cortex_a: faster debug init
[openocd.git] / src / target / cortex_a.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2009 by Dirk Behme *
12 * dirk.behme@gmail.com - copy from cortex_m3 *
13 * *
14 * Copyright (C) 2010 √ėyvind Harboe *
15 * oyvind.harboe@zylin.com *
16 * *
17 * Copyright (C) ST-Ericsson SA 2011 *
18 * michel.jaouen@stericsson.com : smp minimum support *
19 * *
20 * Copyright (C) Broadcom 2012 *
21 * ehunter@broadcom.com : Cortex-R4 support *
22 * *
23 * Copyright (C) 2013 Kamal Dasu *
24 * kdasu.kdev@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 * *
39 * Cortex-A8(tm) TRM, ARM DDI 0344H *
40 * Cortex-A9(tm) TRM, ARM DDI 0407F *
41 * Cortex-A4(tm) TRM, ARM DDI 0363E *
42 * Cortex-A15(tm)TRM, ARM DDI 0438C *
43 * *
44 ***************************************************************************/
45
46 #ifdef HAVE_CONFIG_H
47 #include "config.h"
48 #endif
49
50 #include "breakpoints.h"
51 #include "cortex_a.h"
52 #include "register.h"
53 #include "target_request.h"
54 #include "target_type.h"
55 #include "arm_opcodes.h"
56 #include "arm_semihosting.h"
57 #include "jtag/swd.h"
58 #include <helper/time_support.h>
59
60 static int cortex_a_poll(struct target *target);
61 static int cortex_a_debug_entry(struct target *target);
62 static int cortex_a_restore_context(struct target *target, bool bpwp);
63 static int cortex_a_set_breakpoint(struct target *target,
64 struct breakpoint *breakpoint, uint8_t matchmode);
65 static int cortex_a_set_context_breakpoint(struct target *target,
66 struct breakpoint *breakpoint, uint8_t matchmode);
67 static int cortex_a_set_hybrid_breakpoint(struct target *target,
68 struct breakpoint *breakpoint);
69 static int cortex_a_unset_breakpoint(struct target *target,
70 struct breakpoint *breakpoint);
71 static int cortex_a_dap_read_coreregister_u32(struct target *target,
72 uint32_t *value, int regnum);
73 static int cortex_a_dap_write_coreregister_u32(struct target *target,
74 uint32_t value, int regnum);
75 static int cortex_a_mmu(struct target *target, int *enabled);
76 static int cortex_a_mmu_modify(struct target *target, int enable);
77 static int cortex_a_virt2phys(struct target *target,
78 target_addr_t virt, target_addr_t *phys);
79 static int cortex_a_read_cpu_memory(struct target *target,
80 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
81
82
83 /* restore cp15_control_reg at resume */
84 static int cortex_a_restore_cp15_control_reg(struct target *target)
85 {
86 int retval = ERROR_OK;
87 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
88 struct armv7a_common *armv7a = target_to_armv7a(target);
89
90 if (cortex_a->cp15_control_reg != cortex_a->cp15_control_reg_curr) {
91 cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
92 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg); */
93 retval = armv7a->arm.mcr(target, 15,
94 0, 0, /* op1, op2 */
95 1, 0, /* CRn, CRm */
96 cortex_a->cp15_control_reg);
97 }
98 return retval;
99 }
100
101 /*
102 * Set up ARM core for memory access.
103 * If !phys_access, switch to SVC mode and make sure MMU is on
104 * If phys_access, switch off mmu
105 */
106 static int cortex_a_prep_memaccess(struct target *target, int phys_access)
107 {
108 struct armv7a_common *armv7a = target_to_armv7a(target);
109 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
110 int mmu_enabled = 0;
111
112 if (phys_access == 0) {
113 dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
114 cortex_a_mmu(target, &mmu_enabled);
115 if (mmu_enabled)
116 cortex_a_mmu_modify(target, 1);
117 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
118 /* overwrite DACR to all-manager */
119 armv7a->arm.mcr(target, 15,
120 0, 0, 3, 0,
121 0xFFFFFFFF);
122 }
123 } else {
124 cortex_a_mmu(target, &mmu_enabled);
125 if (mmu_enabled)
126 cortex_a_mmu_modify(target, 0);
127 }
128 return ERROR_OK;
129 }
130
131 /*
132 * Restore ARM core after memory access.
133 * If !phys_access, switch to previous mode
134 * If phys_access, restore MMU setting
135 */
136 static int cortex_a_post_memaccess(struct target *target, int phys_access)
137 {
138 struct armv7a_common *armv7a = target_to_armv7a(target);
139 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
140
141 if (phys_access == 0) {
142 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
143 /* restore */
144 armv7a->arm.mcr(target, 15,
145 0, 0, 3, 0,
146 cortex_a->cp15_dacr_reg);
147 }
148 dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
149 } else {
150 int mmu_enabled = 0;
151 cortex_a_mmu(target, &mmu_enabled);
152 if (mmu_enabled)
153 cortex_a_mmu_modify(target, 1);
154 }
155 return ERROR_OK;
156 }
157
158
159 /* modify cp15_control_reg in order to enable or disable mmu for :
160 * - virt2phys address conversion
161 * - read or write memory in phys or virt address */
162 static int cortex_a_mmu_modify(struct target *target, int enable)
163 {
164 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
165 struct armv7a_common *armv7a = target_to_armv7a(target);
166 int retval = ERROR_OK;
167 int need_write = 0;
168
169 if (enable) {
170 /* if mmu enabled at target stop and mmu not enable */
171 if (!(cortex_a->cp15_control_reg & 0x1U)) {
172 LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
173 return ERROR_FAIL;
174 }
175 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0) {
176 cortex_a->cp15_control_reg_curr |= 0x1U;
177 need_write = 1;
178 }
179 } else {
180 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0x1U) {
181 cortex_a->cp15_control_reg_curr &= ~0x1U;
182 need_write = 1;
183 }
184 }
185
186 if (need_write) {
187 LOG_DEBUG("%s, writing cp15 ctrl: %" PRIx32,
188 enable ? "enable mmu" : "disable mmu",
189 cortex_a->cp15_control_reg_curr);
190
191 retval = armv7a->arm.mcr(target, 15,
192 0, 0, /* op1, op2 */
193 1, 0, /* CRn, CRm */
194 cortex_a->cp15_control_reg_curr);
195 }
196 return retval;
197 }
198
199 /*
200 * Cortex-A Basic debug access, very low level assumes state is saved
201 */
202 static int cortex_a_init_debug_access(struct target *target)
203 {
204 struct armv7a_common *armv7a = target_to_armv7a(target);
205 int retval;
206
207 /* lock memory-mapped access to debug registers to prevent
208 * software interference */
209 retval = mem_ap_write_u32(armv7a->debug_ap,
210 armv7a->debug_base + CPUDBG_LOCKACCESS, 0);
211 if (retval != ERROR_OK)
212 return retval;
213
214 /* Disable cacheline fills and force cache write-through in debug state */
215 retval = mem_ap_write_u32(armv7a->debug_ap,
216 armv7a->debug_base + CPUDBG_DSCCR, 0);
217 if (retval != ERROR_OK)
218 return retval;
219
220 /* Disable TLB lookup and refill/eviction in debug state */
221 retval = mem_ap_write_u32(armv7a->debug_ap,
222 armv7a->debug_base + CPUDBG_DSMCR, 0);
223 if (retval != ERROR_OK)
224 return retval;
225
226 retval = dap_run(armv7a->debug_ap->dap);
227 if (retval != ERROR_OK)
228 return retval;
229
230 /* Enabling of instruction execution in debug mode is done in debug_entry code */
231
232 /* Resync breakpoint registers */
233
234 /* Since this is likely called from init or reset, update target state information*/
235 return cortex_a_poll(target);
236 }
237
238 static int cortex_a_wait_instrcmpl(struct target *target, uint32_t *dscr, bool force)
239 {
240 /* Waits until InstrCmpl_l becomes 1, indicating instruction is done.
241 * Writes final value of DSCR into *dscr. Pass force to force always
242 * reading DSCR at least once. */
243 struct armv7a_common *armv7a = target_to_armv7a(target);
244 int64_t then = timeval_ms();
245 while ((*dscr & DSCR_INSTR_COMP) == 0 || force) {
246 force = false;
247 int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
248 armv7a->debug_base + CPUDBG_DSCR, dscr);
249 if (retval != ERROR_OK) {
250 LOG_ERROR("Could not read DSCR register");
251 return retval;
252 }
253 if (timeval_ms() > then + 1000) {
254 LOG_ERROR("Timeout waiting for InstrCompl=1");
255 return ERROR_FAIL;
256 }
257 }
258 return ERROR_OK;
259 }
260
261 /* To reduce needless round-trips, pass in a pointer to the current
262 * DSCR value. Initialize it to zero if you just need to know the
263 * value on return from this function; or DSCR_INSTR_COMP if you
264 * happen to know that no instruction is pending.
265 */
266 static int cortex_a_exec_opcode(struct target *target,
267 uint32_t opcode, uint32_t *dscr_p)
268 {
269 uint32_t dscr;
270 int retval;
271 struct armv7a_common *armv7a = target_to_armv7a(target);
272
273 dscr = dscr_p ? *dscr_p : 0;
274
275 LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
276
277 /* Wait for InstrCompl bit to be set */
278 retval = cortex_a_wait_instrcmpl(target, dscr_p, false);
279 if (retval != ERROR_OK)
280 return retval;
281
282 retval = mem_ap_write_u32(armv7a->debug_ap,
283 armv7a->debug_base + CPUDBG_ITR, opcode);
284 if (retval != ERROR_OK)
285 return retval;
286
287 int64_t then = timeval_ms();
288 do {
289 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
290 armv7a->debug_base + CPUDBG_DSCR, &dscr);
291 if (retval != ERROR_OK) {
292 LOG_ERROR("Could not read DSCR register");
293 return retval;
294 }
295 if (timeval_ms() > then + 1000) {
296 LOG_ERROR("Timeout waiting for cortex_a_exec_opcode");
297 return ERROR_FAIL;
298 }
299 } while ((dscr & DSCR_INSTR_COMP) == 0); /* Wait for InstrCompl bit to be set */
300
301 if (dscr_p)
302 *dscr_p = dscr;
303
304 return retval;
