armv4_5: fix segmentation fault in command 'arm reg'
[openocd.git] / src / target / armv4_5.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2008 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2018 by Liviu Ionescu *
12 * <ilg@livius.net> *
13 * *
14 * This program is free software; you can redistribute it and/or modify *
15 * it under the terms of the GNU General Public License as published by *
16 * the Free Software Foundation; either version 2 of the License, or *
17 * (at your option) any later version. *
18 * *
19 * This program is distributed in the hope that it will be useful, *
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
22 * GNU General Public License for more details. *
23 * *
24 * You should have received a copy of the GNU General Public License *
25 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
26 ***************************************************************************/
27
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31
32 #include "arm.h"
33 #include "armv4_5.h"
34 #include "arm_jtag.h"
35 #include "breakpoints.h"
36 #include "arm_disassembler.h"
37 #include <helper/binarybuffer.h>
38 #include "algorithm.h"
39 #include "register.h"
40 #include "semihosting_common.h"
41
42 /* offsets into armv4_5 core register cache */
43 enum {
44 /* ARMV4_5_CPSR = 31, */
45 ARMV4_5_SPSR_FIQ = 32,
46 ARMV4_5_SPSR_IRQ = 33,
47 ARMV4_5_SPSR_SVC = 34,
48 ARMV4_5_SPSR_ABT = 35,
49 ARMV4_5_SPSR_UND = 36,
50 ARM_SPSR_MON = 41,
51 ARM_SPSR_HYP = 43,
52 };
53
54 static const uint8_t arm_usr_indices[17] = {
55 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ARMV4_5_CPSR,
56 };
57
58 static const uint8_t arm_fiq_indices[8] = {
59 16, 17, 18, 19, 20, 21, 22, ARMV4_5_SPSR_FIQ,
60 };
61
62 static const uint8_t arm_irq_indices[3] = {
63 23, 24, ARMV4_5_SPSR_IRQ,
64 };
65
66 static const uint8_t arm_svc_indices[3] = {
67 25, 26, ARMV4_5_SPSR_SVC,
68 };
69
70 static const uint8_t arm_abt_indices[3] = {
71 27, 28, ARMV4_5_SPSR_ABT,
72 };
73
74 static const uint8_t arm_und_indices[3] = {
75 29, 30, ARMV4_5_SPSR_UND,
76 };
77
78 static const uint8_t arm_mon_indices[3] = {
79 39, 40, ARM_SPSR_MON,
80 };
81
82 static const uint8_t arm_hyp_indices[2] = {
83 42, ARM_SPSR_HYP,
84 };
85
86 static const struct {
87 const char *name;
88 unsigned short psr;
89 /* For user and system modes, these list indices for all registers.
90 * otherwise they're just indices for the shadow registers and SPSR.
91 */
92 unsigned short n_indices;
93 const uint8_t *indices;
94 } arm_mode_data[] = {
95 /* Seven modes are standard from ARM7 on. "System" and "User" share
96 * the same registers; other modes shadow from 3 to 8 registers.
97 */
98 {
99 .name = "User",
100 .psr = ARM_MODE_USR,
101 .n_indices = ARRAY_SIZE(arm_usr_indices),
102 .indices = arm_usr_indices,
103 },
104 {
105 .name = "FIQ",
106 .psr = ARM_MODE_FIQ,
107 .n_indices = ARRAY_SIZE(arm_fiq_indices),
108 .indices = arm_fiq_indices,
109 },
110 {
111 .name = "Supervisor",
112 .psr = ARM_MODE_SVC,
113 .n_indices = ARRAY_SIZE(arm_svc_indices),
114 .indices = arm_svc_indices,
115 },
116 {
117 .name = "Abort",
118 .psr = ARM_MODE_ABT,
119 .n_indices = ARRAY_SIZE(arm_abt_indices),
120 .indices = arm_abt_indices,
121 },
122 {
123 .name = "IRQ",
124 .psr = ARM_MODE_IRQ,
125 .n_indices = ARRAY_SIZE(arm_irq_indices),
126 .indices = arm_irq_indices,
127 },
128 {
129 .name = "Undefined instruction",
130 .psr = ARM_MODE_UND,
131 .n_indices = ARRAY_SIZE(arm_und_indices),
132 .indices = arm_und_indices,
133 },
134 {
135 .name = "System",
136 .psr = ARM_MODE_SYS,
137 .n_indices = ARRAY_SIZE(arm_usr_indices),
138 .indices = arm_usr_indices,
139 },
140 /* TrustZone "Security Extensions" add a secure monitor mode.
141 * This is distinct from a "debug monitor" which can support
142 * non-halting debug, in conjunction with some debuggers.
143 */
144 {
145 .name = "Secure Monitor",
146 .psr = ARM_MODE_MON,
147 .n_indices = ARRAY_SIZE(arm_mon_indices),
148 .indices = arm_mon_indices,
149 },
150 {
151 .name = "Secure Monitor ARM1176JZF-S",
152 .psr = ARM_MODE_1176_MON,
153 .n_indices = ARRAY_SIZE(arm_mon_indices),
154 .indices = arm_mon_indices,
155 },
156
157 /* These special modes are currently only supported
158 * by ARMv6M and ARMv7M profiles */
159 {
160 .name = "Thread",
161 .psr = ARM_MODE_THREAD,
162 },
163 {
164 .name = "Thread (User)",
165 .psr = ARM_MODE_USER_THREAD,
166 },
167 {
168 .name = "Handler",
169 .psr = ARM_MODE_HANDLER,
170 },
171
172 /* armv7-a with virtualization extension */
173 {
174 .name = "Hypervisor",
175 .psr = ARM_MODE_HYP,
176 .n_indices = ARRAY_SIZE(arm_hyp_indices),
177 .indices = arm_hyp_indices,
178 },
179 };
180
181 /** Map PSR mode bits to the name of an ARM processor operating mode. */
182 const char *arm_mode_name(unsigned psr_mode)
183 {
184 for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) {
185 if (arm_mode_data[i].psr == psr_mode)
186 return arm_mode_data[i].name;
187 }
188 LOG_ERROR("unrecognized psr mode: %#02x", psr_mode);
189 return "UNRECOGNIZED";
190 }
191
192 /** Return true iff the parameter denotes a valid ARM processor mode. */
193 bool is_arm_mode(unsigned psr_mode)
194 {
195 for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) {
196 if (arm_mode_data[i].psr == psr_mode)
197 return true;
198 }
199 return false;
200 }
201
202 /** Map PSR mode bits to linear number indexing armv4_5_core_reg_map */
203 int arm_mode_to_number(enum arm_mode mode)
204 {
205 switch (mode) {
206 case ARM_MODE_ANY:
207 /* map MODE_ANY to user mode */
208 case ARM_MODE_USR:
209 return 0;
210 case ARM_MODE_FIQ:
211 return 1;
212 case ARM_MODE_IRQ:
213 return 2;
214 case ARM_MODE_SVC:
215 return 3;
216 case ARM_MODE_ABT:
217 return 4;
218 case ARM_MODE_UND:
219 return 5;
220 case ARM_MODE_SYS:
221 return 6;
222 case ARM_MODE_MON:
223 case ARM_MODE_1176_MON:
224 return 7;
225 case ARM_MODE_HYP:
226 return 8;
227 default:
228 LOG_ERROR("invalid mode value encountered %d", mode);
229 return -1;
230 }
231 }
232
233 /** Map linear number indexing armv4_5_core_reg_map to PSR mode bits. */
234 enum arm_mode armv4_5_number_to_mode(int number)
235 {
236 switch (number) {
237 case 0:
238 return ARM_MODE_USR;
239 case 1:
240 return ARM_MODE_FIQ;
241 case 2:
242 return ARM_MODE_IRQ;
243 case 3:
244 return ARM_MODE_SVC;
245 case 4:
246 return ARM_MODE_ABT;
247 case 5:
248 return ARM_MODE_UND;
249 case 6:
250 return ARM_MODE_SYS;
251 case 7:
252 return ARM_MODE_MON;
253 case 8:
254 return ARM_MODE_HYP;
255 default:
256 LOG_ERROR("mode index out of bounds %d", number);
257 return ARM_MODE_ANY;
258 }
259 }
260
261 static const char *arm_state_strings[] = {
262 "ARM", "Thumb", "Jazelle", "ThumbEE",
263 };
264
265 /* Templates for ARM core registers.
