target/riscv: Add null pointer check before right shift for bscan tunneling.
[openocd.git] / src / target / armv4_5.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2
3 /***************************************************************************
4 * Copyright (C) 2005 by Dominic Rath *
5 * Dominic.Rath@gmx.de *
6 * *
7 * Copyright (C) 2008 by Spencer Oliver *
8 * spen@spen-soft.co.uk *
9 * *
10 * Copyright (C) 2008 by Oyvind Harboe *
11 * oyvind.harboe@zylin.com *
12 * *
13 * Copyright (C) 2018 by Liviu Ionescu *
14 * <ilg@livius.net> *
15 ***************************************************************************/
16
17 #ifdef HAVE_CONFIG_H
18 #include "config.h"
19 #endif
20
21 #include "arm.h"
22 #include "armv4_5.h"
23 #include "arm_jtag.h"
24 #include "breakpoints.h"
25 #include "arm_disassembler.h"
26 #include <helper/binarybuffer.h>
27 #include "algorithm.h"
28 #include "register.h"
29 #include "semihosting_common.h"
30
31 /* offsets into armv4_5 core register cache */
32 enum {
33 /* ARMV4_5_CPSR = 31, */
34 ARMV4_5_SPSR_FIQ = 32,
35 ARMV4_5_SPSR_IRQ = 33,
36 ARMV4_5_SPSR_SVC = 34,
37 ARMV4_5_SPSR_ABT = 35,
38 ARMV4_5_SPSR_UND = 36,
39 ARM_SPSR_MON = 41,
40 ARM_SPSR_HYP = 43,
41 };
42
43 static const uint8_t arm_usr_indices[17] = {
44 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ARMV4_5_CPSR,
45 };
46
47 static const uint8_t arm_fiq_indices[8] = {
48 16, 17, 18, 19, 20, 21, 22, ARMV4_5_SPSR_FIQ,
49 };
50
51 static const uint8_t arm_irq_indices[3] = {
52 23, 24, ARMV4_5_SPSR_IRQ,
53 };
54
55 static const uint8_t arm_svc_indices[3] = {
56 25, 26, ARMV4_5_SPSR_SVC,
57 };
58
59 static const uint8_t arm_abt_indices[3] = {
60 27, 28, ARMV4_5_SPSR_ABT,
61 };
62
63 static const uint8_t arm_und_indices[3] = {
64 29, 30, ARMV4_5_SPSR_UND,
65 };
66
67 static const uint8_t arm_mon_indices[3] = {
68 39, 40, ARM_SPSR_MON,
69 };
70
71 static const uint8_t arm_hyp_indices[2] = {
72 42, ARM_SPSR_HYP,
73 };
74
75 static const struct {
76 const char *name;
77 unsigned short psr;
78 /* For user and system modes, these list indices for all registers.
79 * otherwise they're just indices for the shadow registers and SPSR.
80 */
81 unsigned short n_indices;
82 const uint8_t *indices;
83 } arm_mode_data[] = {
84 /* Seven modes are standard from ARM7 on. "System" and "User" share
85 * the same registers; other modes shadow from 3 to 8 registers.
86 */
87 {
88 .name = "User",
89 .psr = ARM_MODE_USR,
90 .n_indices = ARRAY_SIZE(arm_usr_indices),
91 .indices = arm_usr_indices,
92 },
93 {
94 .name = "FIQ",
95 .psr = ARM_MODE_FIQ,
96 .n_indices = ARRAY_SIZE(arm_fiq_indices),
97 .indices = arm_fiq_indices,
98 },
99 {
100 .name = "Supervisor",
101 .psr = ARM_MODE_SVC,
102 .n_indices = ARRAY_SIZE(arm_svc_indices),
103 .indices = arm_svc_indices,
104 },
105 {
106 .name = "Abort",
107 .psr = ARM_MODE_ABT,
108 .n_indices = ARRAY_SIZE(arm_abt_indices),
109 .indices = arm_abt_indices,
110 },
111 {
112 .name = "IRQ",
113 .psr = ARM_MODE_IRQ,
114 .n_indices = ARRAY_SIZE(arm_irq_indices),
115 .indices = arm_irq_indices,
116 },
117 {
118 .name = "Undefined instruction",
119 .psr = ARM_MODE_UND,
120 .n_indices = ARRAY_SIZE(arm_und_indices),
121 .indices = arm_und_indices,
122 },
123 {
124 .name = "System",
125 .psr = ARM_MODE_SYS,
126 .n_indices = ARRAY_SIZE(arm_usr_indices),
127 .indices = arm_usr_indices,
128 },
129 /* TrustZone "Security Extensions" add a secure monitor mode.
130 * This is distinct from a "debug monitor" which can support
131 * non-halting debug, in conjunction with some debuggers.
132 */
133 {
134 .name = "Secure Monitor",
135 .psr = ARM_MODE_MON,
136 .n_indices = ARRAY_SIZE(arm_mon_indices),
137 .indices = arm_mon_indices,
138 },
139 {
140 .name = "Secure Monitor ARM1176JZF-S",
141 .psr = ARM_MODE_1176_MON,
142 .n_indices = ARRAY_SIZE(arm_mon_indices),
143 .indices = arm_mon_indices,
144 },
145
146 /* These special modes are currently only supported
147 * by ARMv6M and ARMv7M profiles */
148 {
149 .name = "Thread",
150 .psr = ARM_MODE_THREAD,
151 },
152 {
153 .name = "Thread (User)",
154 .psr = ARM_MODE_USER_THREAD,
155 },
156 {
157 .name = "Handler",
158 .psr = ARM_MODE_HANDLER,
159 },
160
161 /* armv7-a with virtualization extension */
162 {
163 .name = "Hypervisor",
164 .psr = ARM_MODE_HYP,
165 .n_indices = ARRAY_SIZE(arm_hyp_indices),
166 .indices = arm_hyp_indices,
167 },
168 };
169
170 /** Map PSR mode bits to the name of an ARM processor operating mode. */
171 const char *arm_mode_name(unsigned psr_mode)
172 {
173 for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) {
174 if (arm_mode_data[i].psr == psr_mode)
175 return arm_mode_data[i].name;
176 }
177 LOG_ERROR("unrecognized psr mode: %#02x", psr_mode);
178 return "UNRECOGNIZED";
179 }
180
181 /** Return true iff the parameter denotes a valid ARM processor mode. */
182 bool is_arm_mode(unsigned psr_mode)
183 {
184 for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) {
185 if (arm_mode_data[i].psr == psr_mode)
186 return true;
187 }
188 return false;
189 }
190
191 /** Map PSR mode bits to linear number indexing armv4_5_core_reg_map */
192 int arm_mode_to_number(enum arm_mode mode)
193 {
194 switch (mode) {
195 case ARM_MODE_ANY:
196 /* map MODE_ANY to user mode */
197 case ARM_MODE_USR:
198 return 0;
199 case ARM_MODE_FIQ:
200 return 1;
201 case ARM_MODE_IRQ:
202 return 2;
203 case ARM_MODE_SVC:
204 return 3;
205 case ARM_MODE_ABT:
206 return 4;
207 case ARM_MODE_UND:
208 return 5;
209 case ARM_MODE_SYS:
210 return 6;
211 case ARM_MODE_MON:
212 case ARM_MODE_1176_MON:
213 return 7;
214 case ARM_MODE_HYP:
215 return 8;
216 default:
217 LOG_ERROR("invalid mode value encountered %d", mode);
218 return -1;
219 }
220 }
221
222 /** Map linear number indexing armv4_5_core_reg_map to PSR mode bits. */
223 enum arm_mode armv4_5_number_to_mode(int number)
224 {
225 switch (number) {
226 case 0:
227 return ARM_MODE_USR;
228 case 1:
229 return ARM_MODE_FIQ;
230 case 2:
231 return ARM_MODE_IRQ;
232 case 3:
233 return ARM_MODE_SVC;
234 case 4:
235 return ARM_MODE_ABT;
236 case 5:
237 return ARM_MODE_UND;
238 case 6:
239 return ARM_MODE_SYS;
240 case 7:
241 return ARM_MODE_MON;
242 case 8:
243 return ARM_MODE_HYP;
244 default:
245 LOG_ERROR("mode index out of bounds %d", number);
246 return ARM_MODE_ANY;
247 }
248 }
249
250 static const char *arm_state_strings[] = {
251 "ARM", "Thumb", "Jazelle", "ThumbEE",
252 };
253
254 /* Templates for ARM core registers.