305 }
306
307 /**************************************************************************
308 Read core register with very few exec_opcode, fast but needs work_area.
309 This can cause problems with MMU active.
310 **************************************************************************/
311 static int cortex_a_read_regs_through_mem(struct target *target, uint32_t address,
312 uint32_t *regfile)
313 {
314 int retval = ERROR_OK;
315 struct armv7a_common *armv7a = target_to_armv7a(target);
316
317 retval = cortex_a_dap_read_coreregister_u32(target, regfile, 0);
318 if (retval != ERROR_OK)
319 return retval;
320 retval = cortex_a_dap_write_coreregister_u32(target, address, 0);
321 if (retval != ERROR_OK)
322 return retval;
323 retval = cortex_a_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0), NULL);
324 if (retval != ERROR_OK)
325 return retval;
326
327 retval = mem_ap_read_buf(armv7a->memory_ap,
328 (uint8_t *)(&regfile[1]), 4, 15, address);
329
330 return retval;
331 }
332
333 static int cortex_a_dap_read_coreregister_u32(struct target *target,
334 uint32_t *value, int regnum)
335 {
336 int retval = ERROR_OK;
337 uint8_t reg = regnum&0xFF;
338 uint32_t dscr = 0;
339 struct armv7a_common *armv7a = target_to_armv7a(target);
340
341 if (reg > 17)
342 return retval;
343
344 if (reg < 15) {
345 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0" 0xEE00nE15 */
346 retval = cortex_a_exec_opcode(target,
347 ARMV4_5_MCR(14, 0, reg, 0, 5, 0),
348 &dscr);
349 if (retval != ERROR_OK)
350 return retval;
351 } else if (reg == 15) {
352 /* "MOV r0, r15"; then move r0 to DCCTX */
353 retval = cortex_a_exec_opcode(target, 0xE1A0000F, &dscr);
354 if (retval != ERROR_OK)
355 return retval;
356 retval = cortex_a_exec_opcode(target,
357 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
358 &dscr);
359 if (retval != ERROR_OK)
360 return retval;
361 } else {
362 /* "MRS r0, CPSR" or "MRS r0, SPSR"
363 * then move r0 to DCCTX
364 */
365 retval = cortex_a_exec_opcode(target, ARMV4_5_MRS(0, reg & 1), &dscr);
366 if (retval != ERROR_OK)
367 return retval;
368 retval = cortex_a_exec_opcode(target,
369 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
370 &dscr);
371 if (retval != ERROR_OK)
372 return retval;
373 }
374
375 /* Wait for DTRRXfull then read DTRRTX */
376 int64_t then = timeval_ms();
377 while ((dscr & DSCR_DTR_TX_FULL) == 0) {
378 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
379 armv7a->debug_base + CPUDBG_DSCR, &dscr);
380 if (retval != ERROR_OK)
381 return retval;
382 if (timeval_ms() > then + 1000) {
383 LOG_ERROR("Timeout waiting for cortex_a_exec_opcode");
384 return ERROR_FAIL;
385 }
386 }
387
388 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
389 armv7a->debug_base + CPUDBG_DTRTX, value);
390 LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
391
392 return retval;
393 }
394
395 static int cortex_a_dap_write_coreregister_u32(struct target *target,
396 uint32_t value, int regnum)
397 {
398 int retval = ERROR_OK;
399 uint8_t Rd = regnum&0xFF;
400 uint32_t dscr;
401 struct armv7a_common *armv7a = target_to_armv7a(target);
402
403 LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
404
405 /* Check that DCCRX is not full */
406 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
407 armv7a->debug_base + CPUDBG_DSCR, &dscr);
408 if (retval != ERROR_OK)
409 return retval;
410 if (dscr & DSCR_DTR_RX_FULL) {
411 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
412 /* Clear DCCRX with MRC(p14, 0, Rd, c0, c5, 0), opcode 0xEE100E15 */
413 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
414 &dscr);
415 if (retval != ERROR_OK)
416 return retval;
417 }
418
419 if (Rd > 17)
420 return retval;
421
422 /* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
423 LOG_DEBUG("write DCC 0x%08" PRIx32, value);
424 retval = mem_ap_write_u32(armv7a->debug_ap,
425 armv7a->debug_base + CPUDBG_DTRRX, value);
426 if (retval != ERROR_OK)
427 return retval;
428
429 if (Rd < 15) {
430 /* DCCRX to Rn, "MRC p14, 0, Rn, c0, c5, 0", 0xEE10nE15 */
431 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0),
432 &dscr);
433
434 if (retval != ERROR_OK)
435 return retval;
436 } else if (Rd == 15) {
437 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
438 * then "mov r15, r0"
439 */
440 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
441 &dscr);
442 if (retval != ERROR_OK)
443 return retval;
444 retval = cortex_a_exec_opcode(target, 0xE1A0F000, &dscr);
445 if (retval != ERROR_OK)
446 return retval;
447 } else {
448 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
449 * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
450 */
451 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
452 &dscr);
453 if (retval != ERROR_OK)
454 return retval;
455 retval = cortex_a_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1),
456 &dscr);
457 if (retval != ERROR_OK)
458 return retval;
459
460 /* "Prefetch flush" after modifying execution status in CPSR */
461 if (Rd == 16) {
462 retval = cortex_a_exec_opcode(target,
463 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
464 &dscr);
465 if (retval != ERROR_OK)
466 return retval;
467 }
468 }
469
470 return retval;
471 }
472
473 /* Write to memory mapped registers directly with no cache or mmu handling */
474 static int cortex_a_dap_write_memap_register_u32(struct target *target,
475 uint32_t address,
476 uint32_t value)
477 {
478 int retval;
479 struct armv7a_common *armv7a = target_to_armv7a(target);
480
481 retval = mem_ap_write_atomic_u32(armv7a->debug_ap, address, value);
482
483 return retval;
484 }
485
486 /*
487 * Cortex-A implementation of Debug Programmer's Model
488 *
489 * NOTE the invariant: these routines return with DSCR_INSTR_COMP set,
490 * so there's no need to poll for it before executing an instruction.
491 *
492 * NOTE that in several of these cases the "stall" mode might be useful.
493 * It'd let us queue a few operations together... prepare/finish might
494 * be the places to enable/disable that mode.
495 */
496
497 static inline struct cortex_a_common *dpm_to_a(struct arm_dpm *dpm)
498 {
499 return container_of(dpm, struct cortex_a_common, armv7a_common.dpm);
500 }
501
502 static int cortex_a_write_dcc(struct cortex_a_common *a, uint32_t data)
503 {
504 LOG_DEBUG("write DCC 0x%08" PRIx32, data);
505 return mem_ap_write_u32(a->armv7a_common.debug_ap,
506 a->armv7a_common.debug_base + CPUDBG_DTRRX, data);
507 }
508
509 static int cortex_a_read_dcc(struct cortex_a_common *a, uint32_t *data,
510 uint32_t *dscr_p)
511 {
512 uint32_t dscr = DSCR_INSTR_COMP;
513 int retval;
514
515 if (dscr_p)
516 dscr = *dscr_p;
517
518 /* Wait for DTRRXfull */
519 int64_t then = timeval_ms();
520 while ((dscr & DSCR_DTR_TX_FULL) == 0) {
521 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
522 a->armv7a_common.debug_base + CPUDBG_DSCR,
523 &dscr);
524 if (retval != ERROR_OK)
525 return retval;
526 if (timeval_ms() > then + 1000) {
527 LOG_ERROR("Timeout waiting for read dcc");
528 return ERROR_FAIL;
529 }
530 }
531
532 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
533 a->armv7a_common.debug_base + CPUDBG_DTRTX, data);
534 if (retval != ERROR_OK)
535 return retval;
536 /* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
537
538 if (dscr_p)
539 *dscr_p = dscr;
540
541 return retval;
542 }
543
544 static int cortex_a_dpm_prepare(struct arm_dpm *dpm)
545 {
546 struct cortex_a_common *a = dpm_to_a(dpm);
547 uint32_t dscr;
548 int retval;
549
550 /* set up invariant: INSTR_COMP is set after ever DPM operation */
551 int64_t then = timeval_ms();
552 for (;; ) {
553 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
554 a->armv7a_common.debug_base + CPUDBG_DSCR,
555 &dscr);
556 if (retval != ERROR_OK)
557 return retval;
558 if ((dscr & DSCR_INSTR_COMP) != 0)
559 break;
560 if (timeval_ms() > then + 1000) {
561 LOG_ERROR("Timeout waiting for dpm prepare");
562 return ERROR_FAIL;
563 }
564 }
565
566 /* this "should never happen" ... */
567 if (dscr & DSCR_DTR_RX_FULL) {
568 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
569 /* Clear DCCRX */
570 retval = cortex_a_exec_opcode(
571 a->armv7a_common.arm.target,
572 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
573 &dscr);
574 if (retval != ERROR_OK)
575 return retval;
576 }
577
578 return retval;
579 }
580
581 static int cortex_a_dpm_finish(struct arm_dpm *dpm)
582 {
583 /* REVISIT what could be done here? */
584 return ERROR_OK;
585 }
586
587 static int cortex_a_instr_write_data_dcc(struct arm_dpm *dpm,
588 uint32_t opcode, uint32_t data)
589 {
590 struct cortex_a_common *a = dpm_to_a(dpm);
591 int retval;
592 uint32_t dscr = DSCR_INSTR_COMP;
593
594 retval = cortex_a_write_dcc(a, data);
595 if (retval != ERROR_OK)
596 return retval;
597
598 return cortex_a_exec_opcode(
599 a->armv7a_common.arm.target,
600 opcode,
601 &dscr);
602 }
603
604 static int cortex_a_instr_write_data_r0(struct arm_dpm *dpm,
605 uint32_t opcode, uint32_t data)
606 {
607 struct cortex_a_common *a = dpm_to_a(dpm);
608 uint32_t dscr = DSCR_INSTR_COMP;
609 int retval;
610
611 retval = cortex_a_write_dcc(a, data);
612 if (retval != ERROR_OK)
613 return retval;
614
615 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
616 retval = cortex_a_exec_opcode(
617 a->armv7a_common.arm.target,
618 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
619 &dscr);
620 if (retval != ERROR_OK)
621 return retval;
622
623 /* then the opcode, taking data from R0 */
624 retval = cortex_a_exec_opcode(
625 a->armv7a_common.arm.target,
626 opcode,
627 &dscr);
628
629 return retval;
630 }
631
632 static int cortex_a_instr_cpsr_sync(struct arm_dpm *dpm)
633 {
634 struct target *target = dpm->arm->target;
635 uint32_t dscr = DSCR_INSTR_COMP;
636
637 /* "Prefetch flush" after modifying execution status in CPSR */
638 return cortex_a_exec_opcode(target,
639 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
640 &dscr);
641 }
642
643 static int cortex_a_instr_read_data_dcc(struct arm_dpm *dpm,
644 uint32_t opcode, uint32_t *data)
645 {
646 struct cortex_a_common *a = dpm_to_a(dpm);
647 int retval;
648 uint32_t dscr = DSCR_INSTR_COMP;
649
650 /* the opcode, writing data to DCC */
651 retval = cortex_a_exec_opcode(
652 a->armv7a_common.arm.target,
653 opcode,
654 &dscr);
655 if (retval != ERROR_OK)
656 return retval;
657
658 return cortex_a_read_dcc(a, data, &dscr);
659 }
660
661
662 static int cortex_a_instr_read_data_r0(struct arm_dpm *dpm,
663 uint32_t opcode, uint32_t *data)
664 {
665 struct cortex_a_common *a = dpm_to_a(dpm);
666 uint32_t dscr = DSCR_INSTR_COMP;
667 int retval;
668
669 /* the opcode, writing data to R0 */
670 retval = cortex_a_exec_opcode(
671 a->armv7a_common.arm.target,
672 opcode,
673 &dscr);
674 if (retval != ERROR_OK)
675 return retval;
676
677 /* write R0 to DCC */
678 retval = cortex_a_exec_opcode(
679 a->armv7a_common.arm.target,
680 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
681 &dscr);
682 if (retval != ERROR_OK)
683 return retval;
684
685 return cortex_a_read_dcc(a, data, &dscr);
686 }
687
688 static int cortex_a_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
689 uint32_t addr, uint32_t control)
690 {
691 struct cortex_a_common *a = dpm_to_a(dpm);
692 uint32_t vr = a->armv7a_common.debug_base;
693 uint32_t cr = a->armv7a_common.debug_base;
694 int retval;
695
696 switch (index_t) {
697 case 0 ... 15: /* breakpoints */
698 vr += CPUDBG_BVR_BASE;
699 cr += CPUDBG_BCR_BASE;
700 break;
701 case 16 ... 31: /* watchpoints */
702 vr += CPUDBG_WVR_BASE;
703 cr += CPUDBG_WCR_BASE;
704 index_t -= 16;
705 break;
706 default:
707 return ERROR_FAIL;
708 }
709 vr += 4 * index_t;
710 cr += 4 * index_t;
711
712 LOG_DEBUG("A: bpwp enable, vr %08x cr %08x",
713 (unsigned) vr, (unsigned) cr);
714
715 retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
716 vr, addr);
717 if (retval != ERROR_OK)
718 return retval;
719 retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
720 cr, control);
721 return retval;
722 }
723
724 static int cortex_a_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
725 {
726 struct cortex_a_common *a = dpm_to_a(dpm);
727 uint32_t cr;
728
729 switch (index_t) {
730 case 0 ... 15:
731 cr = a->armv7a_common.debug_base + CPUDBG_BCR_BASE;
732 break;
733 case 16 ... 31:
734 cr = a->armv7a_common.debug_base + CPUDBG_WCR_BASE;
735 index_t -= 16;
736 break;
737 default:
738 return ERROR_FAIL;
739 }
740 cr += 4 * index_t;
741
742 LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr);
743
744 /* clear control register */
745 return cortex_a_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
746 }
747
748 static int cortex_a_dpm_setup(struct cortex_a_common *a, uint32_t didr)
749 {
750 struct arm_dpm *dpm = &a->armv7a_common.dpm;
751 int retval;
752
753 dpm->arm = &a->armv7a_common.arm;
754 dpm->didr = didr;
755
756 dpm->prepare = cortex_a_dpm_prepare;
757 dpm->finish = cortex_a_dpm_finish;
758
759 dpm->instr_write_data_dcc = cortex_a_instr_write_data_dcc;
760 dpm->instr_write_data_r0 = cortex_a_instr_write_data_r0;
761 dpm->instr_cpsr_sync = cortex_a_instr_cpsr_sync;
762
763 dpm->instr_read_data_dcc = cortex_a_instr_read_data_dcc;
764 dpm->instr_read_data_r0 = cortex_a_instr_read_data_r0;
765
766 dpm->bpwp_enable = cortex_a_bpwp_enable;
767 dpm->bpwp_disable = cortex_a_bpwp_disable;
768
769 retval = arm_dpm_setup(dpm);
770 if (retval == ERROR_OK)
771 retval = arm_dpm_initialize(dpm);
772
773 return retval;
774 }
775 static struct target *get_cortex_a(struct target *target, int32_t coreid)
776 {
777 struct target_list *head;
778 struct target *curr;
779
780 head = target->head;
781 while (head != (struct target_list *)NULL) {
782 curr = head->target;
783 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
784 return curr;
785 head = head->next;
786 }
787 return target;
788 }
789 static int cortex_a_halt(struct target *target);
790
791 static int cortex_a_halt_smp(struct target *target)
792 {
793 int retval = 0;
794 struct target_list *head;
795 struct target *curr;
796 head = target->head;
797 while (head != (struct target_list *)NULL) {
798 curr = head->target;
799 if ((curr != target) && (curr->state != TARGET_HALTED)
800 && target_was_examined(curr))
801 retval += cortex_a_halt(curr);
802 head = head->next;
803 }
804 return retval;
805 }
806
807 static int update_halt_gdb(struct target *target)
808 {
809 int retval = 0;
810 if (target->gdb_service && target->gdb_service->core[0] == -1) {
811 target->gdb_service->target = target;
812 target->gdb_service->core[0] = target->coreid;
813 retval += cortex_a_halt_smp(target);
814 }
815 return retval;
816 }
817
818 /*
819 * Cortex-A Run control
820 */
821
822 static int cortex_a_poll(struct target *target)
823 {
824 int retval = ERROR_OK;
825 uint32_t dscr;
826 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
827 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
828 enum target_state prev_target_state = target->state;
829 /* toggle to another core is done by gdb as follow */
830 /* maint packet J core_id */
831 /* continue */
832 /* the next polling trigger an halt event sent to gdb */
833 if ((target->state == TARGET_HALTED) && (target->smp) &&
834 (target->gdb_service) &&
835 (target->gdb_service->target == NULL)) {
836 target->gdb_service->target =
837 get_cortex_a(target, target->gdb_service->core[1]);
838 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
839 return retval;
840 }
841 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
842 armv7a->debug_base + CPUDBG_DSCR, &dscr);
843 if (retval != ERROR_OK)
844 return retval;
845 cortex_a->cpudbg_dscr = dscr;
846
847 if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
848 if (prev_target_state != TARGET_HALTED) {
849 /* We have a halting debug event */
850 LOG_DEBUG("Target halted");
851 target->state = TARGET_HALTED;
852 if ((prev_target_state == TARGET_RUNNING)
853 || (prev_target_state == TARGET_UNKNOWN)
854 || (prev_target_state == TARGET_RESET)) {
855 retval = cortex_a_debug_entry(target);
856 if (retval != ERROR_OK)
857 return retval;
858 if (target->smp) {
859 retval = update_halt_gdb(target);
860 if (retval != ERROR_OK)
861 return retval;
862 }
863
864 if (arm_semihosting(target, &retval) != 0)
865 return retval;
866
867 target_call_event_callbacks(target,
868 TARGET_EVENT_HALTED);
869 }
870 if (prev_target_state == TARGET_DEBUG_RUNNING) {
871 LOG_DEBUG(" ");
872
873 retval = cortex_a_debug_entry(target);
874 if (retval != ERROR_OK)
875 return retval;
876 if (target->smp) {
877 retval = update_halt_gdb(target);
878 if (retval != ERROR_OK)
879 return retval;
880 }
881
882 target_call_event_callbacks(target,
883 TARGET_EVENT_DEBUG_HALTED);
884 }
885 }
886 } else
887 target->state = TARGET_RUNNING;
888
889 return retval;
890 }
891
892 static int cortex_a_halt(struct target *target)
893 {
894 int retval = ERROR_OK;
895 uint32_t dscr;
896 struct armv7a_common *armv7a = target_to_armv7a(target);
897
898 /*
899 * Tell the core to be halted by writing DRCR with 0x1
900 * and then wait for the core to be halted.
