jtag: linuxgpiod: drop extra parenthesis
[openocd.git] / src / target / armv4_5.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2
3 /***************************************************************************
4 * Copyright (C) 2005 by Dominic Rath *
5 * Dominic.Rath@gmx.de *
6 * *
7 * Copyright (C) 2008 by Spencer Oliver *
8 * spen@spen-soft.co.uk *
9 * *
10 * Copyright (C) 2008 by Oyvind Harboe *
11 * oyvind.harboe@zylin.com *
12 * *
13 * Copyright (C) 2018 by Liviu Ionescu *
14 * <ilg@livius.net> *
15 ***************************************************************************/
16
17 #ifdef HAVE_CONFIG_H
18 #include "config.h"
19 #endif
20
21 #include "arm.h"
22 #include "armv4_5.h"
23 #include "arm_jtag.h"
24 #include "breakpoints.h"
25 #include "arm_disassembler.h"
26 #include <helper/binarybuffer.h>
27 #include "algorithm.h"
28 #include "register.h"
29 #include "semihosting_common.h"
30
31 /* offsets into armv4_5 core register cache */
32 enum {
33 /* ARMV4_5_CPSR = 31, */
34 ARMV4_5_SPSR_FIQ = 32,
35 ARMV4_5_SPSR_IRQ = 33,
36 ARMV4_5_SPSR_SVC = 34,
37 ARMV4_5_SPSR_ABT = 35,
38 ARMV4_5_SPSR_UND = 36,
39 ARM_SPSR_MON = 41,
40 ARM_SPSR_HYP = 43,
41 };
42
43 static const uint8_t arm_usr_indices[17] = {
44 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ARMV4_5_CPSR,
45 };
46
47 static const uint8_t arm_fiq_indices[8] = {
48 16, 17, 18, 19, 20, 21, 22, ARMV4_5_SPSR_FIQ,
49 };
50
51 static const uint8_t arm_irq_indices[3] = {
52 23, 24, ARMV4_5_SPSR_IRQ,
53 };
54
55 static const uint8_t arm_svc_indices[3] = {
56 25, 26, ARMV4_5_SPSR_SVC,
57 };
58
59 static const uint8_t arm_abt_indices[3] = {
60 27, 28, ARMV4_5_SPSR_ABT,
61 };
62
63 static const uint8_t arm_und_indices[3] = {
64 29, 30, ARMV4_5_SPSR_UND,
65 };
66
67 static const uint8_t arm_mon_indices[3] = {
68 39, 40, ARM_SPSR_MON,
69 };
70
71 static const uint8_t arm_hyp_indices[2] = {
72 42, ARM_SPSR_HYP,
73 };
74
75 static const struct {
76 const char *name;
77 unsigned short psr;
78 /* For user and system modes, these list indices for all registers.
79 * otherwise they're just indices for the shadow registers and SPSR.
80 */
81 unsigned short n_indices;
82 const uint8_t *indices;
83 } arm_mode_data[] = {
84 /* Seven modes are standard from ARM7 on. "System" and "User" share
85 * the same registers; other modes shadow from 3 to 8 registers.
86 */
87 {
88 .name = "User",
89 .psr = ARM_MODE_USR,
90 .n_indices = ARRAY_SIZE(arm_usr_indices),
91 .indices = arm_usr_indices,
92 },
93 {
94 .name = "FIQ",
95 .psr = ARM_MODE_FIQ,
96 .n_indices = ARRAY_SIZE(arm_fiq_indices),
97 .indices = arm_fiq_indices,
98 },
99 {
100 .name = "Supervisor",
101 .psr = ARM_MODE_SVC,
102 .n_indices = ARRAY_SIZE(arm_svc_indices),
103 .indices = arm_svc_indices,
104 },
105 {
106 .name = "Abort",
107 .psr = ARM_MODE_ABT,
108 .n_indices = ARRAY_SIZE(arm_abt_indices),
109 .indices = arm_abt_indices,
110 },
111 {
112 .name = "IRQ",
113 .psr = ARM_MODE_IRQ,
114 .n_indices = ARRAY_SIZE(arm_irq_indices),
115 .indices = arm_irq_indices,
116 },
117 {
118 .name = "Undefined instruction",
119 .psr = ARM_MODE_UND,
120 .n_indices = ARRAY_SIZE(arm_und_indices),
121 .indices = arm_und_indices,
122 },
123 {
124 .name = "System",
125 .psr = ARM_MODE_SYS,
126 .n_indices = ARRAY_SIZE(arm_usr_indices),
127 .indices = arm_usr_indices,
128 },
129 /* TrustZone "Security Extensions" add a secure monitor mode.
130 * This is distinct from a "debug monitor" which can support
131 * non-halting debug, in conjunction with some debuggers.
132 */
133 {
134 .name = "Secure Monitor",
135 .psr = ARM_MODE_MON,
136 .n_indices = ARRAY_SIZE(arm_mon_indices),
137 .indices = arm_mon_indices,
138 },
139 {
140 .name = "Secure Monitor ARM1176JZF-S",
141 .psr = ARM_MODE_1176_MON,
142 .n_indices = ARRAY_SIZE(arm_mon_indices),
143 .indices = arm_mon_indices,
144 },
145
146 /* These special modes are currently only supported
147 * by ARMv6M and ARMv7M profiles */
148 {
149 .name = "Thread",
150 .psr = ARM_MODE_THREAD,
151 },
152 {
153 .name = "Thread (User)",
154 .psr = ARM_MODE_USER_THREAD,
155 },
156 {
157 .name = "Handler",
158 .psr = ARM_MODE_HANDLER,
159 },
160
161 /* armv7-a with virtualization extension */
162 {
163 .name = "Hypervisor",
164 .psr = ARM_MODE_HYP,
165 .n_indices = ARRAY_SIZE(arm_hyp_indices),
166 .indices = arm_hyp_indices,
167 },
168 };
169
170 /** Map PSR mode bits to the name of an ARM processor operating mode. */
171 const char *arm_mode_name(unsigned psr_mode)
172 {
173 for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) {
174 if (arm_mode_data[i].psr == psr_mode)
175 return arm_mode_data[i].name;
176 }
177 LOG_ERROR("unrecognized psr mode: %#02x", psr_mode);
178 return "UNRECOGNIZED";
179 }
180
181 /** Return true iff the parameter denotes a valid ARM processor mode. */
182 bool is_arm_mode(unsigned psr_mode)
183 {
184 for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) {
185 if (arm_mode_data[i].psr == psr_mode)
186 return true;
187 }
188 return false;
189 }
190
191 /** Map PSR mode bits to linear number indexing armv4_5_core_reg_map */
192 int arm_mode_to_number(enum arm_mode mode)
193 {
194 switch (mode) {
195 case ARM_MODE_ANY:
196 /* map MODE_ANY to user mode */
197 case ARM_MODE_USR:
198 return 0;
199 case ARM_MODE_FIQ:
200 return 1;
201 case ARM_MODE_IRQ:
202 return 2;
203 case ARM_MODE_SVC:
204 return 3;
205 case ARM_MODE_ABT:
206 return 4;
207 case ARM_MODE_UND:
208 return 5;
209 case ARM_MODE_SYS:
210 return 6;
211 case ARM_MODE_MON:
212 case ARM_MODE_1176_MON:
213 return 7;
214 case ARM_MODE_HYP:
215 return 8;
216 default:
217 LOG_ERROR("invalid mode value encountered %d", mode);
218 return -1;
219 }
220 }
221
222 /** Map linear number indexing armv4_5_core_reg_map to PSR mode bits. */
223 enum arm_mode armv4_5_number_to_mode(int number)
224 {
225 switch (number) {
226 case 0:
227 return ARM_MODE_USR;
228 case 1:
229 return ARM_MODE_FIQ;
230 case 2:
231 return ARM_MODE_IRQ;
232 case 3:
233 return ARM_MODE_SVC;
234 case 4:
235 return ARM_MODE_ABT;
236 case 5:
237 return ARM_MODE_UND;
238 case 6:
239 return ARM_MODE_SYS;
240 case 7:
241 return ARM_MODE_MON;
242 case 8:
243 return ARM_MODE_HYP;
244 default:
245 LOG_ERROR("mode index out of bounds %d", number);
246 return ARM_MODE_ANY;
247 }
248 }
249
250 static const char *arm_state_strings[] = {
251 "ARM", "Thumb", "Jazelle", "ThumbEE",
252 };
253
254 /* Templates for ARM core registers.