255 *
256 * NOTE: offsets in this table are coupled to the arm_mode_data
257 * table above, the armv4_5_core_reg_map array below, and also to
258 * the ARMV4_5_CPSR symbol (which should vanish after ARM11 updates).
259 */
260 static const struct {
261 /* The name is used for e.g. the "regs" command. */
262 const char *name;
263
264 /* The {cookie, mode} tuple uniquely identifies one register.
265 * In a given mode, cookies 0..15 map to registers R0..R15,
266 * with R13..R15 usually called SP, LR, PC.
267 *
268 * MODE_ANY is used as *input* to the mapping, and indicates
269 * various special cases (sigh) and errors.
270 *
271 * Cookie 16 is (currently) confusing, since it indicates
272 * CPSR -or- SPSR depending on whether 'mode' is MODE_ANY.
273 * (Exception modes have both CPSR and SPSR registers ...)
274 */
275 unsigned cookie;
276 unsigned gdb_index;
277 enum arm_mode mode;
278 } arm_core_regs[] = {
279 /* IMPORTANT: we guarantee that the first eight cached registers
280 * correspond to r0..r7, and the fifteenth to PC, so that callers
281 * don't need to map them.
282 */
283 [0] = { .name = "r0", .cookie = 0, .mode = ARM_MODE_ANY, .gdb_index = 0, },
284 [1] = { .name = "r1", .cookie = 1, .mode = ARM_MODE_ANY, .gdb_index = 1, },
285 [2] = { .name = "r2", .cookie = 2, .mode = ARM_MODE_ANY, .gdb_index = 2, },
286 [3] = { .name = "r3", .cookie = 3, .mode = ARM_MODE_ANY, .gdb_index = 3, },
287 [4] = { .name = "r4", .cookie = 4, .mode = ARM_MODE_ANY, .gdb_index = 4, },
288 [5] = { .name = "r5", .cookie = 5, .mode = ARM_MODE_ANY, .gdb_index = 5, },
289 [6] = { .name = "r6", .cookie = 6, .mode = ARM_MODE_ANY, .gdb_index = 6, },
290 [7] = { .name = "r7", .cookie = 7, .mode = ARM_MODE_ANY, .gdb_index = 7, },
291
292 /* NOTE: regs 8..12 might be shadowed by FIQ ... flagging
293 * them as MODE_ANY creates special cases. (ANY means
294 * "not mapped" elsewhere; here it's "everything but FIQ".)
295 */
296 [8] = { .name = "r8", .cookie = 8, .mode = ARM_MODE_ANY, .gdb_index = 8, },
297 [9] = { .name = "r9", .cookie = 9, .mode = ARM_MODE_ANY, .gdb_index = 9, },
298 [10] = { .name = "r10", .cookie = 10, .mode = ARM_MODE_ANY, .gdb_index = 10, },
299 [11] = { .name = "r11", .cookie = 11, .mode = ARM_MODE_ANY, .gdb_index = 11, },
300 [12] = { .name = "r12", .cookie = 12, .mode = ARM_MODE_ANY, .gdb_index = 12, },
301
302 /* Historical GDB mapping of indices:
303 * - 13-14 are sp and lr, but banked counterparts are used
304 * - 16-24 are left for deprecated 8 FPA + 1 FPS
305 * - 25 is the cpsr
306 */
307
308 /* NOTE all MODE_USR registers are equivalent to MODE_SYS ones */
309 [13] = { .name = "sp_usr", .cookie = 13, .mode = ARM_MODE_USR, .gdb_index = 26, },
310 [14] = { .name = "lr_usr", .cookie = 14, .mode = ARM_MODE_USR, .gdb_index = 27, },
311
312 /* guaranteed to be at index 15 */
313 [15] = { .name = "pc", .cookie = 15, .mode = ARM_MODE_ANY, .gdb_index = 15, },
314 [16] = { .name = "r8_fiq", .cookie = 8, .mode = ARM_MODE_FIQ, .gdb_index = 28, },
315 [17] = { .name = "r9_fiq", .cookie = 9, .mode = ARM_MODE_FIQ, .gdb_index = 29, },
316 [18] = { .name = "r10_fiq", .cookie = 10, .mode = ARM_MODE_FIQ, .gdb_index = 30, },
317 [19] = { .name = "r11_fiq", .cookie = 11, .mode = ARM_MODE_FIQ, .gdb_index = 31, },
318 [20] = { .name = "r12_fiq", .cookie = 12, .mode = ARM_MODE_FIQ, .gdb_index = 32, },
319
320 [21] = { .name = "sp_fiq", .cookie = 13, .mode = ARM_MODE_FIQ, .gdb_index = 33, },
321 [22] = { .name = "lr_fiq", .cookie = 14, .mode = ARM_MODE_FIQ, .gdb_index = 34, },
322
323 [23] = { .name = "sp_irq", .cookie = 13, .mode = ARM_MODE_IRQ, .gdb_index = 35, },
324 [24] = { .name = "lr_irq", .cookie = 14, .mode = ARM_MODE_IRQ, .gdb_index = 36, },
325
326 [25] = { .name = "sp_svc", .cookie = 13, .mode = ARM_MODE_SVC, .gdb_index = 37, },
327 [26] = { .name = "lr_svc", .cookie = 14, .mode = ARM_MODE_SVC, .gdb_index = 38, },
328
329 [27] = { .name = "sp_abt", .cookie = 13, .mode = ARM_MODE_ABT, .gdb_index = 39, },
330 [28] = { .name = "lr_abt", .cookie = 14, .mode = ARM_MODE_ABT, .gdb_index = 40, },
331
332 [29] = { .name = "sp_und", .cookie = 13, .mode = ARM_MODE_UND, .gdb_index = 41, },
333 [30] = { .name = "lr_und", .cookie = 14, .mode = ARM_MODE_UND, .gdb_index = 42, },
334
335 [31] = { .name = "cpsr", .cookie = 16, .mode = ARM_MODE_ANY, .gdb_index = 25, },
336 [32] = { .name = "spsr_fiq", .cookie = 16, .mode = ARM_MODE_FIQ, .gdb_index = 43, },
337 [33] = { .name = "spsr_irq", .cookie = 16, .mode = ARM_MODE_IRQ, .gdb_index = 44, },
338 [34] = { .name = "spsr_svc", .cookie = 16, .mode = ARM_MODE_SVC, .gdb_index = 45, },
339 [35] = { .name = "spsr_abt", .cookie = 16, .mode = ARM_MODE_ABT, .gdb_index = 46, },
340 [36] = { .name = "spsr_und", .cookie = 16, .mode = ARM_MODE_UND, .gdb_index = 47, },
341
342 /* These are only used for GDB target description, banked registers are accessed instead */
343 [37] = { .name = "sp", .cookie = 13, .mode = ARM_MODE_ANY, .gdb_index = 13, },
344 [38] = { .name = "lr", .cookie = 14, .mode = ARM_MODE_ANY, .gdb_index = 14, },
345
346 /* These exist only when the Security Extension (TrustZone) is present */
347 [39] = { .name = "sp_mon", .cookie = 13, .mode = ARM_MODE_MON, .gdb_index = 48, },
348 [40] = { .name = "lr_mon", .cookie = 14, .mode = ARM_MODE_MON, .gdb_index = 49, },
349 [41] = { .name = "spsr_mon", .cookie = 16, .mode = ARM_MODE_MON, .gdb_index = 50, },
350
351 /* These exist only when the Virtualization Extensions is present */
352 [42] = { .name = "sp_hyp", .cookie = 13, .mode = ARM_MODE_HYP, .gdb_index = 51, },
353 [43] = { .name = "spsr_hyp", .cookie = 16, .mode = ARM_MODE_HYP, .gdb_index = 52, },
354 };
355
356 static const struct {
357 unsigned int id;
358 const char *name;
359 uint32_t bits;
360 enum arm_mode mode;
361 enum reg_type type;
362 const char *group;
363 const char *feature;
364 } arm_vfp_v3_regs[] = {
365 { ARM_VFP_V3_D0, "d0", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
366 { ARM_VFP_V3_D1, "d1", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
367 { ARM_VFP_V3_D2, "d2", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
368 { ARM_VFP_V3_D3, "d3", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
369 { ARM_VFP_V3_D4, "d4", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
370 { ARM_VFP_V3_D5, "d5", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
371 { ARM_VFP_V3_D6, "d6", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
372 { ARM_VFP_V3_D7, "d7", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
373 { ARM_VFP_V3_D8, "d8", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
374 { ARM_VFP_V3_D9, "d9", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
375 { ARM_VFP_V3_D10, "d10", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
376 { ARM_VFP_V3_D11, "d11", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
377 { ARM_VFP_V3_D12, "d12", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
378 { ARM_VFP_V3_D13, "d13", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
379 { ARM_VFP_V3_D14, "d14", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
380 { ARM_VFP_V3_D15, "d15", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
381 { ARM_VFP_V3_D16, "d16", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
382 { ARM_VFP_V3_D17, "d17", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
383 { ARM_VFP_V3_D18, "d18", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
384 { ARM_VFP_V3_D19, "d19", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