901 */
902 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
903 armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
904 if (retval != ERROR_OK)
905 return retval;
906
907 /*
908 * enter halting debug mode
909 */
910 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
911 armv7a->debug_base + CPUDBG_DSCR, &dscr);
912 if (retval != ERROR_OK)
913 return retval;
914
915 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
916 armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
917 if (retval != ERROR_OK)
918 return retval;
919
920 int64_t then = timeval_ms();
921 for (;; ) {
922 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
923 armv7a->debug_base + CPUDBG_DSCR, &dscr);
924 if (retval != ERROR_OK)
925 return retval;
926 if ((dscr & DSCR_CORE_HALTED) != 0)
927 break;
928 if (timeval_ms() > then + 1000) {
929 LOG_ERROR("Timeout waiting for halt");
930 return ERROR_FAIL;
931 }
932 }
933
934 target->debug_reason = DBG_REASON_DBGRQ;
935
936 return ERROR_OK;
937 }
938
939 static int cortex_a_internal_restore(struct target *target, int current,
940 target_addr_t *address, int handle_breakpoints, int debug_execution)
941 {
942 struct armv7a_common *armv7a = target_to_armv7a(target);
943 struct arm *arm = &armv7a->arm;
944 int retval;
945 uint32_t resume_pc;
946
947 if (!debug_execution)
948 target_free_all_working_areas(target);
949
950 #if 0
951 if (debug_execution) {
952 /* Disable interrupts */
953 /* We disable interrupts in the PRIMASK register instead of
954 * masking with C_MASKINTS,
955 * This is probably the same issue as Cortex-M3 Errata 377493:
956 * C_MASKINTS in parallel with disabled interrupts can cause
957 * local faults to not be taken. */
958 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
959 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
960 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
961
962 /* Make sure we are in Thumb mode */
963 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
964 buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0,
965 32) | (1 << 24));
966 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
967 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
968 }
969 #endif
970
971 /* current = 1: continue on current pc, otherwise continue at <address> */
972 resume_pc = buf_get_u32(arm->pc->value, 0, 32);
973 if (!current)
974 resume_pc = *address;
975 else
976 *address = resume_pc;
977
978 /* Make sure that the Armv7 gdb thumb fixups does not
979 * kill the return address
980 */
981 switch (arm->core_state) {
982 case ARM_STATE_ARM:
983 resume_pc &= 0xFFFFFFFC;
984 break;
985 case ARM_STATE_THUMB:
986 case ARM_STATE_THUMB_EE:
987 /* When the return address is loaded into PC
988 * bit 0 must be 1 to stay in Thumb state
989 */
990 resume_pc |= 0x1;
991 break;
992 case ARM_STATE_JAZELLE:
993 LOG_ERROR("How do I resume into Jazelle state??");
994 return ERROR_FAIL;
995 case ARM_STATE_AARCH64:
996 LOG_ERROR("Shoudn't be in AARCH64 state");
997 return ERROR_FAIL;
998 }
999 LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
1000 buf_set_u32(arm->pc->value, 0, 32, resume_pc);
1001 arm->pc->dirty = 1;
1002 arm->pc->valid = 1;
1003
1004 /* restore dpm_mode at system halt */
1005 dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1006 /* called it now before restoring context because it uses cpu
1007 * register r0 for restoring cp15 control register */
1008 retval = cortex_a_restore_cp15_control_reg(target);
1009 if (retval != ERROR_OK)
1010 return retval;
1011 retval = cortex_a_restore_context(target, handle_breakpoints);
1012 if (retval != ERROR_OK)
1013 return retval;
1014 target->debug_reason = DBG_REASON_NOTHALTED;
1015 target->state = TARGET_RUNNING;
1016
1017 /* registers are now invalid */
1018 register_cache_invalidate(arm->core_cache);
1019
1020 #if 0
1021 /* the front-end may request us not to handle breakpoints */
1022 if (handle_breakpoints) {
1023 /* Single step past breakpoint at current address */
1024 breakpoint = breakpoint_find(target, resume_pc);
1025 if (breakpoint) {
1026 LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
1027 cortex_m3_unset_breakpoint(target, breakpoint);
1028 cortex_m3_single_step_core(target);
1029 cortex_m3_set_breakpoint(target, breakpoint);
1030 }
1031 }
1032
1033 #endif
1034 return retval;
1035 }
1036
1037 static int cortex_a_internal_restart(struct target *target)
1038 {
1039 struct armv7a_common *armv7a = target_to_armv7a(target);
1040 struct arm *arm = &armv7a->arm;
1041 int retval;
1042 uint32_t dscr;
1043 /*
1044 * * Restart core and wait for it to be started. Clear ITRen and sticky
1045 * * exception flags: see ARMv7 ARM, C5.9.
1046 *
1047 * REVISIT: for single stepping, we probably want to
1048 * disable IRQs by default, with optional override...
1049 */
1050
1051 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1052 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1053 if (retval != ERROR_OK)
1054 return retval;
1055
1056 if ((dscr & DSCR_INSTR_COMP) == 0)
1057 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
1058
1059 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1060 armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
1061 if (retval != ERROR_OK)
1062 return retval;
1063
1064 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1065 armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART |
1066 DRCR_CLEAR_EXCEPTIONS);
1067 if (retval != ERROR_OK)
1068 return retval;
1069
1070 int64_t then = timeval_ms();
1071 for (;; ) {
1072 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1073 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1074 if (retval != ERROR_OK)
1075 return retval;
1076 if ((dscr & DSCR_CORE_RESTARTED) != 0)
1077 break;
1078 if (timeval_ms() > then + 1000) {
1079 LOG_ERROR("Timeout waiting for resume");
1080 return ERROR_FAIL;
1081 }
1082 }
1083
1084 target->debug_reason = DBG_REASON_NOTHALTED;
1085 target->state = TARGET_RUNNING;
1086
1087 /* registers are now invalid */
1088 register_cache_invalidate(arm->core_cache);
1089
1090 return ERROR_OK;
1091 }
1092
1093 static int cortex_a_restore_smp(struct target *target, int handle_breakpoints)
1094 {
1095 int retval = 0;
1096 struct target_list *head;
1097 struct target *curr;
1098 target_addr_t address;
1099 head = target->head;
1100 while (head != (struct target_list *)NULL) {
1101 curr = head->target;
1102 if ((curr != target) && (curr->state != TARGET_RUNNING)
1103 && target_was_examined(curr)) {
1104 /* resume current address , not in step mode */
1105 retval += cortex_a_internal_restore(curr, 1, &address,
1106 handle_breakpoints, 0);
1107 retval += cortex_a_internal_restart(curr);
1108 }
1109 head = head->next;
1110
1111 }
1112 return retval;
1113 }
1114
1115 static int cortex_a_resume(struct target *target, int current,
1116 target_addr_t address, int handle_breakpoints, int debug_execution)
1117 {
1118 int retval = 0;
1119 /* dummy resume for smp toggle in order to reduce gdb impact */
1120 if ((target->smp) && (target->gdb_service->core[1] != -1)) {
1121 /* simulate a start and halt of target */
1122 target->gdb_service->target = NULL;
1123 target->gdb_service->core[0] = target->gdb_service->core[1];
1124 /* fake resume at next poll we play the target core[1], see poll*/
1125 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1126 return 0;
1127 }
1128 cortex_a_internal_restore(target, current, &address, handle_breakpoints, debug_execution);
1129 if (target->smp) {
1130 target->gdb_service->core[0] = -1;
1131 retval = cortex_a_restore_smp(target, handle_breakpoints);
1132 if (retval != ERROR_OK)
1133 return retval;
1134 }
1135 cortex_a_internal_restart(target);
1136
1137 if (!debug_execution) {
1138 target->state = TARGET_RUNNING;
1139 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1140 LOG_DEBUG("target resumed at " TARGET_ADDR_FMT, address);
1141 } else {
1142 target->state = TARGET_DEBUG_RUNNING;
1143 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1144 LOG_DEBUG("target debug resumed at " TARGET_ADDR_FMT, address);
1145 }
1146
1147 return ERROR_OK;
1148 }
1149
1150 static int cortex_a_debug_entry(struct target *target)
1151 {
1152 int i;
1153 uint32_t regfile[16], cpsr, spsr, dscr;
1154 int retval = ERROR_OK;
1155 struct working_area *regfile_working_area = NULL;
1156 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1157 struct armv7a_common *armv7a = target_to_armv7a(target);
1158 struct arm *arm = &armv7a->arm;
1159 struct reg *reg;
1160
1161 LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a->cpudbg_dscr);
1162
1163 /* REVISIT surely we should not re-read DSCR !! */
1164 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1165 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1166 if (retval != ERROR_OK)
1167 return retval;
1168
1169 /* REVISIT see A TRM 12.11.4 steps 2..3 -- make sure that any
1170 * imprecise data aborts get discarded by issuing a Data
1171 * Synchronization Barrier: ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1172 */
1173
1174 /* Enable the ITR execution once we are in debug mode */
1175 dscr |= DSCR_ITR_EN;
1176 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1177 armv7a->debug_base + CPUDBG_DSCR, dscr);
1178 if (retval != ERROR_OK)
1179 return retval;
1180
1181 /* Examine debug reason */
1182 arm_dpm_report_dscr(&armv7a->dpm, cortex_a->cpudbg_dscr);
1183
1184 /* save address of instruction that triggered the watchpoint? */
1185 if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1186 uint32_t wfar;
1187
1188 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1189 armv7a->debug_base + CPUDBG_WFAR,
1190 &wfar);
1191 if (retval != ERROR_OK)
1192 return retval;
1193 arm_dpm_report_wfar(&armv7a->dpm, wfar);
1194 }
1195
1196 /* REVISIT fast_reg_read is never set ... */
1197
1198 /* Examine target state and mode */
1199 if (cortex_a->fast_reg_read)
1200 target_alloc_working_area(target, 64, &regfile_working_area);
1201
1202
1203 /* First load register acessible through core debug port*/
1204 if (!regfile_working_area)
1205 retval = arm_dpm_read_current_registers(&armv7a->dpm);
1206 else {
1207 retval = cortex_a_read_regs_through_mem(target,
1208 regfile_working_area->address, regfile);
1209
1210 target_free_working_area(target, regfile_working_area);
1211 if (retval != ERROR_OK)
1212 return retval;
1213
1214 /* read Current PSR */
1215 retval = cortex_a_dap_read_coreregister_u32(target, &cpsr, 16);
1216 /* store current cpsr */
1217 if (retval != ERROR_OK)
1218 return retval;
1219
1220 LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
1221
1222 arm_set_cpsr(arm, cpsr);
1223
1224 /* update cache */
1225 for (i = 0; i <= ARM_PC; i++) {
1226 reg = arm_reg_current(arm, i);
1227
1228 buf_set_u32(reg->value, 0, 32, regfile[i]);
1229 reg->valid = 1;
1230 reg->dirty = 0;
1231 }
1232
1233 /* Fixup PC Resume Address */
1234 if (cpsr & (1 << 5)) {
1235 /* T bit set for Thumb or ThumbEE state */
1236 regfile[ARM_PC] -= 4;
1237 } else {
1238 /* ARM state */
1239 regfile[ARM_PC] -= 8;
1240 }
1241
1242 reg = arm->pc;
1243 buf_set_u32(reg->value, 0, 32, regfile[ARM_PC]);
1244 reg->dirty = reg->valid;