266 *
267 * NOTE: offsets in this table are coupled to the arm_mode_data
268 * table above, the armv4_5_core_reg_map array below, and also to
269 * the ARMV4_5_CPSR symbol (which should vanish after ARM11 updates).
270 */
271 static const struct {
272 /* The name is used for e.g. the "regs" command. */
273 const char *name;
274
275 /* The {cookie, mode} tuple uniquely identifies one register.
276 * In a given mode, cookies 0..15 map to registers R0..R15,
277 * with R13..R15 usually called SP, LR, PC.
278 *
279 * MODE_ANY is used as *input* to the mapping, and indicates
280 * various special cases (sigh) and errors.
281 *
282 * Cookie 16 is (currently) confusing, since it indicates
283 * CPSR -or- SPSR depending on whether 'mode' is MODE_ANY.
284 * (Exception modes have both CPSR and SPSR registers ...)
285 */
286 unsigned cookie;
287 unsigned gdb_index;
288 enum arm_mode mode;
289 } arm_core_regs[] = {
290 /* IMPORTANT: we guarantee that the first eight cached registers
291 * correspond to r0..r7, and the fifteenth to PC, so that callers
292 * don't need to map them.
293 */
294 [0] = { .name = "r0", .cookie = 0, .mode = ARM_MODE_ANY, .gdb_index = 0, },
295 [1] = { .name = "r1", .cookie = 1, .mode = ARM_MODE_ANY, .gdb_index = 1, },
296 [2] = { .name = "r2", .cookie = 2, .mode = ARM_MODE_ANY, .gdb_index = 2, },
297 [3] = { .name = "r3", .cookie = 3, .mode = ARM_MODE_ANY, .gdb_index = 3, },
298 [4] = { .name = "r4", .cookie = 4, .mode = ARM_MODE_ANY, .gdb_index = 4, },
299 [5] = { .name = "r5", .cookie = 5, .mode = ARM_MODE_ANY, .gdb_index = 5, },
300 [6] = { .name = "r6", .cookie = 6, .mode = ARM_MODE_ANY, .gdb_index = 6, },
301 [7] = { .name = "r7", .cookie = 7, .mode = ARM_MODE_ANY, .gdb_index = 7, },
302
303 /* NOTE: regs 8..12 might be shadowed by FIQ ... flagging
304 * them as MODE_ANY creates special cases. (ANY means
305 * "not mapped" elsewhere; here it's "everything but FIQ".)
306 */
307 [8] = { .name = "r8", .cookie = 8, .mode = ARM_MODE_ANY, .gdb_index = 8, },
308 [9] = { .name = "r9", .cookie = 9, .mode = ARM_MODE_ANY, .gdb_index = 9, },
309 [10] = { .name = "r10", .cookie = 10, .mode = ARM_MODE_ANY, .gdb_index = 10, },
310 [11] = { .name = "r11", .cookie = 11, .mode = ARM_MODE_ANY, .gdb_index = 11, },
311 [12] = { .name = "r12", .cookie = 12, .mode = ARM_MODE_ANY, .gdb_index = 12, },
312
313 /* Historical GDB mapping of indices:
314 * - 13-14 are sp and lr, but banked counterparts are used
315 * - 16-24 are left for deprecated 8 FPA + 1 FPS
316 * - 25 is the cpsr
317 */
318
319 /* NOTE all MODE_USR registers are equivalent to MODE_SYS ones */
320 [13] = { .name = "sp_usr", .cookie = 13, .mode = ARM_MODE_USR, .gdb_index = 26, },
321 [14] = { .name = "lr_usr", .cookie = 14, .mode = ARM_MODE_USR, .gdb_index = 27, },
322
323 /* guaranteed to be at index 15 */
324 [15] = { .name = "pc", .cookie = 15, .mode = ARM_MODE_ANY, .gdb_index = 15, },
325 [16] = { .name = "r8_fiq", .cookie = 8, .mode = ARM_MODE_FIQ, .gdb_index = 28, },
326 [17] = { .name = "r9_fiq", .cookie = 9, .mode = ARM_MODE_FIQ, .gdb_index = 29, },
327 [18] = { .name = "r10_fiq", .cookie = 10, .mode = ARM_MODE_FIQ, .gdb_index = 30, },
328 [19] = { .name = "r11_fiq", .cookie = 11, .mode = ARM_MODE_FIQ, .gdb_index = 31, },
329 [20] = { .name = "r12_fiq", .cookie = 12, .mode = ARM_MODE_FIQ, .gdb_index = 32, },
330
331 [21] = { .name = "sp_fiq", .cookie = 13, .mode = ARM_MODE_FIQ, .gdb_index = 33, },
332 [22] = { .name = "lr_fiq", .cookie = 14, .mode = ARM_MODE_FIQ, .gdb_index = 34, },
333
334 [23] = { .name = "sp_irq", .cookie = 13, .mode = ARM_MODE_IRQ, .gdb_index = 35, },
335 [24] = { .name = "lr_irq", .cookie = 14, .mode = ARM_MODE_IRQ, .gdb_index = 36, },
336
337 [25] = { .name = "sp_svc", .cookie = 13, .mode = ARM_MODE_SVC, .gdb_index = 37, },
338 [26] = { .name = "lr_svc", .cookie = 14, .mode = ARM_MODE_SVC, .gdb_index = 38, },
339
340 [27] = { .name = "sp_abt", .cookie = 13, .mode = ARM_MODE_ABT, .gdb_index = 39, },
341 [28] = { .name = "lr_abt", .cookie = 14, .mode = ARM_MODE_ABT, .gdb_index = 40, },
342
343 [29] = { .name = "sp_und", .cookie = 13, .mode = ARM_MODE_UND, .gdb_index = 41, },
344 [30] = { .name = "lr_und", .cookie = 14, .mode = ARM_MODE_UND, .gdb_index = 42, },
345
346 [31] = { .name = "cpsr", .cookie = 16, .mode = ARM_MODE_ANY, .gdb_index = 25, },
347 [32] = { .name = "spsr_fiq", .cookie = 16, .mode = ARM_MODE_FIQ, .gdb_index = 43, },
348 [33] = { .name = "spsr_irq", .cookie = 16, .mode = ARM_MODE_IRQ, .gdb_index = 44, },
349 [34] = { .name = "spsr_svc", .cookie = 16, .mode = ARM_MODE_SVC, .gdb_index = 45, },
350 [35] = { .name = "spsr_abt", .cookie = 16, .mode = ARM_MODE_ABT, .gdb_index = 46, },
351 [36] = { .name = "spsr_und", .cookie = 16, .mode = ARM_MODE_UND, .gdb_index = 47, },
352
353 /* These are only used for GDB target description, banked registers are accessed instead */
354 [37] = { .name = "sp", .cookie = 13, .mode = ARM_MODE_ANY, .gdb_index = 13, },
355 [38] = { .name = "lr", .cookie = 14, .mode = ARM_MODE_ANY, .gdb_index = 14, },
356
357 /* These exist only when the Security Extension (TrustZone) is present */
358 [39] = { .name = "sp_mon", .cookie = 13, .mode = ARM_MODE_MON, .gdb_index = 48, },
359 [40] = { .name = "lr_mon", .cookie = 14, .mode = ARM_MODE_MON, .gdb_index = 49, },
360 [41] = { .name = "spsr_mon", .cookie = 16, .mode = ARM_MODE_MON, .gdb_index = 50, },
361
362 /* These exist only when the Virtualization Extensions is present */
363 [42] = { .name = "sp_hyp", .cookie = 13, .mode = ARM_MODE_HYP, .gdb_index = 51, },
364 [43] = { .name = "spsr_hyp", .cookie = 16, .mode = ARM_MODE_HYP, .gdb_index = 52, },
365 };
366
367 static const struct {
368 unsigned int id;
369 const char *name;
370 uint32_t bits;
371 enum arm_mode mode;
372 enum reg_type type;
373 const char *group;
374 const char *feature;
375 } arm_vfp_v3_regs[] = {
376 { ARM_VFP_V3_D0, "d0", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
377 { ARM_VFP_V3_D1, "d1", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
378 { ARM_VFP_V3_D2, "d2", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
379 { ARM_VFP_V3_D3, "d3", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
380 { ARM_VFP_V3_D4, "d4", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
381 { ARM_VFP_V3_D5, "d5", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
382 { ARM_VFP_V3_D6, "d6", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
383 { ARM_VFP_V3_D7, "d7", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
384 { ARM_VFP_V3_D8, "d8", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
385 { ARM_VFP_V3_D9, "d9", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
386 { ARM_VFP_V3_D10, "d10", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
387 { ARM_VFP_V3_D11, "d11", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
388 { ARM_VFP_V3_D12, "d12", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
389 { ARM_VFP_V3_D13, "d13", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
390 { ARM_VFP_V3_D14, "d14", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
391 { ARM_VFP_V3_D15, "d15", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
392 { ARM_VFP_V3_D16, "d16", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
393 { ARM_VFP_V3_D17, "d17", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
394 { ARM_VFP_V3_D18, "d18", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
395 { ARM_VFP_V3_D19, "d19", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