385 { ARM_VFP_V3_D20, "d20", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
386 { ARM_VFP_V3_D21, "d21", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
387 { ARM_VFP_V3_D22, "d22", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
388 { ARM_VFP_V3_D23, "d23", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
389 { ARM_VFP_V3_D24, "d24", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
390 { ARM_VFP_V3_D25, "d25", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
391 { ARM_VFP_V3_D26, "d26", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
392 { ARM_VFP_V3_D27, "d27", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
393 { ARM_VFP_V3_D28, "d28", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
394 { ARM_VFP_V3_D29, "d29", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
395 { ARM_VFP_V3_D30, "d30", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
396 { ARM_VFP_V3_D31, "d31", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
397 { ARM_VFP_V3_FPSCR, "fpscr", 32, ARM_MODE_ANY, REG_TYPE_INT, "float", "org.gnu.gdb.arm.vfp"},
398 };
399
400 /* map core mode (USR, FIQ, ...) and register number to
401 * indices into the register cache
402 */
403 const int armv4_5_core_reg_map[9][17] = {
404 { /* USR */
405 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31
406 },
407 { /* FIQ (8 shadows of USR, vs normal 3) */
408 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 15, 32
409 },
410 { /* IRQ */
411 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23, 24, 15, 33
412 },
413 { /* SVC */
414 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 25, 26, 15, 34
415 },
416 { /* ABT */
417 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 27, 28, 15, 35
418 },
419 { /* UND */
420 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 29, 30, 15, 36
421 },
422 { /* SYS (same registers as USR) */
423 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31
424 },
425 { /* MON */
426 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 39, 40, 15, 41,
427 },
428 { /* HYP */
429 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 42, 14, 15, 43,
430 }
431 };
432
433 /**
434 * Configures host-side ARM records to reflect the specified CPSR.
435 * Later, code can use arm_reg_current() to map register numbers
436 * according to how they are exposed by this mode.
437 */
438 void arm_set_cpsr(struct arm *arm, uint32_t cpsr)
439 {
440 enum arm_mode mode = cpsr & 0x1f;
441 int num;
442
443 /* NOTE: this may be called very early, before the register
444 * cache is set up. We can't defend against many errors, in
445 * particular against CPSRs that aren't valid *here* ...
446 */
447 if (arm->cpsr) {
448 buf_set_u32(arm->cpsr->value, 0, 32, cpsr);
449 arm->cpsr->valid = true;
450 arm->cpsr->dirty = false;
451 }
452
453 arm->core_mode = mode;
454
455 /* mode_to_number() warned; set up a somewhat-sane mapping */
456 num = arm_mode_to_number(mode);
457 if (num < 0) {
458 mode = ARM_MODE_USR;
459 num = 0;
460 }
461
462 arm->map = &armv4_5_core_reg_map[num][0];
463 arm->spsr = (mode == ARM_MODE_USR || mode == ARM_MODE_SYS)
464 ? NULL
465 : arm->core_cache->reg_list + arm->map[16];
466
467 /* Older ARMs won't have the J bit */
468 enum arm_state state;
469
470 if (cpsr & (1 << 5)) { /* T */
471 if (cpsr & (1 << 24)) { /* J */
472 LOG_WARNING("ThumbEE -- incomplete support");
473 state = ARM_STATE_THUMB_EE;
474 } else
475 state = ARM_STATE_THUMB;
476 } else {
477 if (cpsr & (1 << 24)) { /* J */
478 LOG_ERROR("Jazelle state handling is BROKEN!");
479 state = ARM_STATE_JAZELLE;
480 } else
481 state = ARM_STATE_ARM;
482 }
483 arm->core_state = state;
484
485 LOG_DEBUG("set CPSR %#8.8x: %s mode, %s state", (unsigned) cpsr,
486 arm_mode_name(mode),
487 arm_state_strings[arm->core_state]);
488 }
489
490 /**
491 * Returns handle to the register currently mapped to a given number.
492 * Someone must have called arm_set_cpsr() before.
493 *
494 * \param arm This core's state and registers are used.
495 * \param regnum From 0..15 corresponding to R0..R14 and PC.
496 * Note that R0..R7 don't require mapping; you may access those
497 * as the first eight entries in the register cache. Likewise
498 * R15 (PC) doesn't need mapping; you may also access it directly.
499 * However, R8..R14, and SPSR (arm->spsr) *must* be mapped.
500 * CPSR (arm->cpsr) is also not mapped.
501 */
502 struct reg *arm_reg_current(struct arm *arm, unsigned regnum)
503 {
504 struct reg *r;
505
506 if (regnum > 16)
507 return NULL;
508
509 if (!arm->map) {
510 LOG_ERROR("Register map is not available yet, the target is not fully initialised");
511 r = arm->core_cache->reg_list + regnum;
512 } else
513 r = arm->core_cache->reg_list + arm->map[regnum];
514
515 /* e.g. invalid CPSR said "secure monitor" mode on a core
516 * that doesn't support it...
517 */
518 if (!r) {
519 LOG_ERROR("Invalid CPSR mode");
520 r = arm->core_cache->reg_list + regnum;
521 }
522
523 return r;
524 }
525
526 static const uint8_t arm_gdb_dummy_fp_value[12];
527
528 static struct reg_feature arm_gdb_dummy_fp_features = {
529 .name = "net.sourceforge.openocd.fake_fpa"
530 };
531
532 /**
533 * Dummy FPA registers are required to support GDB on ARM.
534 * Register packets require eight obsolete FPA register values.
535 * Modern ARM cores use Vector Floating Point (VFP), if they
536 * have any floating point support. VFP is not FPA-compatible.
537 */
538 static struct reg arm_gdb_dummy_fp_reg = {
539 .name = "GDB dummy FPA register",
540 .value = (uint8_t *) arm_gdb_dummy_fp_value,
541 .valid = true,
542 .size = 96,
543 .exist = false,
544 .number = 16,
545 .feature = &arm_gdb_dummy_fp_features,
546 .group = "fake_fpa",
547 };
548
549 static const uint8_t arm_gdb_dummy_fps_value[4];
550
551 /**
552 * Dummy FPA status registers are required to support GDB on ARM.
553 * Register packets require an obsolete FPA status register.
554 */
555 static struct reg arm_gdb_dummy_fps_reg = {
556 .name = "GDB dummy FPA status register",
557 .value = (uint8_t *) arm_gdb_dummy_fps_value,
558 .valid = true,
559 .size = 32,
560 .exist = false,
561 .number = 24,
562 .feature = &arm_gdb_dummy_fp_features,
563 .group = "fake_fpa",
564 };
565
566 static void arm_gdb_dummy_init(void) __attribute__ ((constructor));
567
568 static void arm_gdb_dummy_init(void)
569 {
570 register_init_dummy(&arm_gdb_dummy_fp_reg);
571 register_init_dummy(&arm_gdb_dummy_fps_reg);
572 }
573
574 static int armv4_5_get_core_reg(struct reg *reg)
575 {
576 int retval;
577 struct arm_reg *reg_arch_info = reg->arch_info;
578 struct target *target = reg_arch_info->target;
579
580 if (target->state != TARGET_HALTED) {
581 LOG_ERROR("Target not halted");
582 return ERROR_TARGET_NOT_HALTED;
583 }
584
585 retval = reg_arch_info->arm->read_core_reg(target, reg,
586 reg_arch_info->num, reg_arch_info->mode);
587 if (retval == ERROR_OK) {
588 reg->valid = true;
589 reg->dirty = false;
590 }
591
592 return retval;
593 }
594
595 static int armv4_5_set_core_reg(struct reg *reg, uint8_t *buf)
596 {
597 struct arm_reg *reg_arch_info = reg->arch_info;
598 struct target *target = reg_arch_info->target;
599 struct arm *armv4_5_target = target_to_arm(target);
600 uint32_t value = buf_get_u32(buf, 0, 32);
601
602 if (target->state != TARGET_HALTED) {
603 LOG_ERROR("Target not halted");
604 return ERROR_TARGET_NOT_HALTED;
605 }
606
607 /* Except for CPSR, the "reg" command exposes a writeback model
608 * for the register cache.