1245 }
1246
1247 if (arm->spsr) {
1248 /* read Saved PSR */
1249 retval = cortex_a_dap_read_coreregister_u32(target, &spsr, 17);
1250 /* store current spsr */
1251 if (retval != ERROR_OK)
1252 return retval;
1253
1254 reg = arm->spsr;
1255 buf_set_u32(reg->value, 0, 32, spsr);
1256 reg->valid = 1;
1257 reg->dirty = 0;
1258 }
1259
1260 #if 0
1261 /* TODO, Move this */
1262 uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1263 cortex_a_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1264 LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1265
1266 cortex_a_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1267 LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1268
1269 cortex_a_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1270 LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1271 #endif
1272
1273 /* Are we in an exception handler */
1274 /* armv4_5->exception_number = 0; */
1275 if (armv7a->post_debug_entry) {
1276 retval = armv7a->post_debug_entry(target);
1277 if (retval != ERROR_OK)
1278 return retval;
1279 }
1280
1281 return retval;
1282 }
1283
1284 static int cortex_a_post_debug_entry(struct target *target)
1285 {
1286 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1287 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1288 int retval;
1289
1290 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1291 retval = armv7a->arm.mrc(target, 15,
1292 0, 0, /* op1, op2 */
1293 1, 0, /* CRn, CRm */
1294 &cortex_a->cp15_control_reg);
1295 if (retval != ERROR_OK)
1296 return retval;
1297 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg);
1298 cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
1299
1300 if (armv7a->armv7a_mmu.armv7a_cache.info == -1)
1301 armv7a_identify_cache(target);
1302
1303 if (armv7a->is_armv7r) {
1304 armv7a->armv7a_mmu.mmu_enabled = 0;
1305 } else {
1306 armv7a->armv7a_mmu.mmu_enabled =
1307 (cortex_a->cp15_control_reg & 0x1U) ? 1 : 0;
1308 }
1309 armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled =
1310 (cortex_a->cp15_control_reg & 0x4U) ? 1 : 0;
1311 armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled =
1312 (cortex_a->cp15_control_reg & 0x1000U) ? 1 : 0;
1313 cortex_a->curr_mode = armv7a->arm.core_mode;
1314
1315 /* switch to SVC mode to read DACR */
1316 dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
1317 armv7a->arm.mrc(target, 15,
1318 0, 0, 3, 0,
1319 &cortex_a->cp15_dacr_reg);
1320
1321 LOG_DEBUG("cp15_dacr_reg: %8.8" PRIx32,
1322 cortex_a->cp15_dacr_reg);
1323
1324 dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1325 return ERROR_OK;
1326 }
1327
1328 int cortex_a_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
1329 {
1330 struct armv7a_common *armv7a = target_to_armv7a(target);
1331 uint32_t dscr;
1332
1333 /* Read DSCR */
1334 int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1335 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1336 if (ERROR_OK != retval)
1337 return retval;
1338
1339 /* clear bitfield */
1340 dscr &= ~bit_mask;
1341 /* put new value */
1342 dscr |= value & bit_mask;
1343
1344 /* write new DSCR */
1345 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1346 armv7a->debug_base + CPUDBG_DSCR, dscr);
1347 return retval;
1348 }
1349
1350 static int cortex_a_step(struct target *target, int current, target_addr_t address,
1351 int handle_breakpoints)
1352 {
1353 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1354 struct armv7a_common *armv7a = target_to_armv7a(target);
1355 struct arm *arm = &armv7a->arm;
1356 struct breakpoint *breakpoint = NULL;
1357 struct breakpoint stepbreakpoint;
1358 struct reg *r;
1359 int retval;
1360
1361 if (target->state != TARGET_HALTED) {
1362 LOG_WARNING("target not halted");
1363 return ERROR_TARGET_NOT_HALTED;
1364 }
1365
1366 /* current = 1: continue on current pc, otherwise continue at <address> */
1367 r = arm->pc;
1368 if (!current)
1369 buf_set_u32(r->value, 0, 32, address);
1370 else
1371 address = buf_get_u32(r->value, 0, 32);
1372
1373 /* The front-end may request us not to handle breakpoints.
1374 * But since Cortex-A uses breakpoint for single step,
1375 * we MUST handle breakpoints.
1376 */
1377 handle_breakpoints = 1;
1378 if (handle_breakpoints) {
1379 breakpoint = breakpoint_find(target, address);
1380 if (breakpoint)
1381 cortex_a_unset_breakpoint(target, breakpoint);
1382 }
1383
1384 /* Setup single step breakpoint */
1385 stepbreakpoint.address = address;
1386 stepbreakpoint.length = (arm->core_state == ARM_STATE_THUMB)
1387 ? 2 : 4;
1388 stepbreakpoint.type = BKPT_HARD;
1389 stepbreakpoint.set = 0;
1390
1391 /* Disable interrupts during single step if requested */
1392 if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1393 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, DSCR_INT_DIS);
1394 if (ERROR_OK != retval)
1395 return retval;
1396 }
1397
1398 /* Break on IVA mismatch */
1399 cortex_a_set_breakpoint(target, &stepbreakpoint, 0x04);
1400
1401 target->debug_reason = DBG_REASON_SINGLESTEP;
1402
1403 retval = cortex_a_resume(target, 1, address, 0, 0);
1404 if (retval != ERROR_OK)
1405 return retval;
1406
1407 int64_t then = timeval_ms();
1408 while (target->state != TARGET_HALTED) {
1409 retval = cortex_a_poll(target);
1410 if (retval != ERROR_OK)
1411 return retval;
1412 if (timeval_ms() > then + 1000) {
1413 LOG_ERROR("timeout waiting for target halt");
1414 return ERROR_FAIL;
1415 }
1416 }
1417
1418 cortex_a_unset_breakpoint(target, &stepbreakpoint);
1419
1420 /* Re-enable interrupts if they were disabled */
1421 if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1422 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, 0);
1423 if (ERROR_OK != retval)
1424 return retval;
1425 }
1426
1427
1428 target->debug_reason = DBG_REASON_BREAKPOINT;
1429
1430 if (breakpoint)
1431 cortex_a_set_breakpoint(target, breakpoint, 0);
1432
1433 if (target->state != TARGET_HALTED)
1434 LOG_DEBUG("target stepped");
1435
1436 return ERROR_OK;
1437 }
1438
1439 static int cortex_a_restore_context(struct target *target, bool bpwp)
1440 {
1441 struct armv7a_common *armv7a = target_to_armv7a(target);
1442
1443 LOG_DEBUG(" ");
1444
1445 if (armv7a->pre_restore_context)
1446 armv7a->pre_restore_context(target);
1447
1448 return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1449 }
1450
1451 /*
1452 * Cortex-A Breakpoint and watchpoint functions
1453 */
1454
1455 /* Setup hardware Breakpoint Register Pair */
1456 static int cortex_a_set_breakpoint(struct target *target,
1457 struct breakpoint *breakpoint, uint8_t matchmode)
1458 {
1459 int retval;
1460 int brp_i = 0;
1461 uint32_t control;
1462 uint8_t byte_addr_select = 0x0F;
1463 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1464 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1465 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1466
1467 if (breakpoint->set) {
1468 LOG_WARNING("breakpoint already set");
1469 return ERROR_OK;
1470 }
1471
1472 if (breakpoint->type == BKPT_HARD) {
1473 while (brp_list[brp_i].used && (brp_i < cortex_a->brp_num))
1474 brp_i++;
1475 if (brp_i >= cortex_a->brp_num) {
1476 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1477 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1478 }
1479 breakpoint->set = brp_i + 1;
1480 if (breakpoint->length == 2)
1481 byte_addr_select = (3 << (breakpoint->address & 0x02));
1482 control = ((matchmode & 0x7) << 20)
1483 | (byte_addr_select << 5)
1484 | (3 << 1) | 1;
1485 brp_list[brp_i].used = 1;
1486 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1487 brp_list[brp_i].control = control;
1488 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1489 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1490 brp_list[brp_i].value);
1491 if (retval != ERROR_OK)
1492 return retval;
1493 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1494 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1495 brp_list[brp_i].control);
1496 if (retval != ERROR_OK)
1497 return retval;
1498 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1499 brp_list[brp_i].control,
1500 brp_list[brp_i].value);
1501 } else if (breakpoint->type == BKPT_SOFT) {
1502 uint8_t code[4];
1503 if (breakpoint->length == 2)
1504 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1505 else
1506 buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1507 retval = target_read_memory(target,
1508 breakpoint->address & 0xFFFFFFFE,
1509 breakpoint->length, 1,
1510 breakpoint->orig_instr);
1511 if (retval != ERROR_OK)
1512 return retval;
1513
1514 /* make sure data cache is cleaned & invalidated down to PoC */
1515 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1516 armv7a_cache_flush_virt(target, breakpoint->address,
1517 breakpoint->length);
1518 }
1519
1520 retval = target_write_memory(target,
1521 breakpoint->address & 0xFFFFFFFE,
1522 breakpoint->length, 1, code);
1523 if (retval != ERROR_OK)
1524 return retval;
1525
1526 /* update i-cache at breakpoint location */
1527 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1528 breakpoint->length);
1529 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1530 breakpoint->length);
1531
1532 breakpoint->set = 0x11; /* Any nice value but 0 */
1533 }
1534
1535 return ERROR_OK;
1536 }
1537
1538 static int cortex_a_set_context_breakpoint(struct target *target,
1539 struct breakpoint *breakpoint, uint8_t matchmode)
1540 {
1541 int retval = ERROR_FAIL;
1542 int brp_i = 0;
1543 uint32_t control;
1544 uint8_t byte_addr_select = 0x0F;
1545 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1546 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1547 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1548
1549 if (breakpoint->set) {
1550 LOG_WARNING("breakpoint already set");
1551 return retval;
1552 }
1553 /*check available context BRPs*/
1554 while ((brp_list[brp_i].used ||
1555 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < cortex_a->brp_num))
1556 brp_i++;
1557
1558 if (brp_i >= cortex_a->brp_num) {
1559 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1560 return ERROR_FAIL;
1561 }
1562
1563 breakpoint->set = brp_i + 1;
1564 control = ((matchmode & 0x7) << 20)
1565 | (byte_addr_select << 5)
1566 | (3 << 1) | 1;
1567 brp_list[brp_i].used = 1;
1568 brp_list[brp_i].value = (breakpoint->asid);
1569 brp_list[brp_i].control = control;
1570 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1571 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1572 brp_list[brp_i].value);
1573 if (retval != ERROR_OK)
1574 return retval;
1575 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1576 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1577 brp_list[brp_i].control);
1578 if (retval != ERROR_OK)
1579 return retval;
1580 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1581 brp_list[brp_i].control,
1582 brp_list[brp_i].value);
1583 return ERROR_OK;
1584
1585 }
1586
1587 static int cortex_a_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1588 {
1589 int retval = ERROR_FAIL;
1590 int brp_1 = 0; /* holds the contextID pair */
1591 int brp_2 = 0; /* holds the IVA pair */
1592 uint32_t control_CTX, control_IVA;
1593 uint8_t CTX_byte_addr_select = 0x0F;