396 { ARM_VFP_V3_D20, "d20", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
397 { ARM_VFP_V3_D21, "d21", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
398 { ARM_VFP_V3_D22, "d22", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
399 { ARM_VFP_V3_D23, "d23", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
400 { ARM_VFP_V3_D24, "d24", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
401 { ARM_VFP_V3_D25, "d25", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
402 { ARM_VFP_V3_D26, "d26", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
403 { ARM_VFP_V3_D27, "d27", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
404 { ARM_VFP_V3_D28, "d28", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
405 { ARM_VFP_V3_D29, "d29", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
406 { ARM_VFP_V3_D30, "d30", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
407 { ARM_VFP_V3_D31, "d31", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
408 { ARM_VFP_V3_FPSCR, "fpscr", 32, ARM_MODE_ANY, REG_TYPE_INT, "float", "org.gnu.gdb.arm.vfp"},
409 };
410
411 /* map core mode (USR, FIQ, ...) and register number to
412 * indices into the register cache
413 */
414 const int armv4_5_core_reg_map[9][17] = {
415 { /* USR */
416 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31
417 },
418 { /* FIQ (8 shadows of USR, vs normal 3) */
419 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 15, 32
420 },
421 { /* IRQ */
422 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23, 24, 15, 33
423 },
424 { /* SVC */
425 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 25, 26, 15, 34
426 },
427 { /* ABT */
428 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 27, 28, 15, 35
429 },
430 { /* UND */
431 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 29, 30, 15, 36
432 },
433 { /* SYS (same registers as USR) */
434 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31
435 },
436 { /* MON */
437 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 39, 40, 15, 41,
438 },
439 { /* HYP */
440 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 42, 14, 15, 43,
441 }
442 };
443
444 /**
445 * Configures host-side ARM records to reflect the specified CPSR.
446 * Later, code can use arm_reg_current() to map register numbers
447 * according to how they are exposed by this mode.
448 */
449 void arm_set_cpsr(struct arm *arm, uint32_t cpsr)
450 {
451 enum arm_mode mode = cpsr & 0x1f;
452 int num;
453
454 /* NOTE: this may be called very early, before the register
455 * cache is set up. We can't defend against many errors, in
456 * particular against CPSRs that aren't valid *here* ...
457 */
458 if (arm->cpsr) {
459 buf_set_u32(arm->cpsr->value, 0, 32, cpsr);
460 arm->cpsr->valid = true;
461 arm->cpsr->dirty = false;
462 }
463
464 arm->core_mode = mode;
465
466 /* mode_to_number() warned; set up a somewhat-sane mapping */
467 num = arm_mode_to_number(mode);
468 if (num < 0) {
469 mode = ARM_MODE_USR;
470 num = 0;
471 }
472
473 arm->map = &armv4_5_core_reg_map[num][0];
474 arm->spsr = (mode == ARM_MODE_USR || mode == ARM_MODE_SYS)
475 ? NULL
476 : arm->core_cache->reg_list + arm->map[16];
477
478 /* Older ARMs won't have the J bit */
479 enum arm_state state;
480
481 if (cpsr & (1 << 5)) { /* T */
482 if (cpsr & (1 << 24)) { /* J */
483 LOG_WARNING("ThumbEE -- incomplete support");
484 state = ARM_STATE_THUMB_EE;
485 } else
486 state = ARM_STATE_THUMB;
487 } else {
488 if (cpsr & (1 << 24)) { /* J */
489 LOG_ERROR("Jazelle state handling is BROKEN!");
490 state = ARM_STATE_JAZELLE;
491 } else
492 state = ARM_STATE_ARM;
493 }
494 arm->core_state = state;
495
496 LOG_DEBUG("set CPSR %#8.8x: %s mode, %s state", (unsigned) cpsr,
497 arm_mode_name(mode),
498 arm_state_strings[arm->core_state]);
499 }
500
501 /**
502 * Returns handle to the register currently mapped to a given number.
503 * Someone must have called arm_set_cpsr() before.
504 *
505 * \param arm This core's state and registers are used.
506 * \param regnum From 0..15 corresponding to R0..R14 and PC.
507 * Note that R0..R7 don't require mapping; you may access those
508 * as the first eight entries in the register cache. Likewise
509 * R15 (PC) doesn't need mapping; you may also access it directly.
510 * However, R8..R14, and SPSR (arm->spsr) *must* be mapped.
511 * CPSR (arm->cpsr) is also not mapped.
512 */
513 struct reg *arm_reg_current(struct arm *arm, unsigned regnum)
514 {
515 struct reg *r;
516
517 if (regnum > 16)
518 return NULL;
519
520 if (!arm->map) {
521 LOG_ERROR("Register map is not available yet, the target is not fully initialised");
522 r = arm->core_cache->reg_list + regnum;
523 } else
524 r = arm->core_cache->reg_list + arm->map[regnum];
525
526 /* e.g. invalid CPSR said "secure monitor" mode on a core
527 * that doesn't support it...
528 */
529 if (!r) {
530 LOG_ERROR("Invalid CPSR mode");
531 r = arm->core_cache->reg_list + regnum;
532 }
533
534 return r;
535 }
536
537 static const uint8_t arm_gdb_dummy_fp_value[12];
538
539 static struct reg_feature arm_gdb_dummy_fp_features = {
540 .name = "net.sourceforge.openocd.fake_fpa"
541 };
542
543 /**
544 * Dummy FPA registers are required to support GDB on ARM.
545 * Register packets require eight obsolete FPA register values.
546 * Modern ARM cores use Vector Floating Point (VFP), if they
547 * have any floating point support. VFP is not FPA-compatible.
548 */
549 struct reg arm_gdb_dummy_fp_reg = {
550 .name = "GDB dummy FPA register",
551 .value = (uint8_t *) arm_gdb_dummy_fp_value,
552 .valid = true,
553 .size = 96,
554 .exist = false,
555 .number = 16,
556 .feature = &arm_gdb_dummy_fp_features,
557 .group = "fake_fpa",
558 };
559
560 static const uint8_t arm_gdb_dummy_fps_value[4];
561
562 /**
563 * Dummy FPA status registers are required to support GDB on ARM.
564 * Register packets require an obsolete FPA status register.
565 */
566 struct reg arm_gdb_dummy_fps_reg = {
567 .name = "GDB dummy FPA status register",
568 .value = (uint8_t *) arm_gdb_dummy_fps_value,
569 .valid = true,
570 .size = 32,
571 .exist = false,
572 .number = 24,
573 .feature = &arm_gdb_dummy_fp_features,
574 .group = "fake_fpa",
575 };
576
577 static void arm_gdb_dummy_init(void) __attribute__ ((constructor));
578
579 static void arm_gdb_dummy_init(void)
580 {
581 register_init_dummy(&arm_gdb_dummy_fp_reg);
582 register_init_dummy(&arm_gdb_dummy_fps_reg);
583 }
584
585 static int armv4_5_get_core_reg(struct reg *reg)
586 {
587 int retval;
588 struct arm_reg *reg_arch_info = reg->arch_info;
589 struct target *target = reg_arch_info->target;
590
591 if (target->state != TARGET_HALTED) {
592 LOG_ERROR("Target not halted");
593 return ERROR_TARGET_NOT_HALTED;
594 }
595
596 retval = reg_arch_info->arm->read_core_reg(target, reg,
597 reg_arch_info->num, reg_arch_info->mode);
598 if (retval == ERROR_OK) {
599 reg->valid = true;
600 reg->dirty = false;
601 }
602
603 return retval;
604 }
605
606 static int armv4_5_set_core_reg(struct reg *reg, uint8_t *buf)
607 {
608 struct arm_reg *reg_arch_info = reg->arch_info;
609 struct target *target = reg_arch_info->target;
610 struct arm *armv4_5_target = target_to_arm(target);
611 uint32_t value = buf_get_u32(buf, 0, 32);
612
613 if (target->state != TARGET_HALTED) {
614 LOG_ERROR("Target not halted");
615 return ERROR_TARGET_NOT_HALTED;
616 }
617
618 /* Except for CPSR, the "reg" command exposes a writeback model
619 * for the register cache.