609 */
610 if (reg == armv4_5_target->cpsr) {
611 arm_set_cpsr(armv4_5_target, value);
612
613 /* Older cores need help to be in ARM mode during halt
614 * mode debug, so we clear the J and T bits if we flush.
615 * For newer cores (v6/v7a/v7r) we don't need that, but
616 * it won't hurt since CPSR is always flushed anyway.
617 */
618 if (armv4_5_target->core_mode !=
619 (enum arm_mode)(value & 0x1f)) {
620 LOG_DEBUG("changing ARM core mode to '%s'",
621 arm_mode_name(value & 0x1f));
622 value &= ~((1 << 24) | (1 << 5));
623 uint8_t t[4];
624 buf_set_u32(t, 0, 32, value);
625 armv4_5_target->write_core_reg(target, reg,
626 16, ARM_MODE_ANY, t);
627 }
628 } else {
629 buf_set_u32(reg->value, 0, 32, value);
630 if (reg->size == 64) {
631 value = buf_get_u32(buf + 4, 0, 32);
632 buf_set_u32(reg->value + 4, 0, 32, value);
633 }
634 reg->valid = true;
635 }
636 reg->dirty = true;
637
638 return ERROR_OK;
639 }
640
641 static const struct reg_arch_type arm_reg_type = {
642 .get = armv4_5_get_core_reg,
643 .set = armv4_5_set_core_reg,
644 };
645
646 struct reg_cache *arm_build_reg_cache(struct target *target, struct arm *arm)
647 {
648 int num_regs = ARRAY_SIZE(arm_core_regs);
649 int num_core_regs = num_regs;
650 if (arm->arm_vfp_version == ARM_VFP_V3)
651 num_regs += ARRAY_SIZE(arm_vfp_v3_regs);
652
653 struct reg_cache *cache = malloc(sizeof(struct reg_cache));
654 struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
655 struct arm_reg *reg_arch_info = calloc(num_regs, sizeof(struct arm_reg));
656 int i;
657
658 if (!cache || !reg_list || !reg_arch_info) {
659 free(cache);
660 free(reg_list);
661 free(reg_arch_info);
662 return NULL;
663 }
664
665 cache->name = "ARM registers";
666 cache->next = NULL;
667 cache->reg_list = reg_list;
668 cache->num_regs = 0;
669
670 for (i = 0; i < num_core_regs; i++) {
671 /* Skip registers this core doesn't expose */
672 if (arm_core_regs[i].mode == ARM_MODE_MON
673 && arm->core_type != ARM_CORE_TYPE_SEC_EXT
674 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
675 continue;
676 if (arm_core_regs[i].mode == ARM_MODE_HYP
677 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
678 continue;
679
680 /* REVISIT handle Cortex-M, which only shadows R13/SP */
681
682 reg_arch_info[i].num = arm_core_regs[i].cookie;
683 reg_arch_info[i].mode = arm_core_regs[i].mode;
684 reg_arch_info[i].target = target;
685 reg_arch_info[i].arm = arm;
686
687 reg_list[i].name = arm_core_regs[i].name;
688 reg_list[i].number = arm_core_regs[i].gdb_index;
689 reg_list[i].size = 32;
690 reg_list[i].value = reg_arch_info[i].value;
691 reg_list[i].type = &arm_reg_type;
692 reg_list[i].arch_info = &reg_arch_info[i];
693 reg_list[i].exist = true;
694
695 /* This really depends on the calling convention in use */
696 reg_list[i].caller_save = false;
697
698 /* Registers data type, as used by GDB target description */
699 reg_list[i].reg_data_type = malloc(sizeof(struct reg_data_type));
700 switch (arm_core_regs[i].cookie) {
701 case 13:
702 reg_list[i].reg_data_type->type = REG_TYPE_DATA_PTR;
703 break;
704 case 14:
705 case 15:
706 reg_list[i].reg_data_type->type = REG_TYPE_CODE_PTR;
707 break;
708 default:
709 reg_list[i].reg_data_type->type = REG_TYPE_UINT32;
710 break;
711 }
712
713 /* let GDB shows banked registers only in "info all-reg" */
714 reg_list[i].feature = malloc(sizeof(struct reg_feature));
715 if (reg_list[i].number <= 15 || reg_list[i].number == 25) {
716 reg_list[i].feature->name = "org.gnu.gdb.arm.core";
717 reg_list[i].group = "general";
718 } else {
719 reg_list[i].feature->name = "net.sourceforge.openocd.banked";
720 reg_list[i].group = "banked";
721 }
722
723 cache->num_regs++;
724 }
725
726 int j;
727 for (i = num_core_regs, j = 0; i < num_regs; i++, j++) {
728 reg_arch_info[i].num = arm_vfp_v3_regs[j].id;
729 reg_arch_info[i].mode = arm_vfp_v3_regs[j].mode;
730 reg_arch_info[i].target = target;
731 reg_arch_info[i].arm = arm;
732
733 reg_list[i].name = arm_vfp_v3_regs[j].name;
734 reg_list[i].number = arm_vfp_v3_regs[j].id;
735 reg_list[i].size = arm_vfp_v3_regs[j].bits;
736 reg_list[i].value = reg_arch_info[i].value;
737 reg_list[i].type = &arm_reg_type;
738 reg_list[i].arch_info = &reg_arch_info[i];
739 reg_list[i].exist = true;
740
741 reg_list[i].caller_save = false;
742
743 reg_list[i].reg_data_type = malloc(sizeof(struct reg_data_type));
744 reg_list[i].reg_data_type->type = arm_vfp_v3_regs[j].type;
745
746 reg_list[i].feature = malloc(sizeof(struct reg_feature));
747 reg_list[i].feature->name = arm_vfp_v3_regs[j].feature;
748
749 reg_list[i].group = arm_vfp_v3_regs[j].group;
750
751 cache->num_regs++;
752 }
753
754 arm->pc = reg_list + 15;
755 arm->cpsr = reg_list + ARMV4_5_CPSR;
756 arm->core_cache = cache;
757
758 return cache;
759 }
760
761 void arm_free_reg_cache(struct arm *arm)
762 {
763 if (!arm || !arm->core_cache)
764 return;
765
766 struct reg_cache *cache = arm->core_cache;
767
768 for (unsigned int i = 0; i < cache->num_regs; i++) {
769 struct reg *reg = &cache->reg_list[i];
770
771 free(reg->feature);
772 free(reg->reg_data_type);
773 }
774
775 free(cache->reg_list[0].arch_info);
776 free(cache->reg_list);
777 free(cache);
778
779 arm->core_cache = NULL;
780 }
781
782 int arm_arch_state(struct target *target)
783 {
784 struct arm *arm = target_to_arm(target);
785
786 if (arm->common_magic != ARM_COMMON_MAGIC) {
787 LOG_ERROR("BUG: called for a non-ARM target");
788 return ERROR_FAIL;
789 }
790
791 /* avoid filling log waiting for fileio reply */
792 if (target->semihosting && target->semihosting->hit_fileio)
793 return ERROR_OK;
794
795 LOG_USER("target halted in %s state due to %s, current mode: %s\n"
796 "cpsr: 0x%8.8" PRIx32 " pc: 0x%8.8" PRIx32 "%s%s",
797 arm_state_strings[arm->core_state],
798 debug_reason_name(target),
799 arm_mode_name(arm->core_mode),
800 buf_get_u32(arm->cpsr->value, 0, 32),
801 buf_get_u32(arm->pc->value, 0, 32),
802 (target->semihosting && target->semihosting->is_active) ? ", semihosting" : "",
803 (target->semihosting && target->semihosting->is_fileio) ? " fileio" : "");
804
805 return ERROR_OK;
806 }
807
808 COMMAND_HANDLER(handle_armv4_5_reg_command)
809 {
810 struct target *target = get_current_target(CMD_CTX);
811 struct arm *arm = target_to_arm(target);
812 struct reg *regs;
813
814 if (!is_arm(arm)) {
815 command_print(CMD, "current target isn't an ARM");
816 return ERROR_FAIL;
817 }
818
819 if (target->state != TARGET_HALTED) {
820 command_print(CMD, "error: target must be halted for register accesses");
821 return ERROR_FAIL;
822 }
823
824 if (arm->core_type != ARM_CORE_TYPE_STD) {