1594 uint8_t IVA_byte_addr_select = 0x0F;
1595 uint8_t CTX_machmode = 0x03;
1596 uint8_t IVA_machmode = 0x01;
1597 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1598 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1599 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1600
1601 if (breakpoint->set) {
1602 LOG_WARNING("breakpoint already set");
1603 return retval;
1604 }
1605 /*check available context BRPs*/
1606 while ((brp_list[brp_1].used ||
1607 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < cortex_a->brp_num))
1608 brp_1++;
1609
1610 printf("brp(CTX) found num: %d\n", brp_1);
1611 if (brp_1 >= cortex_a->brp_num) {
1612 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1613 return ERROR_FAIL;
1614 }
1615
1616 while ((brp_list[brp_2].used ||
1617 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < cortex_a->brp_num))
1618 brp_2++;
1619
1620 printf("brp(IVA) found num: %d\n", brp_2);
1621 if (brp_2 >= cortex_a->brp_num) {
1622 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1623 return ERROR_FAIL;
1624 }
1625
1626 breakpoint->set = brp_1 + 1;
1627 breakpoint->linked_BRP = brp_2;
1628 control_CTX = ((CTX_machmode & 0x7) << 20)
1629 | (brp_2 << 16)
1630 | (0 << 14)
1631 | (CTX_byte_addr_select << 5)
1632 | (3 << 1) | 1;
1633 brp_list[brp_1].used = 1;
1634 brp_list[brp_1].value = (breakpoint->asid);
1635 brp_list[brp_1].control = control_CTX;
1636 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1637 + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].BRPn,
1638 brp_list[brp_1].value);
1639 if (retval != ERROR_OK)
1640 return retval;
1641 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1642 + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].BRPn,
1643 brp_list[brp_1].control);
1644 if (retval != ERROR_OK)
1645 return retval;
1646
1647 control_IVA = ((IVA_machmode & 0x7) << 20)
1648 | (brp_1 << 16)
1649 | (IVA_byte_addr_select << 5)
1650 | (3 << 1) | 1;
1651 brp_list[brp_2].used = 1;
1652 brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1653 brp_list[brp_2].control = control_IVA;
1654 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1655 + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].BRPn,
1656 brp_list[brp_2].value);
1657 if (retval != ERROR_OK)
1658 return retval;
1659 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1660 + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].BRPn,
1661 brp_list[brp_2].control);
1662 if (retval != ERROR_OK)
1663 return retval;
1664
1665 return ERROR_OK;
1666 }
1667
1668 static int cortex_a_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1669 {
1670 int retval;
1671 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1672 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1673 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1674
1675 if (!breakpoint->set) {
1676 LOG_WARNING("breakpoint not set");
1677 return ERROR_OK;
1678 }
1679
1680 if (breakpoint->type == BKPT_HARD) {
1681 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1682 int brp_i = breakpoint->set - 1;
1683 int brp_j = breakpoint->linked_BRP;
1684 if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1685 LOG_DEBUG("Invalid BRP number in breakpoint");
1686 return ERROR_OK;
1687 }
1688 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1689 brp_list[brp_i].control, brp_list[brp_i].value);
1690 brp_list[brp_i].used = 0;
1691 brp_list[brp_i].value = 0;
1692 brp_list[brp_i].control = 0;
1693 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1694 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1695 brp_list[brp_i].control);
1696 if (retval != ERROR_OK)
1697 return retval;
1698 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1699 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1700 brp_list[brp_i].value);
1701 if (retval != ERROR_OK)
1702 return retval;
1703 if ((brp_j < 0) || (brp_j >= cortex_a->brp_num)) {
1704 LOG_DEBUG("Invalid BRP number in breakpoint");
1705 return ERROR_OK;
1706 }
1707 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_j,
1708 brp_list[brp_j].control, brp_list[brp_j].value);
1709 brp_list[brp_j].used = 0;
1710 brp_list[brp_j].value = 0;
1711 brp_list[brp_j].control = 0;
1712 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1713 + CPUDBG_BCR_BASE + 4 * brp_list[brp_j].BRPn,
1714 brp_list[brp_j].control);
1715 if (retval != ERROR_OK)
1716 return retval;
1717 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1718 + CPUDBG_BVR_BASE + 4 * brp_list[brp_j].BRPn,
1719 brp_list[brp_j].value);
1720 if (retval != ERROR_OK)
1721 return retval;
1722 breakpoint->linked_BRP = 0;
1723 breakpoint->set = 0;
1724 return ERROR_OK;
1725
1726 } else {
1727 int brp_i = breakpoint->set - 1;
1728 if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1729 LOG_DEBUG("Invalid BRP number in breakpoint");
1730 return ERROR_OK;
1731 }
1732 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1733 brp_list[brp_i].control, brp_list[brp_i].value);
1734 brp_list[brp_i].used = 0;
1735 brp_list[brp_i].value = 0;
1736 brp_list[brp_i].control = 0;
1737 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1738 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1739 brp_list[brp_i].control);
1740 if (retval != ERROR_OK)
1741 return retval;
1742 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1743 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1744 brp_list[brp_i].value);
1745 if (retval != ERROR_OK)
1746 return retval;
1747 breakpoint->set = 0;
1748 return ERROR_OK;
1749 }
1750 } else {
1751
1752 /* make sure data cache is cleaned & invalidated down to PoC */
1753 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1754 armv7a_cache_flush_virt(target, breakpoint->address,
1755 breakpoint->length);
1756 }
1757
1758 /* restore original instruction (kept in target endianness) */
1759 if (breakpoint->length == 4) {
1760 retval = target_write_memory(target,
1761 breakpoint->address & 0xFFFFFFFE,
1762 4, 1, breakpoint->orig_instr);
1763 if (retval != ERROR_OK)
1764 return retval;
1765 } else {
1766 retval = target_write_memory(target,
1767 breakpoint->address & 0xFFFFFFFE,
1768 2, 1, breakpoint->orig_instr);
1769 if (retval != ERROR_OK)
1770 return retval;
1771 }
1772
1773 /* update i-cache at breakpoint location */
1774 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1775 breakpoint->length);
1776 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1777 breakpoint->length);
1778 }
1779 breakpoint->set = 0;
1780
1781 return ERROR_OK;
1782 }
1783
1784 static int cortex_a_add_breakpoint(struct target *target,
1785 struct breakpoint *breakpoint)
1786 {
1787 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1788
1789 if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1790 LOG_INFO("no hardware breakpoint available");
1791 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1792 }
1793
1794 if (breakpoint->type == BKPT_HARD)
1795 cortex_a->brp_num_available--;
1796
1797 return cortex_a_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1798 }
1799
1800 static int cortex_a_add_context_breakpoint(struct target *target,
1801 struct breakpoint *breakpoint)
1802 {
1803 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1804
1805 if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1806 LOG_INFO("no hardware breakpoint available");
1807 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1808 }
1809
1810 if (breakpoint->type == BKPT_HARD)
1811 cortex_a->brp_num_available--;
1812
1813 return cortex_a_set_context_breakpoint(target, breakpoint, 0x02); /* asid match */
1814 }
1815
1816 static int cortex_a_add_hybrid_breakpoint(struct target *target,
1817 struct breakpoint *breakpoint)
1818 {
1819 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1820
1821 if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1822 LOG_INFO("no hardware breakpoint available");
1823 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1824 }
1825
1826 if (breakpoint->type == BKPT_HARD)
1827 cortex_a->brp_num_available--;
1828
1829 return cortex_a_set_hybrid_breakpoint(target, breakpoint); /* ??? */
1830 }
1831
1832
1833 static int cortex_a_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1834 {
1835 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1836
1837 #if 0
1838 /* It is perfectly possible to remove breakpoints while the target is running */
1839 if (target->state != TARGET_HALTED) {
1840 LOG_WARNING("target not halted");
1841 return ERROR_TARGET_NOT_HALTED;
1842 }
1843 #endif
1844
1845 if (breakpoint->set) {
1846 cortex_a_unset_breakpoint(target, breakpoint);
1847 if (breakpoint->type == BKPT_HARD)
1848 cortex_a->brp_num_available++;
1849 }
1850
1851
1852 return ERROR_OK;
1853 }
1854
1855 /*
1856 * Cortex-A Reset functions
1857 */
1858
1859 static int cortex_a_assert_reset(struct target *target)
1860 {
1861 struct armv7a_common *armv7a = target_to_armv7a(target);
1862
1863 LOG_DEBUG(" ");
1864
1865 /* FIXME when halt is requested, make it work somehow... */
1866
1867 /* This function can be called in "target not examined" state */
1868
1869 /* Issue some kind of warm reset. */
1870 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1871 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1872 else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1873 /* REVISIT handle "pulls" cases, if there's
1874 * hardware that needs them to work.
1875 */
1876
1877 /*
1878 * FIXME: fix reset when transport is SWD. This is a temporary
1879 * work-around for release v0.10 that is not intended to stay!
1880 */
1881 if (transport_is_swd() ||
1882 (target->reset_halt && (jtag_get_reset_config() & RESET_SRST_NO_GATING)))
1883 jtag_add_reset(0, 1);
1884
1885 } else {
1886 LOG_ERROR("%s: how to reset?", target_name(target));
1887 return ERROR_FAIL;
1888 }
1889
1890 /* registers are now invalid */
1891 if (target_was_examined(target))
1892 register_cache_invalidate(armv7a->arm.core_cache);
1893
1894 target->state = TARGET_RESET;
1895
1896 return ERROR_OK;
1897 }
1898
1899 static int cortex_a_deassert_reset(struct target *target)
1900 {
1901 int retval;
1902
1903 LOG_DEBUG(" ");
1904
1905 /* be certain SRST is off */
1906 jtag_add_reset(0, 0);
1907
1908 if (target_was_examined(target)) {
1909 retval = cortex_a_poll(target);
1910 if (retval != ERROR_OK)
1911 return retval;
1912 }
1913
1914 if (target->reset_halt) {
1915 if (target->state != TARGET_HALTED) {
1916 LOG_WARNING("%s: ran after reset and before halt ...",
1917 target_name(target));
1918 if (target_was_examined(target)) {
1919 retval = target_halt(target);
1920 if (retval != ERROR_OK)
1921 return retval;
1922 } else
1923 target->state = TARGET_UNKNOWN;
1924 }
1925 }
1926
1927 return ERROR_OK;
1928 }
1929
1930 static int cortex_a_set_dcc_mode(struct target *target, uint32_t mode, uint32_t *dscr)
1931 {
1932 /* Changes the mode of the DCC between non-blocking, stall, and fast mode.
1933 * New desired mode must be in mode. Current value of DSCR must be in
1934 * *dscr, which is updated with new value.
1935 *
1936 * This function elides actually sending the mode-change over the debug
1937 * interface if the mode is already set as desired.