620 */
621 if (reg == armv4_5_target->cpsr) {
622 arm_set_cpsr(armv4_5_target, value);
623
624 /* Older cores need help to be in ARM mode during halt
625 * mode debug, so we clear the J and T bits if we flush.
626 * For newer cores (v6/v7a/v7r) we don't need that, but
627 * it won't hurt since CPSR is always flushed anyway.
628 */
629 if (armv4_5_target->core_mode !=
630 (enum arm_mode)(value & 0x1f)) {
631 LOG_DEBUG("changing ARM core mode to '%s'",
632 arm_mode_name(value & 0x1f));
633 value &= ~((1 << 24) | (1 << 5));
634 uint8_t t[4];
635 buf_set_u32(t, 0, 32, value);
636 armv4_5_target->write_core_reg(target, reg,
637 16, ARM_MODE_ANY, t);
638 }
639 } else {
640 buf_set_u32(reg->value, 0, 32, value);
641 if (reg->size == 64) {
642 value = buf_get_u32(buf + 4, 0, 32);
643 buf_set_u32(reg->value + 4, 0, 32, value);
644 }
645 reg->valid = true;
646 }
647 reg->dirty = true;
648
649 return ERROR_OK;
650 }
651
652 static const struct reg_arch_type arm_reg_type = {
653 .get = armv4_5_get_core_reg,
654 .set = armv4_5_set_core_reg,
655 };
656
657 struct reg_cache *arm_build_reg_cache(struct target *target, struct arm *arm)
658 {
659 int num_regs = ARRAY_SIZE(arm_core_regs);
660 int num_core_regs = num_regs;
661 if (arm->arm_vfp_version == ARM_VFP_V3)
662 num_regs += ARRAY_SIZE(arm_vfp_v3_regs);
663
664 struct reg_cache *cache = malloc(sizeof(struct reg_cache));
665 struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
666 struct arm_reg *reg_arch_info = calloc(num_regs, sizeof(struct arm_reg));
667 int i;
668
669 if (!cache || !reg_list || !reg_arch_info) {
670 free(cache);
671 free(reg_list);
672 free(reg_arch_info);
673 return NULL;
674 }
675
676 cache->name = "ARM registers";
677 cache->next = NULL;
678 cache->reg_list = reg_list;
679 cache->num_regs = 0;
680
681 for (i = 0; i < num_core_regs; i++) {
682 /* Skip registers this core doesn't expose */
683 if (arm_core_regs[i].mode == ARM_MODE_MON
684 && arm->core_type != ARM_CORE_TYPE_SEC_EXT
685 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
686 continue;
687 if (arm_core_regs[i].mode == ARM_MODE_HYP
688 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
689 continue;
690
691 /* REVISIT handle Cortex-M, which only shadows R13/SP */
692
693 reg_arch_info[i].num = arm_core_regs[i].cookie;
694 reg_arch_info[i].mode = arm_core_regs[i].mode;
695 reg_arch_info[i].target = target;
696 reg_arch_info[i].arm = arm;
697
698 reg_list[i].name = arm_core_regs[i].name;
699 reg_list[i].number = arm_core_regs[i].gdb_index;
700 reg_list[i].size = 32;
701 reg_list[i].value = reg_arch_info[i].value;
702 reg_list[i].type = &arm_reg_type;
703 reg_list[i].arch_info = &reg_arch_info[i];
704 reg_list[i].exist = true;
705
706 /* This really depends on the calling convention in use */
707 reg_list[i].caller_save = false;
708
709 /* Registers data type, as used by GDB target description */
710 reg_list[i].reg_data_type = malloc(sizeof(struct reg_data_type));
711 switch (arm_core_regs[i].cookie) {
712 case 13:
713 reg_list[i].reg_data_type->type = REG_TYPE_DATA_PTR;
714 break;
715 case 14:
716 case 15:
717 reg_list[i].reg_data_type->type = REG_TYPE_CODE_PTR;
718 break;
719 default:
720 reg_list[i].reg_data_type->type = REG_TYPE_UINT32;
721 break;
722 }
723
724 /* let GDB shows banked registers only in "info all-reg" */
725 reg_list[i].feature = malloc(sizeof(struct reg_feature));
726 if (reg_list[i].number <= 15 || reg_list[i].number == 25) {
727 reg_list[i].feature->name = "org.gnu.gdb.arm.core";
728 reg_list[i].group = "general";
729 } else {
730 reg_list[i].feature->name = "net.sourceforge.openocd.banked";
731 reg_list[i].group = "banked";
732 }
733
734 cache->num_regs++;
735 }
736
737 int j;
738 for (i = num_core_regs, j = 0; i < num_regs; i++, j++) {
739 reg_arch_info[i].num = arm_vfp_v3_regs[j].id;
740 reg_arch_info[i].mode = arm_vfp_v3_regs[j].mode;
741 reg_arch_info[i].target = target;
742 reg_arch_info[i].arm = arm;
743
744 reg_list[i].name = arm_vfp_v3_regs[j].name;
745 reg_list[i].number = arm_vfp_v3_regs[j].id;
746 reg_list[i].size = arm_vfp_v3_regs[j].bits;
747 reg_list[i].value = reg_arch_info[i].value;
748 reg_list[i].type = &arm_reg_type;
749 reg_list[i].arch_info = &reg_arch_info[i];
750 reg_list[i].exist = true;
751
752 reg_list[i].caller_save = false;
753
754 reg_list[i].reg_data_type = malloc(sizeof(struct reg_data_type));
755 reg_list[i].reg_data_type->type = arm_vfp_v3_regs[j].type;
756
757 reg_list[i].feature = malloc(sizeof(struct reg_feature));
758 reg_list[i].feature->name = arm_vfp_v3_regs[j].feature;
759
760 reg_list[i].group = arm_vfp_v3_regs[j].group;
761
762 cache->num_regs++;
763 }
764
765 arm->pc = reg_list + 15;
766 arm->cpsr = reg_list + ARMV4_5_CPSR;
767 arm->core_cache = cache;
768
769 return cache;
770 }
771
772 void arm_free_reg_cache(struct arm *arm)
773 {
774 if (!arm || !arm->core_cache)
775 return;
776
777 struct reg_cache *cache = arm->core_cache;
778
779 for (unsigned int i = 0; i < cache->num_regs; i++) {
780 struct reg *reg = &cache->reg_list[i];
781
782 free(reg->feature);
783 free(reg->reg_data_type);
784 }
785
786 free(cache->reg_list[0].arch_info);
787 free(cache->reg_list);
788 free(cache);
789
790 arm->core_cache = NULL;
791 }
792
793 int arm_arch_state(struct target *target)
794 {
795 struct arm *arm = target_to_arm(target);
796
797 if (arm->common_magic != ARM_COMMON_MAGIC) {
798 LOG_ERROR("BUG: called for a non-ARM target");
799 return ERROR_FAIL;
800 }
801
802 /* avoid filling log waiting for fileio reply */
803 if (target->semihosting && target->semihosting->hit_fileio)
804 return ERROR_OK;
805
806 LOG_USER("target halted in %s state due to %s, current mode: %s\n"
807 "cpsr: 0x%8.8" PRIx32 " pc: 0x%8.8" PRIx32 "%s%s",
808 arm_state_strings[arm->core_state],
809 debug_reason_name(target),
810 arm_mode_name(arm->core_mode),
811 buf_get_u32(arm->cpsr->value, 0, 32),
812 buf_get_u32(arm->pc->value, 0, 32),
813 (target->semihosting && target->semihosting->is_active) ? ", semihosting" : "",
814 (target->semihosting && target->semihosting->is_fileio) ? " fileio" : "");
815
816 return ERROR_OK;
817 }
818
819 COMMAND_HANDLER(handle_armv4_5_reg_command)
820 {
821 struct target *target = get_current_target(CMD_CTX);
822 struct arm *arm = target_to_arm(target);
823 struct reg *regs;
824
825 if (!is_arm(arm)) {
826 command_print(CMD, "current target isn't an ARM");
827 return ERROR_FAIL;
828 }
829
830 if (target->state != TARGET_HALTED) {
831 command_print(CMD, "error: target must be halted for register accesses");
832 return ERROR_FAIL;
833 }
834
835 if (arm->core_type != ARM_CORE_TYPE_STD) {
836 command_print(CMD,
