_dap *dap = ap->dap;
349 size_t nbytes = size * count;
350 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
351 uint32_t csw_size;
352 target_addr_t addr_xor;
353 int retval = ERROR_OK;
354
355 /* TI BE-32 Quirks mode:
356 * Writes on big-endian TMS570 behave very strangely. Observed behavior:
357 * size write address bytes written in order
358 * 4 TAR ^ 0 (val >> 24), (val >> 16), (val >> 8), (val)
359 * 2 TAR ^ 2 (val >> 8), (val)
360 * 1 TAR ^ 3 (val)
361 * For example, if you attempt to write a single byte to address 0, the processor
362 * will actually write a byte to address 3.
363 *
364 * To make writes of size < 4 work as expected, we xor a value with the address before
365 * setting the TAP, and we set the TAP after every transfer rather then relying on
366 * address increment. */
367
368 if (size == 4) {
369 csw_size = CSW_32BIT;
370 addr_xor = 0;
371 } else if (size == 2) {
372 csw_size = CSW_16BIT;
373 addr_xor = dap->ti_be_32_quirks ? 2 : 0;
374 } else if (size == 1) {
375 csw_size = CSW_8BIT;
376 addr_xor = dap->ti_be_32_quirks ? 3 : 0;
377 } else {
378 return ERROR_TARGET_UNALIGNED_ACCESS;
379 }
380
381 if (ap->unaligned_access_bad && (address % size != 0))
382 return ERROR_TARGET_UNALIGNED_ACCESS;
383
384 while (nbytes > 0) {
385 uint32_t this_size = size;
386
387 /* Select packed transfer if possible */
388 if (addrinc && ap->packed_transfers && nbytes >= 4
389 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
390 this_size = 4;
391 retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
392 } else {
393 retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
394 }
395
396 if (retval != ERROR_OK)
397 break;
398
399 retval = mem_ap_setup_tar(ap, address ^ addr_xor);
400 if (retval != ERROR_OK)
401 return retval;
402
403 /* How many source bytes each transfer will consume, and their location in the DRW,
404 * depends on the type of transfer and alignment. See ARM document IHI0031C. */
405 uint32_t outvalue = 0;
406 uint32_t drw_byte_idx = address;
407 if (dap->ti_be_32_quirks) {
408 switch (this_size) {
409 case 4:
410 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
411 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
412 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
413 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx & 3) ^ addr_xor);
414 break;
415 case 2:
416 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx++ & 3) ^ addr_xor);
417 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx & 3) ^ addr_xor);
418 break;
419 case 1:
420 outvalue |= (uint32_t)*buffer++ << 8 * (0 ^ (drw_byte_idx & 3) ^ addr_xor);
421 break;
422 }
423 } else {
424 switch (this_size) {
425 case 4:
426 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
427 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
428 /* fallthrough */
429 case 2:
430 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
431 /* fallthrough */
432 case 1:
433 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx & 3);
434 }
435 }
436
437 nbytes -= this_size;
438
439 retval = dap_queue_ap_write(ap, MEM_AP_REG_DRW(dap), outvalue);
440 if (retval != ERROR_OK)
441 break;
442
443 mem_ap_update_tar_cache(ap);
444 if (addrinc)
445 address += this_size;
446 }
447
448 /* REVISIT: Might want to have a queued version of this function that does not run. */
449 if (retval == ERROR_OK)
450 retval = dap_run(dap);
451
452 if (retval != ERROR_OK) {
453 target_addr_t tar;
454 if (mem_ap_read_tar(ap, &tar) == ERROR_OK)
455 LOG_ERROR("Failed to write memory at " TARGET_ADDR_FMT, tar);
456 else
457 LOG_ERROR("Failed to write memory and, additionally, failed to find out where");
458 }
459
460 return retval;
461 }
462
463 /**
464 * Synchronous read of a block of memory, using a specific access size.
465 *
466 * @param ap The MEM-AP to access.
467 * @param buffer The data buffer to receive the data. No particular alignment is assumed.
468 * @param size Which access size to use, in bytes. 1, 2 or 4.
469 * @param count The number of reads to do (in size units, not bytes).
470 * @param adr Address to be read; it must be readable by the currently selected MEM-AP.
471 * @param addrinc Whether the target address should be increased after each read or not. This
472 * should normally be true, except when reading from e.g. a FIFO.
473 * @return ERROR_OK on success, otherwise an error code.
474 */
475 static int mem_ap_read(struct adiv5_ap *ap, uint8_t *buffer, uint32_t size, uint32_t count,
476 target_addr_t adr, bool addrinc)
477 {
478 struct adiv5_dap *dap = ap->dap;
479 size_t nbytes = size * count;
480 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
481 uint32_t csw_size;
482 target_addr_t address = adr;
483 int retval = ERROR_OK;
484
485 /* TI BE-32 Quirks mode:
486 * Reads on big-endian TMS570 behave strangely differently than writes.
487 * They read from the physical address requested, but with DRW byte-reversed.
488 * For example, a byte read from address 0 will place the result in the high bytes of DRW.
489 * Also, packed 8-bit and 16-bit transfers seem to sometimes return garbage in some bytes,
490 * so avoid them. */
491
492 if (size == 4)
493 csw_size = CSW_32BIT;
494 else if (size == 2)
495 csw_size = CSW_16BIT;
496 else if (size == 1)
497 csw_size = CSW_8BIT;
498 else
499 return ERROR_TARGET_UNALIGNED_ACCESS;
500
501 if (ap->unaligned_access_bad && (adr % size != 0))
502 return ERROR_TARGET_UNALIGNED_ACCESS;
503
504 /* Allocate buffer to hold the sequence of DRW reads that will be made. This is a significant
505 * over-allocation if packed transfers are going to be used, but determining the real need at
506 * this point would be messy. */
507 uint32_t *read_buf = calloc(count, sizeof(uint32_t));
508 /* Multiplication count * sizeof(uint32_t) may overflow, calloc() is safe */
509 uint32_t *read_ptr = read_buf;
510 if (!read_buf) {
511 LOG_ERROR("Failed to allocate read buffer");
512 return ERROR_FAIL;
513 }
514
515 /* Queue up all reads. Each read will store the entire DRW word in the read buffer. How many
516 * useful bytes it contains, and their location in the word, depends on the type of transfer
517 * and alignment. */
518 while (nbytes > 0) {
519 uint32_t this_size = size;
520
521 /* Select packed transfer if possible */
522 if (addrinc && ap->packed_transfers && nbytes >= 4
523 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
524 this_size = 4;
525 retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
526 } else {
527 retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
528 }
529 if (retval != ERROR_OK)
530 break;
531
532 retval = mem_ap_setup_tar(ap, address);
533 if (retval != ERROR_OK)
534 break;
535
536 retval = dap_queue_ap_read(ap, MEM_AP_REG_DRW(dap), read_ptr++);
537 if (retval != ERROR_OK)
538 break;
539
540 nbytes -= this_size;
541 if (addrinc)
542 address += this_size;
543
544 mem_ap_update_tar_cache(ap);
545 }
546
547 if (retval == ERROR_OK)
548 retval = dap_run(dap);
549
550 /* Restore state */
551 address = adr;
552 nbytes = size * count;
553 read_ptr = read_buf;
554
555 /* If something failed, read TAR to find out how much data was successfully read, so we can
556 * at least give the caller what we have. */
557 if (retval != ERROR_OK) {
558 target_addr_t tar;
559 if (mem_ap_read_tar(ap, &tar) == ERROR_OK) {
560 /* TAR is incremented after failed transfer on some devices (eg Cortex-M4) */
561 LOG_ERROR("Failed to read memory at " TARGET_ADDR_FMT, tar);
562 if (nbytes > tar - address)
563 nbytes = tar - address;
564 } else {
565 LOG_ERROR("Failed to read memory and, additionally, failed to find out where");
566 nbytes = 0;
567 }
568 }
569
570 /* Replay loop to populate caller's buffer from the correct word and byte lane */
571 while (nbytes > 0) {
572 uint32_t this_size = size;
573
574 if (addrinc && ap->packed_transfers && nbytes >= 4
575 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
576 this_size = 4;
577 }
578
579 if (dap->ti_be_32_quirks) {
580 switch (this_size) {
581 case 4:
582 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
583 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
584 /* fallthrough */
585 case 2:
586 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
587 /* fallthrough */
588 case 1:
589 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
590 }
591 } else {
592 switch (this_size) {
593 case 4:
594 *buffer++ = *read_ptr >> 8 * (address++ & 3);
595 *buffer++ = *read_ptr >> 8 * (address++ & 3);
596 /* fallthrough */
597 case 2:
598 *buffer++ = *read_ptr >> 8 * (address++ & 3);
599 /* fallthrough */
600 case 1:
601 *buffer++ = *read_ptr >> 8 * (address++ & 3);
602 }
603 }
604
605 read_ptr++;
606 nbytes -= this_size;
607 }
608
609 free(read_buf);
610 return retval;
611 }
612
613 int mem_ap_read_buf(struct adiv5_ap *ap,
614 uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
615 {
616 return mem_ap_read(ap, buffer, size, count, address, true);
617 }
618
619 int mem_ap_write_buf(struct adiv5_ap *ap,
620 const uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
621 {
622 return mem_ap_write(ap, buffer, size, count, address, true);
623 }
624
625 int mem_ap_read_buf_noincr(struct adiv5_ap *ap,
626 uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
627 {
628 return mem_ap_read(ap, buffer, size, count, address, false);
629 }
630
631 int mem_ap_write_buf_noincr(struct adiv5_ap *ap,
632 const uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
633 {
634 return mem_ap_write(ap, buffer, size, count, address, false);
635 }
636
637 /*--------------------------------------------------------------------------*/
638
639
640 #define DAP_POWER_DOMAIN_TIMEOUT (10)
641
642 /*--------------------------------------------------------------------------*/
643
644 /**
645 * Invalidate cached DP select and cached TAR and CSW of all APs
646 */
647 void dap_invalidate_cache(struct adiv5_dap *dap)
648 {
649 dap->select = DP_SELECT_INVALID;
650 dap->last_read = NULL;
651
652 int i;
653 for (i = 0; i <= DP_APSEL_MAX; i++) {
654 /* force csw and tar write on the next mem-ap access */
655 dap->ap[i].tar_valid = false;
656 dap->ap[i].csw_value = 0;
657 }
658 }
659
660 /**
661 * Initialize a DAP. This sets up the power domains, prepares the DP
662 * for further use and activates overrun checking.
663 *
664 * @param dap The DAP being initialized.
665 */
666 int dap_dp_init(struct adiv5_dap *dap)
667 {
668 int retval;
669
670 LOG_DEBUG("%s", adiv5_dap_name(dap));
671
672 dap->do_reconnect = false;
673 dap_invalidate_cache(dap);
674
675 /*
676 * Early initialize dap->dp_ctrl_stat.
677 * In jtag mode only, if the following queue run (in dap_dp_poll_register)
678 * fails and sets the sticky error, it will trigger the clearing
679 * of the sticky. Without this initialization system and debug power
680 * would be disabled while clearing the sticky error bit.
681 */
682 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
683
684 /*
685 * This write operation clears the sticky error bit in jtag mode only and
686 * is ignored in swd mode. It also powers-up system and debug domains in
687 * both jtag and swd modes, if not done before.