255 *
256 * NOTE: offsets in this table are coupled to the arm_mode_data
257 * table above, the armv4_5_core_reg_map array below, and also to
258 * the ARMV4_5_CPSR symbol (which should vanish after ARM11 updates).
259 */
260 static const struct {
261 /* The name is used for e.g. the "regs" command. */
262 const char *name;
263
264 /* The {cookie, mode} tuple uniquely identifies one register.
265 * In a given mode, cookies 0..15 map to registers R0..R15,
266 * with R13..R15 usually called SP, LR, PC.
267 *
268 * MODE_ANY is used as *input* to the mapping, and indicates
269 * various special cases (sigh) and errors.
270 *
271 * Cookie 16 is (currently) confusing, since it indicates
272 * CPSR -or- SPSR depending on whether 'mode' is MODE_ANY.
273 * (Exception modes have both CPSR and SPSR registers ...)
274 */
275 unsigned cookie;
276 unsigned gdb_index;
277 enum arm_mode mode;
278 } arm_core_regs[] = {
279 /* IMPORTANT: we guarantee that the first eight cached registers
280 * correspond to r0..r7, and the fifteenth to PC, so that callers
281 * don't need to map them.
282 */
283 [0] = { .name = "r0", .cookie = 0, .mode = ARM_MODE_ANY, .gdb_index = 0, },
284 [1] = { .name = "r1", .cookie = 1, .mode = ARM_MODE_ANY, .gdb_index = 1, },
285 [2] = { .name = "r2", .cookie = 2, .mode = ARM_MODE_ANY, .gdb_index = 2, },
286 [3] = { .name = "r3", .cookie = 3, .mode = ARM_MODE_ANY, .gdb_index = 3, },
287 [4] = { .name = "r4", .cookie = 4, .mode = ARM_MODE_ANY, .gdb_index = 4, },
288 [5] = { .name = "r5", .cookie = 5, .mode = ARM_MODE_ANY, .gdb_index = 5, },
289 [6] = { .name = "r6", .cookie = 6, .mode = ARM_MODE_ANY, .gdb_index = 6, },
290 [7] = { .name = "r7", .cookie = 7, .mode = ARM_MODE_ANY, .gdb_index = 7, },
291
292 /* NOTE: regs 8..12 might be shadowed by FIQ ... flagging
293 * them as MODE_ANY creates special cases. (ANY means
294 * "not mapped" elsewhere; here it's "everything but FIQ".)
295 */
296 [8] = { .name = "r8", .cookie = 8, .mode = ARM_MODE_ANY, .gdb_index = 8, },
297 [9] = { .name = "r9", .cookie = 9, .mode = ARM_MODE_ANY, .gdb_index = 9, },
298 [10] = { .name = "r10", .cookie = 10, .mode = ARM_MODE_ANY, .gdb_index = 10, },
299 [11] = { .name = "r11", .cookie = 11, .mode = ARM_MODE_ANY, .gdb_index = 11, },
300 [12] = { .name = "r12", .cookie = 12, .mode = ARM_MODE_ANY, .gdb_index = 12, },
301
302 /* Historical GDB mapping of indices:
303 * - 13-14 are sp and lr, but banked counterparts are used
304 * - 16-24 are left for deprecated 8 FPA + 1 FPS
305 * - 25 is the cpsr
306 */
307
308 /* NOTE all MODE_USR registers are equivalent to MODE_SYS ones */
309 [13] = { .name = "sp_usr", .cookie = 13, .mode = ARM_MODE_USR, .gdb_index = 26, },
310 [14] = { .name = "lr_usr", .cookie = 14, .mode = ARM_MODE_USR, .gdb_index = 27, },
311
312 /* guaranteed to be at index 15 */
313 [15] = { .name = "pc", .cookie = 15, .mode = ARM_MODE_ANY, .gdb_index = 15, },
314 [16] = { .name = "r8_fiq", .cookie = 8, .mode = ARM_MODE_FIQ, .gdb_index = 28, },
315 [17] = { .name = "r9_fiq", .cookie = 9, .mode = ARM_MODE_FIQ, .gdb_index = 29, },
316 [18] = { .name = "r10_fiq", .cookie = 10, .mode = ARM_MODE_FIQ, .gdb_index = 30, },
317 [19] = { .name = "r11_fiq", .cookie = 11, .mode = ARM_MODE_FIQ, .gdb_index = 31, },
318 [20] = { .name = "r12_fiq", .cookie = 12, .mode = ARM_MODE_FIQ, .gdb_index = 32, },
319
320 [21] = { .name = "sp_fiq", .cookie = 13, .mode = ARM_MODE_FIQ, .gdb_index = 33, },
321 [22] = { .name = "lr_fiq", .cookie = 14, .mode = ARM_MODE_FIQ, .gdb_index = 34, },
322
323 [23] = { .name = "sp_irq", .cookie = 13, .mode = ARM_MODE_IRQ, .gdb_index = 35, },
324 [24] = { .name = "lr_irq", .cookie = 14, .mode = ARM_MODE_IRQ, .gdb_index = 36, },
325
326 [25] = { .name = "sp_svc", .cookie = 13, .mode = ARM_MODE_SVC, .gdb_index = 37, },
327 [26] = { .name = "lr_svc", .cookie = 14, .mode = ARM_MODE_SVC, .gdb_index = 38, },
328
329 [27] = { .name = "sp_abt", .cookie = 13, .mode = ARM_MODE_ABT, .gdb_index = 39, },
330 [28] = { .name = "lr_abt", .cookie = 14, .mode = ARM_MODE_ABT, .gdb_index = 40, },
331
332 [29] = { .name = "sp_und", .cookie = 13, .mode = ARM_MODE_UND, .gdb_index = 41, },
333 [30] = { .name = "lr_und", .cookie = 14, .mode = ARM_MODE_UND, .gdb_index = 42, },
334
335 [31] = { .name = "cpsr", .cookie = 16, .mode = ARM_MODE_ANY, .gdb_index = 25, },
336 [32] = { .name = "spsr_fiq", .cookie = 16, .mode = ARM_MODE_FIQ, .gdb_index = 43, },
337 [33] = { .name = "spsr_irq", .cookie = 16, .mode = ARM_MODE_IRQ, .gdb_index = 44, },
338 [34] = { .name = "spsr_svc", .cookie = 16, .mode = ARM_MODE_SVC, .gdb_index = 45, },
339 [35] = { .name = "spsr_abt", .cookie = 16, .mode = ARM_MODE_ABT, .gdb_index = 46, },
340 [36] = { .name = "spsr_und", .cookie = 16, .mode = ARM_MODE_UND, .gdb_index = 47, },
341
342 /* These are only used for GDB target description, banked registers are accessed instead */
343 [37] = { .name = "sp", .cookie = 13, .mode = ARM_MODE_ANY, .gdb_index = 13, },
344 [38] = { .name = "lr", .cookie = 14, .mode = ARM_MODE_ANY, .gdb_index = 14, },
345
346 /* These exist only when the Security Extension (TrustZone) is present */
347 [39] = { .name = "sp_mon", .cookie = 13, .mode = ARM_MODE_MON, .gdb_index = 48, },
348 [40] = { .name = "lr_mon", .cookie = 14, .mode = ARM_MODE_MON, .gdb_index = 49, },
349 [41] = { .name = "spsr_mon", .cookie = 16, .mode = ARM_MODE_MON, .gdb_index = 50, },
350
351 /* These exist only when the Virtualization Extensions is present */
352 [42] = { .name = "sp_hyp", .cookie = 13, .mode = ARM_MODE_HYP, .gdb_index = 51, },
353 [43] = { .name = "spsr_hyp", .cookie = 16, .mode = ARM_MODE_HYP, .gdb_index = 52, },
354 };
355
356 static const struct {
357 unsigned int id;
358 const char *name;
359 uint32_t bits;
360 enum arm_mode mode;
361 enum reg_type type;
362 const char *group;
363 const char *feature;
364 } arm_vfp_v3_regs[] = {
365 { ARM_VFP_V3_D0, "d0", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
366 { ARM_VFP_V3_D1, "d1", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
367 { ARM_VFP_V3_D2, "d2", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
368 { ARM_VFP_V3_D3, "d3", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
369 { ARM_VFP_V3_D4, "d4", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
370 { ARM_VFP_V3_D5, "d5", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
371 { ARM_VFP_V3_D6, "d6", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
372 { ARM_VFP_V3_D7, "d7", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
373 { ARM_VFP_V3_D8, "d8", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
374 { ARM_VFP_V3_D9, "d9", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
375 { ARM_VFP_V3_D10, "d10", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
376 { ARM_VFP_V3_D11, "d11", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
377 { ARM_VFP_V3_D12, "d12", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
378 { ARM_VFP_V3_D13, "d13", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
379 { ARM_VFP_V3_D14, "d14", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
380 { ARM_VFP_V3_D15, "d15", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
381 { ARM_VFP_V3_D16, "d16", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
382 { ARM_VFP_V3_D17, "d17", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
383 { ARM_VFP_V3_D18, "d18", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
384 { ARM_VFP_V3_D19, "d19", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