837 "Microcontroller Profile not supported - use standard reg cmd");
838 return ERROR_OK;
839 }
840
841 if (!is_arm_mode(arm->core_mode)) {
842 LOG_ERROR("not a valid arm core mode - communication failure?");
843 return ERROR_FAIL;
844 }
845
846 if (!arm->full_context) {
847 command_print(CMD, "error: target doesn't support %s",
848 CMD_NAME);
849 return ERROR_FAIL;
850 }
851
852 regs = arm->core_cache->reg_list;
853
854 for (unsigned mode = 0; mode < ARRAY_SIZE(arm_mode_data); mode++) {
855 const char *name;
856 char *sep = "\n";
857 char *shadow = "";
858
859 /* label this bank of registers (or shadows) */
860 switch (arm_mode_data[mode].psr) {
861 case ARM_MODE_SYS:
862 continue;
863 case ARM_MODE_USR:
864 name = "System and User";
865 sep = "";
866 break;
867 case ARM_MODE_HYP:
868 if (arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
869 continue;
870 /* FALLTHROUGH */
871 case ARM_MODE_MON:
872 case ARM_MODE_1176_MON:
873 if (arm->core_type != ARM_CORE_TYPE_SEC_EXT
874 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
875 continue;
876 /* FALLTHROUGH */
877 default:
878 name = arm_mode_data[mode].name;
879 shadow = "shadow ";
880 break;
881 }
882 command_print(CMD, "%s%s mode %sregisters",
883 sep, name, shadow);
884
885 /* display N rows of up to 4 registers each */
886 for (unsigned i = 0; i < arm_mode_data[mode].n_indices; ) {
887 char output[80];
888 int output_len = 0;
889
890 for (unsigned j = 0; j < 4; j++, i++) {
891 uint32_t value;
892 struct reg *reg = regs;
893
894 if (i >= arm_mode_data[mode].n_indices)
895 break;
896
897 reg += arm_mode_data[mode].indices[i];
898
899 /* REVISIT be smarter about faults... */
900 if (!reg->valid)
901 arm->full_context(target);
902
903 value = buf_get_u32(reg->value, 0, 32);
904 output_len += snprintf(output + output_len,
905 sizeof(output) - output_len,
906 "%8s: %8.8" PRIx32 " ",
907 reg->name, value);
908 }
909 command_print(CMD, "%s", output);
910 }
911 }
912
913 return ERROR_OK;
914 }
915
916 COMMAND_HANDLER(handle_armv4_5_core_state_command)
917 {
918 struct target *target = get_current_target(CMD_CTX);
919 struct arm *arm = target_to_arm(target);
920
921 if (!is_arm(arm)) {
922 command_print(CMD, "current target isn't an ARM");
923 return ERROR_FAIL;
924 }
925
926 if (arm->core_type == ARM_CORE_TYPE_M_PROFILE) {
927 /* armv7m not supported */
928 command_print(CMD, "Unsupported Command");
929 return ERROR_OK;
930 }
931
932 if (CMD_ARGC > 0) {
933 if (strcmp(CMD_ARGV[0], "arm") == 0)
934 arm->core_state = ARM_STATE_ARM;
935 if (strcmp(CMD_ARGV[0], "thumb") == 0)
936 arm->core_state = ARM_STATE_THUMB;
937 }
938
939 command_print(CMD, "core state: %s", arm_state_strings[arm->core_state]);
940
941 return ERROR_OK;
942 }
943
944 COMMAND_HANDLER(handle_arm_disassemble_command)
945 {
946 #if HAVE_CAPSTONE
947 struct target *target = get_current_target(CMD_CTX);
948
949 if (target == NULL) {
950 LOG_ERROR("No target selected");
951 return ERROR_FAIL;
952 }
953
954 struct arm *arm = target_to_arm(target);
955 target_addr_t address;
956 unsigned int count = 1;
957 bool thumb = false;
958
959 if (!is_arm(arm)) {
960 command_print(CMD, "current target isn't an ARM");
961 return ERROR_FAIL;
962 }
963
964 if (arm->core_type == ARM_CORE_TYPE_M_PROFILE) {
965 /* armv7m is always thumb mode */
966 thumb = true;
967 }
968
969 switch (CMD_ARGC) {
970 case 3:
971 if (strcmp(CMD_ARGV[2], "thumb") != 0)
972 return ERROR_COMMAND_SYNTAX_ERROR;
973 thumb = true;
974 /* FALL THROUGH */
975 case 2:
976 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
977 /* FALL THROUGH */
978 case 1:
979 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
980 if (address & 0x01) {
981 if (!thumb) {
982 command_print(CMD, "Disassemble as Thumb");
983 thumb = true;
984 }
985 address &= ~1;
986 }
987 break;
988 default:
989 return ERROR_COMMAND_SYNTAX_ERROR;
990 }
991
992 return arm_disassemble(CMD, target, address, count, thumb);
993 #else
994 command_print(CMD, "capstone disassembly framework required");
995 return ERROR_FAIL;
996 #endif
997 }
998
999 static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
1000 {
1001 struct command_context *context;
1002 struct target *target;
1003 struct arm *arm;
1004 int retval;
1005
1006 context = current_command_context(interp);
1007 assert(context != NULL);
1008
1009 target = get_current_target(context);
1010 if (target == NULL) {
1011 LOG_ERROR("%s: no current target", __func__);
1012 return JIM_ERR;
1013 }
1014 if (!target_was_examined(target)) {
1015 LOG_ERROR("%s: not yet examined", target_name(target));
1016 return JIM_ERR;
1017 }
1018 arm = target_to_arm(target);
1019 if (!is_arm(arm)) {
1020 LOG_ERROR("%s: not an ARM", target_name(target));
1021 return JIM_ERR;
1022 }
1023
1024 if ((argc < 6) || (argc > 7)) {
1025 /* FIXME use the command name to verify # params... */
1026 LOG_ERROR("%s: wrong number of arguments", __func__);
1027 return JIM_ERR;
1028 }
1029
1030 int cpnum;
1031 uint32_t op1;
1032 uint32_t op2;
1033 uint32_t CRn;
1034 uint32_t CRm;
1035 uint32_t value;
1036 long l;
1037
1038 /* NOTE: parameter sequence matches ARM instruction set usage:
1039 * MCR pNUM, op1, rX, CRn, CRm, op2 ; write CP from rX
1040 * MRC pNUM, op1, rX, CRn, CRm, op2 ; read CP into rX
1041 * The "rX" is necessarily omitted; it uses Tcl mechanisms.
1042 */
1043 retval = Jim_GetLong(interp, argv[1], &l);
1044 if (retval != JIM_OK)
1045 return retval;
1046 if (l & ~0xf) {
1047 LOG_ERROR("%s: %s %d out of range", __func__,
1048 "coprocessor", (int) l);
1049 return JIM_ERR;
1050 }
1051 cpnum = l;
1052
1053 retval = Jim_GetLong(interp, argv[2], &l);
1054 if (retval != JIM_OK)
1055 return retval;
1056 if (l & ~0x7) {
1057 LOG_ERROR("%s: %s %d out of range", __func__,
1058 "op1", (int) l);
1059 return JIM_ERR;
1060 }
1061 op1 = l;
1062
1063 retval = Jim_GetLong(interp, argv[3], &l);
1064 if (retval != JIM_OK)
1065 return retval;
1066 if (l & ~0xf) {
1067 LOG_ERROR("%s: %s %d out of range", __func__,
1068 "CRn", (int) l);
1069 return JIM_ERR;
1070 }
1071 CRn = l;
1072
1073 retval = Jim_GetLong(interp, argv[4], &l);
1074 if (retval != JIM_OK)
1075 return retval;
1076 if (l & ~0xf) {
1077 LOG_ERROR("%s: %s %d out of range", __func__,
1078 "CRm", (int) l);
1079 return JIM_ERR;
1080 }
1081 CRm = l;
1082
1083 retval = Jim_GetLong(interp, argv[5], &l);
1084 if (retval != JIM_OK)
1085 return retval;
1086 if (l & ~0x7) {
1087 LOG_ERROR("%s: %s %d out of range", __func__,
1088 "op2", (int) l);
1089 return JIM_ERR;
1090 }
1091 op2 = l;
1092
1093 value = 0;
1094
1095 /* FIXME don't assume "mrc" vs "mcr" from the number of params;
1096 * that could easily be a typo! Check both...