688 */
689 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat | SSTICKYERR);
690 if (retval != ERROR_OK)
691 return retval;
692
693 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
694 if (retval != ERROR_OK)
695 return retval;
696
697 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
698 if (retval != ERROR_OK)
699 return retval;
700
701 /* Check that we have debug power domains activated */
702 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
703 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
704 CDBGPWRUPACK, CDBGPWRUPACK,
705 DAP_POWER_DOMAIN_TIMEOUT);
706 if (retval != ERROR_OK)
707 return retval;
708
709 if (!dap->ignore_syspwrupack) {
710 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
711 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
712 CSYSPWRUPACK, CSYSPWRUPACK,
713 DAP_POWER_DOMAIN_TIMEOUT);
714 if (retval != ERROR_OK)
715 return retval;
716 }
717
718 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
719 if (retval != ERROR_OK)
720 return retval;
721
722 /* With debug power on we can activate OVERRUN checking */
723 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
724 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
725 if (retval != ERROR_OK)
726 return retval;
727 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
728 if (retval != ERROR_OK)
729 return retval;
730
731 retval = dap_run(dap);
732 if (retval != ERROR_OK)
733 return retval;
734
735 return retval;
736 }
737
738 /**
739 * Initialize a DAP or do reconnect if DAP is not accessible.
740 *
741 * @param dap The DAP being initialized.
742 */
743 int dap_dp_init_or_reconnect(struct adiv5_dap *dap)
744 {
745 LOG_DEBUG("%s", adiv5_dap_name(dap));
746
747 /*
748 * Early initialize dap->dp_ctrl_stat.
749 * In jtag mode only, if the following atomic reads fail and set the
750 * sticky error, it will trigger the clearing of the sticky. Without this
751 * initialization system and debug power would be disabled while clearing
752 * the sticky error bit.
753 */
754 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
755
756 dap->do_reconnect = false;
757
758 dap_dp_read_atomic(dap, DP_CTRL_STAT, NULL);
759 if (dap->do_reconnect) {
760 /* dap connect calls dap_dp_init() after transport dependent initialization */
761 return dap->ops->connect(dap);
762 } else {
763 return dap_dp_init(dap);
764 }
765 }
766
767 /**
768 * Initialize a DAP. This sets up the power domains, prepares the DP
769 * for further use, and arranges to use AP #0 for all AP operations
770 * until dap_ap-select() changes that policy.
771 *
772 * @param ap The MEM-AP being initialized.
773 */
774 int mem_ap_init(struct adiv5_ap *ap)
775 {
776 /* check that we support packed transfers */
777 uint32_t csw, cfg;
778 int retval;
779 struct adiv5_dap *dap = ap->dap;
780
781 /* Set ap->cfg_reg before calling mem_ap_setup_transfer(). */
782 /* mem_ap_setup_transfer() needs to know if the MEM_AP supports LPAE. */
783 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG(dap), &cfg);
784 if (retval != ERROR_OK)
785 return retval;
786
787 retval = dap_run(dap);
788 if (retval != ERROR_OK)
789 return retval;
790
791 ap->cfg_reg = cfg;
792 ap->tar_valid = false;
793 ap->csw_value = 0; /* force csw and tar write */
794 retval = mem_ap_setup_transfer(ap, CSW_8BIT | CSW_ADDRINC_PACKED, 0);
795 if (retval != ERROR_OK)
796 return retval;
797
798 retval = dap_queue_ap_read(ap, MEM_AP_REG_CSW(dap), &csw);
799 if (retval != ERROR_OK)
800 return retval;
801
802 retval = dap_run(dap);
803 if (retval != ERROR_OK)
804 return retval;
805
806 if (csw & CSW_ADDRINC_PACKED)
807 ap->packed_transfers = true;
808 else
809 ap->packed_transfers = false;
810
811 /* Packed transfers on TI BE-32 processors do not work correctly in
812 * many cases. */
813 if (dap->ti_be_32_quirks)
814 ap->packed_transfers = false;
815
816 LOG_DEBUG("MEM_AP Packed Transfers: %s",
817 ap->packed_transfers ? "enabled" : "disabled");
818
819 /* The ARM ADI spec leaves implementation-defined whether unaligned
820 * memory accesses work, only work partially, or cause a sticky error.
821 * On TI BE-32 processors, reads seem to return garbage in some bytes
822 * and unaligned writes seem to cause a sticky error.
823 * TODO: it would be nice to have a way to detect whether unaligned
824 * operations are supported on other processors. */
825 ap->unaligned_access_bad = dap->ti_be_32_quirks;
826
827 LOG_DEBUG("MEM_AP CFG: large data %d, long address %d, big-endian %d",
828 !!(cfg & MEM_AP_REG_CFG_LD), !!(cfg & MEM_AP_REG_CFG_LA), !!(cfg & MEM_AP_REG_CFG_BE));
829
830 return ERROR_OK;
831 }
832
833 /**
834 * Put the debug link into SWD mode, if the target supports it.
835 * The link's initial mode may be either JTAG (for example,
836 * with SWJ-DP after reset) or SWD.
837 *
838 * Note that targets using the JTAG-DP do not support SWD, and that
839 * some targets which could otherwise support it may have been
840 * configured to disable SWD signaling
841 *
842 * @param dap The DAP used
843 * @return ERROR_OK or else a fault code.
844 */
845 int dap_to_swd(struct adiv5_dap *dap)
846 {
847 LOG_DEBUG("Enter SWD mode");
848
849 return dap_send_sequence(dap, JTAG_TO_SWD);
850 }
851
852 /**
853 * Put the debug link into JTAG mode, if the target supports it.
854 * The link's initial mode may be either SWD or JTAG.
855 *
856 * Note that targets implemented with SW-DP do not support JTAG, and
857 * that some targets which could otherwise support it may have been
858 * configured to disable JTAG signaling
859 *
860 * @param dap The DAP used
861 * @return ERROR_OK or else a fault code.
862 */
863 int dap_to_jtag(struct adiv5_dap *dap)
864 {
865 LOG_DEBUG("Enter JTAG mode");
866
867 return dap_send_sequence(dap, SWD_TO_JTAG);
868 }
869
870 /* CID interpretation -- see ARM IHI 0029E table B2-7
871 * and ARM IHI 0031E table D1-2.
872 *
873 * From 2009/11/25 commit 21378f58b604:
874 * "OptimoDE DESS" is ARM's semicustom DSPish stuff.
875 * Let's keep it as is, for the time being
876 */
877 static const char *class_description[16] = {
878 [0x0] = "Generic verification component",
879 [0x1] = "ROM table",
880 [0x2] = "Reserved",
881 [0x3] = "Reserved",
882 [0x4] = "Reserved",
883 [0x5] = "Reserved",
884 [0x6] = "Reserved",
885 [0x7] = "Reserved",
886 [0x8] = "Reserved",
887 [0x9] = "CoreSight component",
888 [0xA] = "Reserved",
889 [0xB] = "Peripheral Test Block",
890 [0xC] = "Reserved",
891 [0xD] = "OptimoDE DESS", /* see above */
892 [0xE] = "Generic IP component",
893 [0xF] = "CoreLink, PrimeCell or System component",
894 };
895
896 #define ARCH_ID(architect, archid) ( \
897 (((architect) << ARM_CS_C9_DEVARCH_ARCHITECT_SHIFT) & ARM_CS_C9_DEVARCH_ARCHITECT_MASK) | \
898 (((archid) << ARM_CS_C9_DEVARCH_ARCHID_SHIFT) & ARM_CS_C9_DEVARCH_ARCHID_MASK) \
899 )
900
901 static const struct {
902 uint32_t arch_id;
903 const char *description;
904 } class0x9_devarch[] = {
905 /* keep same unsorted order as in ARM IHI0029E */
906 { ARCH_ID(ARM_ID, 0x0A00), "RAS architecture" },
907 { ARCH_ID(ARM_ID, 0x1A01), "Instrumentation Trace Macrocell (ITM) architecture" },
908 { ARCH_ID(ARM_ID, 0x1A02), "DWT architecture" },
909 { ARCH_ID(ARM_ID, 0x1A03), "Flash Patch and Breakpoint unit (FPB) architecture" },
910 { ARCH_ID(ARM_ID, 0x2A04), "Processor debug architecture (ARMv8-M)" },
911 { ARCH_ID(ARM_ID, 0x6A05), "Processor debug architecture (ARMv8-R)" },
912 { ARCH_ID(ARM_ID, 0x0A10), "PC sample-based profiling" },
913 { ARCH_ID(ARM_ID, 0x4A13), "Embedded Trace Macrocell (ETM) architecture" },
914 { ARCH_ID(ARM_ID, 0x1A14), "Cross Trigger Interface (CTI) architecture" },
915 { ARCH_ID(ARM_ID, 0x6A15), "Processor debug architecture (v8.0-A)" },
916 { ARCH_ID(ARM_ID, 0x7A15), "Processor debug architecture (v8.1-A)" },
917 { ARCH_ID(ARM_ID, 0x8A15), "Processor debug architecture (v8.2-A)" },
918 { ARCH_ID(ARM_ID, 0x2A16), "Processor Performance Monitor (PMU) architecture" },
919 { ARCH_ID(ARM_ID, 0x0A17), "Memory Access Port v2 architecture" },
920 { ARCH_ID(ARM_ID, 0x0A27), "JTAG Access Port v2 architecture" },
921 { ARCH_ID(ARM_ID, 0x0A31), "Basic trace router" },
922 { ARCH_ID(ARM_ID, 0x0A37), "Power requestor" },
923 { ARCH_ID(ARM_ID, 0x0A47), "Unknown Access Port v2 architecture" },
924 { ARCH_ID(ARM_ID, 0x0A50), "HSSTP architecture" },
925 { ARCH_ID(ARM_ID, 0x0A63), "System Trace Macrocell (STM) architecture" },
926 { ARCH_ID(ARM_ID, 0x0A75), "CoreSight ELA architecture" },
927 { ARCH_ID(ARM_ID, 0x0AF7), "CoreSight ROM architecture" },
928 };
929
930 #define DEVARCH_ID_MASK (ARM_CS_C9_DEVARCH_ARCHITECT_MASK | ARM_CS_C9_DEVARCH_ARCHID_MASK)
931 #define DEVARCH_ROM_C_0X9 ARCH_ID(ARM_ID, 0x0AF7)
932
933 static const char *class0x9_devarch_description(uint32_t devarch)
934 {
935 if (!(devarch & ARM_CS_C9_DEVARCH_PRESENT))
936 return "not present";
937
938 for (unsigned int i = 0; i < ARRAY_SIZE(class0x9_devarch); i++)
939 if ((devarch & DEVARCH_ID_MASK) == class0x9_devarch[i].arch_id)
940 return class0x9_devarch[i].description;
941
942 return "unknown";
943 }
944
945 static const struct {
946 enum ap_type type;
947 const char *description;
948 } ap_types[] = {
949 { AP_TYPE_JTAG_AP, "JTAG-AP" },
950 { AP_TYPE_COM_AP, "COM-AP" },
951 { AP_TYPE_AHB3_AP, "MEM-AP AHB3" },
952 { AP_TYPE_APB_AP, "MEM-AP APB2 or APB3" },
953 { AP_TYPE_AXI_AP, "MEM-AP AXI3 or AXI4" },
954 { AP_TYPE_AHB5_AP, "MEM-AP AHB5" },
955 { AP_TYPE_APB4_AP, "MEM-AP APB4" },
956 { AP_TYPE_AXI5_AP, "MEM-AP AXI5" },
957 { AP_TYPE_AHB5H_AP, "MEM-AP AHB5 with enhanced HPROT" },
958 };
959
960 static const char *ap_type_to_description(enum ap_type type)
961 {
962 for (unsigned int i = 0; i < ARRAY_SIZE(ap_types); i++)
963 if (type == ap_types[i].type)
964 return ap_types[i].description;
965
966 return "Unknown";
967 }
968
969 /*
970 * This function checks the ID for each access port to find the requested Access Port type
971 * It also calls dap_get_ap() to increment the AP refcount
972 */
973 int dap_find_get_ap(struct adiv5_dap *dap, enum ap_type type_to_find, struct adiv5_ap **ap_out)
974 {
975 int ap_num;
976
977 /* Maximum AP number is 255 since the SELECT register is 8 bits */
978 for (ap_num = 0; ap_num <= DP_APSEL_MAX; ap_num++) {
979 struct adiv5_ap *ap = dap_get_ap(dap, ap_num);
980 if (!ap)
981 continue;
982
983 /* read the IDR register of the Access Port */
984 uint32_t id_val = 0;
985
986 int retval = dap_queue_ap_read(ap, AP_REG_IDR(dap), &id_val);
987 if (retval != ERROR_OK) {
988 dap_put_ap(ap);
989 return retval;
990 }
991
992 retval = dap_run(dap);
993
994 /* Reading register for a non-existent AP should not cause an error,
995 * but just to be sure, try to continue searching if an error does happen.