385 { ARM_VFP_V3_D20, "d20", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
386 { ARM_VFP_V3_D21, "d21", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
387 { ARM_VFP_V3_D22, "d22", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
388 { ARM_VFP_V3_D23, "d23", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
389 { ARM_VFP_V3_D24, "d24", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
390 { ARM_VFP_V3_D25, "d25", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
391 { ARM_VFP_V3_D26, "d26", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
392 { ARM_VFP_V3_D27, "d27", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
393 { ARM_VFP_V3_D28, "d28", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
394 { ARM_VFP_V3_D29, "d29", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
395 { ARM_VFP_V3_D30, "d30", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
396 { ARM_VFP_V3_D31, "d31", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
397 { ARM_VFP_V3_FPSCR, "fpscr", 32, ARM_MODE_ANY, REG_TYPE_INT, "float", "org.gnu.gdb.arm.vfp"},
398 };
399
400 /* map core mode (USR, FIQ, ...) and register number to
401 * indices into the register cache
402 */
403 const int armv4_5_core_reg_map[9][17] = {
404 { /* USR */
405 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31
406 },
407 { /* FIQ (8 shadows of USR, vs normal 3) */
408 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 15, 32
409 },
410 { /* IRQ */
411 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23, 24, 15, 33
412 },
413 { /* SVC */
414 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 25, 26, 15, 34
415 },
416 { /* ABT */
417 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 27, 28, 15, 35
418 },
419 { /* UND */
420 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 29, 30, 15, 36
421 },
422 { /* SYS (same registers as USR) */
423 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31
424 },
425 { /* MON */
426 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 39, 40, 15, 41,
427 },
428 { /* HYP */
429 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 42, 14, 15, 43,
430 }
431 };
432
433 /**
434 * Configures host-side ARM records to reflect the specified CPSR.
435 * Later, code can use arm_reg_current() to map register numbers
436 * according to how they are exposed by this mode.
437 */
438 void arm_set_cpsr(struct arm *arm, uint32_t cpsr)
439 {
440 enum arm_mode mode = cpsr & 0x1f;
441 int num;
442
443 /* NOTE: this may be called very early, before the register
444 * cache is set up. We can't defend against many errors, in
445 * particular against CPSRs that aren't valid *here* ...
446 */
447 if (arm->cpsr) {
448 buf_set_u32(arm->cpsr->value, 0, 32, cpsr);
449 arm->cpsr->valid = true;
450 arm->cpsr->dirty = false;
451 }
452
453 arm->core_mode = mode;
454
455 /* mode_to_number() warned; set up a somewhat-sane mapping */
456 num = arm_mode_to_number(mode);
457 if (num < 0) {
458 mode = ARM_MODE_USR;
459 num = 0;
460 }
461
462 arm->map = &armv4_5_core_reg_map[num][0];
463 arm->spsr = (mode == ARM_MODE_USR || mode == ARM_MODE_SYS)
464 ? NULL
465 : arm->core_cache->reg_list + arm->map[16];
466
467 /* Older ARMs won't have the J bit */
468 enum arm_state state;
469
470 if (cpsr & (1 << 5)) { /* T */
471 if (cpsr & (1 << 24)) { /* J */
472 LOG_WARNING("ThumbEE -- incomplete support");
473 state = ARM_STATE_THUMB_EE;
474 } else
475 state = ARM_STATE_THUMB;
476 } else {
477 if (cpsr & (1 << 24)) { /* J */
478 LOG_ERROR("Jazelle state handling is BROKEN!");
479 state = ARM_STATE_JAZELLE;
480 } else
481 state = ARM_STATE_ARM;
482 }
483 arm->core_state = state;
484
485 LOG_DEBUG("set CPSR %#8.8x: %s mode, %s state", (unsigned) cpsr,
486 arm_mode_name(mode),
487 arm_state_strings[arm->core_state]);
488 }
489
490 /**
491 * Returns handle to the register currently mapped to a given number.
492 * Someone must have called arm_set_cpsr() before.
493 *
494 * \param arm This core's state and registers are used.
495 * \param regnum From 0..15 corresponding to R0..R14 and PC.
496 * Note that R0..R7 don't require mapping; you may access those
497 * as the first eight entries in the register cache. Likewise
498 * R15 (PC) doesn't need mapping; you may also access it directly.
499 * However, R8..R14, and SPSR (arm->spsr) *must* be mapped.
500 * CPSR (arm->cpsr) is also not mapped.
501 */
502 struct reg *arm_reg_current(struct arm *arm, unsigned regnum)
503 {
504 struct reg *r;
505
506 if (regnum > 16)
507 return NULL;
508
509 if (!arm->map) {
510 LOG_ERROR("Register map is not available yet, the target is not fully initialised");
511 r = arm->core_cache->reg_list + regnum;
512 } else
513 r = arm->core_cache->reg_list + arm->map[regnum];
514
515 /* e.g. invalid CPSR said "secure monitor" mode on a core
516 * that doesn't support it...
517 */
518 if (!r) {
519 LOG_ERROR("Invalid CPSR mode");
520 r = arm->core_cache->reg_list + regnum;
521 }
522
523 return r;
524 }
525
526 static const uint8_t arm_gdb_dummy_fp_value[12];
527
528 static struct reg_feature arm_gdb_dummy_fp_features = {
529 .name = "net.sourceforge.openocd.fake_fpa"
530 };
531
532 /**
533 * Dummy FPA registers are required to support GDB on ARM.
534 * Register packets require eight obsolete FPA register values.
535 * Modern ARM cores use Vector Floating Point (VFP), if they
536 * have any floating point support. VFP is not FPA-compatible.
537 */
538 static struct reg arm_gdb_dummy_fp_reg = {
539 .name = "GDB dummy FPA register",
540 .value = (uint8_t *) arm_gdb_dummy_fp_value,
541 .valid = true,
542 .size = 96,
543 .exist = false,
544 .number = 16,
545 .feature = &arm_gdb_dummy_fp_features,
546 .group = "fake_fpa",
547 };
548
549 static const uint8_t arm_gdb_dummy_fps_value[4];
550
551 /**
552 * Dummy FPA status registers are required to support GDB on ARM.
553 * Register packets require an obsolete FPA status register.
554 */
555 static struct reg arm_gdb_dummy_fps_reg = {
556 .name = "GDB dummy FPA status register",
557 .value = (uint8_t *) arm_gdb_dummy_fps_value,
558 .valid = true,
559 .size = 32,
560 .exist = false,
561 .number = 24,
562 .feature = &arm_gdb_dummy_fp_features,
563 .group = "fake_fpa",
564 };
565
566 static void arm_gdb_dummy_init(void) __attribute__ ((constructor));
567
568 static void arm_gdb_dummy_init(void)
569 {
570 register_init_dummy(&arm_gdb_dummy_fp_reg);
571 register_init_dummy(&arm_gdb_dummy_fps_reg);
572 }
573
574 static int armv4_5_get_core_reg(struct reg *reg)
575 {
576 int retval;
577 struct arm_reg *reg_arch_info = reg->arch_info;
578 struct target *target = reg_arch_info->target;
579
580 if (target->state != TARGET_HALTED) {
581 LOG_ERROR("Target not halted");
582 return ERROR_TARGET_NOT_HALTED;
583 }
584
585 retval = reg_arch_info->arm->read_core_reg(target, reg,
586 reg_arch_info->num, reg_arch_info->mode);
587 if (retval == ERROR_OK) {
588 reg->valid = true;
589 reg->dirty = false;
590 }
591
592 return retval;
593 }
594
595 static int armv4_5_set_core_reg(struct reg *reg, uint8_t *buf)
596 {
597 struct arm_reg *reg_arch_info = reg->arch_info;
598 struct target *target = reg_arch_info->target;
599 struct arm *armv4_5_target = target_to_arm(target);
600 uint32_t value = buf_get_u32(buf, 0, 32);
601
602 if (target->state != TARGET_HALTED) {
603 LOG_ERROR("Target not halted");
604 return ERROR_TARGET_NOT_HALTED;
605 }
606
607 /* Except for CPSR, the "reg" command exposes a writeback model
608 * for the register cache.