1097 *
1098 * FIXME change the call syntax here ... simplest to just pass
1099 * the MRC() or MCR() instruction to be executed. That will also
1100 * let us support the "mrc2" and "mcr2" opcodes (toggling one bit)
1101 * if that's ever needed.
1102 */
1103 if (argc == 7) {
1104 retval = Jim_GetLong(interp, argv[6], &l);
1105 if (retval != JIM_OK)
1106 return retval;
1107 value = l;
1108
1109 /* NOTE: parameters reordered! */
1110 /* ARMV4_5_MCR(cpnum, op1, 0, CRn, CRm, op2) */
1111 retval = arm->mcr(target, cpnum, op1, op2, CRn, CRm, value);
1112 if (retval != ERROR_OK)
1113 return JIM_ERR;
1114 } else {
1115 /* NOTE: parameters reordered! */
1116 /* ARMV4_5_MRC(cpnum, op1, 0, CRn, CRm, op2) */
1117 retval = arm->mrc(target, cpnum, op1, op2, CRn, CRm, &value);
1118 if (retval != ERROR_OK)
1119 return JIM_ERR;
1120
1121 Jim_SetResult(interp, Jim_NewIntObj(interp, value));
1122 }
1123
1124 return JIM_OK;
1125 }
1126
1127 extern const struct command_registration semihosting_common_handlers[];
1128
1129 static const struct command_registration arm_exec_command_handlers[] = {
1130 {
1131 .name = "reg",
1132 .handler = handle_armv4_5_reg_command,
1133 .mode = COMMAND_EXEC,
1134 .help = "display ARM core registers",
1135 .usage = "",
1136 },
1137 {
1138 .name = "core_state",
1139 .handler = handle_armv4_5_core_state_command,
1140 .mode = COMMAND_EXEC,
1141 .usage = "['arm'|'thumb']",
1142 .help = "display/change ARM core state",
1143 },
1144 {
1145 .name = "disassemble",
1146 .handler = handle_arm_disassemble_command,
1147 .mode = COMMAND_EXEC,
1148 .usage = "address [count ['thumb']]",
1149 .help = "disassemble instructions ",
1150 },
1151 {
1152 .name = "mcr",
1153 .mode = COMMAND_EXEC,
1154 .jim_handler = &jim_mcrmrc,
1155 .help = "write coprocessor register",
1156 .usage = "cpnum op1 CRn CRm op2 value",
1157 },
1158 {
1159 .name = "mrc",
1160 .mode = COMMAND_EXEC,
1161 .jim_handler = &jim_mcrmrc,
1162 .help = "read coprocessor register",
1163 .usage = "cpnum op1 CRn CRm op2",
1164 },
1165 {
1166 .chain = semihosting_common_handlers,
1167 },
1168 COMMAND_REGISTRATION_DONE
1169 };
1170 const struct command_registration arm_command_handlers[] = {
1171 {
1172 .name = "arm",
1173 .mode = COMMAND_ANY,
1174 .help = "ARM command group",
1175 .usage = "",
1176 .chain = arm_exec_command_handlers,
1177 },
1178 COMMAND_REGISTRATION_DONE
1179 };
1180
1181 /*
1182 * gdb for arm targets (e.g. arm-none-eabi-gdb) supports several variants
1183 * of arm architecture. You can list them using the autocompletion of gdb
1184 * command prompt by typing "set architecture " and then press TAB key.
1185 * The default, selected automatically, is "arm".
1186 * Let's use the default value, here, to make gdb-multiarch behave in the
1187 * same way as a gdb for arm. This can be changed later on. User can still
1188 * set the specific architecture variant with the gdb command.
1189 */
1190 const char *arm_get_gdb_arch(struct target *target)
1191 {
1192 return "arm";
1193 }
1194
1195 int arm_get_gdb_reg_list(struct target *target,
1196 struct reg **reg_list[], int *reg_list_size,
1197 enum target_register_class reg_class)
1198 {
1199 struct arm *arm = target_to_arm(target);
1200 unsigned int i;
1201
1202 if (!is_arm_mode(arm->core_mode)) {
1203 LOG_ERROR("not a valid arm core mode - communication failure?");
1204 return ERROR_FAIL;
1205 }
1206
1207 switch (reg_class) {
1208 case REG_CLASS_GENERAL:
1209 *reg_list_size = 26;
1210 *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
1211
1212 for (i = 0; i < 16; i++)
1213 (*reg_list)[i] = arm_reg_current(arm, i);
1214
1215 /* For GDB compatibility, take FPA registers size into account and zero-fill it*/
1216 for (i = 16; i < 24; i++)
1217 (*reg_list)[i] = &arm_gdb_dummy_fp_reg;
1218 (*reg_list)[24] = &arm_gdb_dummy_fps_reg;
1219
1220 (*reg_list)[25] = arm->cpsr;
1221
1222 return ERROR_OK;
1223
1224 case REG_CLASS_ALL:
1225 switch (arm->core_type) {
1226 case ARM_CORE_TYPE_SEC_EXT:
1227 *reg_list_size = 51;
1228 break;
1229 case ARM_CORE_TYPE_VIRT_EXT:
1230 *reg_list_size = 53;
1231 break;
1232 default:
1233 *reg_list_size = 48;
1234 }
1235 unsigned int list_size_core = *reg_list_size;
1236 if (arm->arm_vfp_version == ARM_VFP_V3)
1237 *reg_list_size += 33;
1238
1239 *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
1240
1241 for (i = 0; i < 16; i++)
1242 (*reg_list)[i] = arm_reg_current(arm, i);
1243
1244 for (i = 13; i < ARRAY_SIZE(arm_core_regs); i++) {
1245 int reg_index = arm->core_cache->reg_list[i].number;
1246
1247 if (arm_core_regs[i].mode == ARM_MODE_MON
1248 && arm->core_type != ARM_CORE_TYPE_SEC_EXT
1249 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
1250 continue;
1251 if (arm_core_regs[i].mode == ARM_MODE_HYP
1252 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
1253 continue;
1254 (*reg_list)[reg_index] = &(arm->core_cache->reg_list[i]);
1255 }
1256
1257 /* When we supply the target description, there is no need for fake FPA */
1258 for (i = 16; i < 24; i++) {
1259 (*reg_list)[i] = &arm_gdb_dummy_fp_reg;
1260 (*reg_list)[i]->size = 0;
1261 }
1262 (*reg_list)[24] = &arm_gdb_dummy_fps_reg;
1263 (*reg_list)[24]->size = 0;
1264
1265 if (arm->arm_vfp_version == ARM_VFP_V3) {
1266 unsigned int num_core_regs = ARRAY_SIZE(arm_core_regs);
1267 for (i = 0; i < 33; i++)
1268 (*reg_list)[list_size_core + i] = &(arm->core_cache->reg_list[num_core_regs + i]);
1269 }
1270
1271 return ERROR_OK;
1272
1273 default:
1274 LOG_ERROR("not a valid register class type in query.");
1275 return ERROR_FAIL;
1276 }
1277 }
1278
1279 /* wait for execution to complete and check exit point */
1280 static int armv4_5_run_algorithm_completion(struct target *target,
1281 uint32_t exit_point,
1282 int timeout_ms,
1283 void *arch_info)
1284 {
1285 int retval;
1286 struct arm *arm = target_to_arm(target);
1287
1288 retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
1289 if (retval != ERROR_OK)
1290 return retval;
1291 if (target->state != TARGET_HALTED) {
1292 retval = target_halt(target);
1293 if (retval != ERROR_OK)
1294 return retval;
1295 retval = target_wait_state(target, TARGET_HALTED, 500);
1296 if (retval != ERROR_OK)
1297 return retval;
1298 return ERROR_TARGET_TIMEOUT;
1299 }
1300
1301 /* fast exit: ARMv5+ code can use BKPT */
1302 if (exit_point && buf_get_u32(arm->pc->value, 0, 32) != exit_point) {
1303 LOG_WARNING(
1304 "target reentered debug state, but not at the desired exit point: 0x%4.4" PRIx32 "",
1305 buf_get_u32(arm->pc->value, 0, 32));
1306 return ERROR_TARGET_TIMEOUT;
1307 }
1308
1309 return ERROR_OK;
1310 }
1311
1312 int armv4_5_run_algorithm_inner(struct target *target,
1313 int num_mem_params, struct mem_param *mem_params,
1314 int num_reg_params, struct reg_param *reg_params,
1315 uint32_t entry_point, uint32_t exit_point,
1316 int timeout_ms, void *arch_info,
1317 int (*run_it)(struct target *target, uint32_t exit_point,
1318 int timeout_ms, void *arch_info))
1319 {
1320 struct arm *arm = target_to_arm(target);
1321 struct arm_algorithm *arm_algorithm_info = arch_info;
1322 enum arm_state core_state = arm->core_state;
1323 uint32_t context[17];
1324 uint32_t cpsr;
1325 int exit_breakpoint_size = 0;
1326 int i;
1327 int retval = ERROR_OK;
1328
1329 LOG_DEBUG("Running algorithm");
1330
1331 if (arm_algorithm_info->common_magic != ARM_COMMON_MAGIC) {
1332 LOG_ERROR("current target isn't an ARMV4/5 target");
1333 return ERROR_TARGET_INVALID;
1334 }
1335
1336 if (target->state != TARGET_HALTED) {
1337 LOG_WARNING("target not halted");
1338 return ERROR_TARGET_NOT_HALTED;
1339 }
1340
1341 if (!is_arm_mode(arm->core_mode)) {
1342 LOG_ERROR("not a valid arm core mode - communication failure?");
1343 return ERROR_FAIL;
1344 }
1345
1346 /* armv5 and later can terminate with BKPT instruction; less overhead */
1347 if (!exit_point && arm->is_armv4) {
1348 LOG_ERROR("ARMv4 target needs HW breakpoint location");
1349 return ERROR_FAIL;
1350 }
1351
1352 /* save r0..pc, cpsr-or-spsr, and then cpsr-for-sure;
1353 * they'll be restored later.