996 */
997 if (retval == ERROR_OK && (id_val & AP_TYPE_MASK) == type_to_find) {
998 LOG_DEBUG("Found %s at AP index: %d (IDR=0x%08" PRIX32 ")",
999 ap_type_to_description(type_to_find),
1000 ap_num, id_val);
1001
1002 *ap_out = ap;
1003 return ERROR_OK;
1004 }
1005 dap_put_ap(ap);
1006 }
1007
1008 LOG_DEBUG("No %s found", ap_type_to_description(type_to_find));
1009 return ERROR_FAIL;
1010 }
1011
1012 static inline bool is_ap_in_use(struct adiv5_ap *ap)
1013 {
1014 return ap->refcount > 0 || ap->config_ap_never_release;
1015 }
1016
1017 static struct adiv5_ap *_dap_get_ap(struct adiv5_dap *dap, unsigned int ap_num)
1018 {
1019 if (ap_num > DP_APSEL_MAX) {
1020 LOG_ERROR("Invalid AP#%u", ap_num);
1021 return NULL;
1022 }
1023 struct adiv5_ap *ap = &dap->ap[ap_num];
1024 ++ap->refcount;
1025 return ap;
1026 }
1027
1028 /* Return AP with specified ap_num. Increment AP refcount */
1029 struct adiv5_ap *dap_get_ap(struct adiv5_dap *dap, unsigned int ap_num)
1030 {
1031 struct adiv5_ap *ap = _dap_get_ap(dap, ap_num);
1032 if (ap)
1033 LOG_DEBUG("refcount AP#%u get %u", ap_num, ap->refcount);
1034 return ap;
1035 }
1036
1037 /* Return AP with specified ap_num. Increment AP refcount and keep it non-zero */
1038 struct adiv5_ap *dap_get_config_ap(struct adiv5_dap *dap, unsigned int ap_num)
1039 {
1040 struct adiv5_ap *ap = _dap_get_ap(dap, ap_num);
1041 if (ap) {
1042 ap->config_ap_never_release = true;
1043 LOG_DEBUG("refcount AP#%u get_config %u", ap_num, ap->refcount);
1044 }
1045 return ap;
1046 }
1047
1048 /* Decrement AP refcount and release the AP when refcount reaches zero */
1049 int dap_put_ap(struct adiv5_ap *ap)
1050 {
1051 if (ap->refcount == 0) {
1052 LOG_ERROR("BUG: refcount AP#%" PRIu8 " put underflow", ap->ap_num);
1053 return ERROR_FAIL;
1054 }
1055
1056 --ap->refcount;
1057
1058 LOG_DEBUG("refcount AP#%" PRIu8 " put %u", ap->ap_num, ap->refcount);
1059 if (!is_ap_in_use(ap)) {
1060 /* defaults from dap_instance_init() */
1061 ap->memaccess_tck = 255;
1062 ap->tar_autoincr_block = (1 << 10);
1063 ap->csw_default = CSW_AHB_DEFAULT;
1064 ap->cfg_reg = MEM_AP_REG_CFG_INVALID;
1065 }
1066 return ERROR_OK;
1067 }
1068
1069 static int dap_get_debugbase(struct adiv5_ap *ap,
1070 target_addr_t *dbgbase, uint32_t *apid)
1071 {
1072 struct adiv5_dap *dap = ap->dap;
1073 int retval;
1074 uint32_t baseptr_upper, baseptr_lower;
1075
1076 if (ap->cfg_reg == MEM_AP_REG_CFG_INVALID) {
1077 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG(dap), &ap->cfg_reg);
1078 if (retval != ERROR_OK)
1079 return retval;
1080 }
1081 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE(dap), &baseptr_lower);
1082 if (retval != ERROR_OK)
1083 return retval;
1084 retval = dap_queue_ap_read(ap, AP_REG_IDR(dap), apid);
1085 if (retval != ERROR_OK)
1086 return retval;
1087 /* MEM_AP_REG_BASE64 is defined as 'RES0'; can be read and then ignored on 32 bits AP */
1088 if (ap->cfg_reg == MEM_AP_REG_CFG_INVALID || is_64bit_ap(ap)) {
1089 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE64(dap), &baseptr_upper);
1090 if (retval != ERROR_OK)
1091 return retval;
1092 }
1093
1094 retval = dap_run(dap);
1095 if (retval != ERROR_OK)
1096 return retval;
1097
1098 if (!is_64bit_ap(ap))
1099 baseptr_upper = 0;
1100 *dbgbase = (((target_addr_t)baseptr_upper) << 32) | baseptr_lower;
1101
1102 return ERROR_OK;
1103 }
1104
1105 /** Holds registers and coordinates of a CoreSight component */
1106 struct cs_component_vals {
1107 struct adiv5_ap *ap;
1108 target_addr_t component_base;
1109 uint64_t pid;
1110 uint32_t cid;
1111 uint32_t devarch;
1112 uint32_t devid;
1113 uint32_t devtype_memtype;
1114 };
1115
1116 /**
1117 * Read the CoreSight registers needed during ROM Table Parsing (RTP).
1118 *
1119 * @param ap Pointer to AP containing the component.
1120 * @param component_base On MEM-AP access method, base address of the component.
1121 * @param v Pointer to the struct holding the value of registers.
1122 *
1123 * @return ERROR_OK on success, else a fault code.
1124 */
1125 static int rtp_read_cs_regs(struct adiv5_ap *ap, target_addr_t component_base,
1126 struct cs_component_vals *v)
1127 {
1128 assert(IS_ALIGNED(component_base, ARM_CS_ALIGN));
1129 assert(ap && v);
1130
1131 uint32_t cid0, cid1, cid2, cid3;
1132 uint32_t pid0, pid1, pid2, pid3, pid4;
1133 int retval = ERROR_OK;
1134
1135 v->ap = ap;
1136 v->component_base = component_base;
1137
1138 /* sort by offset to gain speed */
1139
1140 /*
1141 * Registers DEVARCH, DEVID and DEVTYPE are valid on Class 0x9 devices
1142 * only, but are at offset above 0xf00, so can be read on any device
1143 * without triggering error. Read them for eventual use on Class 0x9.
1144 */
1145 if (retval == ERROR_OK)
1146 retval = mem_ap_read_u32(ap, component_base + ARM_CS_C9_DEVARCH, &v->devarch);
1147
1148 if (retval == ERROR_OK)
1149 retval = mem_ap_read_u32(ap, component_base + ARM_CS_C9_DEVID, &v->devid);
1150
1151 /* Same address as ARM_CS_C1_MEMTYPE */
1152 if (retval == ERROR_OK)
1153 retval = mem_ap_read_u32(ap, component_base + ARM_CS_C9_DEVTYPE, &v->devtype_memtype);
1154
1155 if (retval == ERROR_OK)
1156 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR4, &pid4);
1157
1158 if (retval == ERROR_OK)
1159 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR0, &pid0);
1160 if (retval == ERROR_OK)
1161 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR1, &pid1);
1162 if (retval == ERROR_OK)
1163 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR2, &pid2);
1164 if (retval == ERROR_OK)
1165 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR3, &pid3);
1166
1167 if (retval == ERROR_OK)
1168 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR0, &cid0);
1169 if (retval == ERROR_OK)
1170 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR1, &cid1);
1171 if (retval == ERROR_OK)
1172 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR2, &cid2);
1173 if (retval == ERROR_OK)
1174 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR3, &cid3);
1175
1176 if (retval == ERROR_OK)
1177 retval = dap_run(ap->dap);
1178 if (retval != ERROR_OK) {
1179 LOG_DEBUG("Failed read CoreSight registers");
1180 return retval;
1181 }
1182
1183 v->cid = (cid3 & 0xff) << 24
1184 | (cid2 & 0xff) << 16
1185 | (cid1 & 0xff) << 8
1186 | (cid0 & 0xff);
1187 v->pid = (uint64_t)(pid4 & 0xff) << 32
1188 | (pid3 & 0xff) << 24
1189 | (pid2 & 0xff) << 16
1190 | (pid1 & 0xff) << 8
1191 | (pid0 & 0xff);
1192
1193 return ERROR_OK;
1194 }
1195
1196 /* Part number interpretations are from Cortex
1197 * core specs, the CoreSight components TRM
1198 * (ARM DDI 0314H), CoreSight System Design
1199 * Guide (ARM DGI 0012D) and ETM specs; also
1200 * from chip observation (e.g. TI SDTI).