609 */
610 if (reg == armv4_5_target->cpsr) {
611 arm_set_cpsr(armv4_5_target, value);
612
613 /* Older cores need help to be in ARM mode during halt
614 * mode debug, so we clear the J and T bits if we flush.
615 * For newer cores (v6/v7a/v7r) we don't need that, but
616 * it won't hurt since CPSR is always flushed anyway.
617 */
618 if (armv4_5_target->core_mode !=
619 (enum arm_mode)(value & 0x1f)) {
620 LOG_DEBUG("changing ARM core mode to '%s'",
621 arm_mode_name(value & 0x1f));
622 value &= ~((1 << 24) | (1 << 5));
623 uint8_t t[4];
624 buf_set_u32(t, 0, 32, value);
625 armv4_5_target->write_core_reg(target, reg,
626 16, ARM_MODE_ANY, t);
627 }
628 } else {
629 buf_set_u32(reg->value, 0, 32, value);
630 if (reg->size == 64) {
631 value = buf_get_u32(buf + 4, 0, 32);
632 buf_set_u32(reg->value + 4, 0, 32, value);
633 }
634 reg->valid = true;
635 }
636 reg->dirty = true;
637
638 return ERROR_OK;
639 }
640
641 static const struct reg_arch_type arm_reg_type = {
642 .get = armv4_5_get_core_reg,
643 .set = armv4_5_set_core_reg,
644 };
645
646 struct reg_cache *arm_build_reg_cache(struct target *target, struct arm *arm)
647 {
648 int num_regs = ARRAY_SIZE(arm_core_regs);
649 int num_core_regs = num_regs;
650 if (arm->arm_vfp_version == ARM_VFP_V3)
651 num_regs += ARRAY_SIZE(arm_vfp_v3_regs);
652
653 struct reg_cache *cache = malloc(sizeof(struct reg_cache));
654 struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
655 struct arm_reg *reg_arch_info = calloc(num_regs, sizeof(struct arm_reg));
656 int i;
657
658 if (!cache || !reg_list || !reg_arch_info) {
659 free(cache);
660 free(reg_list);
661 free(reg_arch_info);
662 return NULL;
663 }
664
665 cache->name = "ARM registers";
666 cache->next = NULL;
667 cache->reg_list = reg_list;
668 cache->num_regs = 0;
669
670 for (i = 0; i < num_core_regs; i++) {
671 /* Skip registers this core doesn't expose */
672 if (arm_core_regs[i].mode == ARM_MODE_MON
673 && arm->core_type != ARM_CORE_TYPE_SEC_EXT
674 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
675 continue;
676 if (arm_core_regs[i].mode == ARM_MODE_HYP
677 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
678 continue;
679
680 /* REVISIT handle Cortex-M, which only shadows R13/SP */
681
682 reg_arch_info[i].num = arm_core_regs[i].cookie;
683 reg_arch_info[i].mode = arm_core_regs[i].mode;
684 reg_arch_info[i].target = target;
685 reg_arch_info[i].arm = arm;
686
687 reg_list[i].name = arm_core_regs[i].name;
688 reg_list[i].number = arm_core_regs[i].gdb_index;
689 reg_list[i].size = 32;
690 reg_list[i].value = reg_arch_info[i].value;
691 reg_list[i].type = &arm_reg_type;
692 reg_list[i].arch_info = &reg_arch_info[i];
693 reg_list[i].exist = true;
694
695 /* This really depends on the calling convention in use */
696 reg_list[i].caller_save = false;
697
698 /* Registers data type, as used by GDB target description */
699 reg_list[i].reg_data_type = malloc(sizeof(struct reg_data_type));
700 switch (arm_core_regs[i].cookie) {
701 case 13:
702 reg_list[i].reg_data_type->type = REG_TYPE_DATA_PTR;
703 break;
704 case 14:
705 case 15:
706 reg_list[i].reg_data_type->type = REG_TYPE_CODE_PTR;
707 break;
708 default:
709 reg_list[i].reg_data_type->type = REG_TYPE_UINT32;
710 break;
711 }
712
713 /* let GDB shows banked registers only in "info all-reg" */
714 reg_list[i].feature = malloc(sizeof(struct reg_feature));
715 if (reg_list[i].number <= 15 || reg_list[i].number == 25) {
716 reg_list[i].feature->name = "org.gnu.gdb.arm.core";
717 reg_list[i].group = "general";
718 } else {
719 reg_list[i].feature->name = "net.sourceforge.openocd.banked";
720 reg_list[i].group = "banked";
721 }
722
723 cache->num_regs++;
724 }
725
726 int j;
727 for (i = num_core_regs, j = 0; i < num_regs; i++, j++) {
728 reg_arch_info[i].num = arm_vfp_v3_regs[j].id;
729 reg_arch_info[i].mode = arm_vfp_v3_regs[j].mode;
730 reg_arch_info[i].target = target;
731 reg_arch_info[i].arm = arm;
732
733 reg_list[i].name = arm_vfp_v3_regs[j].name;
734 reg_list[i].number = arm_vfp_v3_regs[j].id;
735 reg_list[i].size = arm_vfp_v3_regs[j].bits;
736 reg_list[i].value = reg_arch_info[i].value;
737 reg_list[i].type = &arm_reg_type;
738 reg_list[i].arch_info = &reg_arch_info[i];
739 reg_list[i].exist = true;
740
741 reg_list[i].caller_save = false;
742
743 reg_list[i].reg_data_type = malloc(sizeof(struct reg_data_type));
744 reg_list[i].reg_data_type->type = arm_vfp_v3_regs[j].type;
745
746 reg_list[i].feature = malloc(sizeof(struct reg_feature));
747 reg_list[i].feature->name = arm_vfp_v3_regs[j].feature;
748
749 reg_list[i].group = arm_vfp_v3_regs[j].group;
750
751 cache->num_regs++;
752 }
753
754 arm->pc = reg_list + 15;
755 arm->cpsr = reg_list + ARMV4_5_CPSR;
756 arm->core_cache = cache;
757
758 return cache;
759 }
760
761 void arm_free_reg_cache(struct arm *arm)
762 {
763 if (!arm || !arm->core_cache)
764 return;
765
766 struct reg_cache *cache = arm->core_cache;
767
768 for (unsigned int i = 0; i < cache->num_regs; i++) {
769 struct reg *reg = &cache->reg_list[i];
770
771 free(reg->feature);
772 free(reg->reg_data_type);
773 }
774
775 free(cache->reg_list[0].arch_info);
776 free(cache->reg_list);
777 free(cache);
778
779 arm->core_cache = NULL;
780 }
781
782 int arm_arch_state(struct target *target)
783 {
784 struct arm *arm = target_to_arm(target);
785
786 if (arm->common_magic != ARM_COMMON_MAGIC) {
787 LOG_ERROR("BUG: called for a non-ARM target");
788 return ERROR_FAIL;
789 }
790
791 /* avoid filling log waiting for fileio reply */
792 if (target->semihosting && target->semihosting->hit_fileio)
793 return ERROR_OK;
794
795 LOG_USER("target halted in %s state due to %s, current mode: %s\n"
796 "cpsr: 0x%8.8" PRIx32 " pc: 0x%8.8" PRIx32 "%s%s",
797 arm_state_strings[arm->core_state],
798 debug_reason_name(target),
799 arm_mode_name(arm->core_mode),
800 buf_get_u32(arm->cpsr->value, 0, 32),
801 buf_get_u32(arm->pc->value, 0, 32),
802 (target->semihosting && target->semihosting->is_active) ? ", semihosting" : "",
803 (target->semihosting && target->semihosting->is_fileio) ? " fileio" : "");
804
805 return ERROR_OK;
806 }
807
808 COMMAND_HANDLER(handle_armv4_5_reg_command)
809 {
810 struct target *target = get_current_target(CMD_CTX);
811 struct arm *arm = target_to_arm(target);
812 struct reg *regs;
813
814 if (!is_arm(arm)) {
815 command_print(CMD, "current target isn't an ARM");
816 return ERROR_FAIL;
817 }
818
819 if (target->state != TARGET_HALTED) {
820 command_print(CMD, "error: target must be halted for register accesses");
821 return ERROR_FAIL;
822 }
823
824 if (arm->core_type != ARM_CORE_TYPE_STD) {
825 command_print(CMD,
826 "Microcontroller Profile not supported - use standard reg cmd");