1938 */
1939 uint32_t new_dscr = (*dscr & ~DSCR_EXT_DCC_MASK) | mode;
1940 if (new_dscr != *dscr) {
1941 struct armv7a_common *armv7a = target_to_armv7a(target);
1942 int retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1943 armv7a->debug_base + CPUDBG_DSCR, new_dscr);
1944 if (retval == ERROR_OK)
1945 *dscr = new_dscr;
1946 return retval;
1947 } else {
1948 return ERROR_OK;
1949 }
1950 }
1951
1952 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
1953 uint32_t value, uint32_t *dscr)
1954 {
1955 /* Waits until the specified bit(s) of DSCR take on a specified value. */
1956 struct armv7a_common *armv7a = target_to_armv7a(target);
1957 int64_t then = timeval_ms();
1958 int retval;
1959
1960 while ((*dscr & mask) != value) {
1961 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1962 armv7a->debug_base + CPUDBG_DSCR, dscr);
1963 if (retval != ERROR_OK)
1964 return retval;
1965 if (timeval_ms() > then + 1000) {
1966 LOG_ERROR("timeout waiting for DSCR bit change");
1967 return ERROR_FAIL;
1968 }
1969 }
1970 return ERROR_OK;
1971 }
1972
1973 static int cortex_a_read_copro(struct target *target, uint32_t opcode,
1974 uint32_t *data, uint32_t *dscr)
1975 {
1976 int retval;
1977 struct armv7a_common *armv7a = target_to_armv7a(target);
1978
1979 /* Move from coprocessor to R0. */
1980 retval = cortex_a_exec_opcode(target, opcode, dscr);
1981 if (retval != ERROR_OK)
1982 return retval;
1983
1984 /* Move from R0 to DTRTX. */
1985 retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0), dscr);
1986 if (retval != ERROR_OK)
1987 return retval;
1988
1989 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
1990 * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
1991 * must also check TXfull_l). Most of the time this will be free
1992 * because TXfull_l will be set immediately and cached in dscr. */
1993 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
1994 DSCR_DTRTX_FULL_LATCHED, dscr);
1995 if (retval != ERROR_OK)
1996 return retval;
1997
1998 /* Read the value transferred to DTRTX. */
1999 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2000 armv7a->debug_base + CPUDBG_DTRTX, data);
2001 if (retval != ERROR_OK)
2002 return retval;
2003
2004 return ERROR_OK;
2005 }
2006
2007 static int cortex_a_read_dfar_dfsr(struct target *target, uint32_t *dfar,
2008 uint32_t *dfsr, uint32_t *dscr)
2009 {
2010 int retval;
2011
2012 if (dfar) {
2013 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 6, 0, 0), dfar, dscr);
2014 if (retval != ERROR_OK)
2015 return retval;
2016 }
2017
2018 if (dfsr) {
2019 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 5, 0, 0), dfsr, dscr);
2020 if (retval != ERROR_OK)
2021 return retval;
2022 }
2023
2024 return ERROR_OK;
2025 }
2026
2027 static int cortex_a_write_copro(struct target *target, uint32_t opcode,
2028 uint32_t data, uint32_t *dscr)
2029 {
2030 int retval;
2031 struct armv7a_common *armv7a = target_to_armv7a(target);
2032
2033 /* Write the value into DTRRX. */
2034 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2035 armv7a->debug_base + CPUDBG_DTRRX, data);
2036 if (retval != ERROR_OK)
2037 return retval;
2038
2039 /* Move from DTRRX to R0. */
2040 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), dscr);
2041 if (retval != ERROR_OK)
2042 return retval;
2043
2044 /* Move from R0 to coprocessor. */
2045 retval = cortex_a_exec_opcode(target, opcode, dscr);
2046 if (retval != ERROR_OK)
2047 return retval;
2048
2049 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2050 * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2051 * check RXfull_l). Most of the time this will be free because RXfull_l
2052 * will be cleared immediately and cached in dscr. */
2053 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
2054 if (retval != ERROR_OK)
2055 return retval;
2056
2057 return ERROR_OK;
2058 }
2059
2060 static int cortex_a_write_dfar_dfsr(struct target *target, uint32_t dfar,
2061 uint32_t dfsr, uint32_t *dscr)
2062 {
2063 int retval;
2064
2065 retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 6, 0, 0), dfar, dscr);
2066 if (retval != ERROR_OK)
2067 return retval;
2068
2069 retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 5, 0, 0), dfsr, dscr);
2070 if (retval != ERROR_OK)
2071 return retval;
2072
2073 return ERROR_OK;
2074 }
2075
2076 static int cortex_a_dfsr_to_error_code(uint32_t dfsr)
2077 {
2078 uint32_t status, upper4;
2079
2080 if (dfsr & (1 << 9)) {
2081 /* LPAE format. */
2082 status = dfsr & 0x3f;
2083 upper4 = status >> 2;
2084 if (upper4 == 1 || upper4 == 2 || upper4 == 3 || upper4 == 15)
2085 return ERROR_TARGET_TRANSLATION_FAULT;
2086 else if (status == 33)
2087 return ERROR_TARGET_UNALIGNED_ACCESS;
2088 else
2089 return ERROR_TARGET_DATA_ABORT;
2090 } else {
2091 /* Normal format. */
2092 status = ((dfsr >> 6) & 0x10) | (dfsr & 0xf);
2093 if (status == 1)
2094 return ERROR_TARGET_UNALIGNED_ACCESS;
2095 else if (status == 5 || status == 7 || status == 3 || status == 6 ||
2096 status == 9 || status == 11 || status == 13 || status == 15)
2097 return ERROR_TARGET_TRANSLATION_FAULT;
2098 else
2099 return ERROR_TARGET_DATA_ABORT;
2100 }
2101 }
2102
2103 static int cortex_a_write_cpu_memory_slow(struct target *target,
2104 uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2105 {
2106 /* Writes count objects of size size from *buffer. Old value of DSCR must
2107 * be in *dscr; updated to new value. This is slow because it works for
2108 * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2109 * the address is aligned, cortex_a_write_cpu_memory_fast should be
2110 * preferred.
2111 * Preconditions:
2112 * - Address is in R0.
2113 * - R0 is marked dirty.
2114 */
2115 struct armv7a_common *armv7a = target_to_armv7a(target);
2116 struct arm *arm = &armv7a->arm;
2117 int retval;
2118
2119 /* Mark register R1 as dirty, to use for transferring data. */
2120 arm_reg_current(arm, 1)->dirty = true;
2121
2122 /* Switch to non-blocking mode if not already in that mode. */
2123 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2124 if (retval != ERROR_OK)
2125 return retval;
2126
2127 /* Go through the objects. */
2128 while (count) {
2129 /* Write the value to store into DTRRX. */
2130 uint32_t data, opcode;
2131 if (size == 1)
2132 data = *buffer;
2133 else if (size == 2)
2134 data = target_buffer_get_u16(target, buffer);
2135 else
2136 data = target_buffer_get_u32(target, buffer);
2137 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2138 armv7a->debug_base + CPUDBG_DTRRX, data);
2139 if (retval != ERROR_OK)
2140 return retval;
2141
2142 /* Transfer the value from DTRRX to R1. */
2143 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), dscr);
2144 if (retval != ERROR_OK)
2145 return retval;
2146
2147 /* Write the value transferred to R1 into memory. */
2148 if (size == 1)
2149 opcode = ARMV4_5_STRB_IP(1, 0);
2150 else if (size == 2)
2151 opcode = ARMV4_5_STRH_IP(1, 0);
2152 else
2153 opcode = ARMV4_5_STRW_IP(1, 0);
2154 retval = cortex_a_exec_opcode(target, opcode, dscr);
2155 if (retval != ERROR_OK)
2156 return retval;
2157
2158 /* Check for faults and return early. */
2159 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2160 return ERROR_OK; /* A data fault is not considered a system failure. */
2161
2162 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture
2163 * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2164 * must also check RXfull_l). Most of the time this will be free
2165 * because RXfull_l will be cleared immediately and cached in dscr. */
2166 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
2167 if (retval != ERROR_OK)
2168 return retval;
2169
2170 /* Advance. */
2171 buffer += size;
2172 --count;
2173 }
2174
2175 return ERROR_OK;
2176 }
2177
2178 static int cortex_a_write_cpu_memory_fast(struct target *target,
2179 uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2180 {
2181 /* Writes count objects of size 4 from *buffer. Old value of DSCR must be
2182 * in *dscr; updated to new value. This is fast but only works for
2183 * word-sized objects at aligned addresses.
2184 * Preconditions:
2185 * - Address is in R0 and must be a multiple of 4.
2186 * - R0 is marked dirty.
2187 */
2188 struct armv7a_common *armv7a = target_to_armv7a(target);
2189 int retval;
2190
2191 /* Switch to fast mode if not already in that mode. */
2192 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2193 if (retval != ERROR_OK)
2194 return retval;
2195
2196 /* Latch STC instruction. */
2197 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2198 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
2199 if (retval != ERROR_OK)
2200 return retval;
2201
2202 /* Transfer all the data and issue all the instructions. */
2203 return mem_ap_write_buf_noincr(armv7a->debug_ap, buffer,
2204 4, count, armv7a->debug_base + CPUDBG_DTRRX);
2205 }
2206
2207 static int cortex_a_write_cpu_memory(struct target *target,
2208 uint32_t address, uint32_t size,
2209 uint32_t count, const uint8_t *buffer)
2210 {
2211 /* Write memory through the CPU. */
2212 int retval, final_retval;
2213 struct armv7a_common *armv7a = target_to_armv7a(target);
2214 struct arm *arm = &armv7a->arm;
2215 uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2216
2217 LOG_DEBUG("Writing CPU memory address 0x%" PRIx32 " size %" PRIu32 " count %" PRIu32,
2218 address, size, count);
2219 if (target->state != TARGET_HALTED) {
2220 LOG_WARNING("target not halted");
2221 return ERROR_TARGET_NOT_HALTED;
2222 }
2223
2224 if (!count)
2225 return ERROR_OK;
2226
2227 /* Clear any abort. */
2228 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2229 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2230 if (retval != ERROR_OK)
2231 return retval;
2232
2233 /* Read DSCR. */
2234 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2235 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2236 if (retval != ERROR_OK)
2237 return retval;
2238
2239 /* Switch to non-blocking mode if not already in that mode. */
2240 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2241 if (retval != ERROR_OK)
2242 goto out;
2243
2244 /* Mark R0 as dirty. */
2245 arm_reg_current(arm, 0)->dirty = true;
2246
2247 /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2248 retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2249 if (retval != ERROR_OK)
2250 goto out;
2251
2252 /* Get the memory address into R0. */
2253 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2254 armv7a->debug_base + CPUDBG_DTRRX, address);
2255 if (retval != ERROR_OK)
2256 goto out;
2257 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2258 if (retval != ERROR_OK)
2259 goto out;
2260
2261 if (size == 4 && (address % 4) == 0) {
2262 /* We are doing a word-aligned transfer, so use fast mode. */
2263 retval = cortex_a_write_cpu_memory_fast(target, count, buffer, &dscr);
2264 } else {
2265 /* Use slow path. */
2266 retval = cortex_a_write_cpu_memory_slow(target, size, count, buffer, &dscr);
2267 }
2268
2269 out:
2270 final_retval = retval;
2271
2272 /* Switch to non-blocking mode if not already in that mode. */
2273 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2274 if (final_retval == ERROR_OK)
2275 final_retval = retval;
2276
2277 /* Wait for last issued instruction to complete. */
2278 retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2279 if (final_retval == ERROR_OK)
2280 final_retval = retval;
2281
2282 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2283 * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2284 * check RXfull_l). Most of the time this will be free because RXfull_l
2285 * will be cleared immediately and cached in dscr. However, don't do this
2286 * if there is fault, because then the instruction might not have completed
2287 * successfully. */
2288 if (!(dscr & DSCR_STICKY_ABORT_PRECISE)) {
2289 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, &dscr);
2290 if (retval != ERROR_OK)
2291 return retval;
2292 }
2293
2294 /* If there were any sticky abort flags, clear them. */
2295 if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2296 fault_dscr = dscr;
2297 mem_ap_write_atomic_u32(armv7a->debug_ap,
2298 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2299 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2300 } else {
2301 fault_dscr = 0;
2302 }
2303
2304 /* Handle synchronous data faults. */
2305 if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2306 if (final_retval == ERROR_OK) {
2307 /* Final return value will reflect cause of fault. */
2308 retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2309 if (retval == ERROR_OK) {
2310 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2311 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2312 } else
2313 final_retval = retval;
2314 }
2315 /* Fault destroyed DFAR/DFSR; restore them. */
2316 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2317 if (retval != ERROR_OK)
2318 LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2319 }
2320
2321 /* Handle asynchronous data faults. */
2322 if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2323 if (final_retval == ERROR_OK)
2324 /* No other error has been recorded so far, so keep this one. */
2325 final_retval = ERROR_TARGET_DATA_ABORT;
2326 }
2327
2328 /* If the DCC is nonempty, clear it. */
2329 if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2330 uint32_t dummy;
2331 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2332 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2333 if (final_retval == ERROR_OK)
2334 final_retval = retval;
2335 }
2336 if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2337 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2338 if (final_retval == ERROR_OK)
2339 final_retval = retval;
2340 }
2341
2342 /* Done. */
2343 return final_retval;
2344 }
2345
2346 static int cortex_a_read_cpu_memory_slow(struct target *target,
2347 uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
2348 {
2349 /* Reads count objects of size size into *buffer. Old value of DSCR must be
2350 * in *dscr; updated to new value. This is slow because it works for
2351 * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2352 * the address is aligned, cortex_a_read_cpu_memory_fast should be
2353 * preferred.