1201 */
1202
1203 static const struct dap_part_nums {
1204 uint16_t designer_id;
1205 uint16_t part_num;
1206 const char *type;
1207 const char *full;
1208 } dap_part_nums[] = {
1209 { ARM_ID, 0x000, "Cortex-M3 SCS", "(System Control Space)", },
1210 { ARM_ID, 0x001, "Cortex-M3 ITM", "(Instrumentation Trace Module)", },
1211 { ARM_ID, 0x002, "Cortex-M3 DWT", "(Data Watchpoint and Trace)", },
1212 { ARM_ID, 0x003, "Cortex-M3 FPB", "(Flash Patch and Breakpoint)", },
1213 { ARM_ID, 0x008, "Cortex-M0 SCS", "(System Control Space)", },
1214 { ARM_ID, 0x00a, "Cortex-M0 DWT", "(Data Watchpoint and Trace)", },
1215 { ARM_ID, 0x00b, "Cortex-M0 BPU", "(Breakpoint Unit)", },
1216 { ARM_ID, 0x00c, "Cortex-M4 SCS", "(System Control Space)", },
1217 { ARM_ID, 0x00d, "CoreSight ETM11", "(Embedded Trace)", },
1218 { ARM_ID, 0x00e, "Cortex-M7 FPB", "(Flash Patch and Breakpoint)", },
1219 { ARM_ID, 0x193, "SoC-600 TSGEN", "(Timestamp Generator)", },
1220 { ARM_ID, 0x470, "Cortex-M1 ROM", "(ROM Table)", },
1221 { ARM_ID, 0x471, "Cortex-M0 ROM", "(ROM Table)", },
1222 { ARM_ID, 0x490, "Cortex-A15 GIC", "(Generic Interrupt Controller)", },
1223 { ARM_ID, 0x492, "Cortex-R52 GICD", "(Distributor)", },
1224 { ARM_ID, 0x493, "Cortex-R52 GICR", "(Redistributor)", },
1225 { ARM_ID, 0x4a1, "Cortex-A53 ROM", "(v8 Memory Map ROM Table)", },
1226 { ARM_ID, 0x4a2, "Cortex-A57 ROM", "(ROM Table)", },
1227 { ARM_ID, 0x4a3, "Cortex-A53 ROM", "(v7 Memory Map ROM Table)", },
1228 { ARM_ID, 0x4a4, "Cortex-A72 ROM", "(ROM Table)", },
1229 { ARM_ID, 0x4a9, "Cortex-A9 ROM", "(ROM Table)", },
1230 { ARM_ID, 0x4aa, "Cortex-A35 ROM", "(v8 Memory Map ROM Table)", },
1231 { ARM_ID, 0x4af, "Cortex-A15 ROM", "(ROM Table)", },
1232 { ARM_ID, 0x4b5, "Cortex-R5 ROM", "(ROM Table)", },
1233 { ARM_ID, 0x4b8, "Cortex-R52 ROM", "(ROM Table)", },
1234 { ARM_ID, 0x4c0, "Cortex-M0+ ROM", "(ROM Table)", },
1235 { ARM_ID, 0x4c3, "Cortex-M3 ROM", "(ROM Table)", },
1236 { ARM_ID, 0x4c4, "Cortex-M4 ROM", "(ROM Table)", },
1237 { ARM_ID, 0x4c7, "Cortex-M7 PPB ROM", "(Private Peripheral Bus ROM Table)", },
1238 { ARM_ID, 0x4c8, "Cortex-M7 ROM", "(ROM Table)", },
1239 { ARM_ID, 0x4e0, "Cortex-A35 ROM", "(v7 Memory Map ROM Table)", },
1240 { ARM_ID, 0x4e4, "Cortex-A76 ROM", "(ROM Table)", },
1241 { ARM_ID, 0x906, "CoreSight CTI", "(Cross Trigger)", },
1242 { ARM_ID, 0x907, "CoreSight ETB", "(Trace Buffer)", },
1243 { ARM_ID, 0x908, "CoreSight CSTF", "(Trace Funnel)", },
1244 { ARM_ID, 0x909, "CoreSight ATBR", "(Advanced Trace Bus Replicator)", },
1245 { ARM_ID, 0x910, "CoreSight ETM9", "(Embedded Trace)", },
1246 { ARM_ID, 0x912, "CoreSight TPIU", "(Trace Port Interface Unit)", },
1247 { ARM_ID, 0x913, "CoreSight ITM", "(Instrumentation Trace Macrocell)", },
1248 { ARM_ID, 0x914, "CoreSight SWO", "(Single Wire Output)", },
1249 { ARM_ID, 0x917, "CoreSight HTM", "(AHB Trace Macrocell)", },
1250 { ARM_ID, 0x920, "CoreSight ETM11", "(Embedded Trace)", },
1251 { ARM_ID, 0x921, "Cortex-A8 ETM", "(Embedded Trace)", },
1252 { ARM_ID, 0x922, "Cortex-A8 CTI", "(Cross Trigger)", },
1253 { ARM_ID, 0x923, "Cortex-M3 TPIU", "(Trace Port Interface Unit)", },
1254 { ARM_ID, 0x924, "Cortex-M3 ETM", "(Embedded Trace)", },
1255 { ARM_ID, 0x925, "Cortex-M4 ETM", "(Embedded Trace)", },
1256 { ARM_ID, 0x930, "Cortex-R4 ETM", "(Embedded Trace)", },
1257 { ARM_ID, 0x931, "Cortex-R5 ETM", "(Embedded Trace)", },
1258 { ARM_ID, 0x932, "CoreSight MTB-M0+", "(Micro Trace Buffer)", },
1259 { ARM_ID, 0x941, "CoreSight TPIU-Lite", "(Trace Port Interface Unit)", },
1260 { ARM_ID, 0x950, "Cortex-A9 PTM", "(Program Trace Macrocell)", },
1261 { ARM_ID, 0x955, "Cortex-A5 ETM", "(Embedded Trace)", },
1262 { ARM_ID, 0x95a, "Cortex-A72 ETM", "(Embedded Trace)", },
1263 { ARM_ID, 0x95b, "Cortex-A17 PTM", "(Program Trace Macrocell)", },
1264 { ARM_ID, 0x95d, "Cortex-A53 ETM", "(Embedded Trace)", },
1265 { ARM_ID, 0x95e, "Cortex-A57 ETM", "(Embedded Trace)", },
1266 { ARM_ID, 0x95f, "Cortex-A15 PTM", "(Program Trace Macrocell)", },
1267 { ARM_ID, 0x961, "CoreSight TMC", "(Trace Memory Controller)", },
1268 { ARM_ID, 0x962, "CoreSight STM", "(System Trace Macrocell)", },
1269 { ARM_ID, 0x975, "Cortex-M7 ETM", "(Embedded Trace)", },
1270 { ARM_ID, 0x9a0, "CoreSight PMU", "(Performance Monitoring Unit)", },
1271 { ARM_ID, 0x9a1, "Cortex-M4 TPIU", "(Trace Port Interface Unit)", },
1272 { ARM_ID, 0x9a4, "CoreSight GPR", "(Granular Power Requester)", },
1273 { ARM_ID, 0x9a5, "Cortex-A5 PMU", "(Performance Monitor Unit)", },
1274 { ARM_ID, 0x9a7, "Cortex-A7 PMU", "(Performance Monitor Unit)", },
1275 { ARM_ID, 0x9a8, "Cortex-A53 CTI", "(Cross Trigger)", },
1276 { ARM_ID, 0x9a9, "Cortex-M7 TPIU", "(Trace Port Interface Unit)", },
1277 { ARM_ID, 0x9ae, "Cortex-A17 PMU", "(Performance Monitor Unit)", },
1278 { ARM_ID, 0x9af, "Cortex-A15 PMU", "(Performance Monitor Unit)", },
1279 { ARM_ID, 0x9b6, "Cortex-R52 PMU/CTI/ETM", "(Performance Monitor Unit/Cross Trigger/ETM)", },
1280 { ARM_ID, 0x9b7, "Cortex-R7 PMU", "(Performance Monitor Unit)", },
1281 { ARM_ID, 0x9d3, "Cortex-A53 PMU", "(Performance Monitor Unit)", },
1282 { ARM_ID, 0x9d7, "Cortex-A57 PMU", "(Performance Monitor Unit)", },
1283 { ARM_ID, 0x9d8, "Cortex-A72 PMU", "(Performance Monitor Unit)", },
1284 { ARM_ID, 0x9da, "Cortex-A35 PMU/CTI/ETM", "(Performance Monitor Unit/Cross Trigger/ETM)", },
1285 { ARM_ID, 0x9e2, "SoC-600 APB-AP", "(APB4 Memory Access Port)", },
1286 { ARM_ID, 0x9e3, "SoC-600 AHB-AP", "(AHB5 Memory Access Port)", },
1287 { ARM_ID, 0x9e4, "SoC-600 AXI-AP", "(AXI Memory Access Port)", },
1288 { ARM_ID, 0x9e5, "SoC-600 APv1 Adapter", "(Access Port v1 Adapter)", },
1289 { ARM_ID, 0x9e6, "SoC-600 JTAG-AP", "(JTAG Access Port)", },
1290 { ARM_ID, 0x9e7, "SoC-600 TPIU", "(Trace Port Interface Unit)", },
1291 { ARM_ID, 0x9e8, "SoC-600 TMC ETR/ETS", "(Embedded Trace Router/Streamer)", },
1292 { ARM_ID, 0x9e9, "SoC-600 TMC ETB", "(Embedded Trace Buffer)", },
1293 { ARM_ID, 0x9ea, "SoC-600 TMC ETF", "(Embedded Trace FIFO)", },
1294 { ARM_ID, 0x9eb, "SoC-600 ATB Funnel", "(Trace Funnel)", },
1295 { ARM_ID, 0x9ec, "SoC-600 ATB Replicator", "(Trace Replicator)", },
1296 { ARM_ID, 0x9ed, "SoC-600 CTI", "(Cross Trigger)", },
1297 { ARM_ID, 0x9ee, "SoC-600 CATU", "(Address Translation Unit)", },
1298 { ARM_ID, 0xc05, "Cortex-A5 Debug", "(Debug Unit)", },
1299 { ARM_ID, 0xc07, "Cortex-A7 Debug", "(Debug Unit)", },
1300 { ARM_ID, 0xc08, "Cortex-A8 Debug", "(Debug Unit)", },
1301 { ARM_ID, 0xc09, "Cortex-A9 Debug", "(Debug Unit)", },
1302 { ARM_ID, 0xc0e, "Cortex-A17 Debug", "(Debug Unit)", },
1303 { ARM_ID, 0xc0f, "Cortex-A15 Debug", "(Debug Unit)", },
1304 { ARM_ID, 0xc14, "Cortex-R4 Debug", "(Debug Unit)", },
1305 { ARM_ID, 0xc15, "Cortex-R5 Debug", "(Debug Unit)", },
1306 { ARM_ID, 0xc17, "Cortex-R7 Debug", "(Debug Unit)", },
1307 { ARM_ID, 0xd03, "Cortex-A53 Debug", "(Debug Unit)", },
1308 { ARM_ID, 0xd04, "Cortex-A35 Debug", "(Debug Unit)", },
1309 { ARM_ID, 0xd07, "Cortex-A57 Debug", "(Debug Unit)", },
1310 { ARM_ID, 0xd08, "Cortex-A72 Debug", "(Debug Unit)", },
1311 { ARM_ID, 0xd0b, "Cortex-A76 Debug", "(Debug Unit)", },
1312 { ARM_ID, 0xd0c, "Neoverse N1", "(Debug Unit)", },
1313 { ARM_ID, 0xd13, "Cortex-R52 Debug", "(Debug Unit)", },
1314 { ARM_ID, 0xd49, "Neoverse N2", "(Debug Unit)", },
1315 { 0x017, 0x120, "TI SDTI", "(System Debug Trace Interface)", }, /* from OMAP3 memmap */
1316 { 0x017, 0x343, "TI DAPCTL", "", }, /* from OMAP3 memmap */
1317 { 0x017, 0x9af, "MSP432 ROM", "(ROM Table)" },
1318 { 0x01f, 0xcd0, "Atmel CPU with DSU", "(CPU)" },
1319 { 0x041, 0x1db, "XMC4500 ROM", "(ROM Table)" },
1320 { 0x041, 0x1df, "XMC4700/4800 ROM", "(ROM Table)" },
1321 { 0x041, 0x1ed, "XMC1000 ROM", "(ROM Table)" },
1322 { 0x065, 0x000, "SHARC+/Blackfin+", "", },
1323 { 0x070, 0x440, "Qualcomm QDSS Component v1", "(Qualcomm Designed CoreSight Component v1)", },
1324 { 0x0bf, 0x100, "Brahma-B53 Debug", "(Debug Unit)", },
1325 { 0x0bf, 0x9d3, "Brahma-B53 PMU", "(Performance Monitor Unit)", },
1326 { 0x0bf, 0x4a1, "Brahma-B53 ROM", "(ROM Table)", },
1327 { 0x0bf, 0x721, "Brahma-B53 ROM", "(ROM Table)", },
1328 { 0x1eb, 0x181, "Tegra 186 ROM", "(ROM Table)", },
1329 { 0x1eb, 0x202, "Denver ETM", "(Denver Embedded Trace)", },
1330 { 0x1eb, 0x211, "Tegra 210 ROM", "(ROM Table)", },
1331 { 0x1eb, 0x302, "Denver Debug", "(Debug Unit)", },
1332 { 0x1eb, 0x402, "Denver PMU", "(Performance Monitor Unit)", },
1333 };
1334
1335 static const struct dap_part_nums *pidr_to_part_num(unsigned int designer_id, unsigned int part_num)
1336 {
1337 static const struct dap_part_nums unknown = {
1338 .type = "Unrecognized",
1339 .full = "",
1340 };
1341
1342 for (unsigned int i = 0; i < ARRAY_SIZE(dap_part_nums); i++)
1343 if (dap_part_nums[i].designer_id == designer_id && dap_part_nums[i].part_num == part_num)
1344 return &dap_part_nums[i];
1345
1346 return &unknown;
1347 }
1348
1349 static int dap_devtype_display(struct command_invocation *cmd, uint32_t devtype)
1350 {
1351 const char *major = "Reserved", *subtype = "Reserved";
1352 const unsigned int minor = (devtype & ARM_CS_C9_DEVTYPE_SUB_MASK) >> ARM_CS_C9_DEVTYPE_SUB_SHIFT;
1353 const unsigned int devtype_major = (devtype & ARM_CS_C9_DEVTYPE_MAJOR_MASK) >> ARM_CS_C9_DEVTYPE_MAJOR_SHIFT;
1354 switch (devtype_major) {
1355 case 0:
1356 major = "Miscellaneous";
1357 switch (minor) {
1358 case 0:
1359 subtype = "other";
1360 break;
1361 case 4:
1362 subtype = "Validation component";
1363 break;
1364 }
1365 break;
1366 case 1:
1367 major = "Trace Sink";
1368 switch (minor) {
1369 case 0:
1370 subtype = "other";
1371 break;
1372 case 1:
1373 subtype = "Port";
1374 break;
1375 case 2:
1376 subtype = "Buffer";
1377 break;
1378 case 3:
1379 subtype = "Router";
1380 break;
1381 }
1382 break;
1383 case 2:
1384 major = "Trace Link";