827 return ERROR_OK;
828 }
829
830 if (!is_arm_mode(arm->core_mode)) {
831 LOG_ERROR("not a valid arm core mode - communication failure?");
832 return ERROR_FAIL;
833 }
834
835 if (!arm->full_context) {
836 command_print(CMD, "error: target doesn't support %s",
837 CMD_NAME);
838 return ERROR_FAIL;
839 }
840
841 regs = arm->core_cache->reg_list;
842
843 for (unsigned mode = 0; mode < ARRAY_SIZE(arm_mode_data); mode++) {
844 const char *name;
845 char *sep = "\n";
846 char *shadow = "";
847
848 if (!arm_mode_data[mode].n_indices)
849 continue;
850
851 /* label this bank of registers (or shadows) */
852 switch (arm_mode_data[mode].psr) {
853 case ARM_MODE_SYS:
854 continue;
855 case ARM_MODE_USR:
856 name = "System and User";
857 sep = "";
858 break;
859 case ARM_MODE_HYP:
860 if (arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
861 continue;
862 /* FALLTHROUGH */
863 case ARM_MODE_MON:
864 case ARM_MODE_1176_MON:
865 if (arm->core_type != ARM_CORE_TYPE_SEC_EXT
866 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
867 continue;
868 /* FALLTHROUGH */
869 default:
870 name = arm_mode_data[mode].name;
871 shadow = "shadow ";
872 break;
873 }
874 command_print(CMD, "%s%s mode %sregisters",
875 sep, name, shadow);
876
877 /* display N rows of up to 4 registers each */
878 for (unsigned i = 0; i < arm_mode_data[mode].n_indices; ) {
879 char output[80];
880 int output_len = 0;
881
882 for (unsigned j = 0; j < 4; j++, i++) {
883 uint32_t value;
884 struct reg *reg = regs;
885
886 if (i >= arm_mode_data[mode].n_indices)
887 break;
888
889 reg += arm_mode_data[mode].indices[i];
890
891 /* REVISIT be smarter about faults... */
892 if (!reg->valid)
893 arm->full_context(target);
894
895 value = buf_get_u32(reg->value, 0, 32);
896 output_len += snprintf(output + output_len,
897 sizeof(output) - output_len,
898 "%8s: %8.8" PRIx32 " ",
899 reg->name, value);
900 }
901 command_print(CMD, "%s", output);
902 }
903 }
904
905 return ERROR_OK;
906 }
907
908 COMMAND_HANDLER(handle_arm_core_state_command)
909 {
910 struct target *target = get_current_target(CMD_CTX);
911 struct arm *arm = target_to_arm(target);
912 int ret = ERROR_OK;
913
914 if (!is_arm(arm)) {
915 command_print(CMD, "current target isn't an ARM");
916 return ERROR_FAIL;
917 }
918
919 if (CMD_ARGC > 0) {
920 if (strcmp(CMD_ARGV[0], "arm") == 0) {
921 if (arm->core_type == ARM_CORE_TYPE_M_PROFILE) {
922 command_print(CMD, "arm mode not supported on Cortex-M");
923 ret = ERROR_FAIL;
924 } else {
925 arm->core_state = ARM_STATE_ARM;
926 }
927 }
928 if (strcmp(CMD_ARGV[0], "thumb") == 0)
929 arm->core_state = ARM_STATE_THUMB;
930 }
931
932 command_print(CMD, "core state: %s", arm_state_strings[arm->core_state]);
933
934 return ret;
935 }
936
937 COMMAND_HANDLER(handle_arm_disassemble_command)
938 {
939 #if HAVE_CAPSTONE
940 struct target *target = get_current_target(CMD_CTX);
941
942 if (!target) {
943 LOG_ERROR("No target selected");
944 return ERROR_FAIL;
945 }
946
947 struct arm *arm = target_to_arm(target);
948 target_addr_t address;
949 unsigned int count = 1;
950 bool thumb = false;
951
952 if (!is_arm(arm)) {
953 command_print(CMD, "current target isn't an ARM");
954 return ERROR_FAIL;
955 }
956
957 if (arm->core_type == ARM_CORE_TYPE_M_PROFILE) {
958 /* armv7m is always thumb mode */
959 thumb = true;
960 }
961
962 switch (CMD_ARGC) {
963 case 3:
964 if (strcmp(CMD_ARGV[2], "thumb") != 0)
965 return ERROR_COMMAND_SYNTAX_ERROR;
966 thumb = true;
967 /* FALL THROUGH */
968 case 2:
969 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
970 /* FALL THROUGH */
971 case 1:
972 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
973 if (address & 0x01) {
974 if (!thumb) {
975 command_print(CMD, "Disassemble as Thumb");
976 thumb = true;
977 }
978 address &= ~1;
979 }
980 break;
981 default:
982 return ERROR_COMMAND_SYNTAX_ERROR;
983 }
984
985 return arm_disassemble(CMD, target, address, count, thumb);
986 #else
987 command_print(CMD, "capstone disassembly framework required");
988 return ERROR_FAIL;
989 #endif
990 }
991
992 static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
993 {
994 struct command_context *context;
995 struct target *target;
996 struct arm *arm;
997 int retval;
998
999 context = current_command_context(interp);
1000 assert(context);
1001
1002 target = get_current_target(context);
1003 if (!target) {
1004 LOG_ERROR("%s: no current target", __func__);
1005 return JIM_ERR;
1006 }
1007 if (!target_was_examined(target)) {
1008 LOG_ERROR("%s: not yet examined", target_name(target));
1009 return JIM_ERR;
1010 }
1011 arm = target_to_arm(target);
1012 if (!is_arm(arm)) {
1013 LOG_ERROR("%s: not an ARM", target_name(target));
1014 return JIM_ERR;
1015 }
1016
1017 if ((argc < 6) || (argc > 7)) {
1018 /* FIXME use the command name to verify # params... */
1019 LOG_ERROR("%s: wrong number of arguments", __func__);
1020 return JIM_ERR;
1021 }
1022
1023 int cpnum;
1024 uint32_t op1;
1025 uint32_t op2;
1026 uint32_t crn;
1027 uint32_t crm;
1028 uint32_t value;
1029 long l;
1030
1031 /* NOTE: parameter sequence matches ARM instruction set usage:
1032 * MCR pNUM, op1, rX, CRn, CRm, op2 ; write CP from rX
1033 * MRC pNUM, op1, rX, CRn, CRm, op2 ; read CP into rX
1034 * The "rX" is necessarily omitted; it uses Tcl mechanisms.
1035 */
1036 retval = Jim_GetLong(interp, argv[1], &l);
1037 if (retval != JIM_OK)
1038 return retval;
1039 if (l & ~0xf) {
1040 LOG_ERROR("%s: %s %d out of range", __func__,
1041 "coprocessor", (int) l);
1042 return JIM_ERR;
1043 }
1044 cpnum = l;
1045
1046 retval = Jim_GetLong(interp, argv[2], &l);
1047 if (retval != JIM_OK)
1048 return retval;
1049 if (l & ~0x7) {
1050 LOG_ERROR("%s: %s %d out of range", __func__,
1051 "op1", (int) l);
1052 return JIM_ERR;
1053 }
1054 op1 = l;
1055
1056 retval = Jim_GetLong(interp, argv[3], &l);
1057 if (retval != JIM_OK)
1058 return retval;
1059 if (l & ~0xf) {
1060 LOG_ERROR("%s: %s %d out of range", __func__,
1061 "CRn", (int) l);
1062 return JIM_ERR;
1063 }
1064 crn = l;
1065
1066 retval = Jim_GetLong(interp, argv[4], &l);
1067 if (retval != JIM_OK)
1068 return retval;
1069 if (l & ~0xf) {
1070 LOG_ERROR("%s: %s %d out of range", __func__,
1071 "CRm", (int) l);
1072 return JIM_ERR;
1073 }
1074 crm = l;
1075
1076 retval = Jim_GetLong(interp, argv[5], &l);
1077 if (retval != JIM_OK)
1078 return retval;
1079 if (l & ~0x7) {
1080 LOG_ERROR("%s: %s %d out of range", __func__,
1081 "op2", (int) l);
1082 return JIM_ERR;
1083 }
1084 op2 = l;
1085
1086 value = 0;
1087
1088 /* FIXME don't assume "mrc" vs "mcr" from the number of params;
1089 * that could easily be a typo! Check both...