825 command_print(CMD,
826 "Microcontroller Profile not supported - use standard reg cmd");
827 return ERROR_OK;
828 }
829
830 if (!is_arm_mode(arm->core_mode)) {
831 LOG_ERROR("not a valid arm core mode - communication failure?");
832 return ERROR_FAIL;
833 }
834
835 if (!arm->full_context) {
836 command_print(CMD, "error: target doesn't support %s",
837 CMD_NAME);
838 return ERROR_FAIL;
839 }
840
841 regs = arm->core_cache->reg_list;
842
843 for (unsigned mode = 0; mode < ARRAY_SIZE(arm_mode_data); mode++) {
844 const char *name;
845 char *sep = "\n";
846 char *shadow = "";
847
848 if (!arm_mode_data[mode].n_indices)
849 continue;
850
851 /* label this bank of registers (or shadows) */
852 switch (arm_mode_data[mode].psr) {
853 case ARM_MODE_SYS:
854 continue;
855 case ARM_MODE_USR:
856 name = "System and User";
857 sep = "";
858 break;
859 case ARM_MODE_HYP:
860 if (arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
861 continue;
862 /* FALLTHROUGH */
863 case ARM_MODE_MON:
864 case ARM_MODE_1176_MON:
865 if (arm->core_type != ARM_CORE_TYPE_SEC_EXT
866 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
867 continue;
868 /* FALLTHROUGH */
869 default:
870 name = arm_mode_data[mode].name;
871 shadow = "shadow ";
872 break;
873 }
874 command_print(CMD, "%s%s mode %sregisters",
875 sep, name, shadow);
876
877 /* display N rows of up to 4 registers each */
878 for (unsigned i = 0; i < arm_mode_data[mode].n_indices; ) {
879 char output[80];
880 int output_len = 0;
881
882 for (unsigned j = 0; j < 4; j++, i++) {
883 uint32_t value;
884 struct reg *reg = regs;
885
886 if (i >= arm_mode_data[mode].n_indices)
887 break;
888
889 reg += arm_mode_data[mode].indices[i];
890
891 /* REVISIT be smarter about faults... */
892 if (!reg->valid)
893 arm->full_context(target);
894
895 value = buf_get_u32(reg->value, 0, 32);
896 output_len += snprintf(output + output_len,
897 sizeof(output) - output_len,
898 "%8s: %8.8" PRIx32 " ",
899 reg->name, value);
900 }
901 command_print(CMD, "%s", output);
902 }
903 }
904
905 return ERROR_OK;
906 }
907
908 COMMAND_HANDLER(handle_arm_core_state_command)
909 {
910 struct target *target = get_current_target(CMD_CTX);
911 struct arm *arm = target_to_arm(target);
912 int ret = ERROR_OK;
913
914 if (!is_arm(arm)) {
915 command_print(CMD, "current target isn't an ARM");
916 return ERROR_FAIL;
917 }
918
919 if (CMD_ARGC > 0) {
920 if (strcmp(CMD_ARGV[0], "arm") == 0) {
921 if (arm->core_type == ARM_CORE_TYPE_M_PROFILE) {
922 command_print(CMD, "arm mode not supported on Cortex-M");
923 ret = ERROR_FAIL;
924 } else {
925 arm->core_state = ARM_STATE_ARM;
926 }
927 }
928 if (strcmp(CMD_ARGV[0], "thumb") == 0)
929 arm->core_state = ARM_STATE_THUMB;
930 }
931
932 command_print(CMD, "core state: %s", arm_state_strings[arm->core_state]);
933
934 return ret;
935 }
936
937 COMMAND_HANDLER(handle_arm_disassemble_command)
938 {
939 #if HAVE_CAPSTONE
940 struct target *target = get_current_target(CMD_CTX);
941
942 if (!target) {
943 LOG_ERROR("No target selected");
944 return ERROR_FAIL;
945 }
946
947 struct arm *arm = target_to_arm(target);
948 target_addr_t address;
949 unsigned int count = 1;
950 bool thumb = false;
951
952 if (!is_arm(arm)) {
953 command_print(CMD, "current target isn't an ARM");
954 return ERROR_FAIL;
955 }
956
957 if (arm->core_type == ARM_CORE_TYPE_M_PROFILE) {
958 /* armv7m is always thumb mode */
959 thumb = true;
960 }
961
962 switch (CMD_ARGC) {
963 case 3:
964 if (strcmp(CMD_ARGV[2], "thumb") != 0)
965 return ERROR_COMMAND_SYNTAX_ERROR;
966 thumb = true;
967 /* FALL THROUGH */
968 case 2:
969 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
970 /* FALL THROUGH */
971 case 1:
972 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
973 if (address & 0x01) {
974 if (!thumb) {
975 command_print(CMD, "Disassemble as Thumb");
976 thumb = true;
977 }
978 address &= ~1;
979 }
980 break;
981 default:
982 return ERROR_COMMAND_SYNTAX_ERROR;
983 }
984
985 return arm_disassemble(CMD, target, address, count, thumb);
986 #else
987 command_print(CMD, "capstone disassembly framework required");
988 return ERROR_FAIL;
989 #endif
990 }
991
992 COMMAND_HANDLER(handle_armv4_5_mcrmrc)
993 {
994 bool is_mcr = false;
995 unsigned int arg_cnt = 5;
996
997 if (!strcmp(CMD_NAME, "mcr")) {
998 is_mcr = true;
999 arg_cnt = 6;
1000 }
1001
1002 if (arg_cnt != CMD_ARGC)
1003 return ERROR_COMMAND_SYNTAX_ERROR;
1004
1005 struct target *target = get_current_target(CMD_CTX);
1006 if (!target) {
1007 command_print(CMD, "no current target");
1008 return ERROR_FAIL;
1009 }
1010 if (!target_was_examined(target)) {
1011 command_print(CMD, "%s: not yet examined", target_name(target));
1012 return ERROR_TARGET_NOT_EXAMINED;
1013 }
1014
1015 struct arm *arm = target_to_arm(target);
1016 if (!is_arm(arm)) {
1017 command_print(CMD, "%s: not an ARM", target_name(target));
1018 return ERROR_FAIL;
1019 }
1020
1021 if (target->state != TARGET_HALTED)
1022 return ERROR_TARGET_NOT_HALTED;
1023
1024 int cpnum;
1025 uint32_t op1;
1026 uint32_t op2;
1027 uint32_t crn;
1028 uint32_t crm;
1029 uint32_t value;
1030
1031 /* NOTE: parameter sequence matches ARM instruction set usage:
1032 * MCR pNUM, op1, rX, CRn, CRm, op2 ; write CP from rX
1033 * MRC pNUM, op1, rX, CRn, CRm, op2 ; read CP into rX
1034 * The "rX" is necessarily omitted; it uses Tcl mechanisms.
1035 */
1036 COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], cpnum);
1037 if (cpnum & ~0xf) {
1038 command_print(CMD, "coprocessor %d out of range", cpnum);
1039 return ERROR_COMMAND_ARGUMENT_INVALID;
1040 }
1041
1042 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], op1);
1043 if (op1 & ~0x7) {
1044 command_print(CMD, "op1 %d out of range", op1);
1045 return ERROR_COMMAND_ARGUMENT_INVALID;
1046 }
1047
1048 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], crn);
1049 if (crn & ~0xf) {
1050 command_print(CMD, "CRn %d out of range", crn);
1051 return ERROR_COMMAND_ARGUMENT_INVALID;
1052 }
1053
1054 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], crm);
1055 if (crm & ~0xf) {
1056 command_print(CMD, "CRm %d out of range", crm);
1057 return ERROR_COMMAND_ARGUMENT_INVALID;
1058 }
1059
1060 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], op2);
1061 if (op2 & ~0x7) {
1062 command_print(CMD, "op2 %d out of range", op2);
1063 return ERROR_COMMAND_ARGUMENT_INVALID;
1064 }
1065
1066 /*
1067 * FIXME change the call syntax here ... simplest to just pass
1068 * the MRC() or MCR() instruction to be executed. That will also
1069 * let us support the "mrc2" and "mcr2" opcodes (toggling one bit)
1070 * if that's ever needed.