1385 switch (minor) {
1386 case 0:
1387 subtype = "other";
1388 break;
1389 case 1:
1390 subtype = "Funnel, router";
1391 break;
1392 case 2:
1393 subtype = "Filter";
1394 break;
1395 case 3:
1396 subtype = "FIFO, buffer";
1397 break;
1398 }
1399 break;
1400 case 3:
1401 major = "Trace Source";
1402 switch (minor) {
1403 case 0:
1404 subtype = "other";
1405 break;
1406 case 1:
1407 subtype = "Processor";
1408 break;
1409 case 2:
1410 subtype = "DSP";
1411 break;
1412 case 3:
1413 subtype = "Engine/Coprocessor";
1414 break;
1415 case 4:
1416 subtype = "Bus";
1417 break;
1418 case 6:
1419 subtype = "Software";
1420 break;
1421 }
1422 break;
1423 case 4:
1424 major = "Debug Control";
1425 switch (minor) {
1426 case 0:
1427 subtype = "other";
1428 break;
1429 case 1:
1430 subtype = "Trigger Matrix";
1431 break;
1432 case 2:
1433 subtype = "Debug Auth";
1434 break;
1435 case 3:
1436 subtype = "Power Requestor";
1437 break;
1438 }
1439 break;
1440 case 5:
1441 major = "Debug Logic";
1442 switch (minor) {
1443 case 0:
1444 subtype = "other";
1445 break;
1446 case 1:
1447 subtype = "Processor";
1448 break;
1449 case 2:
1450 subtype = "DSP";
1451 break;
1452 case 3:
1453 subtype = "Engine/Coprocessor";
1454 break;
1455 case 4:
1456 subtype = "Bus";
1457 break;
1458 case 5:
1459 subtype = "Memory";
1460 break;
1461 }
1462 break;
1463 case 6:
1464 major = "Performance Monitor";
1465 switch (minor) {
1466 case 0:
1467 subtype = "other";
1468 break;
1469 case 1:
1470 subtype = "Processor";
1471 break;
1472 case 2:
1473 subtype = "DSP";
1474 break;
1475 case 3:
1476 subtype = "Engine/Coprocessor";
1477 break;
1478 case 4:
1479 subtype = "Bus";
1480 break;
1481 case 5:
1482 subtype = "Memory";
1483 break;
1484 }
1485 break;
1486 }
1487 command_print(cmd, "\t\tType is 0x%02x, %s, %s",
1488 devtype & ARM_CS_C9_DEVTYPE_MASK,
1489 major, subtype);
1490 return ERROR_OK;
1491 }
1492
1493 /**
1494 * Actions/operations to be executed while parsing ROM tables.
1495 */
1496 struct rtp_ops {
1497 /**
1498 * Executed at the start of a new MEM-AP, typically to print the MEM-AP header.
1499 * @param retval Error encountered while reading AP.
1500 * @param ap Pointer to AP.
1501 * @param dbgbase Value of MEM-AP Debug Base Address register.
1502 * @param apid Value of MEM-AP IDR Identification Register.
1503 * @param priv Pointer to private data.
1504 * @return ERROR_OK on success, else a fault code.
1505 */
1506 int (*mem_ap_header)(int retval, struct adiv5_ap *ap, uint64_t dbgbase,
1507 uint32_t apid, void *priv);
1508 /**
1509 * Executed when a CoreSight component is parsed, typically to print
1510 * information on the component.
1511 * @param retval Error encountered while reading component's registers.
1512 * @param v Pointer to a container of the component's registers.
1513 * @param depth The current depth level of ROM table.
1514 * @param priv Pointer to private data.
1515 * @return ERROR_OK on success, else a fault code.
1516 */
1517 int (*cs_component)(int retval, struct cs_component_vals *v, int depth, void *priv);
1518 /**
1519 * Executed for each entry of a ROM table, typically to print the entry
1520 * and information about validity or end-of-table mark.
1521 * @param retval Error encountered while reading the ROM table entry.
1522 * @param depth The current depth level of ROM table.
1523 * @param offset The offset of the entry in the ROM table.
1524 * @param romentry The value of the ROM table entry.
1525 * @param priv Pointer to private data.
1526 * @return ERROR_OK on success, else a fault code.
1527 */
1528 int (*rom_table_entry)(int retval, int depth, unsigned int offset, uint64_t romentry,
1529 void *priv);
1530 /**
1531 * Private data
1532 */
1533 void *priv;
1534 };
1535
1536 /**
1537 * Wrapper around struct rtp_ops::mem_ap_header.
1538 * Input parameter @a retval is propagated.
1539 */
1540 static int rtp_ops_mem_ap_header(const struct rtp_ops *ops,
1541 int retval, struct adiv5_ap *ap, uint64_t dbgbase, uint32_t apid)
1542 {
1543 if (!ops->mem_ap_header)
1544 return retval;
1545
1546 int retval1 = ops->mem_ap_header(retval, ap, dbgbase, apid, ops->priv);
1547 if (retval != ERROR_OK)
1548 return retval;
1549 return retval1;
1550 }
1551
1552 /**
1553 * Wrapper around struct rtp_ops::cs_component.
1554 * Input parameter @a retval is propagated.
1555 */
1556 static int rtp_ops_cs_component(const struct rtp_ops *ops,
1557 int retval, struct cs_component_vals *v, int depth)
1558 {
1559 if (!ops->cs_component)
1560 return retval;
1561
1562 int retval1 = ops->cs_component(retval, v, depth, ops->priv);
1563 if (retval != ERROR_OK)
1564 return retval;
1565 return retval1;
1566 }
1567
1568 /**
1569 * Wrapper around struct rtp_ops::rom_table_entry.
1570 * Input parameter @a retval is propagated.
1571 */
1572 static int rtp_ops_rom_table_entry(const struct rtp_ops *ops,
1573 int retval, int depth, unsigned int offset, uint64_t romentry)
1574 {
1575 if (!ops->rom_table_entry)
1576 return retval;
1577
1578 int retval1 = ops->rom_table_entry(retval, depth, offset, romentry, ops->priv);
1579 if (retval != ERROR_OK)
1580 return retval;
1581 return retval1;
1582 }
1583
1584 /* Broken ROM tables can have circular references. Stop after a while */
1585 #define ROM_TABLE_MAX_DEPTH (16)
1586
1587 /**
1588 * Value used only during lookup of a CoreSight component in ROM table.
1589 * Return CORESIGHT_COMPONENT_FOUND when component is found.
1590 * Return ERROR_OK when component is not found yet.
1591 * Return any other ERROR_* in case of error.
1592 */
1593 #define CORESIGHT_COMPONENT_FOUND (1)
1594
1595 static int rtp_cs_component(const struct rtp_ops *ops,
1596 struct adiv5_ap *ap, target_addr_t dbgbase, int depth);
1597
1598 static int rtp_rom_loop(const struct rtp_ops *ops,
1599 struct adiv5_ap *ap, target_addr_t base_address, int depth,
1600 unsigned int width, unsigned int max_entries)
1601 {
1602 assert(IS_ALIGNED(base_address, ARM_CS_ALIGN));
1603
1604 unsigned int offset = 0;
1605 while (max_entries--) {
1606 uint64_t romentry;
1607 uint32_t romentry_low, romentry_high;
1608 target_addr_t component_base;
1609 unsigned int saved_offset = offset;
1610
1611 int retval = mem_ap_read_u32(ap, base_address + offset, &romentry_low);
1612 offset += 4;
1613 if (retval == ERROR_OK && width == 64) {
1614 retval = mem_ap_read_u32(ap, base_address + offset, &romentry_high);
1615 offset += 4;
1616 }
1617 if (retval == ERROR_OK)
1618 retval = dap_run(ap->dap);
1619 if (retval != ERROR_OK) {
1620 LOG_DEBUG("Failed read ROM table entry");
1621 return retval;
1622 }
1623
1624 if (width == 64) {
1625 romentry = (((uint64_t)romentry_high) << 32) | romentry_low;
1626 component_base = base_address +
1627 ((((uint64_t)romentry_high) << 32) | (romentry_low & ARM_CS_ROMENTRY_OFFSET_MASK));
1628 } else {
1629 romentry = romentry_low;
1630 /* "romentry" is signed */
1631 component_base = base_address + (int32_t)(romentry_low & ARM_CS_ROMENTRY_OFFSET_MASK);
1632 if (!is_64bit_ap(ap))
1633 component_base = (uint32_t)component_base;
1634 }
1635 retval = rtp_ops_rom_table_entry(ops, retval, depth, saved_offset, romentry);
1636 if (retval != ERROR_OK)
1637 return retval;
1638
1639 if (romentry == 0) {
1640 /* End of ROM table */
1641 break;
1642 }
1643
1644 if (!(romentry & ARM_CS_ROMENTRY_PRESENT))
1645 continue;
1646
1647 /* Recurse */
1648 retval = rtp_cs_component(ops, ap, component_base, depth + 1);
1649 if (retval == CORESIGHT_COMPONENT_FOUND)
1650 return CORESIGHT_COMPONENT_FOUND;
1651 if (retval != ERROR_OK) {
1652 /* TODO: do we need to send an ABORT before continuing? */
1653 LOG_DEBUG("Ignore error parsing CoreSight component");
1654 continue;
1655 }
1656 }
1657
1658 return ERROR_OK;
1659 }
1660
1661 static int rtp_cs_component(const struct rtp_ops *ops,
1662 struct adiv5_ap *ap, target_addr_t base_address, int depth)
1663 {
1664 struct cs_component_vals v;
1665 int retval;
1666
1667 assert(IS_ALIGNED(base_address, ARM_CS_ALIGN));
1668
1669 if (depth > ROM_TABLE_MAX_DEPTH)
1670 retval = ERROR_FAIL;
1671 else
1672 retval = rtp_read_cs_regs(ap, base_address, &v);
1673
1674 retval = rtp_ops_cs_component(ops, retval, &v, depth);
1675 if (retval == CORESIGHT_COMPONENT_FOUND)
1676 return CORESIGHT_COMPONENT_FOUND;
1677 if (retval != ERROR_OK)
1678 return ERROR_OK; /* Don't abort recursion */
1679
1680 if (!is_valid_arm_cs_cidr(v.cid))
1681 return ERROR_OK; /* Don't abort recursion */
1682
1683 const unsigned int class = ARM_CS_CIDR_CLASS(v.cid);
1684
1685 if (class == ARM_CS_CLASS_0X1_ROM_TABLE)
1686 return rtp_rom_loop(ops, ap, base_address, depth, 32, 960);
1687
1688 if (class == ARM_CS_CLASS_0X9_CS_COMPONENT) {
1689 if ((v.devarch & ARM_CS_C9_DEVARCH_PRESENT) == 0)
1690 return ERROR_OK;
1691
1692 /* quit if not ROM table */
1693 if ((v.devarch & DEVARCH_ID_MASK) != DEVARCH_ROM_C_0X9)
1694 return ERROR_OK;
1695
1696 if ((v.devid & ARM_CS_C9_DEVID_FORMAT_MASK) == ARM_CS_C9_DEVID_FORMAT_64BIT)
1697 return rtp_rom_loop(ops, ap, base_address, depth, 64, 256);
1698 else
1699 return rtp_rom_loop(ops, ap, base_address, depth, 32, 512);
1700 }
1701
1702 /* Class other than 0x1 and 0x9 */
1703 return ERROR_OK;
1704 }
1705
1706 static int rtp_ap(const struct rtp_ops *ops, struct adiv5_ap *ap)
1707 {
1708 int retval;
1709 uint32_t apid;
1710 target_addr_t dbgbase, invalid_entry;
1711
1712 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1713 retval = dap_get_debugbase(ap, &dbgbase, &apid);
1714 if (retval != ERROR_OK)
1715 return retval;
1716 retval = rtp_ops_mem_ap_header(ops, retval, ap, dbgbase, apid);
1717 if (retval != ERROR_OK)
1718 return retval;
1719
1720 if (apid == 0)
1721 return ERROR_FAIL;
1722
1723 /* NOTE: a MEM-AP may have a single CoreSight component that's
1724 * not a ROM table ... or have no such components at all.