1354 */
1355 for (i = 0; i <= 16; i++) {
1356 struct reg *r;
1357
1358 r = &ARMV4_5_CORE_REG_MODE(arm->core_cache,
1359 arm_algorithm_info->core_mode, i);
1360 if (!r->valid)
1361 arm->read_core_reg(target, r, i,
1362 arm_algorithm_info->core_mode);
1363 context[i] = buf_get_u32(r->value, 0, 32);
1364 }
1365 cpsr = buf_get_u32(arm->cpsr->value, 0, 32);
1366
1367 for (i = 0; i < num_mem_params; i++) {
1368 if (mem_params[i].direction == PARAM_IN)
1369 continue;
1370 retval = target_write_buffer(target, mem_params[i].address, mem_params[i].size,
1371 mem_params[i].value);
1372 if (retval != ERROR_OK)
1373 return retval;
1374 }
1375
1376 for (i = 0; i < num_reg_params; i++) {
1377 if (reg_params[i].direction == PARAM_IN)
1378 continue;
1379
1380 struct reg *reg = register_get_by_name(arm->core_cache, reg_params[i].reg_name, 0);
1381 if (!reg) {
1382 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
1383 return ERROR_COMMAND_SYNTAX_ERROR;
1384 }
1385
1386 if (reg->size != reg_params[i].size) {
1387 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
1388 reg_params[i].reg_name);
1389 return ERROR_COMMAND_SYNTAX_ERROR;
1390 }
1391
1392 retval = armv4_5_set_core_reg(reg, reg_params[i].value);
1393 if (retval != ERROR_OK)
1394 return retval;
1395 }
1396
1397 arm->core_state = arm_algorithm_info->core_state;
1398 if (arm->core_state == ARM_STATE_ARM)
1399 exit_breakpoint_size = 4;
1400 else if (arm->core_state == ARM_STATE_THUMB)
1401 exit_breakpoint_size = 2;
1402 else {
1403 LOG_ERROR("BUG: can't execute algorithms when not in ARM or Thumb state");
1404 return ERROR_COMMAND_SYNTAX_ERROR;
1405 }
1406
1407 if (arm_algorithm_info->core_mode != ARM_MODE_ANY) {
1408 LOG_DEBUG("setting core_mode: 0x%2.2x",
1409 arm_algorithm_info->core_mode);
1410 buf_set_u32(arm->cpsr->value, 0, 5,
1411 arm_algorithm_info->core_mode);
1412 arm->cpsr->dirty = true;
1413 arm->cpsr->valid = true;
1414 }
1415
1416 /* terminate using a hardware or (ARMv5+) software breakpoint */
1417 if (exit_point) {
1418 retval = breakpoint_add(target, exit_point,
1419 exit_breakpoint_size, BKPT_HARD);
1420 if (retval != ERROR_OK) {
1421 LOG_ERROR("can't add HW breakpoint to terminate algorithm");
1422 return ERROR_TARGET_FAILURE;
1423 }
1424 }
1425
1426 retval = target_resume(target, 0, entry_point, 1, 1);
1427 if (retval != ERROR_OK)
1428 return retval;
1429 retval = run_it(target, exit_point, timeout_ms, arch_info);
1430
1431 if (exit_point)
1432 breakpoint_remove(target, exit_point);
1433
1434 if (retval != ERROR_OK)
1435 return retval;
1436
1437 for (i = 0; i < num_mem_params; i++) {
1438 if (mem_params[i].direction != PARAM_OUT) {
1439 int retvaltemp = target_read_buffer(target, mem_params[i].address,
1440 mem_params[i].size,
1441 mem_params[i].value);
1442 if (retvaltemp != ERROR_OK)
1443 retval = retvaltemp;
1444 }
1445 }
1446
1447 for (i = 0; i < num_reg_params; i++) {
1448 if (reg_params[i].direction != PARAM_OUT) {
1449
1450 struct reg *reg = register_get_by_name(arm->core_cache,
1451 reg_params[i].reg_name,
1452 0);
1453 if (!reg) {
1454 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
1455 retval = ERROR_COMMAND_SYNTAX_ERROR;
1456 continue;
1457 }
1458
1459 if (reg->size != reg_params[i].size) {
1460 LOG_ERROR(
1461 "BUG: register '%s' size doesn't match reg_params[i].size",
1462 reg_params[i].reg_name);
1463 retval = ERROR_COMMAND_SYNTAX_ERROR;
1464 continue;
1465 }
1466
1467 buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
1468 }
1469 }
1470
1471 /* restore everything we saved before (17 or 18 registers) */
1472 for (i = 0; i <= 16; i++) {
1473 uint32_t regvalue;
1474 regvalue = buf_get_u32(ARMV4_5_CORE_REG_MODE(arm->core_cache,
1475 arm_algorithm_info->core_mode, i).value, 0, 32);
1476 if (regvalue != context[i]) {
1477 LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32 "",
1478 ARMV4_5_CORE_REG_MODE(arm->core_cache,
1479 arm_algorithm_info->core_mode, i).name, context[i]);
1480 buf_set_u32(ARMV4_5_CORE_REG_MODE(arm->core_cache,
1481 arm_algorithm_info->core_mode, i).value, 0, 32, context[i]);
1482 ARMV4_5_CORE_REG_MODE(arm->core_cache, arm_algorithm_info->core_mode,
1483 i).valid = true;
1484 ARMV4_5_CORE_REG_MODE(arm->core_cache, arm_algorithm_info->core_mode,
1485 i).dirty = true;
1486 }
1487 }
1488
1489 arm_set_cpsr(arm, cpsr);
1490 arm->cpsr->dirty = true;
1491
1492 arm->core_state = core_state;
1493
1494 return retval;
1495 }
1496
1497 int armv4_5_run_algorithm(struct target *target,
1498 int num_mem_params,
1499 struct mem_param *mem_params,
1500 int num_reg_params,
1501 struct reg_param *reg_params,
1502 target_addr_t entry_point,
1503 target_addr_t exit_point,
1504 int timeout_ms,
1505 void *arch_info)
1506 {
1507 return armv4_5_run_algorithm_inner(target,
1508 num_mem_params,
1509 mem_params,
1510 num_reg_params,
1511 reg_params,
1512 (uint32_t)entry_point,
1513 (uint32_t)exit_point,
1514 timeout_ms,
1515 arch_info,
1516 armv4_5_run_algorithm_completion);
1517 }
1518
1519 /**
1520 * Runs ARM code in the target to calculate a CRC32 checksum.