2354 * Preconditions:
2355 * - Address is in R0.
2356 * - R0 is marked dirty.
2357 */
2358 struct armv7a_common *armv7a = target_to_armv7a(target);
2359 struct arm *arm = &armv7a->arm;
2360 int retval;
2361
2362 /* Mark register R1 as dirty, to use for transferring data. */
2363 arm_reg_current(arm, 1)->dirty = true;
2364
2365 /* Switch to non-blocking mode if not already in that mode. */
2366 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2367 if (retval != ERROR_OK)
2368 return retval;
2369
2370 /* Go through the objects. */
2371 while (count) {
2372 /* Issue a load of the appropriate size to R1. */
2373 uint32_t opcode, data;
2374 if (size == 1)
2375 opcode = ARMV4_5_LDRB_IP(1, 0);
2376 else if (size == 2)
2377 opcode = ARMV4_5_LDRH_IP(1, 0);
2378 else
2379 opcode = ARMV4_5_LDRW_IP(1, 0);
2380 retval = cortex_a_exec_opcode(target, opcode, dscr);
2381 if (retval != ERROR_OK)
2382 return retval;
2383
2384 /* Issue a write of R1 to DTRTX. */
2385 retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 1, 0, 5, 0), dscr);
2386 if (retval != ERROR_OK)
2387 return retval;
2388
2389 /* Check for faults and return early. */
2390 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2391 return ERROR_OK; /* A data fault is not considered a system failure. */
2392
2393 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2394 * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2395 * must also check TXfull_l). Most of the time this will be free
2396 * because TXfull_l will be set immediately and cached in dscr. */
2397 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2398 DSCR_DTRTX_FULL_LATCHED, dscr);
2399 if (retval != ERROR_OK)
2400 return retval;
2401
2402 /* Read the value transferred to DTRTX into the buffer. */
2403 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2404 armv7a->debug_base + CPUDBG_DTRTX, &data);
2405 if (retval != ERROR_OK)
2406 return retval;
2407 if (size == 1)
2408 *buffer = (uint8_t) data;
2409 else if (size == 2)
2410 target_buffer_set_u16(target, buffer, (uint16_t) data);
2411 else
2412 target_buffer_set_u32(target, buffer, data);
2413
2414 /* Advance. */
2415 buffer += size;
2416 --count;
2417 }
2418
2419 return ERROR_OK;
2420 }
2421
2422 static int cortex_a_read_cpu_memory_fast(struct target *target,
2423 uint32_t count, uint8_t *buffer, uint32_t *dscr)
2424 {
2425 /* Reads count objects of size 4 into *buffer. Old value of DSCR must be in
2426 * *dscr; updated to new value. This is fast but only works for word-sized
2427 * objects at aligned addresses.
2428 * Preconditions:
2429 * - Address is in R0 and must be a multiple of 4.
2430 * - R0 is marked dirty.
2431 */
2432 struct armv7a_common *armv7a = target_to_armv7a(target);
2433 uint32_t u32;
2434 int retval;
2435
2436 /* Switch to non-blocking mode if not already in that mode. */
2437 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2438 if (retval != ERROR_OK)
2439 return retval;
2440
2441 /* Issue the LDC instruction via a write to ITR. */
2442 retval = cortex_a_exec_opcode(target, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4), dscr);
2443 if (retval != ERROR_OK)
2444 return retval;
2445
2446 count--;
2447
2448 if (count > 0) {
2449 /* Switch to fast mode if not already in that mode. */
2450 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2451 if (retval != ERROR_OK)
2452 return retval;
2453
2454 /* Latch LDC instruction. */
2455 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2456 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4));
2457 if (retval != ERROR_OK)
2458 return retval;
2459
2460 /* Read the value transferred to DTRTX into the buffer. Due to fast
2461 * mode rules, this blocks until the instruction finishes executing and
2462 * then reissues the read instruction to read the next word from
2463 * memory. The last read of DTRTX in this call reads the second-to-last
2464 * word from memory and issues the read instruction for the last word.
2465 */
2466 retval = mem_ap_read_buf_noincr(armv7a->debug_ap, buffer,
2467 4, count, armv7a->debug_base + CPUDBG_DTRTX);
2468 if (retval != ERROR_OK)
2469 return retval;
2470
2471 /* Advance. */
2472 buffer += count * 4;
2473 }
2474
2475 /* Wait for last issued instruction to complete. */
2476 retval = cortex_a_wait_instrcmpl(target, dscr, false);
2477 if (retval != ERROR_OK)
2478 return retval;
2479
2480 /* Switch to non-blocking mode if not already in that mode. */
2481 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2482 if (retval != ERROR_OK)
2483 return retval;
2484
2485 /* Check for faults and return early. */
2486 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2487 return ERROR_OK; /* A data fault is not considered a system failure. */
2488
2489 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture manual
2490 * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2491 * check TXfull_l). Most of the time this will be free because TXfull_l
2492 * will be set immediately and cached in dscr. */
2493 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2494 DSCR_DTRTX_FULL_LATCHED, dscr);
2495 if (retval != ERROR_OK)
2496 return retval;
2497
2498 /* Read the value transferred to DTRTX into the buffer. This is the last
2499 * word. */
2500 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2501 armv7a->debug_base + CPUDBG_DTRTX, &u32);
2502 if (retval != ERROR_OK)
2503 return retval;
2504 target_buffer_set_u32(target, buffer, u32);
2505
2506 return ERROR_OK;
2507 }
2508
2509 static int cortex_a_read_cpu_memory(struct target *target,
2510 uint32_t address, uint32_t size,
2511 uint32_t count, uint8_t *buffer)
2512 {
2513 /* Read memory through the CPU. */
2514 int retval, final_retval;
2515 struct armv7a_common *armv7a = target_to_armv7a(target);
2516 struct arm *arm = &armv7a->arm;
2517 uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2518
2519 LOG_DEBUG("Reading CPU memory address 0x%" PRIx32 " size %" PRIu32 " count %" PRIu32,
2520 address, size, count);
2521 if (target->state != TARGET_HALTED) {
2522 LOG_WARNING("target not halted");
2523 return ERROR_TARGET_NOT_HALTED;
2524 }
2525
2526 if (!count)
2527 return ERROR_OK;
2528
2529 /* Clear any abort. */
2530 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2531 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2532 if (retval != ERROR_OK)
2533 return retval;
2534
2535 /* Read DSCR */
2536 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2537 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2538 if (retval != ERROR_OK)
2539 return retval;
2540
2541 /* Switch to non-blocking mode if not already in that mode. */
2542 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2543 if (retval != ERROR_OK)
2544 goto out;
2545
2546 /* Mark R0 as dirty. */
2547 arm_reg_current(arm, 0)->dirty = true;
2548
2549 /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2550 retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2551 if (retval != ERROR_OK)
2552 goto out;
2553
2554 /* Get the memory address into R0. */
2555 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2556 armv7a->debug_base + CPUDBG_DTRRX, address);
2557 if (retval != ERROR_OK)
2558 goto out;
2559 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2560 if (retval != ERROR_OK)
2561 goto out;
2562
2563 if (size == 4 && (address % 4) == 0) {
2564 /* We are doing a word-aligned transfer, so use fast mode. */
2565 retval = cortex_a_read_cpu_memory_fast(target, count, buffer, &dscr);
2566 } else {
2567 /* Use slow path. */
2568 retval = cortex_a_read_cpu_memory_slow(target, size, count, buffer, &dscr);
2569 }
2570
2571 out:
2572 final_retval = retval;
2573
2574 /* Switch to non-blocking mode if not already in that mode. */
2575 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2576 if (final_retval == ERROR_OK)
2577 final_retval = retval;
2578
2579 /* Wait for last issued instruction to complete. */
2580 retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2581 if (final_retval == ERROR_OK)
2582 final_retval = retval;
2583
2584 /* If there were any sticky abort flags, clear them. */
2585 if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2586 fault_dscr = dscr;
2587 mem_ap_write_atomic_u32(armv7a->debug_ap,
2588 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2589 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2590 } else {
2591 fault_dscr = 0;
2592 }
2593
2594 /* Handle synchronous data faults. */
2595 if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2596 if (final_retval == ERROR_OK) {
2597 /* Final return value will reflect cause of fault. */
2598 retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2599 if (retval == ERROR_OK) {
2600 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2601 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2602 } else
2603 final_retval = retval;
2604 }
2605 /* Fault destroyed DFAR/DFSR; restore them. */
2606 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2607 if (retval != ERROR_OK)
2608 LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2609 }
2610
2611 /* Handle asynchronous data faults. */
2612 if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2613 if (final_retval == ERROR_OK)
2614 /* No other error has been recorded so far, so keep this one. */
2615 final_retval = ERROR_TARGET_DATA_ABORT;
2616 }
2617
2618 /* If the DCC is nonempty, clear it. */
2619 if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2620 uint32_t dummy;
2621 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2622 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2623 if (final_retval == ERROR_OK)
2624 final_retval = retval;
2625 }
2626 if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2627 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2628 if (final_retval == ERROR_OK)
2629 final_retval = retval;
2630 }
2631
2632 /* Done. */
2633 return final_retval;
2634 }
2635
2636
2637 /*
2638 * Cortex-A Memory access
2639 *
2640 * This is same Cortex-M3 but we must also use the correct
2641 * ap number for every access.