1090 *
1091 * FIXME change the call syntax here ... simplest to just pass
1092 * the MRC() or MCR() instruction to be executed. That will also
1093 * let us support the "mrc2" and "mcr2" opcodes (toggling one bit)
1094 * if that's ever needed.
1095 */
1096 if (argc == 7) {
1097 retval = Jim_GetLong(interp, argv[6], &l);
1098 if (retval != JIM_OK)
1099 return retval;
1100 value = l;
1101
1102 /* NOTE: parameters reordered! */
1103 /* ARMV4_5_MCR(cpnum, op1, 0, crn, crm, op2) */
1104 retval = arm->mcr(target, cpnum, op1, op2, crn, crm, value);
1105 if (retval != ERROR_OK)
1106 return JIM_ERR;
1107 } else {
1108 /* NOTE: parameters reordered! */
1109 /* ARMV4_5_MRC(cpnum, op1, 0, crn, crm, op2) */
1110 retval = arm->mrc(target, cpnum, op1, op2, crn, crm, &value);
1111 if (retval != ERROR_OK)
1112 return JIM_ERR;
1113
1114 Jim_SetResult(interp, Jim_NewIntObj(interp, value));
1115 }
1116
1117 return JIM_OK;
1118 }
1119
1120 static const struct command_registration arm_exec_command_handlers[] = {
1121 {
1122 .name = "reg",
1123 .handler = handle_armv4_5_reg_command,
1124 .mode = COMMAND_EXEC,
1125 .help = "display ARM core registers",
1126 .usage = "",
1127 },
1128 {
1129 .name = "mcr",
1130 .mode = COMMAND_EXEC,
1131 .jim_handler = &jim_mcrmrc,
1132 .help = "write coprocessor register",
1133 .usage = "cpnum op1 CRn CRm op2 value",
1134 },
1135 {
1136 .name = "mrc",
1137 .mode = COMMAND_EXEC,
1138 .jim_handler = &jim_mcrmrc,
1139 .help = "read coprocessor register",
1140 .usage = "cpnum op1 CRn CRm op2",
1141 },
1142 {
1143 .chain = arm_all_profiles_command_handlers,
1144 },
1145 COMMAND_REGISTRATION_DONE
1146 };
1147
1148 const struct command_registration arm_all_profiles_command_handlers[] = {
1149 {
1150 .name = "core_state",
1151 .handler = handle_arm_core_state_command,
1152 .mode = COMMAND_EXEC,
1153 .usage = "['arm'|'thumb']",
1154 .help = "display/change ARM core state",
1155 },
1156 {
1157 .name = "disassemble",
1158 .handler = handle_arm_disassemble_command,
1159 .mode = COMMAND_EXEC,
1160 .usage = "address [count ['thumb']]",
1161 .help = "disassemble instructions",
1162 },
1163 {
1164 .chain = semihosting_common_handlers,
1165 },
1166 COMMAND_REGISTRATION_DONE
1167 };
1168
1169 const struct command_registration arm_command_handlers[] = {
1170 {
1171 .name = "arm",
1172 .mode = COMMAND_ANY,
1173 .help = "ARM command group",
1174 .usage = "",
1175 .chain = arm_exec_command_handlers,
1176 },
1177 COMMAND_REGISTRATION_DONE
1178 };
1179
1180 /*
1181 * gdb for arm targets (e.g. arm-none-eabi-gdb) supports several variants
1182 * of arm architecture. You can list them using the autocompletion of gdb
1183 * command prompt by typing "set architecture " and then press TAB key.
1184 * The default, selected automatically, is "arm".
1185 * Let's use the default value, here, to make gdb-multiarch behave in the
1186 * same way as a gdb for arm. This can be changed later on. User can still
1187 * set the specific architecture variant with the gdb command.
1188 */
1189 const char *arm_get_gdb_arch(struct target *target)
1190 {
1191 return "arm";
1192 }
1193
1194 int arm_get_gdb_reg_list(struct target *target,
1195 struct reg **reg_list[], int *reg_list_size,
1196 enum target_register_class reg_class)
1197 {
1198 struct arm *arm = target_to_arm(target);
1199 unsigned int i;
1200
1201 if (!is_arm_mode(arm->core_mode)) {
1202 LOG_ERROR("not a valid arm core mode - communication failure?");
1203 return ERROR_FAIL;
1204 }
1205
1206 switch (reg_class) {
1207 case REG_CLASS_GENERAL:
1208 *reg_list_size = 26;
1209 *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
1210
1211 for (i = 0; i < 16; i++)
1212 (*reg_list)[i] = arm_reg_current(arm, i);
1213
1214 /* For GDB compatibility, take FPA registers size into account and zero-fill it*/
1215 for (i = 16; i < 24; i++)
1216 (*reg_list)[i] = &arm_gdb_dummy_fp_reg;
1217 (*reg_list)[24] = &arm_gdb_dummy_fps_reg;
1218
1219 (*reg_list)[25] = arm->cpsr;
1220
1221 return ERROR_OK;
1222
1223 case REG_CLASS_ALL:
1224 switch (arm->core_type) {
1225 case ARM_CORE_TYPE_SEC_EXT:
1226 *reg_list_size = 51;
1227 break;
1228 case ARM_CORE_TYPE_VIRT_EXT:
1229 *reg_list_size = 53;
1230 break;
1231 default:
1232 *reg_list_size = 48;
1233 }
1234 unsigned int list_size_core = *reg_list_size;
1235 if (arm->arm_vfp_version == ARM_VFP_V3)
1236 *reg_list_size += 33;
1237
1238 *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
1239
1240 for (i = 0; i < 16; i++)
1241 (*reg_list)[i] = arm_reg_current(arm, i);
1242
1243 for (i = 13; i < ARRAY_SIZE(arm_core_regs); i++) {
1244 int reg_index = arm->core_cache->reg_list[i].number;
1245
1246 if (arm_core_regs[i].mode == ARM_MODE_MON
1247 && arm->core_type != ARM_CORE_TYPE_SEC_EXT
1248 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
1249 continue;
1250 if (arm_core_regs[i].mode == ARM_MODE_HYP
1251 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
1252 continue;
1253 (*reg_list)[reg_index] = &(arm->core_cache->reg_list[i]);
1254 }
1255
1256 /* When we supply the target description, there is no need for fake FPA */
1257 for (i = 16; i < 24; i++) {
1258 (*reg_list)[i] = &arm_gdb_dummy_fp_reg;
1259 (*reg_list)[i]->size = 0;
1260 }
1261 (*reg_list)[24] = &arm_gdb_dummy_fps_reg;
1262 (*reg_list)[24]->size = 0;
1263
1264 if (arm->arm_vfp_version == ARM_VFP_V3) {
1265 unsigned int num_core_regs = ARRAY_SIZE(arm_core_regs);
1266 for (i = 0; i < 33; i++)
1267 (*reg_list)[list_size_core + i] = &(arm->core_cache->reg_list[num_core_regs + i]);
1268 }
1269
1270 return ERROR_OK;
1271
1272 default:
1273 LOG_ERROR("not a valid register class type in query.");
1274 return ERROR_FAIL;
1275 }
1276 }
1277
1278 /* wait for execution to complete and check exit point */
1279 static int armv4_5_run_algorithm_completion(struct target *target,
1280 uint32_t exit_point,
1281 int timeout_ms,
1282 void *arch_info)
1283 {
1284 int retval;
1285 struct arm *arm = target_to_arm(target);
1286
1287 retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
1288 if (retval != ERROR_OK)
1289 return retval;
1290 if (target->state != TARGET_HALTED) {
1291 retval = target_halt(target);
1292 if (retval != ERROR_OK)
1293 return retval;
1294 retval = target_wait_state(target, TARGET_HALTED, 500);
1295 if (retval != ERROR_OK)
1296 return retval;
1297 return ERROR_TARGET_TIMEOUT;
1298 }
1299
1300 /* fast exit: ARMv5+ code can use BKPT */
1301 if (exit_point && buf_get_u32(arm->pc->value, 0, 32) != exit_point) {
1302 LOG_WARNING(
1303 "target reentered debug state, but not at the desired exit point: 0x%4.4" PRIx32 "",
1304 buf_get_u32(arm->pc->value, 0, 32));
1305 return ERROR_TARGET_TIMEOUT;
1306 }
1307
1308 return ERROR_OK;
1309 }
1310
1311 int armv4_5_run_algorithm_inner(struct target *target,
1312 int num_mem_params, struct mem_param *mem_params,
1313 int num_reg_params, struct reg_param *reg_params,
1314 uint32_t entry_point, uint32_t exit_point,
1315 int timeout_ms, void *arch_info,
1316 int (*run_it)(struct target *target, uint32_t exit_point,
1317 int timeout_ms, void *arch_info))
1318 {
1319 struct arm *arm = target_to_arm(target);
1320 struct arm_algorithm *arm_algorithm_info = arch_info;
1321 enum arm_state core_state = arm->core_state;
1322 uint32_t context[17];
1323 uint32_t cpsr;
1324 int exit_breakpoint_size = 0;
1325 int i;
1326 int retval = ERROR_OK;
1327
1328 LOG_DEBUG("Running algorithm");
1329
1330 if (arm_algorithm_info->common_magic != ARM_COMMON_MAGIC) {
1331 LOG_ERROR("current target isn't an ARMV4/5 target");
1332 return ERROR_TARGET_INVALID;
1333 }
1334
1335 if (target->state != TARGET_HALTED) {
1336 LOG_WARNING("target not halted");
1337 return ERROR_TARGET_NOT_HALTED;
1338 }
1339
1340 if (!is_arm_mode(arm->core_mode)) {
1341 LOG_ERROR("not a valid arm core mode - communication failure?");
1342 return ERROR_FAIL;
1343 }
1344
1345 /* armv5 and later can terminate with BKPT instruction; less overhead */
1346 if (!exit_point && arm->arch == ARM_ARCH_V4) {
1347 LOG_ERROR("ARMv4 target needs HW breakpoint location");
1348 return ERROR_FAIL;
1349 }
1350
1351 /* save r0..pc, cpsr-or-spsr, and then cpsr-for-sure;
1352 * they'll be restored later.