1521 *
1522 */
1523 int arm_checksum_memory(struct target *target,
1524 target_addr_t address, uint32_t count, uint32_t *checksum)
1525 {
1526 struct working_area *crc_algorithm;
1527 struct arm_algorithm arm_algo;
1528 struct arm *arm = target_to_arm(target);
1529 struct reg_param reg_params[2];
1530 int retval;
1531 uint32_t i;
1532 uint32_t exit_var = 0;
1533
1534 static const uint8_t arm_crc_code_le[] = {
1535 #include "../../contrib/loaders/checksum/armv4_5_crc.inc"
1536 };
1537
1538 assert(sizeof(arm_crc_code_le) % 4 == 0);
1539
1540 retval = target_alloc_working_area(target,
1541 sizeof(arm_crc_code_le), &crc_algorithm);
1542 if (retval != ERROR_OK)
1543 return retval;
1544
1545 /* convert code into a buffer in target endianness */
1546 for (i = 0; i < ARRAY_SIZE(arm_crc_code_le) / 4; i++) {
1547 retval = target_write_u32(target,
1548 crc_algorithm->address + i * sizeof(uint32_t),
1549 le_to_h_u32(&arm_crc_code_le[i * 4]));
1550 if (retval != ERROR_OK)
1551 goto cleanup;
1552 }
1553
1554 arm_algo.common_magic = ARM_COMMON_MAGIC;
1555 arm_algo.core_mode = ARM_MODE_SVC;
1556 arm_algo.core_state = ARM_STATE_ARM;
1557
1558 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
1559 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1560
1561 buf_set_u32(reg_params[0].value, 0, 32, address);
1562 buf_set_u32(reg_params[1].value, 0, 32, count);
1563
1564 /* 20 second timeout/megabyte */
1565 int timeout = 20000 * (1 + (count / (1024 * 1024)));
1566
1567 /* armv4 must exit using a hardware breakpoint */
1568 if (arm->is_armv4)
1569 exit_var = crc_algorithm->address + sizeof(arm_crc_code_le) - 8;
1570
1571 retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
1572 crc_algorithm->address,
1573 exit_var,
1574 timeout, &arm_algo);
1575
1576 if (retval == ERROR_OK)
1577 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
1578 else
1579 LOG_ERROR("error executing ARM crc algorithm");
1580
1581 destroy_reg_param(&reg_params[0]);
1582 destroy_reg_param(&reg_params[1]);
1583
1584 cleanup:
1585 target_free_working_area(target, crc_algorithm);
1586
1587 return retval;
1588 }
1589
1590 /**
1591 * Runs ARM code in the target to check whether a memory block holds
1592 * all ones. NOR flash which has been erased, and thus may be written,
1593 * holds all ones.
1594 *
1595 */
1596 int arm_blank_check_memory(struct target *target,
1597 struct target_memory_check_block *blocks, int num_blocks, uint8_t erased_value)
1598 {
1599 struct working_area *check_algorithm;
1600 struct reg_param reg_params[3];
1601 struct arm_algorithm arm_algo;
1602 struct arm *arm = target_to_arm(target);
1603 int retval;
1604 uint32_t i;
1605 uint32_t exit_var = 0;
1606
1607 static const uint8_t check_code_le[] = {
1608 #include "../../contrib/loaders/erase_check/armv4_5_erase_check.inc"
1609 };
1610
1611 assert(sizeof(check_code_le) % 4 == 0);
1612
1613 if (erased_value != 0xff) {
1614 LOG_ERROR("Erase value 0x%02" PRIx8 " not yet supported for ARMv4/v5 targets",
1615 erased_value);
1616 return ERROR_FAIL;
1617 }
1618
1619 /* make sure we have a working area */
1620 retval = target_alloc_working_area(target,
1621 sizeof(check_code_le), &check_algorithm);
1622 if (retval != ERROR_OK)
1623 return retval;
1624
1625 /* convert code into a buffer in target endianness */
1626 for (i = 0; i < ARRAY_SIZE(check_code_le) / 4; i++) {
1627 retval = target_write_u32(target,
1628 check_algorithm->address
1629 + i * sizeof(uint32_t),
1630 le_to_h_u32(&check_code_le[i * 4]));
1631 if (retval != ERROR_OK)
1632 goto cleanup;
1633 }
1634
1635 arm_algo.common_magic = ARM_COMMON_MAGIC;
1636 arm_algo.core_mode = ARM_MODE_SVC;
1637 arm_algo.core_state = ARM_STATE_ARM;
1638
1639 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1640 buf_set_u32(reg_params[0].value, 0, 32, blocks[0].address);
1641
1642 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1643 buf_set_u32(reg_params[1].value, 0, 32, blocks[0].size);
1644
1645 init_reg_param(&reg_params[2], "r2", 32, PARAM_IN_OUT);
1646 buf_set_u32(reg_params[2].value, 0, 32, erased_value);
1647
1648 /* armv4 must exit using a hardware breakpoint */
1649 if (arm->is_armv4)
1650 exit_var = check_algorithm->address + sizeof(check_code_le) - 4;
1651
1652 retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
1653 check_algorithm->address,
1654 exit_var,
1655 10000, &arm_algo);
1656
1657 if (retval == ERROR_OK)
1658 blocks[0].result = buf_get_u32(reg_params[2].value, 0, 32);
1659
1660 destroy_reg_param(&reg_params[0]);
1661 destroy_reg_param(&reg_params[1]);
1662 destroy_reg_param(&reg_params[2]);
1663
1664 cleanup:
1665 target_free_working_area(target, check_algorithm);
1666
1667 if (retval != ERROR_OK)
1668 return retval;
1669
1670 return 1; /* only one block has been checked */
1671 }
1672
1673 static int arm_full_context(struct target *target)
1674 {
1675 struct arm *arm = target_to_arm(target);
1676 unsigned num_regs = arm->core_cache->num_regs;
1677 struct reg *reg = arm->core_cache->reg_list;
1678 int retval = ERROR_OK;
1679
1680 for (; num_regs && retval == ERROR_OK; num_regs--, reg++) {
1681 if (reg->valid)
1682 continue;
1683 retval = armv4_5_get_core_reg(reg);
1684 }
1685 return retval;
1686 }
1687
1688 static int arm_default_mrc(struct target *target, int cpnum,
1689 uint32_t op1, uint32_t op2,
1690 uint32_t CRn, uint32_t CRm,
1691 uint32_t *value)
1692 {
1693 LOG_ERROR("%s doesn't implement MRC", target_type_name(target));
1694 return ERROR_FAIL;
1695 }
1696
1697 static int arm_default_mcr(struct target *target, int cpnum,
1698 uint32_t op1, uint32_t op2,
1699 uint32_t CRn, uint32_t CRm,
1700 uint32_t value)
1701 {
1702 LOG_ERROR("%s doesn't implement MCR", target_type_name(target));
1703 return ERROR_FAIL;
1704 }
1705
1706 int arm_init_arch_info(struct target *target, struct arm *arm)
1707 {
1708 target->arch_info = arm;
1709 arm->target = target;
1710
1711 arm->common_magic = ARM_COMMON_MAGIC;
1712
1713 /* core_type may be overridden by subtype logic */
1714 if (arm->core_type != ARM_CORE_TYPE_M_PROFILE) {
1715 arm->core_type = ARM_CORE_TYPE_STD;
1716 arm_set_cpsr(arm, ARM_MODE_USR);
1717 }
1718
1719 /* default full_context() has no core-specific optimizations */
1720 if (!arm->full_context && arm->read_core_reg)
1721 arm->full_context = arm_full_context;
1722
1723 if (!arm->mrc)
1724 arm->mrc = arm_default_mrc;
1725 if (!arm->mcr)
1726 arm->mcr = arm_default_mcr;
1727
1728 return ERROR_OK;
1729 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)