1725 */
1726 const unsigned int class = (apid & AP_REG_IDR_CLASS_MASK) >> AP_REG_IDR_CLASS_SHIFT;
1727
1728 if (class == AP_REG_IDR_CLASS_MEM_AP) {
1729 if (is_64bit_ap(ap))
1730 invalid_entry = 0xFFFFFFFFFFFFFFFFull;
1731 else
1732 invalid_entry = 0xFFFFFFFFul;
1733
1734 if (dbgbase != invalid_entry && (dbgbase & 0x3) != 0x2) {
1735 retval = rtp_cs_component(ops, ap, dbgbase & 0xFFFFFFFFFFFFF000ull, 0);
1736 if (retval == CORESIGHT_COMPONENT_FOUND)
1737 return CORESIGHT_COMPONENT_FOUND;
1738 }
1739 }
1740
1741 return ERROR_OK;
1742 }
1743
1744 /* Actions for command "dap info" */
1745
1746 static int dap_info_mem_ap_header(int retval, struct adiv5_ap *ap,
1747 target_addr_t dbgbase, uint32_t apid, void *priv)
1748 {
1749 struct command_invocation *cmd = priv;
1750 target_addr_t invalid_entry;
1751
1752 if (retval != ERROR_OK) {
1753 command_print(cmd, "\t\tCan't read MEM-AP, the corresponding core might be turned off");
1754 return retval;
1755 }
1756
1757 command_print(cmd, "AP ID register 0x%8.8" PRIx32, apid);
1758 if (apid == 0) {
1759 command_print(cmd, "No AP found at this ap 0x%x", ap->ap_num);
1760 return ERROR_FAIL;
1761 }
1762
1763 command_print(cmd, "\tType is %s", ap_type_to_description(apid & AP_TYPE_MASK));
1764
1765 /* NOTE: a MEM-AP may have a single CoreSight component that's
1766 * not a ROM table ... or have no such components at all.
1767 */
1768 const unsigned int class = (apid & AP_REG_IDR_CLASS_MASK) >> AP_REG_IDR_CLASS_SHIFT;
1769
1770 if (class == AP_REG_IDR_CLASS_MEM_AP) {
1771 if (is_64bit_ap(ap))
1772 invalid_entry = 0xFFFFFFFFFFFFFFFFull;
1773 else
1774 invalid_entry = 0xFFFFFFFFul;
1775
1776 command_print(cmd, "MEM-AP BASE " TARGET_ADDR_FMT, dbgbase);
1777
1778 if (dbgbase == invalid_entry || (dbgbase & 0x3) == 0x2) {
1779 command_print(cmd, "\tNo ROM table present");
1780 } else {
1781 if (dbgbase & 0x01)
1782 command_print(cmd, "\tValid ROM table present");
1783 else
1784 command_print(cmd, "\tROM table in legacy format");
1785 }
1786 }
1787
1788 return ERROR_OK;
1789 }
1790
1791 static int dap_info_cs_component(int retval, struct cs_component_vals *v, int depth, void *priv)
1792 {
1793 struct command_invocation *cmd = priv;
1794
1795 if (depth > ROM_TABLE_MAX_DEPTH) {
1796 command_print(cmd, "\tTables too deep");
1797 return ERROR_FAIL;
1798 }
1799
1800 command_print(cmd, "\t\tComponent base address " TARGET_ADDR_FMT, v->component_base);
1801
1802 if (retval != ERROR_OK) {
1803 command_print(cmd, "\t\tCan't read component, the corresponding core might be turned off");
1804 return retval;
1805 }
1806
1807 if (!is_valid_arm_cs_cidr(v->cid)) {
1808 command_print(cmd, "\t\tInvalid CID 0x%08" PRIx32, v->cid);
1809 return ERROR_OK; /* Don't abort recursion */
1810 }
1811
1812 /* component may take multiple 4K pages */
1813 uint32_t size = ARM_CS_PIDR_SIZE(v->pid);
1814 if (size > 0)
1815 command_print(cmd, "\t\tStart address " TARGET_ADDR_FMT, v->component_base - 0x1000 * size);
1816
1817 command_print(cmd, "\t\tPeripheral ID 0x%010" PRIx64, v->pid);
1818
1819 const unsigned int part_num = ARM_CS_PIDR_PART(v->pid);
1820 unsigned int designer_id = ARM_CS_PIDR_DESIGNER(v->pid);
1821
1822 if (v->pid & ARM_CS_PIDR_JEDEC) {
1823 /* JEP106 code */
1824 command_print(cmd, "\t\tDesigner is 0x%03x, %s",
1825 designer_id, jep106_manufacturer(designer_id));
1826 } else {
1827 /* Legacy ASCII ID, clear invalid bits */
1828 designer_id &= 0x7f;
1829 command_print(cmd, "\t\tDesigner ASCII code 0x%02x, %s",
1830 designer_id, designer_id == 0x41 ? "ARM" : "<unknown>");
1831 }
1832
1833 const struct dap_part_nums *partnum = pidr_to_part_num(designer_id, part_num);
1834 command_print(cmd, "\t\tPart is 0x%03x, %s %s", part_num, partnum->type, partnum->full);
1835
1836 const unsigned int class = ARM_CS_CIDR_CLASS(v->cid);
1837 command_print(cmd, "\t\tComponent class is 0x%x, %s", class, class_description[class]);
1838
1839 if (class == ARM_CS_CLASS_0X1_ROM_TABLE) {
1840 if (v->devtype_memtype & ARM_CS_C1_MEMTYPE_SYSMEM_MASK)
1841 command_print(cmd, "\t\tMEMTYPE system memory present on bus");
1842 else
1843 command_print(cmd, "\t\tMEMTYPE system memory not present: dedicated debug bus");
1844 return ERROR_OK;
1845 }
1846
1847 if (class == ARM_CS_CLASS_0X9_CS_COMPONENT) {
1848 dap_devtype_display(cmd, v->devtype_memtype);
1849
1850 /* REVISIT also show ARM_CS_C9_DEVID */
1851
1852 if ((v->devarch & ARM_CS_C9_DEVARCH_PRESENT) == 0)
1853 return ERROR_OK;
1854
1855 unsigned int architect_id = ARM_CS_C9_DEVARCH_ARCHITECT(v->devarch);
1856 unsigned int revision = ARM_CS_C9_DEVARCH_REVISION(v->devarch);
1857 command_print(cmd, "\t\tDev Arch is 0x%08" PRIx32 ", %s \"%s\" rev.%u", v->devarch,
1858 jep106_manufacturer(architect_id), class0x9_devarch_description(v->devarch),
1859 revision);
1860
1861 if ((v->devarch & DEVARCH_ID_MASK) == DEVARCH_ROM_C_0X9) {
1862 command_print(cmd, "\t\tType is ROM table");
1863
1864 if (v->devid & ARM_CS_C9_DEVID_SYSMEM_MASK)
1865 command_print(cmd, "\t\tMEMTYPE system memory present on bus");
1866 else
1867 command_print(cmd, "\t\tMEMTYPE system memory not present: dedicated debug bus");
1868 }
1869 return ERROR_OK;
1870 }
1871
1872 /* Class other than 0x1 and 0x9 */
1873 return ERROR_OK;
1874 }
1875
1876 static int dap_info_rom_table_entry(int retval, int depth,
1877 unsigned int offset, uint64_t romentry, void *priv)
1878 {
1879 struct command_invocation *cmd = priv;
1880 char tabs[16] = "";
1881
1882 if (depth)
1883 snprintf(tabs, sizeof(tabs), "[L%02d] ", depth);
1884
1885 if (retval != ERROR_OK) {
1886 command_print(cmd, "\t%sROMTABLE[0x%x] Read error", tabs, offset);
1887 command_print(cmd, "\t\tUnable to continue");
1888 command_print(cmd, "\t%s\tStop parsing of ROM table", tabs);
1889 return retval;
1890 }
1891
1892 command_print(cmd, "\t%sROMTABLE[0x%x] = 0x%08" PRIx64,
1893 tabs, offset, romentry);
1894
1895 if (romentry == 0) {
1896 command_print(cmd, "\t%s\tEnd of ROM table", tabs);
1897 return ERROR_OK;
1898 }
1899
1900 if (!(romentry & ARM_CS_ROMENTRY_PRESENT)) {
1901 command_print(cmd, "\t\tComponent not present");
1902 return ERROR_OK;
1903 }
1904
1905 return ERROR_OK;
1906 }
1907
1908 int dap_info_command(struct command_invocation *cmd, struct adiv5_ap *ap)
1909 {
1910 struct rtp_ops dap_info_ops = {
1911 .mem_ap_header = dap_info_mem_ap_header,
1912 .cs_component = dap_info_cs_component,
1913 .rom_table_entry = dap_info_rom_table_entry,
1914 .priv = cmd,
1915 };
1916
1917 return rtp_ap(&dap_info_ops, ap);
1918 }
1919
1920 /* Actions for dap_lookup_cs_component() */
1921
1922 struct dap_lookup_data {
1923 /* input */
1924 unsigned int idx;
1925 unsigned int type;
1926 /* output */
1927 uint64_t component_base;
1928 };
1929
1930 static int dap_lookup_cs_component_cs_component(int retval,
1931 struct cs_component_vals *v, int depth, void *priv)
1932 {
1933 struct dap_lookup_data *lookup = priv;
1934
1935 if (retval != ERROR_OK)
1936 return retval;
1937
1938 if (!is_valid_arm_cs_cidr(v->cid))
1939 return ERROR_OK;
1940
1941 const unsigned int class = ARM_CS_CIDR_CLASS(v->cid);
1942 if (class != ARM_CS_CLASS_0X9_CS_COMPONENT)
1943 return ERROR_OK;
1944
1945 if ((v->devtype_memtype & ARM_CS_C9_DEVTYPE_MASK) != lookup->type)
1946 return ERROR_OK;
1947
1948 if (lookup->idx) {
1949 /* search for next one */
1950 --lookup->idx;