1071 */
1072 if (is_mcr) {
1073 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[5], value);
1074
1075 /* NOTE: parameters reordered! */
1076 /* ARMV4_5_MCR(cpnum, op1, 0, crn, crm, op2) */
1077 int retval = arm->mcr(target, cpnum, op1, op2, crn, crm, value);
1078 if (retval != ERROR_OK)
1079 return retval;
1080 } else {
1081 value = 0;
1082 /* NOTE: parameters reordered! */
1083 /* ARMV4_5_MRC(cpnum, op1, 0, crn, crm, op2) */
1084 int retval = arm->mrc(target, cpnum, op1, op2, crn, crm, &value);
1085 if (retval != ERROR_OK)
1086 return retval;
1087
1088 command_print(CMD, "0x%" PRIx32, value);
1089 }
1090
1091 return ERROR_OK;
1092 }
1093
1094 static const struct command_registration arm_exec_command_handlers[] = {
1095 {
1096 .name = "reg",
1097 .handler = handle_armv4_5_reg_command,
1098 .mode = COMMAND_EXEC,
1099 .help = "display ARM core registers",
1100 .usage = "",
1101 },
1102 {
1103 .name = "mcr",
1104 .mode = COMMAND_EXEC,
1105 .handler = handle_armv4_5_mcrmrc,
1106 .help = "write coprocessor register",
1107 .usage = "cpnum op1 CRn CRm op2 value",
1108 },
1109 {
1110 .name = "mrc",
1111 .mode = COMMAND_EXEC,
1112 .handler = handle_armv4_5_mcrmrc,
1113 .help = "read coprocessor register",
1114 .usage = "cpnum op1 CRn CRm op2",
1115 },
1116 {
1117 .chain = arm_all_profiles_command_handlers,
1118 },
1119 COMMAND_REGISTRATION_DONE
1120 };
1121
1122 const struct command_registration arm_all_profiles_command_handlers[] = {
1123 {
1124 .name = "core_state",
1125 .handler = handle_arm_core_state_command,
1126 .mode = COMMAND_EXEC,
1127 .usage = "['arm'|'thumb']",
1128 .help = "display/change ARM core state",
1129 },
1130 {
1131 .name = "disassemble",
1132 .handler = handle_arm_disassemble_command,
1133 .mode = COMMAND_EXEC,
1134 .usage = "address [count ['thumb']]",
1135 .help = "disassemble instructions",
1136 },
1137 {
1138 .chain = semihosting_common_handlers,
1139 },
1140 COMMAND_REGISTRATION_DONE
1141 };
1142
1143 const struct command_registration arm_command_handlers[] = {
1144 {
1145 .name = "arm",
1146 .mode = COMMAND_ANY,
1147 .help = "ARM command group",
1148 .usage = "",
1149 .chain = arm_exec_command_handlers,
1150 },
1151 COMMAND_REGISTRATION_DONE
1152 };
1153
1154 /*
1155 * gdb for arm targets (e.g. arm-none-eabi-gdb) supports several variants
1156 * of arm architecture. You can list them using the autocompletion of gdb
1157 * command prompt by typing "set architecture " and then press TAB key.
1158 * The default, selected automatically, is "arm".
1159 * Let's use the default value, here, to make gdb-multiarch behave in the
1160 * same way as a gdb for arm. This can be changed later on. User can still
1161 * set the specific architecture variant with the gdb command.
1162 */
1163 const char *arm_get_gdb_arch(struct target *target)
1164 {
1165 return "arm";
1166 }
1167
1168 int arm_get_gdb_reg_list(struct target *target,
1169 struct reg **reg_list[], int *reg_list_size,
1170 enum target_register_class reg_class)
1171 {
1172 struct arm *arm = target_to_arm(target);
1173 unsigned int i;
1174
1175 if (!is_arm_mode(arm->core_mode)) {
1176 LOG_ERROR("not a valid arm core mode - communication failure?");
1177 return ERROR_FAIL;
1178 }
1179
1180 switch (reg_class) {
1181 case REG_CLASS_GENERAL:
1182 *reg_list_size = 26;
1183 *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
1184
1185 for (i = 0; i < 16; i++)
1186 (*reg_list)[i] = arm_reg_current(arm, i);
1187
1188 /* For GDB compatibility, take FPA registers size into account and zero-fill it*/
1189 for (i = 16; i < 24; i++)
1190 (*reg_list)[i] = &arm_gdb_dummy_fp_reg;
1191 (*reg_list)[24] = &arm_gdb_dummy_fps_reg;
1192
1193 (*reg_list)[25] = arm->cpsr;
1194
1195 return ERROR_OK;
1196
1197 case REG_CLASS_ALL:
1198 switch (arm->core_type) {
1199 case ARM_CORE_TYPE_SEC_EXT:
1200 *reg_list_size = 51;
1201 break;
1202 case ARM_CORE_TYPE_VIRT_EXT:
1203 *reg_list_size = 53;
1204 break;
1205 default:
1206 *reg_list_size = 48;
1207 }
1208 unsigned int list_size_core = *reg_list_size;
1209 if (arm->arm_vfp_version == ARM_VFP_V3)
1210 *reg_list_size += 33;
1211
1212 *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
1213
1214 for (i = 0; i < 16; i++)
1215 (*reg_list)[i] = arm_reg_current(arm, i);
1216
1217 for (i = 13; i < ARRAY_SIZE(arm_core_regs); i++) {
1218 int reg_index = arm->core_cache->reg_list[i].number;
1219
1220 if (arm_core_regs[i].mode == ARM_MODE_MON
1221 && arm->core_type != ARM_CORE_TYPE_SEC_EXT
1222 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
1223 continue;
1224 if (arm_core_regs[i].mode == ARM_MODE_HYP
1225 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
1226 continue;
1227 (*reg_list)[reg_index] = &(arm->core_cache->reg_list[i]);
1228 }
1229
1230 /* When we supply the target description, there is no need for fake FPA */
1231 for (i = 16; i < 24; i++) {
1232 (*reg_list)[i] = &arm_gdb_dummy_fp_reg;
1233 (*reg_list)[i]->size = 0;
1234 }
1235 (*reg_list)[24] = &arm_gdb_dummy_fps_reg;
1236 (*reg_list)[24]->size = 0;
1237
1238 if (arm->arm_vfp_version == ARM_VFP_V3) {
1239 unsigned int num_core_regs = ARRAY_SIZE(arm_core_regs);
1240 for (i = 0; i < 33; i++)
1241 (*reg_list)[list_size_core + i] = &(arm->core_cache->reg_list[num_core_regs + i]);
1242 }
1243
1244 return ERROR_OK;
1245
1246 default:
1247 LOG_ERROR("not a valid register class type in query.");
1248 return ERROR_FAIL;
1249 }
1250 }
1251
1252 /* wait for execution to complete and check exit point */
1253 static int armv4_5_run_algorithm_completion(struct target *target,
1254 uint32_t exit_point,
1255 unsigned int timeout_ms,
1256 void *arch_info)
1257 {
1258 int retval;
1259 struct arm *arm = target_to_arm(target);
1260
1261 retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
1262 if (retval != ERROR_OK)
1263 return retval;
1264 if (target->state != TARGET_HALTED) {
1265 retval = target_halt(target);
1266 if (retval != ERROR_OK)
1267 return retval;
1268 retval = target_wait_state(target, TARGET_HALTED, 500);
1269 if (retval != ERROR_OK)
1270 return retval;
1271 return ERROR_TARGET_TIMEOUT;
1272 }
1273
1274 /* fast exit: ARMv5+ code can use BKPT */
1275 if (exit_point && buf_get_u32(arm->pc->value, 0, 32) != exit_point) {
1276 LOG_WARNING(
1277 "target reentered debug state, but not at the desired exit point: 0x%4.4" PRIx32 "",
1278 buf_get_u32(arm->pc->value, 0, 32));
1279 return ERROR_TARGET_TIMEOUT;
1280 }
1281
1282 return ERROR_OK;
1283 }
1284
1285 int armv4_5_run_algorithm_inner(struct target *target,
1286 int num_mem_params, struct mem_param *mem_params,
1287 int num_reg_params, struct reg_param *reg_params,
1288 uint32_t entry_point, uint32_t exit_point,
1289 unsigned int timeout_ms, void *arch_info,
1290 int (*run_it)(struct target *target, uint32_t exit_point,
1291 unsigned int timeout_ms, void *arch_info))
1292 {
1293 struct arm *arm = target_to_arm(target);
1294 struct arm_algorithm *arm_algorithm_info = arch_info;
1295 enum arm_state core_state = arm->core_state;
1296 uint32_t context[17];
1297 uint32_t cpsr;
1298 int exit_breakpoint_size = 0;
1299 int i;
1300 int retval = ERROR_OK;
1301
1302 LOG_DEBUG("Running algorithm");
1303
1304 if (arm_algorithm_info->common_magic != ARM_COMMON_MAGIC) {
1305 LOG_ERROR("current target isn't an ARMV4/5 target");
1306 return ERROR_TARGET_INVALID;
1307 }
1308
1309 if (target->state != TARGET_HALTED) {
1310 LOG_WARNING("target not halted");
1311 return ERROR_TARGET_NOT_HALTED;
1312 }
1313
1314 if (!is_arm_mode(arm->core_mode)) {
1315 LOG_ERROR("not a valid arm core mode - communication failure?");
1316 return ERROR_FAIL;
1317 }
1318
1319 /* armv5 and later can terminate with BKPT instruction; less overhead */
1320 if (!exit_point && arm->arch == ARM_ARCH_V4) {
1321 LOG_ERROR("ARMv4 target needs HW breakpoint location");
1322 return ERROR_FAIL;
1323 }
1324
1325 /* save r0..pc, cpsr-or-spsr, and then cpsr-for-sure;
1326 * they'll be restored later.