2642 */
2643
2644 static int cortex_a_read_phys_memory(struct target *target,
2645 target_addr_t address, uint32_t size,
2646 uint32_t count, uint8_t *buffer)
2647 {
2648 struct armv7a_common *armv7a = target_to_armv7a(target);
2649 struct adiv5_dap *swjdp = armv7a->arm.dap;
2650 uint8_t apsel = swjdp->apsel;
2651 int retval;
2652
2653 if (!count || !buffer)
2654 return ERROR_COMMAND_SYNTAX_ERROR;
2655
2656 LOG_DEBUG("Reading memory at real address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2657 address, size, count);
2658
2659 if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap->ap_num))
2660 return mem_ap_read_buf(armv7a->memory_ap, buffer, size, count, address);
2661
2662 /* read memory through the CPU */
2663 cortex_a_prep_memaccess(target, 1);
2664 retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2665 cortex_a_post_memaccess(target, 1);
2666
2667 return retval;
2668 }
2669
2670 static int cortex_a_read_memory(struct target *target, target_addr_t address,
2671 uint32_t size, uint32_t count, uint8_t *buffer)
2672 {
2673 int retval;
2674
2675 /* cortex_a handles unaligned memory access */
2676 LOG_DEBUG("Reading memory at address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2677 address, size, count);
2678
2679 cortex_a_prep_memaccess(target, 0);
2680 retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2681 cortex_a_post_memaccess(target, 0);
2682
2683 return retval;
2684 }
2685
2686 static int cortex_a_read_memory_ahb(struct target *target, target_addr_t address,
2687 uint32_t size, uint32_t count, uint8_t *buffer)
2688 {
2689 int mmu_enabled = 0;
2690 target_addr_t virt, phys;
2691 int retval;
2692 struct armv7a_common *armv7a = target_to_armv7a(target);
2693 struct adiv5_dap *swjdp = armv7a->arm.dap;
2694 uint8_t apsel = swjdp->apsel;
2695
2696 if (!armv7a->memory_ap_available || (apsel != armv7a->memory_ap->ap_num))
2697 return target_read_memory(target, address, size, count, buffer);
2698
2699 /* cortex_a handles unaligned memory access */
2700 LOG_DEBUG("Reading memory at address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2701 address, size, count);
2702
2703 /* determine if MMU was enabled on target stop */
2704 if (!armv7a->is_armv7r) {
2705 retval = cortex_a_mmu(target, &mmu_enabled);
2706 if (retval != ERROR_OK)
2707 return retval;
2708 }
2709
2710 if (mmu_enabled) {
2711 virt = address;
2712 retval = cortex_a_virt2phys(target, virt, &phys);
2713 if (retval != ERROR_OK)
2714 return retval;
2715
2716 LOG_DEBUG("Reading at virtual address. "
2717 "Translating v:" TARGET_ADDR_FMT " to r:" TARGET_ADDR_FMT,
2718 virt, phys);
2719 address = phys;
2720 }
2721
2722 if (!count || !buffer)
2723 return ERROR_COMMAND_SYNTAX_ERROR;
2724
2725 retval = mem_ap_read_buf(armv7a->memory_ap, buffer, size, count, address);
2726
2727 return retval;
2728 }
2729
2730 static int cortex_a_write_phys_memory(struct target *target,
2731 target_addr_t address, uint32_t size,
2732 uint32_t count, const uint8_t *buffer)
2733 {
2734 struct armv7a_common *armv7a = target_to_armv7a(target);
2735 struct adiv5_dap *swjdp = armv7a->arm.dap;
2736 uint8_t apsel = swjdp->apsel;
2737 int retval;
2738
2739 if (!count || !buffer)
2740 return ERROR_COMMAND_SYNTAX_ERROR;
2741
2742 LOG_DEBUG("Writing memory to real address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2743 address, size, count);
2744
2745 if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap->ap_num))
2746 return mem_ap_write_buf(armv7a->memory_ap, buffer, size, count, address);
2747
2748 /* write memory through the CPU */
2749 cortex_a_prep_memaccess(target, 1);
2750 retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2751 cortex_a_post_memaccess(target, 1);
2752
2753 return retval;
2754 }
2755
2756 static int cortex_a_write_memory(struct target *target, target_addr_t address,
2757 uint32_t size, uint32_t count, const uint8_t *buffer)
2758 {
2759 int retval;
2760
2761 /* cortex_a handles unaligned memory access */
2762 LOG_DEBUG("Writing memory at address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2763 address, size, count);
2764
2765 /* memory writes bypass the caches, must flush before writing */
2766 armv7a_cache_auto_flush_on_write(target, address, size * count);
2767
2768 cortex_a_prep_memaccess(target, 0);
2769 retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2770 cortex_a_post_memaccess(target, 0);
2771 return retval;
2772 }
2773
2774 static int cortex_a_write_memory_ahb(struct target *target, target_addr_t address,
2775 uint32_t size, uint32_t count, const uint8_t *buffer)
2776 {
2777 int mmu_enabled = 0;
2778 target_addr_t virt, phys;
2779 int retval;
2780 struct armv7a_common *armv7a = target_to_armv7a(target);
2781 struct adiv5_dap *swjdp = armv7a->arm.dap;
2782 uint8_t apsel = swjdp->apsel;
2783
2784 if (!armv7a->memory_ap_available || (apsel != armv7a->memory_ap->ap_num))
2785 return target_write_memory(target, address, size, count, buffer);
2786
2787 /* cortex_a handles unaligned memory access */
2788 LOG_DEBUG("Writing memory at address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2789 address, size, count);
2790
2791 /* determine if MMU was enabled on target stop */
2792 if (!armv7a->is_armv7r) {
2793 retval = cortex_a_mmu(target, &mmu_enabled);
2794 if (retval != ERROR_OK)
2795 return retval;
2796 }
2797
2798 if (mmu_enabled) {
2799 virt = address;
2800 retval = cortex_a_virt2phys(target, virt, &phys);
2801 if (retval != ERROR_OK)
2802 return retval;
2803
2804 LOG_DEBUG("Writing to virtual address. "
2805 "Translating v:" TARGET_ADDR_FMT " to r:" TARGET_ADDR_FMT,
2806 virt,
2807 phys);
2808 address = phys;
2809 }
2810
2811 if (!count || !buffer)
2812 return ERROR_COMMAND_SYNTAX_ERROR;
2813
2814 retval = mem_ap_write_buf(armv7a->memory_ap, buffer, size, count, address);
2815
2816 return retval;
2817 }
2818
2819 static int cortex_a_read_buffer(struct target *target, target_addr_t address,
2820 uint32_t count, uint8_t *buffer)
2821 {
2822 uint32_t size;
2823
2824 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2825 * will have something to do with the size we leave to it. */
2826 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2827 if (address & size) {
2828 int retval = cortex_a_read_memory_ahb(target, address, size, 1, buffer);
2829 if (retval != ERROR_OK)
2830 return retval;
2831 address += size;
2832 count -= size;
2833 buffer += size;
2834 }
2835 }
2836
2837 /* Read the data with as large access size as possible. */
2838 for (; size > 0; size /= 2) {
2839 uint32_t aligned = count - count % size;
2840 if (aligned > 0) {
2841 int retval = cortex_a_read_memory_ahb(target, address, size, aligned / size, buffer);
2842 if (retval != ERROR_OK)
2843 return retval;
2844 address += aligned;
2845 count -= aligned;
2846 buffer += aligned;
2847 }
2848 }
2849
2850 return ERROR_OK;
2851 }
2852
2853 static int cortex_a_write_buffer(struct target *target, target_addr_t address,
2854 uint32_t count, const uint8_t *buffer)
2855 {
2856 uint32_t size;
2857
2858 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2859 * will have something to do with the size we leave to it. */
2860 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2861 if (address & size) {
2862 int retval = cortex_a_write_memory_ahb(target, address, size, 1, buffer);
2863 if (retval != ERROR_OK)
2864 return retval;
2865 address += size;
2866 count -= size;
2867 buffer += size;
2868 }
2869 }
2870
2871 /* Write the data with as large access size as possible. */
2872 for (; size > 0; size /= 2) {
2873 uint32_t aligned = count - count % size;
2874 if (aligned > 0) {
2875 int retval = cortex_a_write_memory_ahb(target, address, size, aligned / size, buffer);
2876 if (retval != ERROR_OK)
2877 return retval;
2878 address += aligned;
2879 count -= aligned;
2880 buffer += aligned;
2881 }
2882 }
2883
2884 return ERROR_OK;
2885 }
2886
2887 static int cortex_a_handle_target_request(void *priv)
2888 {
2889 struct target *target = priv;
2890 struct armv7a_common *armv7a = target_to_armv7a(target);
2891 int retval;
2892
2893 if (!target_was_examined(target))
2894 return ERROR_OK;
2895 if (!target->dbg_msg_enabled)
2896 return ERROR_OK;
2897
2898 if (target->state == TARGET_RUNNING) {
2899 uint32_t request;
2900 uint32_t dscr;
2901 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2902 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2903
2904 /* check if we have data */
2905 int64_t then = timeval_ms();
2906 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2907 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2908 armv7a->debug_base + CPUDBG_DTRTX, &request);
2909 if (retval == ERROR_OK) {
2910 target_request(target, request);
2911 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2912 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2913 }
2914 if (timeval_ms() > then + 1000) {
2915 LOG_ERROR("Timeout waiting for dtr tx full");
2916 return ERROR_FAIL;
2917 }
2918 }
2919 }
2920
2921 return ERROR_OK;
2922 }
2923
2924 /*
2925 * Cortex-A target information and configuration
2926 */
2927
2928 static int cortex_a_examine_first(struct target *target)
2929 {
2930 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2931 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2932 struct adiv5_dap *swjdp = armv7a->arm.dap;
2933
2934 int i;
2935 int retval = ERROR_OK;
2936 uint32_t didr, cpuid, dbg_osreg;
2937
2938 retval = dap_dp_init(swjdp);
2939 if (retval != ERROR_OK) {
2940 LOG_ERROR("Could not initialize the debug port");
2941 return retval;
2942 }
2943
2944 /* Search for the APB-AP - it is needed for access to debug registers */
2945 retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv7a->debug_ap);
2946 if (retval != ERROR_OK) {
2947 LOG_ERROR("Could not find APB-AP for debug access");
2948 return retval;
2949 }
2950
2951 retval = mem_ap_init(armv7a->debug_ap);
2952 if (retval != ERROR_OK) {
2953 LOG_ERROR("Could not initialize the APB-AP");
2954 return retval;
2955 }
2956
2957 armv7a->debug_ap->memaccess_tck = 80;
2958
2959 /* Search for the AHB-AB.
2960 * REVISIT: We should search for AXI-AP as well and make sure the AP's MEMTYPE says it
2961 * can access system memory. */
2962 armv7a->memory_ap_available = false;
2963 retval = dap_find_ap(swjdp, AP_TYPE_AHB_AP, &armv7a->memory_ap);
2964 if (retval == ERROR_OK) {
2965 retval = mem_ap_init(armv7a->memory_ap);
2966 if (retval == ERROR_OK)
2967 armv7a->memory_ap_available = true;
2968 }
2969 if (retval != ERROR_OK) {
2970 /* AHB-AP not found or unavailable - use the CPU */
2971 LOG_DEBUG("No AHB-AP available for memory access");
2972 }
2973
2974 if (!target->dbgbase_set) {
2975 uint32_t dbgbase;
2976 /* Get ROM Table base */
2977 uint32_t apid;
2978 int32_t coreidx = target->coreid;
2979 LOG_DEBUG("%s's dbgbase is not set, trying to detect using the ROM table",
2980 target->cmd_name);
2981 retval = dap_get_debugbase(armv7a->debug_ap, &dbgbase, &apid);
2982 if (retval != ERROR_OK)
2983 return retval;
2984 /* Lookup 0x15 -- Processor DAP */
2985 retval = dap_lookup_cs_component(armv7a->debug_ap, dbgbase, 0x15,
2986 &armv7a->debug_base, &coreidx);
2987 if (retval != ERROR_OK) {
2988 LOG_ERROR("Can't detect %s's dbgbase from the ROM table; you need to specify it explicitly.",
2989 target->cmd_name);
2990 return retval;
2991 }
2992 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32,
2993 target->coreid, armv7a->debug_base);
2994 } else
2995 armv7a->debug_base = target->dbgbase;
2996
2997 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2998 armv7a->debug_base + CPUDBG_DIDR, &didr);
2999 if (retval != ERROR_OK) {
3000 LOG_DEBUG("Examine %s failed", "DIDR");
3001 return retval;
3002 }
3003
3004 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3005 armv7a->debug_base + CPUDBG_CPUID, &cpuid);
3006 if (retval != ERROR_OK) {
3007 LOG_DEBUG("Examine %s failed", "CPUID");
3008 return retval;
3009 }
3010
3011 LOG_DEBUG("didr = 0x%08" PRIx32, didr);
3012 LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
3013
3014 cortex_a->didr = didr;
3015 cortex_a->cpuid = cpuid;
3016
3017 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3018 armv7a->debug_base + CPUDBG_PRSR, &dbg_osreg);
3019 if (retval != ERROR_OK)
3020 return retval;
3021 LOG_DEBUG("target->coreid %" PRId32 " DBGPRSR 0x%" PRIx32, target->coreid, dbg_osreg);
3022
3023 if ((dbg_osreg & PRSR_POWERUP_STATUS) == 0) {
3024 LOG_ERROR("target->coreid %" PRId32 " powered down!", target->coreid);
3025 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
3026 return ERROR_TARGET_INIT_FAILED;
3027 }
3028
3029 if (dbg_osreg & PRSR_STICKY_RESET_STATUS)
3030 LOG_DEBUG("target->coreid %" PRId32 " was reset!", target->coreid);
3031
3032 /* Read DBGOSLSR and check if OSLK is implemented */
3033 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3034 armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
3035 if (retval != ERROR_OK)
3036 return retval;
3037 LOG_DEBUG("target->coreid %" PRId32 " DBGOSLSR 0x%" PRIx32, target->coreid, dbg_osreg);
3038
3039 /* check if OS Lock is implemented */
3040 if ((dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM0 || (dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM1) {
3041 /* check if OS Lock is set */
3042 if (dbg_osreg & OSLSR_OSLK) {
3043 LOG_DEBUG("target->coreid %" PRId32 " OSLock set! Trying to unlock", target->coreid);
3044
3045 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
3046 armv7a->debug_base + CPUDBG_OSLAR,
3047 0);
3048 if (retval == ERROR_OK)
3049 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3050 armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
3051
3052 /* if we fail to access the register or cannot reset the OSLK bit, bail out */
3053 if (retval != ERROR_OK || (dbg_osreg & OSLSR_OSLK) != 0) {
3054 LOG_ERROR("target->coreid %" PRId32 " OSLock sticky, core not powered?",
3055 target->coreid);
3056 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
3057 return ERROR_TARGET_INIT_FAILED;
3058 }
3059 }
3060 }
3061
3062 armv7a->arm.core_type = ARM_MODE_MON;
3063
3064 /* Avoid recreating the registers cache */
3065 if (!target_was_examined(target)) {
3066 retval = cortex_a_dpm_setup(cortex_a, didr);
3067 if (retval != ERROR_OK)
3068 return retval;
3069 }
3070
3071 /* Setup Breakpoint Register Pairs */
3072 cortex_a->brp_num = ((didr >> 24) & 0x0F) + 1;
3073 cortex_a->brp_num_context = ((didr >> 20) & 0x0F) + 1;
3074 cortex_a->brp_num_available = cortex_a->brp_num;
3075 free(cortex_a->brp_list);
3076 cortex_a->brp_list = calloc(cortex_a->brp_num, sizeof(struct cortex_a_brp));
3077 /* cortex_a->brb_enabled = ????; */
3078 for (i = 0; i < cortex_a->brp_num; i++) {
3079 cortex_a->brp_list[i