1951 return ERROR_OK;
1952 }
1953
1954 /* Found! */
1955 lookup->component_base = v->component_base;
1956 return CORESIGHT_COMPONENT_FOUND;
1957 }
1958
1959 int dap_lookup_cs_component(struct adiv5_ap *ap, uint8_t type,
1960 target_addr_t *addr, int32_t core_id)
1961 {
1962 struct dap_lookup_data lookup = {
1963 .type = type,
1964 .idx = core_id,
1965 };
1966 struct rtp_ops dap_lookup_cs_component_ops = {
1967 .mem_ap_header = NULL,
1968 .cs_component = dap_lookup_cs_component_cs_component,
1969 .rom_table_entry = NULL,
1970 .priv = &lookup,
1971 };
1972
1973 int retval = rtp_ap(&dap_lookup_cs_component_ops, ap);
1974 if (retval == CORESIGHT_COMPONENT_FOUND) {
1975 LOG_DEBUG("CS lookup found at 0x%" PRIx64, lookup.component_base);
1976 *addr = lookup.component_base;
1977 return ERROR_OK;
1978 }
1979 if (retval != ERROR_OK) {
1980 LOG_DEBUG("CS lookup error %d", retval);
1981 return retval;
1982 }
1983 LOG_DEBUG("CS lookup not found");
1984 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1985 }
1986
1987 enum adiv5_cfg_param {
1988 CFG_DAP,
1989 CFG_AP_NUM,
1990 CFG_BASEADDR,
1991 CFG_CTIBASE, /* DEPRECATED */
1992 };
1993
1994 static const struct jim_nvp nvp_config_opts[] = {
1995 { .name = "-dap", .value = CFG_DAP },
1996 { .name = "-ap-num", .value = CFG_AP_NUM },
1997 { .name = "-baseaddr", .value = CFG_BASEADDR },
1998 { .name = "-ctibase", .value = CFG_CTIBASE }, /* DEPRECATED */
1999 { .name = NULL, .value = -1 }
2000 };
2001
2002 static int adiv5_jim_spot_configure(struct jim_getopt_info *goi,
2003 struct adiv5_dap **dap_p, int *ap_num_p, uint32_t *base_p)
2004 {
2005 assert(dap_p && ap_num_p);
2006
2007 if (!goi->argc)
2008 return JIM_OK;
2009
2010 Jim_SetEmptyResult(goi->interp);
2011
2012 struct jim_nvp *n;
2013 int e = jim_nvp_name2value_obj(goi->interp, nvp_config_opts,
2014 goi->argv[0], &n);
2015 if (e != JIM_OK)
2016 return JIM_CONTINUE;
2017
2018 /* base_p can be NULL, then '-baseaddr' option is treated as unknown */
2019 if (!base_p && (n->value == CFG_BASEADDR || n->value == CFG_CTIBASE))
2020 return JIM_CONTINUE;
2021
2022 e = jim_getopt_obj(goi, NULL);
2023 if (e != JIM_OK)
2024 return e;
2025
2026 switch (n->value) {
2027 case CFG_DAP:
2028 if (goi->isconfigure) {
2029 Jim_Obj *o_t;
2030 struct adiv5_dap *dap;
2031 e = jim_getopt_obj(goi, &o_t);
2032 if (e != JIM_OK)
2033 return e;
2034 dap = dap_instance_by_jim_obj(goi->interp, o_t);
2035 if (!dap) {
2036 Jim_SetResultString(goi->interp, "DAP name invalid!", -1);
2037 return JIM_ERR;
2038 }
2039 if (*dap_p && *dap_p != dap) {
2040 Jim_SetResultString(goi->interp,
2041 "DAP assignment cannot be changed!", -1);
2042 return JIM_ERR;
2043 }
2044 *dap_p = dap;
2045 } else {
2046 if (goi->argc)
2047 goto err_no_param;
2048 if (!*dap_p) {
2049 Jim_SetResultString(goi->interp, "DAP not configured", -1);
2050 return JIM_ERR;
2051 }
2052 Jim_SetResultString(goi->interp, adiv5_dap_name(*dap_p), -1);
2053 }
2054 break;
2055
2056 case CFG_AP_NUM:
2057 if (goi->isconfigure) {
2058 jim_wide ap_num;
2059 e = jim_getopt_wide(goi, &ap_num);
2060 if (e != JIM_OK)
2061 return e;
2062 if (ap_num < 0 || ap_num > DP_APSEL_MAX) {
2063 Jim_SetResultString(goi->interp, "Invalid AP number!", -1);
2064 return JIM_ERR;
2065 }
2066 *ap_num_p = ap_num;
2067 } else {
2068 if (goi->argc)
2069 goto err_no_param;
2070 if (*ap_num_p == DP_APSEL_INVALID) {
2071 Jim_SetResultString(goi->interp, "AP number not configured", -1);
2072 return JIM_ERR;
2073 }
2074 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, *ap_num_p));
2075 }
2076 break;
2077
2078 case CFG_CTIBASE:
2079 LOG_WARNING("DEPRECATED! use \'-baseaddr' not \'-ctibase\'");
2080 /* fall through */
2081 case CFG_BASEADDR:
2082 if (goi->isconfigure) {
2083 jim_wide base;
2084 e = jim_getopt_wide(goi, &base);
2085 if (e != JIM_OK)
2086 return e;
2087 *base_p = (uint32_t)base;
2088 } else {
2089 if (goi->argc)
2090 goto err_no_param;
2091 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, *base_p));
2092 }
2093 break;
2094 };
2095
2096 return JIM_OK;
2097
2098 err_no_param:
2099 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "NO PARAMS");
2100 return JIM_ERR;
2101 }
2102
2103 int adiv5_jim_configure(struct target *target, struct jim_getopt_info *goi)
2104 {
2105 struct adiv5_private_config *pc;
2106 int e;
2107
2108 pc = (struct adiv5_private_config *)target->private_config;
2109 if (!pc) {
2110 pc = calloc(1, sizeof(struct adiv5_private_config));
2111 if (!pc) {
2112 LOG_ERROR("Out of memory");
2113 return JIM_ERR;
2114 }
2115 pc->ap_num = DP_APSEL_INVALID;
2116 target->private_config = pc;
2117 }
2118
2119 target->has_dap = true;
2120
2121 e = adiv5_jim_spot_configure(goi, &pc->dap, &pc->ap_num, NULL);
2122 if (e != JIM_OK)
2123 return e;
2124
2125 if (pc->dap && !target->dap_configured) {
2126 if (target->tap_configured) {
2127 pc->dap = NULL;
2128 Jim_SetResultString(goi->interp,
2129 "-chain-position and -dap configparams are mutually exclusive!", -1);
2130 return JIM_ERR;
2131 }
2132 target->tap = pc->dap->tap;
2133 target->dap_configured = true;
2134 }
2135
2136 return JIM_OK;
2137 }
2138
2139 int adiv5_verify_config(struct adiv5_private_config *pc)
2140 {
2141 if (!pc)
2142 return ERROR_FAIL;
2143
2144 if (!pc->dap)
2145 return ERROR_FAIL;
2146
2147 return ERROR_OK;
2148 }
2149
2150 int adiv5_jim_mem_ap_spot_configure(struct adiv5_mem_ap_spot *cfg,
2151 struct jim_getopt_info *goi)
2152 {
2153 return adiv5_jim_spot_configure(goi, &cfg->dap, &cfg->ap_num, &cfg->base);
2154 }
2155
2156 int adiv5_mem_ap_spot_init(struct adiv5_mem_ap_spot *p)
2157 {
2158 p->dap = NULL;
2159 p->ap_num = DP_APSEL_INVALID;
2160 p->base = 0;
2161 return ERROR_OK;
2162 }
2163
2164 COMMAND_HANDLER(handle_dap_info_command)
2165 {
2166 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2167 uint32_t apsel;
2168
2169 switch (CMD_ARGC) {
2170 case 0:
2171 apsel = dap->apsel;
2172 break;
2173 case 1:
2174 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
2175 if (apsel > DP_APSEL_MAX) {
2176 command_print(CMD, "Invalid AP number");
2177 return ERROR_COMMAND_ARGUMENT_INVALID;
2178 }
2179 break;
2180 default:
2181 return ERROR_COMMAND_SYNTAX_ERROR;
2182 }
2183
2184 struct adiv5_ap *ap = dap_get_ap(dap, apsel);
2185 if (!ap) {
2186 command_print(CMD, "Cannot get AP");
2187 return ERROR_FAIL;
2188 }
2189
2190 int retval = dap_info_command(CMD, ap);
2191 dap_put_ap(ap);
2192 return retval;
2193 }
2194
2195 COMMAND_HANDLER(dap_baseaddr_command)
2196 {
2197 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2198 uint32_t apsel, baseaddr_lower, baseaddr_upper;
2199 struct adiv5_ap *ap;
2200 target_addr_t baseaddr;
2201 int retval;
2202
2203 baseaddr_upper = 0;
2204
2205 switch (CMD_ARGC) {
2206 case 0:
2207 apsel = dap->apsel;
2208 break;
2209 case 1:
2210 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
2211 /* AP address is in bits 31:24 of DP_SELECT */
2212 if (apsel > DP_APSEL_MAX) {
2213 command_print(CMD, "Invalid AP number");
2214 return ERROR_COMMAND_ARGUMENT_INVALID;
2215 }
2216 break;
2217 default:
2218 return ERROR_COMMAND_SYNTAX_ERROR;
2219 }
2220
2221 /* NOTE: assumes we're talking to a MEM-AP, which
2222 * has a base address. There are other kinds of AP,
2223 * though they're not common for now. This should
2224 * use the ID register to verify it's a MEM-AP.