1327 */
1328 for (i = 0; i <= 16; i++) {
1329 struct reg *r;
1330
1331 r = &ARMV4_5_CORE_REG_MODE(arm->core_cache,
1332 arm_algorithm_info->core_mode, i);
1333 if (!r->valid)
1334 arm->read_core_reg(target, r, i,
1335 arm_algorithm_info->core_mode);
1336 context[i] = buf_get_u32(r->value, 0, 32);
1337 }
1338 cpsr = buf_get_u32(arm->cpsr->value, 0, 32);
1339
1340 for (i = 0; i < num_mem_params; i++) {
1341 if (mem_params[i].direction == PARAM_IN)
1342 continue;
1343 retval = target_write_buffer(target, mem_params[i].address, mem_params[i].size,
1344 mem_params[i].value);
1345 if (retval != ERROR_OK)
1346 return retval;
1347 }
1348
1349 for (i = 0; i < num_reg_params; i++) {
1350 if (reg_params[i].direction == PARAM_IN)
1351 continue;
1352
1353 struct reg *reg = register_get_by_name(arm->core_cache, reg_params[i].reg_name, false);
1354 if (!reg) {
1355 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
1356 return ERROR_COMMAND_SYNTAX_ERROR;
1357 }
1358
1359 if (reg->size != reg_params[i].size) {
1360 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
1361 reg_params[i].reg_name);
1362 return ERROR_COMMAND_SYNTAX_ERROR;
1363 }
1364
1365 retval = armv4_5_set_core_reg(reg, reg_params[i].value);
1366 if (retval != ERROR_OK)
1367 return retval;
1368 }
1369
1370 arm->core_state = arm_algorithm_info->core_state;
1371 if (arm->core_state == ARM_STATE_ARM)
1372 exit_breakpoint_size = 4;
1373 else if (arm->core_state == ARM_STATE_THUMB)
1374 exit_breakpoint_size = 2;
1375 else {
1376 LOG_ERROR("BUG: can't execute algorithms when not in ARM or Thumb state");
1377 return ERROR_COMMAND_SYNTAX_ERROR;
1378 }
1379
1380 if (arm_algorithm_info->core_mode != ARM_MODE_ANY) {
1381 LOG_DEBUG("setting core_mode: 0x%2.2x",
1382 arm_algorithm_info->core_mode);
1383 buf_set_u32(arm->cpsr->value, 0, 5,
1384 arm_algorithm_info->core_mode);
1385 arm->cpsr->dirty = true;
1386 arm->cpsr->valid = true;
1387 }
1388
1389 /* terminate using a hardware or (ARMv5+) software breakpoint */
1390 if (exit_point) {
1391 retval = breakpoint_add(target, exit_point,
1392 exit_breakpoint_size, BKPT_HARD);
1393 if (retval != ERROR_OK) {
1394 LOG_ERROR("can't add HW breakpoint to terminate algorithm");
1395 return ERROR_TARGET_FAILURE;
1396 }
1397 }
1398
1399 retval = target_resume(target, 0, entry_point, 1, 1);
1400 if (retval != ERROR_OK)
1401 return retval;
1402 retval = run_it(target, exit_point, timeout_ms, arch_info);
1403
1404 if (exit_point)
1405 breakpoint_remove(target, exit_point);
1406
1407 if (retval != ERROR_OK)
1408 return retval;
1409
1410 for (i = 0; i < num_mem_params; i++) {
1411 if (mem_params[i].direction != PARAM_OUT) {
1412 int retvaltemp = target_read_buffer(target, mem_params[i].address,
1413 mem_params[i].size,
1414 mem_params[i].value);
1415 if (retvaltemp != ERROR_OK)
1416 retval = retvaltemp;
1417 }
1418 }
1419
1420 for (i = 0; i < num_reg_params; i++) {
1421 if (reg_params[i].direction != PARAM_OUT) {
1422
1423 struct reg *reg = register_get_by_name(arm->core_cache,
1424 reg_params[i].reg_name,
1425 false);
1426 if (!reg) {
1427 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
1428 retval = ERROR_COMMAND_SYNTAX_ERROR;
1429 continue;
1430 }
1431
1432 if (reg->size != reg_params[i].size) {
1433 LOG_ERROR(
1434 "BUG: register '%s' size doesn't match reg_params[i].size",
1435 reg_params[i].reg_name);
1436 retval = ERROR_COMMAND_SYNTAX_ERROR;
1437 continue;
1438 }
1439
1440 buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
1441 }
1442 }
1443
1444 /* restore everything we saved before (17 or 18 registers) */
1445 for (i = 0; i <= 16; i++) {
1446 uint32_t regvalue;
1447 regvalue = buf_get_u32(ARMV4_5_CORE_REG_MODE(arm->core_cache,
1448 arm_algorithm_info->core_mode, i).value, 0, 32);
1449 if (regvalue != context[i]) {
1450 LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32 "",
1451 ARMV4_5_CORE_REG_MODE(arm->core_cache,
1452 arm_algorithm_info->core_mode, i).name, context[i]);
1453 buf_set_u32(ARMV4_5_CORE_REG_MODE(arm->core_cache,
1454 arm_algorithm_info->core_mode, i).value, 0, 32, context[i]);
1455 ARMV4_5_CORE_REG_MODE(arm->core_cache, arm_algorithm_info->core_mode,
1456 i).valid = true;
1457 ARMV4_5_CORE_REG_MODE(arm->core_cache, arm_algorithm_info->core_mode,
1458 i).dirty = true;
1459 }
1460 }
1461
1462 arm_set_cpsr(arm, cpsr);
1463 arm->cpsr->dirty = true;
1464
1465 arm->core_state = core_state;
1466
1467 return retval;
1468 }
1469
1470 int armv4_5_run_algorithm(struct target *target,
1471 int num_mem_params,
1472 struct mem_param *mem_params,
1473 int num_reg_params,
1474 struct reg_param *reg_params,
1475 target_addr_t entry_point,
1476 target_addr_t exit_point,
1477 unsigned int timeout_ms,
1478 void *arch_info)
1479 {
1480 return armv4_5_run_algorithm_inner(target,
1481 num_mem_params,
1482 mem_params,
1483 num_reg_params,
1484 reg_params,
1485 (uint32_t)entry_point,
1486 (uint32_t)exit_point,
1487 timeout_ms,
1488 arch_info,
1489 armv4_5_run_algorithm_completion);
1490 }
1491
1492 /**
1493 * Runs ARM code in the target to calculate a CRC32 checksum.