1353 */
1354 for (i = 0; i <= 16; i++) {
1355 struct reg *r;
1356
1357 r = &ARMV4_5_CORE_REG_MODE(arm->core_cache,
1358 arm_algorithm_info->core_mode, i);
1359 if (!r->valid)
1360 arm->read_core_reg(target, r, i,
1361 arm_algorithm_info->core_mode);
1362 context[i] = buf_get_u32(r->value, 0, 32);
1363 }
1364 cpsr = buf_get_u32(arm->cpsr->value, 0, 32);
1365
1366 for (i = 0; i < num_mem_params; i++) {
1367 if (mem_params[i].direction == PARAM_IN)
1368 continue;
1369 retval = target_write_buffer(target, mem_params[i].address, mem_params[i].size,
1370 mem_params[i].value);
1371 if (retval != ERROR_OK)
1372 return retval;
1373 }
1374
1375 for (i = 0; i < num_reg_params; i++) {
1376 if (reg_params[i].direction == PARAM_IN)
1377 continue;
1378
1379 struct reg *reg = register_get_by_name(arm->core_cache, reg_params[i].reg_name, false);
1380 if (!reg) {
1381 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
1382 return ERROR_COMMAND_SYNTAX_ERROR;
1383 }
1384
1385 if (reg->size != reg_params[i].size) {
1386 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
1387 reg_params[i].reg_name);
1388 return ERROR_COMMAND_SYNTAX_ERROR;
1389 }
1390
1391 retval = armv4_5_set_core_reg(reg, reg_params[i].value);
1392 if (retval != ERROR_OK)
1393 return retval;
1394 }
1395
1396 arm->core_state = arm_algorithm_info->core_state;
1397 if (arm->core_state == ARM_STATE_ARM)
1398 exit_breakpoint_size = 4;
1399 else if (arm->core_state == ARM_STATE_THUMB)
1400 exit_breakpoint_size = 2;
1401 else {
1402 LOG_ERROR("BUG: can't execute algorithms when not in ARM or Thumb state");
1403 return ERROR_COMMAND_SYNTAX_ERROR;
1404 }
1405
1406 if (arm_algorithm_info->core_mode != ARM_MODE_ANY) {
1407 LOG_DEBUG("setting core_mode: 0x%2.2x",
1408 arm_algorithm_info->core_mode);
1409 buf_set_u32(arm->cpsr->value, 0, 5,
1410 arm_algorithm_info->core_mode);
1411 arm->cpsr->dirty = true;
1412 arm->cpsr->valid = true;
1413 }
1414
1415 /* terminate using a hardware or (ARMv5+) software breakpoint */
1416 if (exit_point) {
1417 retval = breakpoint_add(target, exit_point,
1418 exit_breakpoint_size, BKPT_HARD);
1419 if (retval != ERROR_OK) {
1420 LOG_ERROR("can't add HW breakpoint to terminate algorithm");
1421 return ERROR_TARGET_FAILURE;
1422 }
1423 }
1424
1425 retval = target_resume(target, 0, entry_point, 1, 1);
1426 if (retval != ERROR_OK)
1427 return retval;
1428 retval = run_it(target, exit_point, timeout_ms, arch_info);
1429
1430 if (exit_point)
1431 breakpoint_remove(target, exit_point);
1432
1433 if (retval != ERROR_OK)
1434 return retval;
1435
1436 for (i = 0; i < num_mem_params; i++) {
1437 if (mem_params[i].direction != PARAM_OUT) {
1438 int retvaltemp = target_read_buffer(target, mem_params[i].address,
1439 mem_params[i].size,
1440 mem_params[i].value);
1441 if (retvaltemp != ERROR_OK)
1442 retval = retvaltemp;
1443 }
1444 }
1445
1446 for (i = 0; i < num_reg_params; i++) {
1447 if (reg_params[i].direction != PARAM_OUT) {
1448
1449 struct reg *reg = register_get_by_name(arm->core_cache,
1450 reg_params[i].reg_name,
1451 false);
1452 if (!reg) {
1453 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
1454 retval = ERROR_COMMAND_SYNTAX_ERROR;
1455 continue;
1456 }
1457
1458 if (reg->size != reg_params[i].size) {
1459 LOG_ERROR(
1460 "BUG: register '%s' size doesn't match reg_params[i].size",
1461 reg_params[i].reg_name);
1462 retval = ERROR_COMMAND_SYNTAX_ERROR;
1463 continue;
1464 }
1465
1466 buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
1467 }
1468 }
1469
1470 /* restore everything we saved before (17 or 18 registers) */
1471 for (i = 0; i <= 16; i++) {
1472 uint32_t regvalue;
1473 regvalue = buf_get_u32(ARMV4_5_CORE_REG_MODE(arm->core_cache,
1474 arm_algorithm_info->core_mode, i).value, 0, 32);
1475 if (regvalue != context[i]) {
1476 LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32 "",
1477 ARMV4_5_CORE_REG_MODE(arm->core_cache,
1478 arm_algorithm_info->core_mode, i).name, context[i]);
1479 buf_set_u32(ARMV4_5_CORE_REG_MODE(arm->core_cache,
1480 arm_algorithm_info->core_mode, i).value, 0, 32, context[i]);
1481 ARMV4_5_CORE_REG_MODE(arm->core_cache, arm_algorithm_info->core_mode,
1482 i).valid = true;
1483 ARMV4_5_CORE_REG_MODE(arm->core_cache, arm_algorithm_info->core_mode,
1484 i).dirty = true;
1485 }
1486 }
1487
1488 arm_set_cpsr(arm, cpsr);
1489 arm->cpsr->dirty = true;
1490
1491 arm->core_state = core_state;
1492
1493 return retval;
1494 }
1495
1496 int armv4_5_run_algorithm(struct target *target,
1497 int num_mem_params,
1498 struct mem_param *mem_params,
1499 int num_reg_params,
1500 struct reg_param *reg_params,
1501 target_addr_t entry_point,
1502 target_addr_t exit_point,
1503 int timeout_ms,
1504 void *arch_info)
1505 {
1506 return armv4_5_run_algorithm_inner(target,
1507 num_mem_params,
1508 mem_params,
1509 num_reg_params,
1510 reg_params,
1511 (uint32_t)entry_point,
1512 (uint32_t)exit_point,
1513 timeout_ms,
1514 arch_info,
1515 armv4_5_run_algorithm_completion);
1516 }
1517
1518 /**
1519 * Runs ARM code in the target to calculate a CRC32 checksum.