2225 */
2226
2227 ap = dap_get_ap(dap, apsel);
2228 if (!ap) {
2229 command_print(CMD, "Cannot get AP");
2230 return ERROR_FAIL;
2231 }
2232
2233 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE(dap), &baseaddr_lower);
2234
2235 if (retval == ERROR_OK && ap->cfg_reg == MEM_AP_REG_CFG_INVALID)
2236 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG(dap), &ap->cfg_reg);
2237
2238 if (retval == ERROR_OK && (ap->cfg_reg == MEM_AP_REG_CFG_INVALID || is_64bit_ap(ap))) {
2239 /* MEM_AP_REG_BASE64 is defined as 'RES0'; can be read and then ignored on 32 bits AP */
2240 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE64(dap), &baseaddr_upper);
2241 }
2242
2243 if (retval == ERROR_OK)
2244 retval = dap_run(dap);
2245 dap_put_ap(ap);
2246 if (retval != ERROR_OK)
2247 return retval;
2248
2249 if (is_64bit_ap(ap)) {
2250 baseaddr = (((target_addr_t)baseaddr_upper) << 32) | baseaddr_lower;
2251 command_print(CMD, "0x%016" PRIx64, baseaddr);
2252 } else
2253 command_print(CMD, "0x%08" PRIx32, baseaddr_lower);
2254
2255 return ERROR_OK;
2256 }
2257
2258 COMMAND_HANDLER(dap_memaccess_command)
2259 {
2260 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2261 struct adiv5_ap *ap;
2262 uint32_t memaccess_tck;
2263
2264 switch (CMD_ARGC) {
2265 case 0:
2266 ap = dap_get_ap(dap, dap->apsel);
2267 if (!ap) {
2268 command_print(CMD, "Cannot get AP");
2269 return ERROR_FAIL;
2270 }
2271 memaccess_tck = ap->memaccess_tck;
2272 break;
2273 case 1:
2274 ap = dap_get_config_ap(dap, dap->apsel);
2275 if (!ap) {
2276 command_print(CMD, "Cannot get AP");
2277 return ERROR_FAIL;
2278 }
2279 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
2280 ap->memaccess_tck = memaccess_tck;
2281 break;
2282 default:
2283 return ERROR_COMMAND_SYNTAX_ERROR;
2284 }
2285
2286 dap_put_ap(ap);
2287
2288 command_print(CMD, "memory bus access delay set to %" PRIu32 " tck",
2289 memaccess_tck);
2290
2291 return ERROR_OK;
2292 }
2293
2294 COMMAND_HANDLER(dap_apsel_command)
2295 {
2296 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2297 uint32_t apsel;
2298
2299 switch (CMD_ARGC) {
2300 case 0:
2301 command_print(CMD, "%" PRIu32, dap->apsel);
2302 return ERROR_OK;
2303 case 1:
2304 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
2305 /* AP address is in bits 31:24 of DP_SELECT */
2306 if (apsel > DP_APSEL_MAX) {
2307 command_print(CMD, "Invalid AP number");
2308 return ERROR_COMMAND_ARGUMENT_INVALID;
2309 }
2310 break;
2311 default:
2312 return ERROR_COMMAND_SYNTAX_ERROR;
2313 }
2314
2315 dap->apsel = apsel;
2316 return ERROR_OK;
2317 }
2318
2319 COMMAND_HANDLER(dap_apcsw_command)
2320 {
2321 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2322 struct adiv5_ap *ap;
2323 uint32_t csw_val, csw_mask;
2324
2325 switch (CMD_ARGC) {
2326 case 0:
2327 ap = dap_get_ap(dap, dap->apsel);
2328 if (!ap) {
2329 command_print(CMD, "Cannot get AP");
2330 return ERROR_FAIL;
2331 }
2332 command_print(CMD, "ap %" PRIu32 " selected, csw 0x%8.8" PRIx32,
2333 dap->apsel, ap->csw_default);
2334 break;
2335 case 1:
2336 if (strcmp(CMD_ARGV[0], "default") == 0)
2337 csw_val = CSW_AHB_DEFAULT;
2338 else
2339 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], csw_val);
2340
2341 if (csw_val & (CSW_SIZE_MASK | CSW_ADDRINC_MASK)) {
2342 LOG_ERROR("CSW value cannot include 'Size' and 'AddrInc' bit-fields");
2343 return ERROR_COMMAND_ARGUMENT_INVALID;
2344 }
2345 ap = dap_get_config_ap(dap, dap->apsel);
2346 if (!ap) {
2347 command_print(CMD, "Cannot get AP");
2348 return ERROR_FAIL;
2349 }
2350 ap->csw_default = csw_val;
2351 break;
2352 case 2:
2353 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], csw_val);
2354 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], csw_mask);
2355 if (csw_mask & (CSW_SIZE_MASK | CSW_ADDRINC_MASK)) {
2356 LOG_ERROR("CSW mask cannot include 'Size' and 'AddrInc' bit-fields");
2357 return ERROR_COMMAND_ARGUMENT_INVALID;
2358 }
2359 ap = dap_get_config_ap(dap, dap->apsel);
2360 if (!ap) {
2361 command_print(CMD, "Cannot get AP");
2362 return ERROR_FAIL;
2363 }
2364 ap->csw_default = (ap->csw_default & ~csw_mask) | (csw_val & csw_mask);
2365 break;
2366 default:
2367 return ERROR_COMMAND_SYNTAX_ERROR;
2368 }
2369 dap_put_ap(ap);
2370
2371 return ERROR_OK;
2372 }
2373
2374
2375
2376 COMMAND_HANDLER(dap_apid_command)
2377 {
2378 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2379 uint32_t apsel, apid;
2380 int retval;
2381
2382 switch (CMD_ARGC) {
2383 case 0:
2384 apsel = dap->apsel;
2385 break;
2386 case 1:
2387 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
2388 /* AP address is in bits 31:24 of DP_SELECT */
2389 if (apsel > DP_APSEL_MAX) {
2390 command_print(CMD, "Invalid AP number");
2391 return ERROR_COMMAND_ARGUMENT_INVALID;
2392 }
2393 break;
2394 default:
2395 return ERROR_COMMAND_SYNTAX_ERROR;
2396 }
2397
2398 struct adiv5_ap *ap = dap_get_ap(dap, apsel);
2399 if (!ap) {
2400 command_print(CMD, "Cannot get AP");
2401 return ERROR_FAIL;
2402 }
2403 retval = dap_queue_ap_read(ap, AP_REG_IDR(dap), &apid);
2404 if (retval != ERROR_OK) {
2405 dap_put_ap(ap);
2406 return retval;
2407 }
2408 retval = dap_run(dap);
2409 dap_put_ap(ap);
2410 if (retval != ERROR_OK)
2411 return retval;
2412
2413 command_print(CMD, "0x%8.8" PRIx32, apid);
2414
2415 return retval;
2416 }
2417
2418 COMMAND_HANDLER(dap_apreg_command)
2419 {
2420 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2421 uint32_t apsel, reg, value;
2422 int retval;
2423
2424 if (CMD_ARGC < 2 || CMD_ARGC > 3)
2425 return ERROR_COMMAND_SYNTAX_ERROR;
2426
2427 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
2428 /* AP address is in bits 31:24 of DP_SELECT */
2429 if (apsel > DP_APSEL_MAX) {
2430 command_print(CMD, "Invalid AP number");
2431 return ERROR_COMMAND_ARGUMENT_INVALID;
2432 }
2433
2434 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg);
2435 if (reg >= 256 || (reg & 3)) {
2436 command_print(CMD, "Invalid reg value (should be less than 256 and 4 bytes aligned)");
2437 return ERROR_COMMAND_ARGUMENT_INVALID;
2438 }
2439
2440 struct adiv5_ap *ap = dap_get_ap(dap, apsel);
2441 if (!ap) {
2442 command_print(CMD, "Cannot get AP");
2443 return ERROR_FAIL;
2444 }
2445
2446 if (CMD_ARGC == 3) {
2447 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
2448 /* see if user supplied register address is a match for the CSW or TAR register */
2449 if (reg == MEM_AP_REG_CSW(dap)) {
2450 ap->csw_value = 0; /* invalid, in case write fails */
2451 retval = dap_queue_ap_write(ap, reg, value);
2452 if (retval == ERROR_OK)
2453 ap->csw_value = value;
2454 } else if (reg == MEM_AP_REG_TAR(dap)) {
2455 retval = dap_queue_ap_write(ap, reg, value);
2456 if (retval == ERROR_OK)
2457 ap->tar_value = (ap->tar_value & ~0xFFFFFFFFull) | value;
2458 else {
2459 /* To track independent writes to TAR and TAR64, two tar_valid flags */
2460 /* should be used. To keep it simple, tar_valid is only invalidated on a */
2461 /* write fail. This approach causes a later re-write of the TAR and TAR64 */
2462 /* if tar_valid is false. */
2463 ap->tar_valid = false;
2464 }
2465 } else if (reg == MEM_AP_REG_TAR64(dap)) {
2466 retval = dap_queue_ap_write(ap, reg, value);
2467 if (retval == ERROR_OK)
2468 ap->tar_value = (ap->tar_value & 0xFFFFFFFFull) | (((target_addr_t)value) << 32);
2469 else {
2470 /* See above comment for the MEM_AP_REG_TAR failed write case */
2471 ap->tar_valid = false;
2472 }
2473 } else {
2474 retval = dap_queue_ap_write(ap, reg, value);
2475 }
2476 } else {
2477 retval = dap_queue_ap_read(ap, reg, &value);
2478 }
2479 if (retval == ERROR_OK)
2480 retval = dap_run(dap);
2481
2482 dap_put_ap(ap);
2483
2484 if (retval != ERROR_OK)
2485 return retval;
2486
2487 if (CMD_ARGC == 2)
2488 command_print(CMD, "0x%08" PRIx32, value);
2489
2490 return retval;
2491 }
2492
2493 COMMAND_HANDLER(dap_dpreg_command)
2494 {
2495 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2496 uint32_t reg, value;
2497 int retval;
2498
2499 if (CMD_ARGC < 1 || CMD_ARGC > 2)
2500 return ERROR_COMMAND_SYNTAX_ERROR;
2501
2502 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], reg);
2503 if (reg >= 256 || (reg & 3)) {
2504 command_print(CMD, "Invalid reg value (should be less than 256 and 4 bytes aligned)");
2505 return ERROR_COMMAND_ARGUMENT_INVALID;
2506 }
2507
2508 if (CMD_ARGC == 2) {
2509 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2510 retval = dap_queue_dp_write(dap, reg, value);
2511 } else {
2512 retval = dap_queue_dp_read(dap, reg, &value);
2513 }
2514 if (retval == ERROR_OK)
2515 retval = dap_run(dap);
2516
2517 if (retval != ERROR_OK)
2518 return retval;
2519
2520 if (CMD_ARGC == 1)
2521 command_print(CMD, "0x%08" PRIx32, value);
2522
2523 return retval;
2524 }
2525
2526 COMMAND_HANDLER(dap_ti_be_32_quirks_command)
2527 {
2528 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2529 return CALL_COMMAND_HANDLER(handle_command_parse_bool, &dap->ti_be_32_quirks,
2530 "TI BE-32 quirks mode");
2531 }
2532
2533 const struct command_registration dap_instance_commands[] = {
2534 {
2535 .name = "info",
2536 .handler = handle_dap_info_command,
2537 .mode = COMMAND_EXEC,
2538 .help = "display ROM table for MEM-AP "
2539 "(default currently selected AP)",
2540 .usage = "[ap_num]",
2541 },
2542 {
2543 .name = "apsel",
2544 .handler = dap_apsel_command,
2545 .mode = COMMAND_ANY,
2546 .help = "Set the currently selected AP (default 0) "
2547 "and display the result",
2548 .usage = "[ap_num]",
2549 },
2550 {
2551 .name = "apcsw",
2552 .handler = dap_apcsw_command,
2553 .mode = COMMAND_ANY,
2554 .help = "Set CSW default bits",
2555 .usage = "[value [mask]]",
2556 },
2557
2558 {
2559 .name = "apid",
2560 .handler = dap_apid_command,
2561 .mode = COMMAND_EXEC,
2562 .help = "return ID register from AP "
2563 "(default currently selected AP)",
2564 .usage = "[ap_num]",
2565 },
2566 {
2567 .name = "apreg",
2568 .handler = dap_apreg_command,
2569 .mode = COMMAND_EXEC,
2570 .help = "read/write a register from AP "
2571 "(reg is byte address of a word register, like 0 4 8...)",
2572 .usage = "ap_num reg [value]",
2573 },
2574 {
2575 .name = "dpreg",
2576 .handler = dap_dpreg_command,
2577 .mode = COMMAND_EXEC,
2578 .help = "read/write a register from DP "
2579 "(reg is byte address (bank << 4 | reg) of a word register, like 0 4 8...)",
2580 .usage = "reg [value]",
2581 },
2582 {
2583 .name = "baseaddr",
2584 .handler = dap_baseaddr_command,
2585 .mode = COMMAND_EXEC,
2586 .help = "return debug base address from MEM-AP "
2587 "(default currently selected AP)",
2588 .usage = "[ap_num]",
2589 },
2590 {
2591 .name = "memaccess",
2592 .handler = dap_memaccess_command,
2593 .mode = COMMAND_EXEC,
2594 .help = "set/get number of extra tck for MEM-AP memory "
2595 "bus access [0-255]",
2596 .usage = "[cycles]",
2597 },
2598 {
2599 .name = "ti_be_32_quirks",
2600 .handler = dap_ti_be_32_quirks_command,
2601 .mode = COMMAND_CONFIG,
2602 .help = "set/get quirks mode for TI TMS450/TMS570 processors",
2603 .usage = "[enable]",
2604 },
2605 COMMAND_REGISTRATION_DONE
2606 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)