1494 *
1495 */
1496 int arm_checksum_memory(struct target *target,
1497 target_addr_t address, uint32_t count, uint32_t *checksum)
1498 {
1499 struct working_area *crc_algorithm;
1500 struct arm_algorithm arm_algo;
1501 struct arm *arm = target_to_arm(target);
1502 struct reg_param reg_params[2];
1503 int retval;
1504 uint32_t i;
1505 uint32_t exit_var = 0;
1506
1507 static const uint8_t arm_crc_code_le[] = {
1508 #include "../../contrib/loaders/checksum/armv4_5_crc.inc"
1509 };
1510
1511 assert(sizeof(arm_crc_code_le) % 4 == 0);
1512
1513 retval = target_alloc_working_area(target,
1514 sizeof(arm_crc_code_le), &crc_algorithm);
1515 if (retval != ERROR_OK)
1516 return retval;
1517
1518 /* convert code into a buffer in target endianness */
1519 for (i = 0; i < ARRAY_SIZE(arm_crc_code_le) / 4; i++) {
1520 retval = target_write_u32(target,
1521 crc_algorithm->address + i * sizeof(uint32_t),
1522 le_to_h_u32(&arm_crc_code_le[i * 4]));
1523 if (retval != ERROR_OK)
1524 goto cleanup;
1525 }
1526
1527 arm_algo.common_magic = ARM_COMMON_MAGIC;
1528 arm_algo.core_mode = ARM_MODE_SVC;
1529 arm_algo.core_state = ARM_STATE_ARM;
1530
1531 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
1532 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1533
1534 buf_set_u32(reg_params[0].value, 0, 32, address);
1535 buf_set_u32(reg_params[1].value, 0, 32, count);
1536
1537 /* 20 second timeout/megabyte */
1538 unsigned int timeout = 20000 * (1 + (count / (1024 * 1024)));
1539
1540 /* armv4 must exit using a hardware breakpoint */
1541 if (arm->arch == ARM_ARCH_V4)
1542 exit_var = crc_algorithm->address + sizeof(arm_crc_code_le) - 8;
1543
1544 retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
1545 crc_algorithm->address,
1546 exit_var,
1547 timeout, &arm_algo);
1548
1549 if (retval == ERROR_OK)
1550 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
1551 else
1552 LOG_ERROR("error executing ARM crc algorithm");
1553
1554 destroy_reg_param(&reg_params[0]);
1555 destroy_reg_param(&reg_params[1]);
1556
1557 cleanup:
1558 target_free_working_area(target, crc_algorithm);
1559
1560 return retval;
1561 }
1562
1563 /**
1564 * Runs ARM code in the target to check whether a memory block holds
1565 * all ones. NOR flash which has been erased, and thus may be written,
1566 * holds all ones.
1567 *
1568 */
1569 int arm_blank_check_memory(struct target *target,
1570 struct target_memory_check_block *blocks, int num_blocks, uint8_t erased_value)
1571 {
1572 struct working_area *check_algorithm;
1573 struct reg_param reg_params[3];
1574 struct arm_algorithm arm_algo;
1575 struct arm *arm = target_to_arm(target);
1576 int retval;
1577 uint32_t i;
1578 uint32_t exit_var = 0;
1579
1580 static const uint8_t check_code_le[] = {
1581 #include "../../contrib/loaders/erase_check/armv4_5_erase_check.inc"
1582 };
1583
1584 assert(sizeof(check_code_le) % 4 == 0);
1585
1586 if (erased_value != 0xff) {
1587 LOG_ERROR("Erase value 0x%02" PRIx8 " not yet supported for ARMv4/v5 targets",
1588 erased_value);
1589 return ERROR_FAIL;
1590 }
1591
1592 /* make sure we have a working area */
1593 retval = target_alloc_working_area(target,
1594 sizeof(check_code_le), &check_algorithm);
1595 if (retval != ERROR_OK)
1596 return retval;
1597
1598 /* convert code into a buffer in target endianness */
1599 for (i = 0; i < ARRAY_SIZE(check_code_le) / 4; i++) {
1600 retval = target_write_u32(target,
1601 check_algorithm->address
1602 + i * sizeof(uint32_t),
1603 le_to_h_u32(&check_code_le[i * 4]));
1604 if (retval != ERROR_OK)
1605 goto cleanup;
1606 }
1607
1608 arm_algo.common_magic = ARM_COMMON_MAGIC;
1609 arm_algo.core_mode = ARM_MODE_SVC;
1610 arm_algo.core_state = ARM_STATE_ARM;
1611
1612 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1613 buf_set_u32(reg_params[0].value, 0, 32, blocks[0].address);
1614
1615 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1616 buf_set_u32(reg_params[1].value, 0, 32, blocks[0].size);
1617
1618 init_reg_param(&reg_params[2], "r2", 32, PARAM_IN_OUT);
1619 buf_set_u32(reg_params[2].value, 0, 32, erased_value);
1620
1621 /* armv4 must exit using a hardware breakpoint */
1622 if (arm->arch == ARM_ARCH_V4)
1623 exit_var = check_algorithm->address + sizeof(check_code_le) - 4;
1624
1625 retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
1626 check_algorithm->address,
1627 exit_var,
1628 10000, &arm_algo);
1629
1630 if (retval == ERROR_OK)
1631 blocks[0].result = buf_get_u32(reg_params[2].value, 0, 32);
1632
1633 destroy_reg_param(&reg_params[0]);
1634 destroy_reg_param(&reg_params[1]);
1635 destroy_reg_param(&reg_params[2]);
1636
1637 cleanup:
1638 target_free_working_area(target, check_algorithm);
1639
1640 if (retval != ERROR_OK)
1641 return retval;
1642
1643 return 1; /* only one block has been checked */
1644 }
1645
1646 static int arm_full_context(struct target *target)
1647 {
1648 struct arm *arm = target_to_arm(target);
1649 unsigned num_regs = arm->core_cache->num_regs;
1650 struct reg *reg = arm->core_cache->reg_list;
1651 int retval = ERROR_OK;
1652
1653 for (; num_regs && retval == ERROR_OK; num_regs--, reg++) {
1654 if (!reg->exist || reg->valid)
1655 continue;
1656 retval = armv4_5_get_core_reg(reg);
1657 }
1658 return retval;
1659 }
1660
1661 static int arm_default_mrc(struct target *target, int cpnum,
1662 uint32_t op1, uint32_t op2,
1663 uint32_t crn, uint32_t crm,
1664 uint32_t *value)
1665 {
1666 LOG_ERROR("%s doesn't implement MRC", target_type_name(target));
1667 return ERROR_FAIL;
1668 }
1669
1670 static int arm_default_mcr(struct target *target, int cpnum,
1671 uint32_t op1, uint32_t op2,
1672 uint32_t crn, uint32_t crm,
1673 uint32_t value)
1674 {
1675 LOG_ERROR("%s doesn't implement MCR", target_type_name(target));
1676 return ERROR_FAIL;
1677 }
1678
1679 int arm_init_arch_info(struct target *target, struct arm *arm)
1680 {
1681 target->arch_info = arm;
1682 arm->target = target;
1683
1684 arm->common_magic = ARM_COMMON_MAGIC;
1685
1686 /* core_type may be overridden by subtype logic */
1687 if (arm->core_type != ARM_CORE_TYPE_M_PROFILE) {
1688 arm->core_type = ARM_CORE_TYPE_STD;
1689 arm_set_cpsr(arm, ARM_MODE_USR);
1690 }
1691
1692 /* default full_context() has no core-specific optimizations */
1693 if (!arm->full_context && arm->read_core_reg)
1694 arm->full_context = arm_full_context;
1695
1696 if (!arm->mrc)
1697 arm->mrc = arm_default_mrc;
1698 if (!arm->mcr)
1699 arm->mcr = arm_default_mcr;
1700
1701 return ERROR_OK;
1702 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)