1520 *
1521 */
1522 int arm_checksum_memory(struct target *target,
1523 target_addr_t address, uint32_t count, uint32_t *checksum)
1524 {
1525 struct working_area *crc_algorithm;
1526 struct arm_algorithm arm_algo;
1527 struct arm *arm = target_to_arm(target);
1528 struct reg_param reg_params[2];
1529 int retval;
1530 uint32_t i;
1531 uint32_t exit_var = 0;
1532
1533 static const uint8_t arm_crc_code_le[] = {
1534 #include "../../contrib/loaders/checksum/armv4_5_crc.inc"
1535 };
1536
1537 assert(sizeof(arm_crc_code_le) % 4 == 0);
1538
1539 retval = target_alloc_working_area(target,
1540 sizeof(arm_crc_code_le), &crc_algorithm);
1541 if (retval != ERROR_OK)
1542 return retval;
1543
1544 /* convert code into a buffer in target endianness */
1545 for (i = 0; i < ARRAY_SIZE(arm_crc_code_le) / 4; i++) {
1546 retval = target_write_u32(target,
1547 crc_algorithm->address + i * sizeof(uint32_t),
1548 le_to_h_u32(&arm_crc_code_le[i * 4]));
1549 if (retval != ERROR_OK)
1550 goto cleanup;
1551 }
1552
1553 arm_algo.common_magic = ARM_COMMON_MAGIC;
1554 arm_algo.core_mode = ARM_MODE_SVC;
1555 arm_algo.core_state = ARM_STATE_ARM;
1556
1557 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
1558 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1559
1560 buf_set_u32(reg_params[0].value, 0, 32, address);
1561 buf_set_u32(reg_params[1].value, 0, 32, count);
1562
1563 /* 20 second timeout/megabyte */
1564 int timeout = 20000 * (1 + (count / (1024 * 1024)));
1565
1566 /* armv4 must exit using a hardware breakpoint */
1567 if (arm->arch == ARM_ARCH_V4)
1568 exit_var = crc_algorithm->address + sizeof(arm_crc_code_le) - 8;
1569
1570 retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
1571 crc_algorithm->address,
1572 exit_var,
1573 timeout, &arm_algo);
1574
1575 if (retval == ERROR_OK)
1576 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
1577 else
1578 LOG_ERROR("error executing ARM crc algorithm");
1579
1580 destroy_reg_param(&reg_params[0]);
1581 destroy_reg_param(&reg_params[1]);
1582
1583 cleanup:
1584 target_free_working_area(target, crc_algorithm);
1585
1586 return retval;
1587 }
1588
1589 /**
1590 * Runs ARM code in the target to check whether a memory block holds
1591 * all ones. NOR flash which has been erased, and thus may be written,
1592 * holds all ones.
1593 *
1594 */
1595 int arm_blank_check_memory(struct target *target,
1596 struct target_memory_check_block *blocks, int num_blocks, uint8_t erased_value)
1597 {
1598 struct working_area *check_algorithm;
1599 struct reg_param reg_params[3];
1600 struct arm_algorithm arm_algo;
1601 struct arm *arm = target_to_arm(target);
1602 int retval;
1603 uint32_t i;
1604 uint32_t exit_var = 0;
1605
1606 static const uint8_t check_code_le[] = {
1607 #include "../../contrib/loaders/erase_check/armv4_5_erase_check.inc"
1608 };
1609
1610 assert(sizeof(check_code_le) % 4 == 0);
1611
1612 if (erased_value != 0xff) {
1613 LOG_ERROR("Erase value 0x%02" PRIx8 " not yet supported for ARMv4/v5 targets",
1614 erased_value);
1615 return ERROR_FAIL;
1616 }
1617
1618 /* make sure we have a working area */
1619 retval = target_alloc_working_area(target,
1620 sizeof(check_code_le), &check_algorithm);
1621 if (retval != ERROR_OK)
1622 return retval;
1623
1624 /* convert code into a buffer in target endianness */
1625 for (i = 0; i < ARRAY_SIZE(check_code_le) / 4; i++) {
1626 retval = target_write_u32(target,
1627 check_algorithm->address
1628 + i * sizeof(uint32_t),
1629 le_to_h_u32(&check_code_le[i * 4]));
1630 if (retval != ERROR_OK)
1631 goto cleanup;
1632 }
1633
1634 arm_algo.common_magic = ARM_COMMON_MAGIC;
1635 arm_algo.core_mode = ARM_MODE_SVC;
1636 arm_algo.core_state = ARM_STATE_ARM;
1637
1638 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1639 buf_set_u32(reg_params[0].value, 0, 32, blocks[0].address);
1640
1641 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1642 buf_set_u32(reg_params[1].value, 0, 32, blocks[0].size);
1643
1644 init_reg_param(&reg_params[2], "r2", 32, PARAM_IN_OUT);
1645 buf_set_u32(reg_params[2].value, 0, 32, erased_value);
1646
1647 /* armv4 must exit using a hardware breakpoint */
1648 if (arm->arch == ARM_ARCH_V4)
1649 exit_var = check_algorithm->address + sizeof(check_code_le) - 4;
1650
1651 retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
1652 check_algorithm->address,
1653 exit_var,
1654 10000, &arm_algo);
1655
1656 if (retval == ERROR_OK)
1657 blocks[0].result = buf_get_u32(reg_params[2].value, 0, 32);
1658
1659 destroy_reg_param(&reg_params[0]);
1660 destroy_reg_param(&reg_params[1]);
1661 destroy_reg_param(&reg_params[2]);
1662
1663 cleanup:
1664 target_free_working_area(target, check_algorithm);
1665
1666 if (retval != ERROR_OK)
1667 return retval;
1668
1669 return 1; /* only one block has been checked */
1670 }
1671
1672 static int arm_full_context(struct target *target)
1673 {
1674 struct arm *arm = target_to_arm(target);
1675 unsigned num_regs = arm->core_cache->num_regs;
1676 struct reg *reg = arm->core_cache->reg_list;
1677 int retval = ERROR_OK;
1678
1679 for (; num_regs && retval == ERROR_OK; num_regs--, reg++) {
1680 if (!reg->exist || reg->valid)
1681 continue;
1682 retval = armv4_5_get_core_reg(reg);
1683 }
1684 return retval;
1685 }
1686
1687 static int arm_default_mrc(struct target *target, int cpnum,
1688 uint32_t op1, uint32_t op2,
1689 uint32_t crn, uint32_t crm,
1690 uint32_t *value)
1691 {
1692 LOG_ERROR("%s doesn't implement MRC", target_type_name(target));
1693 return ERROR_FAIL;
1694 }
1695
1696 static int arm_default_mcr(struct target *target, int cpnum,
1697 uint32_t op1, uint32_t op2,
1698 uint32_t crn, uint32_t crm,
1699 uint32_t value)
1700 {
1701 LOG_ERROR("%s doesn't implement MCR", target_type_name(target));
1702 return ERROR_FAIL;
1703 }
1704
1705 int arm_init_arch_info(struct target *target, struct arm *arm)
1706 {
1707 target->arch_info = arm;
1708 arm->target = target;
1709
1710 arm->common_magic = ARM_COMMON_MAGIC;
1711
1712 /* core_type may be overridden by subtype logic */
1713 if (arm->core_type != ARM_CORE_TYPE_M_PROFILE) {
1714 arm->core_type = ARM_CORE_TYPE_STD;
1715 arm_set_cpsr(arm, ARM_MODE_USR);
1716 }
1717
1718 /* default full_context() has no core-specific optimizations */
1719 if (!arm->full_context && arm->read_core_reg)
1720 arm->full_context = arm_full_context;
1721
1722 if (!arm->mrc)
1723 arm->mrc = arm_default_mrc;
1724 if (!arm->mcr)
1725 arm->mcr = arm_default_mcr;
1726
1727 return ERROR_OK;
1728 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)